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Abstract

The properties of Saturn’s upper atmosphere are not well-known despite several
spacecraft flybys. However, the region of 1-100 pbar can be studied in detail by
observing stellar occultations — when the planet passes in front of a star — from
groundbased or Earth-orbiting telescopes. We use data from five such occultations: three
observed in 1995 by the Faint Object Spectrograph (FOS) on the Hubble Space
Telescope (HST), one observed in 1996 at the NASA Infrared Telescope Facility (IRTF)
and one in 1989 observed by a different instrument at the IRTF. The data span latitudes
from 52° south to 75° north.

We fit isothermal models to each data set and also perform numerical inversions.
These analyses show that temperatures in the 1-10 pbar range can vary significantly as a
function of season and latitude, ranging from 121 to 160 K, in accordance with radiative
transfer models for the atmosphere.

We also search for evidence of gravity wave saturation in Saturn’s upper
atmosphere, as seen in other planetary atmospheres, by analyzing the power spectra of
temperature and density data and by studying the temperature lapse rate in the
atmosphere. Our analysis is consistent with saturated gravity waves for all data sets,
although gravity wave saturation is not the sole explanation for the spectra.

We take advantage of the wavelength-resolved HST FOS data to study the
composition of Saturn’s upper atmosphere. We measured the difference in feature times
for data taken at twe wavelengths, and use the different refractivities of hydrogen and
helium, as a function of wavelength to compute the relative amounts of the two elements
in the planet’s atmosphere. We find that the helium mass fraction is 0.26 =+ 0.10, higher
than that found using Voyager data, but marginally consistent with theoretical models for
the evolution of Saturn’s atmosphere, although the large error bars on the results make a
definitive conclusion problematic.

Thesis Supervisor: James L. Elliot
Title: Professor of Earth, Atmospheric, and Planetary Sciences and
Professor of Physics
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Chapter 1
Introduction

Despite flybys of Saturn by three robotic spacecraft (Pioneer 11 in 1979, Voyager
1 in 1980, and Voyager 2 in 1981) there are large gaps in our understanding of the
structure of Saturn’s atmosphere. Stellar occultations using the ultraviolet spectrometer
(UVS) (Broadfoot et al. 1977) on the two Voyager spacecraft have probed the
atmosphere above 0.01 microbars (ubar) (Festou and Atreya 1982) while infrared and
radio science experiments on the spacecraft provided information on Saturn’s atmosphere
below 1000 pbar (Harel ef al. 1981, Tyler et al. 1982). The spacecraft data have left an
“information gap” in Saturn’s upper atmosphere between 0.01 and 1000 pbar (Figure 1.1)
Moreover, temperatures measured above 0.01 pbar differ based on results from a solar
occultation (Smith ef al. 1983) and a stellar occultation (Festou and Atreya 1982)
observed by the UVS.

The Cassini spacecraft mission to Saturn (Kerridge ef al. 1992), launched in
October 1997 and scheduled to arrive in July 2004, will be able to provide data to fill in
this gap. The Composite Infrared Spectrometer (CIRS) will provide global temperature
maps in the region of 0.3 microbars to 2 millibars, and the Ultraviolet Imaging
Spectrograph (UVIS) and Radio Science Subsystem (RSS) will also examine the vertical
temperature and composition profiles of the atmosphere. However, until Cassini arrives,
one tool does exist to probe Saturn’s atmosphere within this gap — stellar occultations.
Using telescopes on the ground and in Earth orbit at infrared and visible wavelengths,
one can probe Saturn’s atmosphere in the range of 1 to up tc 100 pbar, in the middle of

the information gap.
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Figure 1.1: Plot of temperature, pressure, number density and altitude for Saturn’s upper atmosphere. Note
the dashed region between 10~ and 10-8 bars, where no data are available. Also note the discrepancy at the
top right area of the plot between the results of solar UVS occultation results and stellar UVS and radio
science occultation results. From Atreya (1986).

Groundbased observations of stellar occultations by Saturn have provided some
information within this gap. Published data from atmospheric observations has dealt with
zonal winds in Saturn’s stratosphere based on observations of a central flash during an
occultation of the star 28 Sgr in 1989 (Nicholson et al. 1995). Hubbard et al. (1997) has
provided the first analysis of Saturn’s atmosphere from observations of the immersion
and emersion of the star from Saturn’s atmosphere, although these data are constrained to
within 15° of Saturn’s equator. Cooray et al. (1998) studied a 1995 occultation near
Saturn’s north pole. However, the region between these endpoints has yet to be studied in
detail, and the use of current and previously-untried analysis techniques can help us better

understand Saturn’s upper atmosphere and may benefit those planning the science for the

Cassini mission.

14



We choose to study Saturn’s atmosphere by observing stellar occultations, when
the planet passes in front of a star. Stellar occultations have been used to study the
characteristics of a wide range of planets, moons, asteroids, and comets (Elliot 1979;
Elliot and Olkin 1996). Their application to Saturn has been limited, as Saturn’s bright
disk and rings make it difficult to find stars bright enough not to be lost in the glare from
Saturn, particularly at visible wavelengths. However, the advent of improved IR arrays
and use of infrared wavelengths, where in selected regions the disk of Saturn is quite
dark, makes stellar occultations a viable research method to obtain key data on Saturn’s

atmosphere.

Lightcurves recorded from stellar occultation observations can be used to obtain a
wide range of data about the occulting planet. The time of the occultation itself, along
with astrometry of the planet and star, can be used to find the radius of the planet at the
latitude of the occultation. These can be combined to find a global figure of the
atmosphere. Fitting the light curve produced from the occultation observations to an
isothermal model gives a scale height for that region of the atmosphere (Baum and Code
1953). This scale height can, in turn, be used in conjunction with the location of the
observation with respect to the center of the planet and the local gravity to determine the
ratio of atmospheric temperature to mean molecular weight. If the atmosphere is not
isothermal, one can fit the data to models that include a thermal gradient (Elliot and
Young 1992) and use numerical inversion techniques (French et al. 1978) to compute
profiles of temperature, pressure, and number density as a function of altitude in the

atmosphere.

Spikes in the occultation light curves — sudden brief jumps in the signal from the
star during the occultation — can also provide information on the planet’s atmosphere.

These spikes can be traced to local density variations in the atmosphere which may be
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due either to isotropic turbulence (Jokipii and Hubbard 1977) or atmospheric waves
(Elliot et al. 1977; French and Elliot 1979). An analysis of these variations can provide
some understanding of the dynamics of the planet’s upper atmosphere. In particular, the
power spectrum of temperature and density variations can be calculated and compared to
theoretical estimates for spectra from turbulence and saturated gravity waves as well as
data from the Earth and, more recently, Jupiter (Young et al. 1997) and Titan (Sicardy ez
al. 1998).

Occultation observations of the same event at more than wavelength can also be
used to understand the composition of the atmosphere. Saturn’s two major atmospheric
components are hydrogen and helium, which together make up 99.9% of the atmosphere.
However, the helium abundance in Saturn’s atmosphere is poorly determined: a helium
mass fraction of 0.06 + 0.05 was computed from Voyager spacecraft observations
(Conrath et al. 1984). This fraction is significantly below theoretical predictions for
Saturn’s atmosphere (Stevenson 1980; Stevenson 1982), which require less helium
depletion from cosmochemical abundances to account for the planet’s excess heat flux.
Occultations by Saturn’s atmosphere observed at two different wavelengths can take
advantage of the difference in refractivity between the wavelengths, which shows up in
the data as a time difference in occultation lightcurve features between the two
lightcurves. This difference in refractivity can be compared with the known refractivities
of hydrogen and helium to find the relative fractions of both constituents in Saturn’s

atmosphere. Such a technique has previously been applied to Jupiter (Elliot et al. 1974).

