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Abstract

In edge plasmas, such as the tokamak scrape-off layer, transport parallel and per-
pendicular to the magnetic field are strongly coupled. It is shown that this leads to an
unconventional form of the parallel transport laws. In particular, if the radial transport
is governed by anomalous diffusion, the parallel ion transport cannot be entirely classical.
This general phenomenon is demonstrated explicitly within a simple model where the
anomalous diffusion is driven by weak electrostatic turbulence. Since the parallel and
perpendicular flows balance each other in the plasma edge, anomalous terms proportional
to the radial shear of the parallel velocity are shown to enter into, and modify, the usual
Spitzer problem for parallel ion transport. As a result, parallel ion transport is driven
not only by parallel gradients, but also by radial gradients, which is of importance for
the flow of impurities in the tokamak edge. A new type of parallel thermal force is found
resulting from the combined action of anomalous diffusion, parallel velocity shear, and a

radial temperature gradient.

PACS Numbers: 52.25.Dg, 52.25.Fi, 52.35.Ra, 52.25.Gj.
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I. INTRODUCTION

The edge plasma in the tokamak scrape-off layer (SOL) is not confined by the magnetic
field. Indeed, the plasma flows freely along the magnetic field lines towards the limiter
or the divertor collector plates, and the loss is balanced by cross-field tré,nsport. In the
continuity equation,

Vy(nW}) + 0I'/6r = 0,

where n is the density, V|, the mean parallel velocity, r the radius (or any flux surface
label) and I', the radial flux, both terms are thus of the same magnitude. For this reason
the parallel and perpendicular transport are strongly coupled. The conventional estimate

of the SOL width W following from this picture is [1]

UT/L” ~ D/W2 = W~ \/DL”/UT,', (1)

where vr = (27/m)Y/2 is the thermal ion speed characterizing the parallel flow, Ly the
connection length, and D the radial diffusion coefficient, determining the flux by T, ~
—Don/or. _

Conventional classical transport theory (2, 3] does not take into account the strong
perpendicular transport implied by (1). The usual parallel transport coefficients are
therefore not necessarily applicable to edge plasmas. A recent paper [4] rederived classical
transport laws for an impure plasma using the edge orderings corresponding to (1), and
found novel contributions to parallel transport from the perpendicular diffusion. It turns
out that the parallel fluxes of particles and energy are driven not only by parallel gradients
in the electrostatic potential, pressure and temperature, but also by radial gradients. The
new terms describing this effect in the expressions for parallel particle and heat fluxes are
important whenever radial gradients are large enough, that is, as large as predicted by
Eq. (1) if the classical diffusion coefficient for ion-impurity collisions is used for D.

In practice, radial diffusion at the edge is thought to be anomalous rather than clas-
sical. In fact, the relation (1) is sometimes used to estimate the diffusion coefficient from
measurements of the SOL width, and the inferred radial transport is usually strongly
anomalous [1]. On the other hand, the parallel transport is generally taken to be purely
classical. However, because of the nature of the SOL as indicated by (1), the parallel and
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perpendicular dynamics are not independent. Any anomalous radial diffusion affects the
parallel transport, which therefore cannot be entirely classical. It is the purpose of the
present paper to bring attention to this important effect. The point we wish to make is
perfectly general, relying only on the balance between parallel and perpendicular trans-
port, independently of the nature of the latter. For definiteness, however, we specialize
to the case of anomalous diffusion by electrostatic turbulence, like, e.g., Hinton and Kim
[5] in a recent fluid formulation of turbulent edge transport theory.

It is important to realize that the balance (1) is realistic only for the ions. The
electrons move much faster along the field lines, but are lost at the same rate as the ions
to maintain global ambipolarity. Parallel streaming therefore dominates over, rather than
balances, perpendicular diffusion in the electron kinetic equation. (The SOL width may
still be comparable for the two species since the boundary conditions are different. Most
electrons are reflected by the Debye sheaths at the walls, whereas the ions are absorbed
and recycled.) The parallel electron dynamics is therefore more likely to be conventionally
classical, and accordingly, we focus on the ions in the present work.

In Sec. II, we adopt orderings, relevant to the edge, exhibiting the desired balance
between ion streaming and diffusion on a kinetic level. In the next section, we proceed
to solve the drift-kinetic equation in a quasilinear approximation. As expected, the dif-
fusion across the field affects the parallel dynamics, and brings in new terms to the usual

(parallel) Spitzer problem. Our conclusions are summarized in Sec. IV.

II. EDGE ORDERINGS

It is our ambition to adopt orderings which are realistic for the SOL in present and future
tokamaks, and yet allow the ion kinetic equation to be simplified and solved. Cross-field
transport is taken to occur as a result of fluctuating electric fields giving rise to random
E x B drifts. The fluctuating part of quantities such as the ion distribution function, fi,

is assumed to be small in comparison with the averaged part f; by a small parameter §,

%~5<<1, 2)



~ which is our basic expansion parameter. This weak-turbulence assumption enables a
quasilinear analysis of the kinetic equation. In order to be able to treat the kinetics
on the drift-kinetic, rather than on the gyrokinetic, level, we take the perpendicular
wavelength 27 /k, of the fluctuations to be long in comparison with the (ion) Larmor
radius p = vr/Q,

kip~é.
The fluctuating E x B velocity should then be of the order
Vg ~ k18/B ~ 627, 3)
since the perturbed electrostatic potential is expected to be & ~ 6T/e. The SOL is
magnetized but narrow in comparison with the minor radius a,
P W L a,

in all tokamaks. There is no need to quantify these inequalities in terms of §; we need
them only for establishing that the diamagnetic drift in the poloidal direction,

BxVp pvp

V ia = ,
d neB? 144

is smaller than the thermal speed, but larger than magnetic drift velocity, which is of the
order of pvr/R, where R > a is the major radius. The frequency of the fluctuations is

expected to be of the order of the diamagnetic frequency,
W~ wy = k) Vgig ~ bur /W, (4)

which is the conventional estimate for electrostatic turbulence. Finally, anticipating that

the quasilinear diffusion coefficient is of the order
D ~VEw~ oW, (5)

we can then conclude that parallel streaming balances radial diffusion, as in Eq. (1), if

the SOL width is
W ~ 53L“. (6)

Let us briefly discuss the relevance of these orderings. Our strongest assumption is

that of weak turbulence (2), which may not always be satisfied at the edge, as indicated,
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e.g., by probe measurements in the SOL of the Texas Experimental Tokamak (TEXT)
[6]. Fluctuations of about 10% are, however, not uncommon. Indeed, taking 6 ~ 0.1
appears realistic, since the most unstable drift-modes typically have k, p ~ 0.1, and with
a typical SOL width of W ~ lem and connection length of the order Ly ~ 10m, the
ordering W ~ 63L“ is quite reasonable. Moreover, if the temperature is 100 eV, the
diffusion coefficient becomes D ~ 1m?/s, a value that is often quoted from experiments
and is frequently used in numerical edge computations.

Although it is not crucial for our general argument, we shall assume that the collisional
mean-free path is short in comparison with the connection length, but not necessarily in
comparison with the fluctuation wavelength. The mean-free path is usually about 1/10

or less of the connection length in the SOL of most tokamaks.

ITI. SOLUTION OF THE DRIFT-KINETIC EQUA-
TION

The drift-kinetic equation for jons has the form [7]

3 : i
5£‘+(V|| +Vg+Vg) -Vf,'+eE||v"O;—]; = C; (7)

where € = m;v%/2 is the kinetic energy, V, is the magnetic drift velocity, and E is the
parallel electric field. Ions typically experience collisions, described by the operator C;,
with both impurities (Z) and other ions (i),

C,' = CiZ + C,‘i.

The distribution function and the E x B drift consist of averaged and fluctuating pieces,

f=F+F
Vg= VE -+ VE,
and (7) is split into similar parts,
oF, . of
'al;‘ + (V“ +Vy +VE) -Vfi+ (VE . Vf,‘) -+ eE”’v“—ai6 = (3, (8)
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of; " P . ofi =

—é{; +(vj+Ve+Vg) Vfi+Vg-Vfi+ eE“vHEJ:— =C;, 9)
where (- - ) denotes an average over fluctuations, and nonlinear terms have been neglected
in the second equation, as well as the fluctuating parallel electric field E’”, which will be
justified presently. Note that the fluctuationg part of the collision operator, C;, involves

fluctuations in both the ion and the impurity distribution functions.