Our approach is as follows. Chapter 2 discusses the various occultation data sets
available to us, and the calibration techniques necessary to convert the data into a usable
form. Chapter 3 details two common techniques used to analyze occultation data:

isothermal model fits and numerical inversions, and discusses the results of the use of
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these techniques on our data (including information about the shape of Saturn's upper
atmosphere). Chapter 4 outlines the theory of power spectrum analysis on temperature
and density profiles as a way of studying the dynamics of Saturn’s upper atmosphere.
Chapter 5 discusses the results from the power spectrum analysis technique. Chapter 6
goes over the theory of using occultation lightcurves obtained of the same event at
different wavelengths to determine the abundances of hydrogen and helium in Saturn’s
upper atmosphere, and the results of this technique on spectrally-resolved occultation
data. Chapter 7 outlines the results from these various techniques, places them into a
greater context of the planet and comparisons to other planets, and provides suggestions
for future research. Appendix A describes techniques used to remove background signal
from occultation lightcurves obtained by the Faint Object Spectrograph on the Hubble
Space Telescope. Appendix B describes the timing calibration performed on data
obtained with the NSFCAM infrared camera at the NASA Infrared Telescope Facility.
Appendix C discusses the astrometric reduction of that same data. Appendix D lists the
Mathematica™ notebooks used for these analyses. Appendix E provides a glossary of

terms used throughout this thesis.
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Chapter 2
Saturn Occultation Data

Introduction

To perform the desired analyses we need to obtain new Saturn stellar-occultation
data or reanalyze existing data. A list of stellar occultation candidates was compiled using
the Hubble Space Telescope Guide Star Catalog (GSC) by Bosh and McDonald (1992),
spanning the period 1991 through 1999. They collected a list of 203 potential occultations
of stars by Saturn in this period. Most of these stars are marginal candidates for
occultation observations due to any combination of their dimness, high sky-plane velocity
(the velocity at which the planet is moving relative to the star as seen by the observer; a
high velocity limits the integration time and hence signal-to-noise ratio of any
observations), or likelihood to be missed by the planet entirely. However, a number of
good candidates could be found on this list, and observations of occultations of two of
them are described below, as well as an existing data set from the past occultation of 28

Sgr (Harrington et al. 1993).

GSC 5249-01240

Event Parameters

The occultation of GSC 5249-01240 (RA 23h 19m 345,66, Dec —6° 47' 9".8 in
J2000) by Saturn merited special consideration by Bosh and McDonald (1992). The
predicted occultation had the lowest sky-plane velocity of any of the 203 events, at 0.9
km/s, because Saturn was near the stationary point in its orbit as seen from Earth. The
date of closest approach of Saturn to the star was 1214 UT on 1995 November 20, but
Bosh and McDonald noted the occultation would stretch between November 20 and 22

because of the slow velocity of the event, 20 times slower than an occultation observed at
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opposition. The star was also moderately bright (a magnitude of 12.3 at a mean
wavelength similar to the Johnson B bandpass; Bosh and McDonald 1992), which

permits shorter integration times.

Ground-based observations of this event were conducted, including observations
at the NASA Infrared Telescope Facility (IRTF) at Mauna Kea, Hawaii (see Cooray et al.
1998 for a complete discussion of those observations and results). However, the Hubble
Space Telescope (HST) provided a unique viewing opportunity: as the velocity of the
event was less than the orbital velocity of the HST, the apparent path of the star was not a
straight line but a series of loops caused by the parallax of the HST’s orbit (see Fig. 2.1).
These loops permitted the observation of multiple immersions and emersions over a wide

range of latitudes from near Saturn’s north pole to equatorial regions.
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Figure 2.1: The path of GSC 5249-01240 relative to Saturn as seen from the Hubble Space Telescope. The
parallax induced by HST’s orbit created the looping path seen above. The figure of Saturn, accounting for
its ellipticity, is plotted as well. The f-g coordinate system is used here: the origin of the system is the
center of the planet and the fand g axes are parallel to right ascension and declination, respectively, with
increasing to the east. The immersion events were observed at high northern latitudes (upper left) and the
emersion events took place at near-equatorial latitudes (lower right).

Data Collection

With the removal of the High Speed Photometer (HSP) during the December
1993 servicing mission, the HST lacked a dedicated instrument for high time resolution
observations like occultations. However, the Faint Object Spectrograph (Kinney 1994) is
capable of sufficiently high-speed observations in RAPID mode, and no other instrument
on the telescope at the time was similarly capable. The FOS was removed during the

second Hubble servicing mission in February 1997.
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We (Amanda Bosh, PI) used the red digicon on FOS with the G400H disperser
and a 0.86-arcsecond aperture. This provides data in the range of 3235-4781 A with a
resolution of 3 A per diode. We used the FOS in RAPID mode at its fastest speed, with
an integration time of 0.25 seconds and an overall cycle time (including dead time) of
0.26 seconds. For most analyses we would simply sum the signal over all diodes to get a
single data point at each time, to get data that resembles what would be collected by a
photometer. However, in Chapter 6 we discuss an important application of this
wavelength-resolved data for determining the ratio of helium to hydrogen in Saturn’s

atmosphere.

Raw Data

Several attempts were made to observe immersions and emersions of the star
using the FOS. Since the observations had to be planned in advance, and because of the
limited time available to observe Saturn during each orbit, the times of immersion and
emersion had to be estimated based on the planned HST ephemeris. Because of various
errors, the occultations were not recorded on all data sets. Table 2.1 lists the nine FOS
data sets (using a unique subset of HST’s “IPPPSSOOT” root file names; Leitherer 1995)
where occultation observations were attempted, and their results. Plots of the raw data,

summed over all diodes, are presented in Figures 2.2-2.10.
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Table 2.1: Summaa of FOS QOccultation Observations

12000F

11000;

Signal (counts)

70001

10000}

9G00

8000¢

Data Set Start Time (UT) Length | Guiding Results
(sec) | Mode*
0201 1995-11-20 02:27:07 1054.4 FL no occultation observed
0202 1995-11-20 02:48:35 1054.4 G possible occultation
observed but not reducible
0203 1995-11-20 03:58:38 1399.4 FL immersion observed
0204 1995-11-20 05:35:08 17443 FL immersion observed
0301 1995-11-20 23:19:21 514.6 FL no occultation observed
0302 1995-11-20 23:31:53 1054.4 G no occultation observed
0303 1995-11-21 01:04:14 1054.7 G star exited aperture during
emersion, not reducible
0304 1995-11-21 02:27:10 1054.4 FL emersion started at end of
data set, not reducible
_()__32 1995-11-21 04:03:42 1054.4 FL emersion observed
*guiding modes: FL: fine lock G: gyros

Figure 2.2: The raw,
summed data for the
0201 data set
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Figure 2.3: The raw,
summed data for the
0202 data set

Figure 2.4: The raw,
summed data for the
0203 data set. The
immersion takes place at
approximately 15,300
seconds.

Figure 2.5: The raw,
summed data for the
0204 data set. The
immersion takes place at
approximately 20,250
seconds.
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Figure 2.6: The raw,
summed data for the
0301 data set. These
data are plotted at a
different scale than the
other sets and hence
appear noisier.

Figure 2.7: The raw,
summed data for the
0302 data set

Figure 2.8: The raw,
summed data for the
0303 data set



o~ Figure 2.9: The raw,
f summed data for the
120000 0304 data set
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80000 X summed data for the
0305 data set. The
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Some of the data sets require comment. The 0202 data sets looks like an
immersion was recorded, however, attempts to remove the background signal (as
described in Appendix A) failed because of a nonlinearity in the background signal. The
HST was using the less-precise gyros, rather than fine lock onto a guide star, for this data
set, which may explain the variations. The 0303 data records an occultation, but
immediately thereafter there is a sudden drop in the data. The size of the drop is
consistent with the signal from the unocculted star, so we believe the star slipped out of
the aperture of the FOS at that time. Since only a fraction of the potential signal may have
been visible by the FOS at the time of emersion, and because that fraction may have been

changing with time, we have chosen not to reduce that data set. As with the 0202 data Set,
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this was using gyros rather than a guide star lock. Finally, the 0304 data set appears to
show the beginning of an emersion at the very end of the set. As the full emersion is not

recorded, we have not analyzed that data set.

Calibration

These data were collected in a non-supported mode of the FOS, and as such the
data were not processed through the standard analysis pipeline at the Space Telescope
Science Institute. This required us to perform a complete reduction of the data before any

analysis could begin.

The data included accurate timing from the FOS. Moreover, occultations of the
rings by the star were recorded by the FOS after the atmospheric occultations. Timings of
ring events permitted an accurate calculation of offsets to the star ephemeris to give
accurate positions for all data sets. The distance in £g coordinates (see Elliot e al. 1993
for a discussion of this coordinate system) between the star and Saturn was calculated
using the DE130 ephemeris (A. Bosh, pers. comm.). Timing of the ring events allowed
Bosh to calculate the offsets in the star position from the published values. Those offsets
(in the sense of calculated — published values) were ~0.071205 + 0.000073 arcseconds in
right ascension and 0.096860 = 0.000010 arcseconds in declination, corresponding to
offsets 0f 475.58 + 0.49 km in fand —646.93 + 0.07 km in g at Saturn’s distance from the
Earth.

As the raw data files show, background subtraction is a key issue, complicated by
the fact that the HST tracked on the star and not on the planet, so that the amount of
Saturn visible in the aperture (and thus the amount of light to be subtracted) varies with
time. Techniques attempted and adopted to remove the background signal from these data

sets are discussed in Appendix A. The final lightcurves are shown in F igures 2.11-2.13.
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Figure 2.11: The
background-subtracted
and calibrated signal for
the 0203 immersion.

Figure 2.12: The
background-subtracted
and calibrated signal for
the 0204 immersion.
The single tall spike at
about 55,250 km is
caused by Saturn’s
atmosphere, as is the
case with the other
spikes.

Figure 2.13: The
background-subtracted
and calibrated signal for
the 0305 emersion.



The calibrated data sets, in particular the 0203 and 0204 immersions, show an
unusual wave-like pattern. These waves are visible in both the pre- and post-event data,
which is unusual: if this was a variation in the light from the star, then it should be visible
only in the pre-immersion or post-emersion data. To study this in more detail, we
performed a Fourier analysis of segments of pre- and post-event data for all three data

sets to search for the period of the variations. The results are shown in Table 2.2.

Table 2.2: Period of Variations in FOS Data

Data Set Segment Dominant Period (sec)
0203 1-640 (pre-immersion) 554
0203 1100-2200 (post-immersion) 56.4
0204 1-350 (pre-immersion) 30.2
0204 800-1500 (post-immersion) 593
0305 1-1000 (pre-emersion) —

0305 1400-2000 (post-emersion) 66.4 _
——_—___—______————————L—-“.

The 0203 data has essentially the same period before and after immersion. The
0204 data set has the same period of the 0203 data set after immer sion, but a different
value before the immersion. This difference may stem from the limited data set available
for the pre-immersion data, which amounts to less than two periods at the frequency seen
in the post-immersion data. The 0305 data has a slightly longer period after emersion, but
there is no dominant period before the emersion: there are several frequencies visible in
the data, and the Fourier data shows a local minimum, not a maximum, at the dominant

frequency seen of the other data sets.

Because the variation exists in both the pre- and post-event data, and has the same

period for at least the 0203 data, we do not believe that this is an effect of the star or the
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occultation. A variation in the star light would not be visible in the post-immersion or
pre-emersion data, when only signal from the planet is recorded. Nor should it be an
effect of Saturn’s atmosphere, as the same variation is seen in the pre-immersion and

post-emersion data, when Saturn’s atmosphere should have no effect on the star signal.

We conclude this is an effect of the FOS and/or the HST. Other Saturn
occultations recorded from ground-based observatories (see Hubbard ez al. 1997; Cooray
et al. 1998; and the GSC 0010-00284 occultation discussed below) do not show wave
effects in the pre- or post-event data. Cooray e al.’s observations were of the same
occultation as seen here, at a latitude close to the latitude of the two immersion events. If
the aperture of the instrument, or the telescope itself, were oscillating with a period of
approximately 55-65 seconds, it would create an effect similar to what we see here: the
oscillation would cause more and less of the disk of Saturn to be visible at a given time,
increasing or reducing the flux recorded and generating the wave-like features seen here.
For all three data sets the telescope was locked onto a guide star, so we do not get the
drift we see with the gyros, but some longer-wavelength periodic motion may be

possible.

GSC 0010-00284

Event Parameters

A second occultation observed was of the star GSC 0010-00284 (RA: 0h 30m
515.02, Dec: 0° 39' 49" .6 in J2000). The geocentric closest approach time of this event
was at 1654 UT 1996 July 29. This event had a higher sky-plane velocity than the 1995
event, at 5.1 km/s, although this was still a much slower event than most of the other
occultation candidates compiled by Bosh and McDonald (1992). Another advantage of

this event was its small impact parameter of 1.04 arcseconds: this meant that the center of
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Saturn’s disk would pass close to the star during the occultation, raising the possibility of

observing a central flash as the star passed through Saturn’s evolute (Elliot et al. 1977).

Data Collection

We observed this event at the IRTF using the NSFCAM infrared camera (Shure et
al. 1994; Leggett and Denault 1996). The observations were taken in MovieBurst mode,
in which a series of images from a subframe of the IR InSb array is taken in stored in
RAM, then written to disk as a single FITS (Wells et al. 1981) “image cube” file when
the observation is completed. The NSFCAM computer can store up to 64 MB of data,
providing a limit on the size of the subframes and the number of integrations possible.
The immersion was recorded on a 4800-frame FITS image cube file in MovieBurst mode.
We used 0.5-second integrations using a “Spencer” 2.3-um filter (Leggett and Denault
1996). The observations started at 13:21:06 UT on 1998 July 29 and ended at 14:10:38
UT.

We also attempted to obtain simultaneous visible-light data with the Portable
CCD (PCCD) camera (Buie et al. 1993) mounted on the optical port of the NSFCAM.
Such a system had been used before for simultaneous visible-IR observations, but the
field was strongly vignetted (see Appendix III of Olkin 1996 for a complete description.)
We attempted to upgrade the optics system to permit a wider field of view for the PCCD
during the occultation; however, when we mounted the instrument on the NSFCAM, we
found that we could not put both the NSFCAM and PCCD into the same focus. We chose
to collect data with only the NSFCAM and used the PCCD only to provide guiding

images during the occultation observations.
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We also made similar observations of the gredicted central flash and emersion
using a 2.122-um filter. However, we recorded no central flash effects and the emersion,

which took place during daylight, could not be detected.

Raw Data

A sample image from the MovieBurst file of the immersion is shown in Figure
2.14. For the immersion we used two frames: an 80 x 80 pixel frame that included the
star and the relevant region of Saturn, and a 16 x 32 pixel frame centered on the moon
Tethys. The latter was recorded as a possible standard for calibration, but not used. The
two subframes are combined onto a single image, with a blank section added to pad the

data into a rectangular form.
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Figure 2.14: A sample image of the immersion data set. The upper portion of the image is an 80 x 80 pixel
frame showing the star (upper left) and Saturn. The image is taken at a wavelength where the disk of Saturn
is dark, so little of the disk can be seen. The rings form the bright vertical band seen in the middie of the
image. The single bright pixel between the star and the rings is a “hot pixel”, an instrument artifact. The
section in the lower-left is a separate 16 x 32 sub-frame of Tethys, used as a standard for background
calibration.

Calibration

We analyzed the frames from the immersion MovieBurst file to generate a
lightcurve and simultaneously remove the background signal, rather than do the two in
separate steps as with the HST FOS data. We performed a simple, but effective

background subtraction. We used a 14 x 12 pixel box in a fixed location in each frame;



this box encompassed the location of the star for each frame. As Saturn’s disk was dark at
the wavelength used for the occultation, the star contributed all the signal above the
background within the box. We summed the signal in the box. We also computed the
median signal within the box: since the pixels that contain signal from the star make up
only a minority of the total pixels in the box, the median value provides a measure of the
background. This median value was multiplied by the number of pixels in the box and
subtracted from the signal to provide the background-subtracted signal from the star.