In the first equation (8), collisions dominate since the mean-free path is short. The

solution f; = fig + fi1 + ..., becomes Maxwellian to the lowest order in the mean-free
path,

: _ [ mi\*? mvd  mi(y — V))?

fo = fui =n (ﬁ) exp (_ °T ~ oT ’ (10)

with a parallel flow velocity Vj; equal to the the mean impurity velocity. The perpendicular
flow is assumed to be small in comparison with the ion thermal speed. In the SOL, the
parallel plasma flow may be large, so we permit it to be of the order of the ion thermal
speed,

Vi~ vr,

as in Eq. (1). In the next order we have

Ci(fia) = (vy+ Va+ V) Vi + €E||U||Q% + (Vg VF), (11)

where the quasilinear term (\N’ -V f,) representing cross-field transport is comparable
to parallel streaming vV far; because of the orderings developed in the last Section.
We must therefore turn our attention to Eq. (9) and solve for the fluctuations before

proceeding with the analysis of (11).

A. Fluctuations

Our edge orderings enable us to significantly simplify the fluctuating part (9) of the
drift-kinetic equation because the terms containing parallel streaming, magnetic drift
Va~ (p/R)vr, and the parallel electric field E ~ T'/eL; are all small in comparison with

the inertial term since .
uVifi | vrky
of /ot

~ 8Ly < 1,



Va-Vii (p/Rjrks W
wﬁ- 6’UT/W R

eE|v0fi/9e

wfi

<<17

~ 62 1.

In the first of these estimates, we require kyL; < 1/62, ruling out unrealistically short
parallel wavelengths. We also note that we were justified in neglecting the fluctuating
parallel electric field in (9) since eEjv8f;/0¢ is of the same order as the small term
3V f,

In the equation (9) for f;, the nonlinear terms were neglected. This (quasilinear)

approximation is justified if _ .
Ve -Vf;
Vg - V§;
On the other hand, to facilitate the solution of the drift-kinetic equation, it is conve-

~ &k W < 1. (12)

nient to take a Fourier transform of fluctuating quantities in time and in the direction
perpendicular to the magnetic field,
[fs Vel = 3 [fi(ky,w), Vi(ky, w)]ei®ex—en,
wk

This procedure is worthwhile only if the wavelength is short in comparison with the width
of the SOL, k., W > 1, since averaged and fluctuating quantities then vary on different
perpendicular length scales. Consequently we require § < 6k, W < 1; we may, for
example, take k, W ~ §~1/2,

Taking the Fourier transform and neglecting small terms in (9) gives the lowest-order
result

Ci+iunfi=Vg -V (13)

R .2 .
~Vg- [Vlnp-{— (mzu _E)VInT+%l—L-”-VV" Fui,

2T 2

where we have written wy = w —k - Vg for the Doppler shifted frequency, p = nT is

the pressure, and u = v — V) is the velocity relative to V). The driving term on the
right-hand side of (13) contains the averaged distribution function f;, which is given by
the Maxwellian (10) to lowest order. The Fourier transformed, fluctuating part of the

collision operator C; contains fluctuations in both the ion and the impurity distribution



functions, so it is necessary to determine the latter from the corresponding equation for
the impurities,

Cz +iwnfz = Ve Vs, (14)
where f is a Maxwellian identical to (10), but with the the impurity mass mz instead of
mi. The equations (13) and (14) are remarkably easily solved. The lowest-order solutions
are, in fact, independent of the collision frequency, and are thus equal to those of the
corresponding equation without collisions,

3 VE'vfMa

fo= , a=1i,2. (15)

Wi
To verify these solutions, we need only demonstrate that the collision operators. vanish
when operating on them. This is, however, already clear from the fact that the distribution

functions corresponding to (15) are simply equally displaced Maxwellians
fa(x) = fMa(x) + fa(x) ~ fMa(x + VE/iwk)

to the lowest order. The linearized collision operators C; and C in Egs. (13) and (14)
therefore operate on Maxwellians with the same velocity and temperature, and must
therefore vanish. This completes the solution of the fluctuating part (9) of the drift-

kinetic equation.

B. Transport laws

We are now ready to return to Eq.(11), from which edge transport laws can be deduced.
Taking the strongest perpendicular gradients to be in the radial (r) direction in the

quasilinear term, we can write the equation as
- 0 ~ =~ .
C,'(f,'l) = u"(V" In fars — eE”/T)fM,- + E:<VETfi> + (V” + VE‘) -V fari. (16)

The magnetic drift has been neglected since
Vd . Vf—i ~ pL”
’U”V”f,' WR

because the connection length L; is comparable to the major radius R. Anomalous fluxes

<<17

arise from the quasilinear term

. Olnp mu? 5\ 0lnT | miy v
Veof) = =D _2
{Verf) [ or +<2T 2) or + T Oor

fMia



where

D=7 Ve (ky,w)?6(w -k - Vp), (17)

wk
and we have used Landau’s rule 1/iw; — —n6(wi). The anomalous diffusion coefficient
D scales as anticipated in (5), and determines the diffusion of particles, momentum, and

heat,

o F 3n
= 3, _ v
Ve f oV,
HT” = /(VErf>mU||d3’U = —mian;‘l, (19)
mau® 5T\ 5 3noT _on
ar = /(VErf>( 0 )d —-—D(2 o Tar)’ (20)

in a conventional way. These relations contain no surprises, and are Onsager symmetric
when written in terms of the pressure and temperature gradients.