In addition to background subtraction, we needed to calibrate the timing of the
data as well as determine the offset from the star from its ephemeris position. Timing
calibrations are discussed in detail in Appendix B while astrometry of the occultation is

discussed in Appendix C.

The final calibrated lightcurve is shown in Figure 2.15. We note that there is a
quadratic trend in the pre-immersion signal. This is likely caused by imperfections in the
background-subtraction technique, perhaps because of a small but non-zero contribution
by Saturn’s disk. However, we do not believe this will impact the later analysis, as we

trim much of the pre-immersion data before beginning any mode! fits or inversions.
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Figure 2.15: The calibrated IRTF 1996 light curve. The data have been background-subtracted, and the
timing and astrometry have been calibrated using techniques discussed in Appendices B and C,
respectively. The background does leave a residual quadratic curve in the pre-immersion data (between
radii of 57,000 and 64,000 km), however, as discussed in the text this is not a major concern for later
analysis.

28 Sgr

In addition to these data sets, we also had access to data from a Saturn occultation
of the star 28 Sagittrarii (28 Sgr). This occultation was observed with the Rochester
infrared camera at the IRTF on 1989 July 6 (Harrington et al. 1993). An analysis of this
data set, emphasizing the ring segments, is provided by Harrington ef al. (1993). This
data set was also incorporated into the analyses of Hubbard ef al. (1997), who performed

model fits on a set of occultation lightcurves from this event.
The 28 Sgr data had already had the background planet signal removed, but no

accurate distance scale in f~g coordinates. To compute this, we measured the difference

between the known position (in right ascension and declination) of 28 Sgr versus the
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ephemeris position of the planet for a given time, both in the J2000 epoch. We corrected
these values by taking into account the known offset of the star from its measured
position, as measured by Elliot ef al. (1993); the offset of the IRTF from geocentric
coordinates; and the offset of ihe Saturn barycenter from the planet center (Elliot ef al.
1993). The results are displayed in Figure 2.16. Later analysis of the data set using model
fits gave a half-light radius within a fe-v kilometers of the value published by Hubbard et

al. for these data, so we assume that this distance scale is accurate to within that value.
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Figure 2.16: The background-subtracted data from the 28 Sgr occultation observed at the IRTF, after the
distance scale was recalibrated as described in the text.
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Chapter 3
Model Fits and Inversions
of Occultation Data

Introduction

Analysis of stellar occultation data sets for atmospheres has traditionally involved
the use of two techniques: model fits and inversions. Model fits, both isothermal and with
a thermal gradient, can provide an average scale height and its gradient of the planetary
atmosphere probed by the occultation near the half-light level, the point in the occultation
at which the flux from the star is one-half of the unocculted value. Numerical inversions
of occultation data, on the other hand, can provide profiles of refractivity, pressure, and

other related parameters as a function of depth in the atmosphere.

Both techniques can prove useful in an effort to understand the structure of a
planetary atmosphere. The radii of the half-light levels provided by the model fits can be
used to establish the figure of the atmosphers on Saturn, as shaped by gravity, rotation,
and high-speed equatorial winds (Hubbard ez al. 1997). Inversions can be used to probe
for changes in density, temperature, and pressure within the atmosphere, which can in
turn be used to study dynamical atmospheric phenomena such as gravity wave

propagation and saturation (see Chapters 4 and 5).
In this chapter we review the theory and technique of model fits and numerical

inversions as used to analyze stellar occultation lightcurves. We also show the application

of these techniques to the data and discuss the results of these analyses.
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Model Fits

Model fits involve fitting a model for the flux of a star during a stellar occultation
versus time or radius. The free parameters of the model that are fit to the data provide the
radius of the half-light level and the refractivity scale height in that region, from which
the temperature, pressure, and number density can be derived for an atmosphere of

known composition in hydrostatic equilibrium.

Theory

The simpiest form of a model fit, the isothermal model fit, was introduced by
Baum and Code (1953) to fit the lightcurve from the occultation by Jupiter of 6 Arietis.
Baum and Code made a number of assumptions, including spherical symmetry, an

isothermal, homogeneous atmosphere, and an atmospheric scale height much smaller

than the radius of the planet to derive a relationship between the observed stellar flux (0]

(normalized to 1 for the unocculted star and 0 when the star is completely occulted) and

the angle of refraction 6:
Do\
6= (1 - —H_) 3.1

where D is the distance between the observer and the occulting body and H is the

refractivity scale height of the atmosphere.

This simple form, while a close approximation for large planets with isothermal
upper atmospheres like Saturn, has been expanded for more general cases Elliot and
Young (1992). They note that the flux detected by the observer will be a function of three

effects: the differential bending of light rays, the absorption of light by the atmosphere,
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and the partial focusing of light by the curvature of the pianetary limb. They then derived

the relationship:

r
)= T

d
T(rr)l exp[—T,ps ()] (3.2)

where {(r) is the flux from the star, r is the distance from the center of the planet to the
point of closest approach of a light ray, p(r) is the point of arrival of that light ray in the
observer’s plane, and T is the optical depth along the path of the ray. For these studies
Saturn’s atmosphere has no relevant extinction, and 1 is set to zero and ignored. The
amount of stellar flux msasured by an observer at a radius p is the summation of ¢(r) for
all values of r that arrive at p. Elliot and Young (1992) note that along the limbs of large
planets, the only significant source of the flux would be from the limb nearest the star, so

Eq. 3.2 can be rewritten as:

__r|adr|
o= p(r) |dp(r)|

(3.3)

For the case where only near limb light is observed, Elliot and Young converted

Eq. 3.3 into a function of D and 6:

1
(1+ D6(r) / r)Y(1+ DdB(r) / dr)

o(r) = (3.4)

Application to Data

Each background-subtracted data set was analyzed with code developed for
Mathematica™ (Wolfram 1991). For our model fits we chose to use an existing model

function package, olcNearLimb2, that allowed one to fit an isothermal model to a data set
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based on the equations of Elliot and Young (1992). (As the name suggests, other models
take into account any flux from the star refracted by the planet to appear on the far limb,
however, since Saturn’s radius is much greater than the atmospheric scale height, only
the near-limb flux was significant.) The olcNearLimb2 model was designed to fit the
stellar flux versus time, but we chose to use distance from the center of Saturn (in

kilometers) as a more convenient scale.

The olcNearLimb2 model includes up to 14 parameters that can be fit by least
squares. However, several of these parameters involved atmospheric extinction, which is
not relevant here and can be ignored. Several other parameters were fixed attributes of
the data and thus also not included in the fit. To adapt the model to use radius rather than
time as its x-coordinate, we set the velocity and time increment (A7) parameters each to
one. In the end we allowed four parameters to be adjusted by the fitting routine: the
background and full signal values, the half-light radius ry, and Ag;, the ratio of the half-

light radius to the scale height.

We used a standard least squares fitting routine to fit the model to the data. Once
the best fit was found, we could calculate several parameters from the data. The scale

height H can be found by simply dividing the half-light radius by Ay

= )’:_H 3.5)
Hi

From the definition of scale height, the temperature at the half-light radius in
Saturn’s atmosphere can be calculated from the gravitational acceleration g at the half-
light radius, the mean molecular mass of the atmosphere p (set to 2.135 for Saturn, from

Lindal et al. 1985), and the gas constant R:
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Th =:.ﬂ'|§ ) 3 .6)

We note that the value of g above has to take into account both the contribution

from gravity itself:
GM :
g0=—3" 3.7

as well as, for rapidly-rotating bodies like Saturn, a centrifugal force that works against

gravity. The centrifugal contribution will be a function of both the rotation rate ® and the

latitude 0, and modifies g to be: .

‘ 2
2 2y si
g= \/ (go - @*rcos? 6) + (m—r‘;m—z—(')-) (3.8)

The refractivity at half-light can be computed from the scale height, half-light

radius, and the distance D between Saturn and the Earth:

3/12
= _H7T (3.9)

The refractivity, in turn, can be used with the known refractivity at standard
temperature and pressure (STP) and Loschmidt’s number L to compute the number

density of the atmosphere at the half-light radius:

Lvy (3.10)
VsTtp
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The number density and temperature can then, with the Boltzmann constant k, be
used to find the half-light pressure:

Pp= nhkTh (31 l)

The half-light radius found by this method is not the actual half-light radius, but
the apparent one. Saturn’s mass bends light coming from the star, as determined by
general relativity, while the atmosphere refracts the light further. Both of these effects
can be removed. The olcNearLimb2 model takes into account the effect of refraction on
the half-light radius, but the contribution by general relativity must be computed

separately.

From Hubbard et al. (1997), the relationship between the observed half-light
radius rH' and the actual half-light radius r is

rH'=rH—D(6+€G) (3'12)

where D is the Earth-Saturn distance,  is the angle of refraction caused by the
occultation, and &g is the gravitational bending of light as predicted by general relativity.

(Hubbard et al. 1993) provides a function for the gravitational bending:

. (.13)
(5 l"H

where G is the gravitational constant, M is the mass of Saturn, and ¢ is the speed of light.

The value for 6 comes from the original Baum-Code function for the stellar flux:
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Do
¢_(1__17) (3.19)

At half light, ¢ = 1/2, thus D8/H = 1 and 8 = H/D. With these values and the ry
computed from the model fit, we can find the actual half light radius.

To compare the half-light radii for different data sets, we need to convert them to
their equivalent values for a standard latitude. Hubbard ef al. suggest one method to
convert the values of the corrected half-light radii into the equivalent equatorial half-light
radii. This is done by setting the gravitational potential U, a function of radius and
colatitude (90° — latitude) @, at the location of the half-light level of each data set equal to
the same potential at the equator (¢ = 90°), and solving for the equivalent half-light radius

a there:
U(ry,9)=U(a,90") (3.15)

The gravitational potential U is the sum of two terms: a free-space gravitational
potential ¥, defined using the radius, mass of Saturn, and the planet’s zonal gravity

harmonics, and a rotational potential Q. ¥ is given by:

V= %[] — Jy(ap/r)? Py(cos@) — J4(ao/r)* Py(cos@) - Jg (ao/r)° P6(005(p)]

r

(3.16)

where qy is a reference radius (set to the one-bar level, 60,268 km, from Lindal et al.
(1985)), J2, J4, and Js are zonal gravity harmonics (Nicholson and Porco 1988; Campbell
and Anderson 1989; Bosh 1994), and P,, P, and Pg are the corresponding Legendre

polynomials.
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0O, in turn, can be split into two components. One, Qy, is a uniform-rotation term,

defined as:

2
Qy=——2 (3.17)

defining @y as the rotation rate of Saturn independent of atmospheric motions (usually
measured by the rotation of the planet’s magnetic field) and 7 is the cylindrical
coordinate axis measuring distance from the axis of rotation. Added to Qg 1is a second
term, AQ, that is dependent on the differential rotation rates of the planet, as derived from
Voyager data as a function of ¢(Nicholson et al. 1995). Hubbard et al. (1997) include an
extrapolation of this relationship for regions around the equator, where AQ is poorly-

known.

Results

The fit parameters (background and full signal level, uncorrected half-light radius,
and energy ratio) are shown in Table 3.1. Derived quantities from these values ~ scale
height, temperature, number density, and pressure — are listed in Table 3.2. Parameters
used to derive the values in Table 3.2 from the model fit parameters are provided in Table

3.3. Plots of the fits and the data sets are shown in Figures 3.1-3.5.
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Table 3.1: Model Fit Pzrameters

Data Set Background Full rg (km) Ami
(uncorrected)
0203 —0.062 + 0.004 | 0.991 +0.003 55256 £2 1245 £ 37
0204 -0.082 +0.006 | 1.011+0.006 55206 + 3 1096 + 35
0305 ~0.070 £ 0.005 | 1.001 +0.004 60619 + 4 1054 + 39
IRTF 1996 -0.001+£0.013 | 1.065+0.010 56708 +5 1352+ 100
28 S -0.009 +0.002 | 1.017 +0.002 60385 £2 1072 +24

Table 3.2: Derived Parameters from Model Fits at Half-Light

Data Set Scale Height Temperature Number Pressure (ubar)
(km) x) Density
(%1013 cm-3)
0203 444£13 140.3+4.2 7.52+0.34 1.46 £ 0.08
0204 504=x1.6 159.6 £5.0 9.10+0.43 2.00+0.11
0305 575+2.1 129.1+4.7 10.59 + 0.58 1.89+£0.13
IRTF 1996 42.0+3.1 121.2+9.1 7.00 £0.79 1.17+£0.16
28 Sgr 56.4+1.3 129.0+2.9 10.59 + 0.36 1.88 + 0.08




Table 3.3: Other Parameters Used to Derive Model Fit Values

Parameter Value Reference
Vsrp 1.30x 104 Chapter 6*
M 5.685 x 1026 kg (USNO 1997)
u 2.135 amu (Lindal et al. 1985)
® 1.6378 x 104 s-1 (USNO 1997)
g (HST 0203) 1231 ms=2 Eqgs. 3.7-3.8
g (HST 0204) 1234 m s2 Egs. 3.7-3.8
g (HST 0305) 8.75ms2 Eqgs. 3.7-3.8
g (IRTF 1996) 1125 ms2 Egs. 3.7-3.8
28 Sgr) 8.90 m s2 s.3.7-3.8

*based on refractivities of helium and hydrogen at 4000 A, as shown in

Chapter 6, using the helium number fraction derived in that chapter.
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Figure 3.1: Model fit to the 0203 data set. The gray line is the best-fit model to the data (black line). The
signal is normalized such that the full unocculted signal from the star is equalto 1.
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Figure 3.2: Model fit to the 0204 data set. The gray line is the best-fit model to the data (black line). The
signal is normalized such that the full unocculted signal from the star is equal to 1.
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Figure 3.3: Model fit to the 0305 data set. The gray line is the best-fit model to the data (black line). The
signal is normalized such that the full unocculted signal from the star is equal to 1.
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Figure 3.4: Model fit to the IRTF 1996 data set. The gray line is the best-fit model to the data (black line).
The signal is normalized such that the full unccculted signal from the star is equal to 1.
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Figure 3.5: Model fit to the 28 Sgr data set. The gray line is the best-fit model to the data (black line). The
signal is normalized such that the full unocculted signal from the star is equal to 1.

To check the dependence of the results on the size of the data set used, we
removed data from the beginning and end of the HST data sets and reran the model fits.

(We did not repeat this for the IRTF data set as we had already trimmed down the size the
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data set to accommodate the slope in the pre-immersion data, as described below.) The
results are shown in Table 3.4. The fitted parameters do vary as the size of the data sets
decreases, although rj; in particular shows little dependence on the size of the data set.
The greater variation and increase in errors in the 0204 data set is likely due to the
proximity of the immersion to the beginning of the data set: the immersion begins only a
few hundred data points into the data set. We thus could not cut even amounts from the
beginning and end of the data set without cutting out the immersion itself, so we cut only
a fixed amount from the beginning and more from the end. This still left a limited amount
of pre-immersion baseline data for the model fit, which certainly contributes to the

increasing variation and error in the background and full parameters of the fit.
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Table 3.4: Model Fit Results for Different-Sized Data Sets