More interesting are the parallel transport laws that follow from (16). To determine
parallel fluxes (relative to the lowest-order velocity Vj), we need only the part of f;
that is proportional to u), which we denote by Fi;. Isolating the terms in (16) that are
proportional to u and keeping in mind that the spatial derivatives are to be taken at
fixed v rather than at fixed u gives

_ eE} mu? 5 ; 0 oV
C(Fy) = (7 {V” lnp — -,ZT”- + ( oT 5) Vi InT - —1—;-8—; (D-B;”-)

2m;D 0V} [dlnn m;u? lnT
T or l Br +(2T 5) ]}fM’ (21)

where we have introduced Eff = Ej — (m;/e)(V) + Vg) - VVj. The equation (21) has

the form of a Spitzer problem [2] modified by anomalous diffusion. It is well known
that the usual electron-ion Spitzer problem carries over exactly to the corresponding ion-
impurity problem (8] if the ion charge number in the electron-ion problem is replaced by
the impurity strength a = nzZ2/n;, where ny is the impurity density, and the impurities
are assumed to be massive, mz > m;. In the present situation there are additional terms
proportional to D 0V} /0r that add to the usual thermodynamic forces, but since the
diffusion coefficient D is independent of the velocity u, the equation is still mathematically

equivalent to the Spitzer problem. By analogy, we can thus immediately write down the



ion particle and heat fluxes relative to the impurities as

= nT'T;
Ve / Fayd®u = n(Vy = Vj) = - Z(/\uAl +A124s), (22)
; nT'7;
q = / f; ( - ) uyd’ = — ZT(A21A1 + A224,), (23)
where
3 ml/23/2
Tiz = 4(2m) 2 nzZ% 4 In A

is the ion-impurity collision time,

eEy ; 0 vV, 2m;D 0V, 81
.m0 Ny _ &M joimnn
A =V)lnp T T Or (D 81’) T or or'’
: Vi
A25V||1nT—2sza | 0lnT

T or or '’

are parallel thermodynamic forces modified by anomalous transport through the terms
~ proportional to D, and Aji are the usual parallel transport coefficients, satisfying Onsager
symmetry, Aj2 = Ag;. They depend on the impurity strength o and on the mass ratio
mz/m;. For massive impurities, mz >> m;, the coefficients are equal to those in the usual
electron-ion Spitzer problem, and can be looked up in Ref.[9]. For example, if a = 1
(ie. Zess = (nzZ22 + n;)/(nzZ + n;) = 2 in the limit Z > 1), we have )\, = 1.975,
A12 = Aop = 1.389, and \gp = 4.174.

To conclude this section, let us use the result (22) to evaluate the ion-impurity force

R in the parallel ion momentum equation
min|(Vi - V)Vi) = neBy — Vip— (V- M) + Ry, (24)

where V; is the mean ion velocity. In the present situation, V; consists of the parallel

velocity, the E x B drift and the radial diffusion velocity,

dlnn
or

V,—=V||+VE—D Vr,

where the small transport correction I'j/n to the parallel velocity has been neglected.

Recalling that the ions flow mainly in the parallel direction, Vj 3> V;,, we may write

on BVI

neE) — min[(Vi- V)Vi]) = neEj + m D6 o
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and with the dominant piece of the viscosity tensor given by (19) to the lowest order, the

viscous force becomes

or or or

Using these results and (22) it is now straightforward to solve for the parallel force in the

(V' ﬂ)” ~ QEIT—” >~ -—ﬂ (mm %> .

momentum equation (24), with the result

mily _ Aw

Ry=- (25)

(nV"T _ M?ﬁé@) ,

ATz An T Or or
The first two terms in this expression, proportional to the relative velocity and the parallel
temperature gradient, respectively, are conventional. In addition, there is a third term of
an unusual form, involving radial, but no parallel, derivatives. In the next Section, we
shall give it a physical interpretation. It represents an unconventional form of thermal
force, and its presence indicates that the anomalous radial diffusion changes the parallel
dynamics already on the kinetic level. Tt is, in other words, not possible to obtain the
parallel flux (22) simply by inserting an anomalous cross-field flux and a corresponding

anomalous viscosity in the parallel momentum equation (24) while keeping the classical

expression for the parallel force Rj.