Data Set Background Full ry (km) AH;
(uncorrected)
6203
all —0.061 = 0.004 0.991 + 0.003 55256 £2 1245 + 37
cut first/last 100 —0.070 £ 0.004 0.991 = 0.003 55255 +£2 1203 + 37
cut first/last 200 —0.074 £+ 0.005 0.989 + 0.004 55254 +3 1190 + 38
cut first/last 300 —-0.091 £ 0.005 0.989 + 0.005 552523 1120+ 37
cut first/last 400 —0.088 = 0.006 0.979 = 0.005 55249 +3 1147+ 42
0204
all —0.082 + 0.006 1.011 + 0.005 55206 + 3 1096 = 35
cut first/last 100 -0.073 £ 0.006 1.014 + 0.007 55209 +3 1125+ 40
cut first/last 200 —0.088 +0.008 1.036 + 0.010 55212 +4 1056 = 42
cut first 250/last 350 | ~-0.082 +0.011 1.046 £ 0.015 55216 +4 1065 + 53
cut first 250/1ast 500 | —0.096 + 0.017 1.052 £ 0.618 552155 1021 £ 62
0305
all —0.070 + 0.005 1.001 + 0.004 60619 + 4 1054 + 39
cut first/last 100 -0.082 £ 0.006 1.000 + 0.005 60616 + 4 1016 = 39
cut first/last 200 -0.082 £ 0.007 1.005 = 0.005 60618 + 4 1010 + 41
cut first/last 300 —0.090 = 0.008 1.008 + 0.007 60617 £ 4 984 +43
cut first/last 400 -0.095 £ 0.009 1.016 = 0.009 60619 + 5 962 + 47
28 Sgr
all -0.009 £ 0.002 1.017 £ 0.002 60385 +2 1072+ 24
cut first/last 100 —0.008 £ 0.002 1.018 £ 0.002 60386 =3 1074 + 27
cut first/last 200 —0.007 £+ 0.003 1.016 + 0.003 60385 £ 3 1084 + 30
cut first/last 300 —0.007 £ 0.603 1.018 = 0.004 60386 +3 1084 + 35
cut first/last 400 —0.001 £ 0.004 1.009 + 0.008 60384 + 4 1121 + 46

We note that the errors for the IRTF 1996 data shown in Tables 3.1 and 3.2 are
somewhat higher than for the HST data. This is because we used a 650-point subset of
2000-point data set plotted in Figure 3.4, to alleviate the effects of the slope in the per-

immersion lightcurve seen in the right half of the figure.
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The differences in half-light radius are easily explained by the differences in
latitude among the various events, from the two high-latitude immersions (0203 and
0204) to the near-equatorial events (0305 and 28 Sgr). The scale height for the 0305
event most closely matches the mean scale height from the 28 Sgr data sets, 62.3 + 4.8
km (Hubbard ez al. 1997), which were also near-equatorial events. The scale heights for
the 0203 and IRTF 1996 events are similar to that found by Cooray et al. (1998), who
observed the same stellar occultation using the ground-based IRTF telescope and found H
=42.8 + 4.3 km. The 0204 event has a scale height intermediate of the two. This

difference as a function of latitude likely stems from the definition of scale height:

_RT
ug

H (3.18)

Since R is a constant, and p is unlikely to change as a function of latitude in a well-mixed
atmosphere (see Chapter 6 for an extended discussion of the composition of Saturn’s
upper atmosphere), H will be dependent on changes in T and g. Because of centrifugal
force and Saturn’s oblate shape, the half-light surface at higher latitudes is s'igniﬁcantly
closer to the center of the planet than the equator, and thus have higher values of g, which
lower the scale height. This general trend is seen in the data, where the high-latitude G203

and 0204 events have lower scale heights than the near-equatorial 0305 data set.

The difference in temperatures is consistent with both the mean and range in
temperatures from other events. While Hubbard ef al. recorded a mean temperature of
141 £ 10 K from the 28 Sgr occultation, the temperatures determined from the various
occultation data sets ranged from 125 to 158 K, with wide variations for data sets from
different stations sampling nearly the same latitude. The error cited by Hubbard et al. is
simply the standard deviation for the mean temperature from the data sets. Cooray et al.

record a temperature of 130 + 10 K from the GSC5429-01240 occultation, somewhat

50



larger than our IRTF data set. Of interest is the wide range between the 0203 and 0204
data sets, immersions that are less than one degree in latitude and approximately 95
minutes in time apart. This could be explained either by rapid changes and/or longitudinal
variations in Saturn’s upper atmosphere, or by problems in the reduction or analysis of
one or both data sets. Possible problems in ihe analysis are discussed later in the chapter.
In any event, it is difficult to determine any longitudinal or temporal trend in atmospheric

variability with just two data points.

The difference in temperatures can also be interpreted as latitudinal, seasonal
variations (Figure 3.6). Bezard and Gautier (1985) constructed a radiative seasonal model
of Saturn’s stratosphere at the 5 mbar level. Their model shows little change in equatorial
temperature as a function of time, but does show wide swings of up to 30 K in the
temperature of each pole over the course of a Saturnian year, caused by changes in
insolation from Saturn's 26°.73 obliquity (USNO 1998). At the time of these occultations
(1995 and 1996) the temperature difference between the north and south poles was 25-27
K, near the maximum, and the difference between the north pole and the equator was
approximately 5-7 K. This latter difference is similar to the difference we see between the
high northern latitude 0203 occultation and the near-equatorial 0305 occultation, but the
comparison between the 0204 and 0305 data sets gives a larger difference. The absolute
temperature scale is different between the model and data — the model gives an
equatorial temperature of 130 K with polar temperatures ranging between 110 and 140 K
— but the Bezard and Gautier model applies to the region near the top of the
stratosphere, where temperatures are expected to be slightly lower than the mesospheric

regions probed by the occultation data.
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Figure 3.6: A combined plot of
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The pressure from the 0203 data set is somewhat similar to the value of 1.61 +
0.10 pbar found by Cooray et al. However, this value is smaller than those from the
0204, 0305, and 28 Sgr data sets and significantly smaller than that from Hubbard et al.,
who found a mean pressure of 2.43 + 0.08 pbar from all the 28 Sgr occultation events.
The difference in temperature plays a key role in the comparison of the 0203 and the

0204 data sets, which one would otherwise expect to be similar.

The low half-light pressure for the IRTF 1996 data set is linked to the low
temperature using Eq. 3.11. The low temperature may be the result of seasonal and
latitudinal variations, as described above from the model of Bezard and Gautier ( 1985),
although the differences between the IRTF 1996 temperature and the temperatures at the
equator and the north polar regions are greater than those predicted from the Bezard and
Gautier model. We will explore these temperature differences in more detail in the

section on inversions.
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We solve Eq. 3.15 for a for each data set, using the values of ¥ and QO described
above. The results are shown in Table 3.5. As expected, the 28 Sgr data closely matches
the mean value of 60960 + 9 km from Hubbard et al. However, the 0305 data set has a
considerably lower value for a, while the IRTF value is also less than Hubbard ef al. and
that computed by Cooray et al., who found a = 60987 from another, higher-latitude,
occultation observed at the IRTF. The two immersion data sets, on the other hand, end up
with much higher equivalent equatorial radii, even though they are of the same
occultation observed by Cooray et al. Moreover, the two immersion events are not

consistent with each other.

Table 3.5: Equivalent Equatorial Half-Licht Radii
—_—__—.——_______————_J——g_—;_

Data Set rg (km) Latitude (degrees) a (km)
(corrected)
0203 55298 £ 2 74.12+0.01 61033 =2
0204 55248 +3 74.68 £ 0.01 61000+ 3
0305 60657 + 4 10.19 £ 0.02 60913 + 4
IRTF 1996 56749+ 5 -52.73 £0.02 609195
28 Sgr 60423 + 2 —15.14 £ 0.01 60970 + 2

Hubbard et al. synthesized a model for Saturn’s atmosphere based on their

occultation data as well as ultraviolet spectrometer and radio science occultation data

collected by the Voyager spacecraft, which probed regions of Saturn’s atmosphere above

and below, respectively, the region probed by the stellar occultations. This “L+inv”

model provides number densities, temperatures, and pressures for values of a between

60,490 and 61,500 km. We used the values of a in Table 6.2 to find temperature and
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pressure from the model, and compared those model values to our actual results. The

comparison is shown in Table 3.6.