IV. CONCLUSIONS

At the edge, parallel and perpendicular transport of ions are very strongly coupled. In
particular, the parallel dynamics cannot be entirely classical if the radial transport is
anomalous. We have constructed a simple transport model exhibiting this feature in a
realistic way. To make the argument as transparent as possible, the turbulence is assumed
to be weak, enabling a quasilinear treatment. In addition, the wavelength is taken to be
larger than the ion Larmor radius, so that the drift-kinetic, rather than the gyrokinetic,
equation applies. It must be emphasized that these simplifications are made solely for
the sake of transparency and analytic tractability. The basic point we wish to make is
independent of the mechanism underlying the anomalous transport. Also for this reason,
we have not addressed the instability mechanism driving the fluctuations. To do so, it is

necessary to analyze the electron dynamics (and sometimes also the impurity dynamics)
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in detail, which is beyond the scope of the present paper. The edge orderings adopted
here permit a variety of instabilities, such as Kelvin-Helmholtz instabilities and drift
instabilities modified by parallel-velocity shear [10] or by the presence of impurities [11].
It is interesting to note that when combining the very rough, but customary, mixing-length
estimate for the diffusion coeffient

D ~~[k}

with (5) and our other edge orderings (3), (4), (6), and (12), one obtains an instability

growth rate v that is small in comparison with the the real part of the frequency,
yjw~ (B W)? < 1,

commensurate with drift instabilities.

The fluxes (22) and (23), differ from classical results by the addition of several terms
proportional to the anomalous diffusion coefficient. These terms are of the same mag-
nitude as the conventional ones, and some, but not all, of them can be traced back to
radial inertia and anomalous viscosity in the ion momentum equation. They contribute
essentially to the parallel dynamics of the ion-impurity mixture. For example, since the
temperature drops along field lines from the main SOL to the divertor, the thermal force
(the V) InT term) tends to drive impurities from the divertor towards the core, which is
of concern for tokamak operation since Z.ss must be kept low in the core. Our analysis
shows that the thermal force may be counteracted not only by friction and the electric
field, but also by a term proportional to D(8V,/0r)(9T/dr), as in Eq.(25). This modifi-
cation of the parallel dynamics should be included in any numerical edge code attempting
to keep track of impurities.

To understand the physical meaning of the new force [the last term in (25)], let us
consider a situation where there is no relative flow between the ions and the impurities,
I’y = 0. The usual thermal force, proportional to VT, arises since ions travelling in the
direction of VT originate from a colder region than the ones moving in the opposite
direction. The former are. therefore more collisional than the latter, and exert a force
on the impurities in the direction of V|T. Consequently, the ions experience a force in

the opposite direction. In other words, the thermal force arises since the distribution is
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asymmetric in parallel velocity, even if the average parallel velocity vanishes. The new
force arises in a similar manner. If, for instance, 0V} /0r and 0T /0r are both negative,
anomalous diffusion transports hot ions with large Vj radially outwards in the SOL. Again,
this causes the ion distribution to be asymmetric since faster ions replace cooler, slower
ones at the radius of interest, causing the distribution function to asymmetrically depart
from Maxwellian with an elevated tail for u; > 0. If the relative velocity vanishes,
I'y = 0, the colder, more collisional, ions with u; < 0, exert a force on the impurities in
the direction of —(9V}/0r)(9T/9r) along the field lines, and the ions are pushed in the
opposite direction. Note that the distortion of the distribution function is asymmetric
only if both 8V} /dr # 0 and 8T /dr # 0.

In a conventional weak-gradient expansion, the new force is higher order than the
usual thermal force, since it is involves two derivatives, (8V}/0r)(8T/8r), rather than
one, V| T. However, in the tokamak edge, the relation (1) implies exactly that two radial
derivatives balance one parallel one.

For edge computations, it is also of interest to note that, in the present quasilinear
formulation of edge turbulence, one single diffusion coefficient determines the anomalous
particle diffusivity, viscosity, and heat conduction coeflicient for ions across the magnetic
field, according to Eqs. (18)-(20). The perpendicular particle and heat fluxes are also
shown to obey Onsager symmetry in a way not always accounted for in numerical edge
codes. These features have been discussed extensively in the theory of neoclassical trans-

port in the presence of fluctuations [12].
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