Table 3.6: Comparison of “L+inv” Mode! Values to Actual Results
————r———_—__h%_———————L——_-“

Data Set a (km) Temperature (K) Pressure (ubar)
mode! observed model observed
0203 61033 £2 133.6 1403+42 [0.740 1.46 +0.08
0204 61000 = 3 134.1 159.6 5.0 [1.279 2.00+0.11
0305 60896 =+ 4 138.4 129.1+£4.7 16.907 1.89+0.13
IRTF 1996 | 60939 + 5 140.1 121.2+9.1 [4.761 1.17+£0.16

28 Sgr 60970 + 2 136.6 129.0+ 2.9 ]2.098 1.88 + 0.08
—_— e e 12000

The table clearly shows that the results from the atmospheric model do not
compare well to the results from the model fits on each individual data set. Only the 0203
temperature lies within 1 ¢ of the atmospheric model value, and some of the results,
notably the 0305 and IRTF 1996 pressures, are far off from the atmospheric model
results. This indicates that there may be problems with the data sets or the application to
atmospheric model to these data, particularly the high-latitude events. We belie\;e the
latter explanation is more likely, since the data come from three distinct sources (FOS on
HST, NSFCAM on IRTF, and Rochester camera on IRTF ), and at a wide range of
latitudes, yet all fail to reasonably fit the L+inv model. We therefore feel that the
atmospheric model may not adequately describe conditions in Saturn’s upper atmosphere

outside of the equatorial zone.

This problem may be related to the quality of the data for AQ, derived from zonal
wind profiles computed from Voyager data (Nicholson et al. 1995). Figure 3.7 shows the

difference in the shape of the atmosphere when AQ is used versus when it is not. The
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figure shows that while the values of AQ used here fit the data at low latitudes reasonably

well, they fail to fit the data at higher latitudes. This suggests the wind profiles in these

regions is incomplete or has changed since the Voyager flybys, and may explain why the

values of a disagree with the Hubbard ef al. result and their L+inv model.
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Figure 3.7: A plot of the
effects of zonal winds on the
“height” (equipotential
displacement) of Saturn’s
atmosphere. The solid line
shows the difference in a
between the model with AQ
and the one without as a
function of latitude (the
difference is represented as the
model with AQ minus the one
without.) The points show the
same differences in a for each
of the data sets. The figure
demonstrates that the zonal
wind profile fits the data well
at low latitudes, but not at
higher latitudes.

Fits of occultation lightcurves using isothermal models can provide an average

scale height of the atmosphere, but if the atmosphere is not isothermal, then one must use

inversions to determine the non-isothermal characteristics of the atmosphere.

55



While previous research (Atreya 1986) suggested, albeit not conclusively, that
Saturn’s atmosphere is isothermal in the regime probed by the occultation data sets,
isothermal model fits do not take into account sudden variations, or “spikes”, in the data.
These spikes are caused by small density variations that occur on scales of a few
kilometers (Ellict et al. 1976), which may be due to turbulence or waves in the
atmosphere; thus they contain information about the atmospheric structure. An analy:is
technique which can recover data about these spikes would be a useful tool in the effort

to better understand Saturn’s atmosphere at the microbar level.

Theory

Inversion techniques have been used in the study of planetary atmospheres for
some time. The theory behind the technique has been described in a number of
publications (Kovalevsky and Link 1969; Wasserman and Veverka 1973b; French et al.

1978), however, for completeness, the analysis method is described in some detail below.

We start with the Elliot and Young (1992) expression for the flux from an
occultation, listed in Eq 3.2. The exp(-‘cobs(r)) accounts for extinction of the light as it

passes through the occulting body’s atmosphere with an optical depth —7,,,(7); in this

case we assume extinction is negligible and ignore it. If we replace the continuous

derivative in Eq. 3.2 with the discrete values A» and Ap, we can rewrite the equation as:

E(rp(nAp(r)=rar (3.19)
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Figure 3.8: Inversion shell architecture. This illustration shows how an inversion of an occultation
lightcurve is computed. The atmosphere of the occuliing body (left) is divided into a number of shells. The
radius , refraction angle 6, and other quantities can be computed from the known radius in the observer
plane p, time ¢ and stellar flux ¢. From Olkin (1996).

We can use Eq. 3.19 to consider the atmosphere of an occulting body as a set of
shells. We define 7, as the radius of the n‘iiddle of the first shell, r;, as the radius of the
middle of the second, 7 as the radius of the middle of the kth shell (Figure 3.8). We also
define “half-indices” for the radii cf the boundaries between the shells: 73/, would be the
radius of the boundary between the first and second shell, and 741/, would be the radius
of the boundary b..;ween the kth and k+1th shells. In this definition r12 1s considered as
the top of the first shell. By adopting the shorthand notation Cx =C(r) and p, =p(ry,)

we can rewrite Eq. 3.16 as:

CiPiklpy = riAry, (3.20)
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Eq. 3.20 can be used, with some algebra, to express the difference between the top

and bottom of a given shell:

ris2 = 112 = 28Pr Py (3.21)

This can, in turn, be used to find the radius of any boundary radius given we know
the value of r/;, the top boundary of the first shell:

k
Thel/2 = \/ rin +23 Gipidp; (3.22)

i=1

In addition to the radius, the refraction angle 6 of a ray passing through the th
layer is given by (Olkin 1996):

p -
Oer/z = k+1/2D k+1/2 (3.23)

where D is the distance between the planet and the observer, assuming 0 is small.

Derivation of the function for refractivity as a function of » and 6 has been done
for large planet atmospheres (using the assumption that the scale height H was much
smaller than the radius ) by Wasserman and Veverka (1973b). A refined version of this
derivation, which removed the approximations that made the result inaccurate for small
planet atmospheres, was reported in Olkin (1996). This updated version will be used in

this analysis since it is valid for large-planet atmospheres as well.

Olkin finds the refractivity as a function of radius to be:
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1 k _ ;
V(resira) ==—| Lz ressa)+ Y, cosh™!| —— g, (3.24)
T

j=12 Ti+1/2
where:

0 ’
-1 T ’
Iv(rllz,rk+l/2) = J. cosh l(‘;}ier (3_25)
e(r,,,)

In Eq. 3.24 the summation represents the contribution of the refractivity from the
top of the first shell to the bottom of the kth shell. The integral in Eq. 3.25 represents the

contribution to the refractivity from the region above the inversion.

The number density »(r) can be found from Eq. 3.10, if we assume that the
composition of the atmosphere does not vary in the range probed by the inversion. The
pressure can be found using the equation of hydrostatic equilibrium (which requires us to
assume that the atmosphere is in hydrostatic equilibrium in the region probed.) Using the

number density (and hence refractivity) computed above the expression for the pressure

becomes
2
Lym, GM, \ i d
. _ I(r.. N+ cosh™ I |- 1-] 22| |AG.
p( k+1/2) TVsrpFeira p( 1/2 rk+l/1.) j=21/‘2 Tesi2 r; J
(3.26)
where

L(rysrens) = j )[cosh-‘(’—')~ 1-(5)2 }de(r’) (3.27)

r
9(’1/:
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Analogous to the expressions for the refractivity, the summation term in Eq. 3.26
is the contribution to the pressure from the top of the first shell to the bottom of the kth
shell, while the term in Eq. 3.27 provides the contribution to the pressure above the top

shell.

Two other quantities, the temperature and the scale height of the atmosphere, can

be derived from the inversion. The temperature can be found directly from the perfect gas

law:
p(r)
T(r)= -—2_ 3.28
()= (3.28)
where kg is Boltzmann’s constant. The scale height H(r) can be computed from its
definition:

2

RT(r) r & af 7 Tk41/2
H(r)= =~ I rllz,rk 1/2 + cosh — |- 1-| —= AO ;
ng(r) mv(r) p( * ) j=%2 Tk+1/2 ’

(3.29)

where R is the ideal gas constant and p is the mean molecular mass and gr)is

calculated using Eqns. 3.7 and 3.8.

Results

We applied the inversion equations described above to the occultation data with a
series of Mathematica™ notebooks. The equations described in the previous section were

implemented as functions in two existing Mathematica™ packages, occlnversions and
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occlnversions2, and used in the analysis. The initial conditions for the inversion come
from the model fits discussed earlier in this chapter. Because inversions can be highly
sensitive to the initial conditions provided, we started our inversions at a number of
points corresponding to flux levels in the light curve ranging from ¢ = 0.5 to 0.9. We
established the initial conditions by performing an isothermal model fit to the data down
to the specified flux level, as discussed by French et al. (1978). Figures 3.9-3.13 show the

pressure-vs.-temperature profiles for all four data sets.
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Pressure vs. Temperature for HST 0203 Data
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Figure 3.9: Pressure versus temperature inversion profile for the HST 0203 data set (latitude +74.1°). The
various curves represent the inversion results based on initial conditions at various points in the occultation
light curve, from ¢ = 0.5 to 0.9. The single large circle is the temperature from the isothermal model fit to
the data from Table 3.2
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Pressure vs. Temperature for HST 0204 Data
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Figure 3.10: Pressure versus temperature inversion profile for the HST 0204 data set (latitude +74.7°). The
various curves represent the inversion results based on initial conditions at various points in the occultation
light curve, from ¢ = 0.5 to 0.9. The single large circle is the temperature from the isothermal model fit to
the data from Table 3.2
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Pressure vs. Temperature for HST 0305 Data
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Figure 3.11: Pressure versus temperature inversion profile for the HST 0305 data set (latitude +10.2°). The
various curves represent the inversion results based on initial conditions at various points in the occultation
light curve, from ¢ = 0.5 to 0.9. The single large circle is the temperature from the isothermal model fit to
the data from Table 3.2
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Pressure vs. Temperature for IRTF 1996 Data
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Figure 3.12: Pressure versus temperature inversion profile for the IRTF 1996 data set (latitude —52.7°).
The various curves represent the inversion results based on initial conditions at various points in the
occultation light curve, from ¢ = 0.5 to 0.9. The single large circle is the temperature from the isothermal
model fit to the data from Table 3.2
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Pressure vs. Temperature for 28 Sgr Data
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Figure 3.13: Pressure versus temperature inversion profile for the 28 Sgr data set (latitude —15.1°). The
various curves represent the inversion results based on initial conditions at various points in the occultation
light curve, from ¢ = 0.5 to 0.9. The single large circle is the temperature from the isothermal model fit to
the data from Table 3.2

The HST 0203 inversion shows a markedly different behavior than the 0204 and
0305 data sets, even though it probes the same general region of Saturn’s atmosphere as

the 0204 data set and does so only approximately 95 minutes before 0204. It is difficult to
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see a way where the thermal profile of Saturn’s atmosphere would be so spatially and/or
temporally variable, so we believe that this may be a problem related to the background
subtraction technique used on the data. We attempted several other inversions of the data
set by adjusting the parameters of the background subtraction process. (Figure 3. 14)In
most cases the resulting inversion profiles bore a resemblance to the shape of the 0203
profile shown here, although shifted in temperature. In those cases where the profiles
were closer to isothermal in nature, the temperatures were much lower than measured
elsewhere in this region of Saturn's atmosphere, including the 0204 data set. As discussed
in Appendix A, this is likely because of the ﬁncertainty in the choice of the beginning
point of the immersion, as the wavelike pattern overlaid onto the data (see Chapter 2)
interferes with the immersion lightcurve. A similar comparison of different background
subtraction parameters on the 0204 and 0305 data sets shows that some features of the
inversion profiles, including the temperature ranges of the profiles, are sensitive to
changes in the parameters (Figures 3.15 and 3.16). However, gross features, including the
sharp change in temperature around 6-8 pbar, are not sensitive to the parameters selected

and thus are not likely artifacts of the background subtraction process.
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Figure 3.14: A comparison of several 0203 inversion profiles. Each inversion profile shown above used a
slightly different background subtraction from the raw data (see Appendix A for more information) to
obtain the light curve that was inverted. All the profiles used the same starting point, ¢ = 0.6, from the
model light curve. The version used in Figure 3.9 is shown in black above and denoted as the “Nominal
Result”; alternate tests are shown in gray. Note that the shape of the profiles changes dramatically for
different background subtraction parameters, and the only profiles that look reasonably isothermal are at
very low temperature, much lower than expected for this region of Saturn's atmosphere.
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Figure 3.15: A comparison of several 0204 inversion profiles. Each inversion profile shown above used a
slightly different background subtraction from the raw data (see Appendix A for more information) to
obtain the light curve that was inverted. All the profiles used the same starting point, ¢ = 0.6, from the
model light curve. The version used in Figure 3.10 is shown in black above and denoted as the “Nominal
Result”; aliernate tests are shown in gray. Unlike the 0203 data, major features in these profiles remain in
place even as the background subtraction parameters are altered, although other features and the overall

temperature do change.
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Figure 3.16: A comparison of several 0305 inversion profiles. Each inversion prefile shown above used a
slightly different background subtraction from the raw data (see Appendix A for more information) to
obtain the light curve that was inverted. All the profiles used the same starting point, ¢ = 0.6, from the
model light curve. The version used in Figure 3.11 is shown in black above and denoted as the “Nominal
Result”; alternate tests are shown in gray. Unlike the 0203 data, major features in these profiles remain in
place even as the background subtraction parameters are altered, although other features and the overall
temperature do change.

In Earth’s atmosphere temperature decreases with increasing altitude in the
mesosphere, as radiative cooling allows more heat to escape than is absorbed by the
atmosphere. However, unlike the Earth’s atmosphere, Saturn’s atmosphere lacks a single,

localized atmospheric constituent like ozone that contributes significantly to atmospheric

70



heating in lower regions; methane, a key absorber of visible and infrared radiation, is
well-mixed in Saturn’s atmosphere. Thus, we would expect a lesser decrease in
temperature in Saturn’s mesosphere, or isothermal conditions, a conclusion supported by
the temperature profiles recovered from the inversions. If the region probed is near the
mesopause, then near-isothermal conditions would be expected as well. High thermal
conductivity in the atmosphere can also create isothermal conditions, as Goody and Yung

(1989) note, but only at much higher altitudes.

The temperatures calculated are in the range expected from atmospheric models
as well. Saturn’s atmosphere has a minimum temperature of ~90 K at 100 mbar, the
tropopause. Above this level Saturn’s temperature increases from the absorption of solar
radiation, particularly at infrared wavelengths, by atmospheric components. Bezard and
Gautier modeled Saturn’s stratosphere to an altitude of 5 mbar by accounting for
absorption of visible infrared radiation by CH, and emission longward of 7um by H,-He,
CH,, C;H, and C;Hg. This gives S5-mbar temperatures ranging from 110-140 K,
depending on latitude and season, as noted earlier in this chapter. Radiative-dynamic
models of Saturn’s troposphere and stratosphere developed by Conrath et al. (1990) and
Barnet ez al. (1992) also found northern regions 10 to more than 20 degrees warmer than
southern regions at northern summer solstice and fall equinox, roughly corresponding to

1988 and 1995 respectively.

The warmer temperatures near the north pole compared to the equator and
southern hemispheric regions is supported by several factors. Tokunaga et al. (1978)
explained the warm temperatures near the south pole half a Saturnian year ago by noting
that the increased path length and length of the day provides more solar energy to the
polar regions in summer than the equatorial zone. Absorption of ultraviolet radiation in

polar regions (West 1981; West ez al. 1983) can also contribute to the higher
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temperatures at the poles. Barnet et al. (1992) also note the effects of shadowing on the
atmosphere from the rings: during the northern summer the ring shadows can reduce the
insolation of mid-southern latitudes by more than a factor of 10 from the insolation at

high northern latitudes.

One specific feature in the inversion profiles is not easily explained by existing
atmospheric models. The HST 0204 and 0305 profiles are very similar, with isothermal
profiles around T=130-140 K at pressures down to 5-6 pbar before turning considerably
colder at deeper pressures. This is very similar to what Coorzy et al. (1998) determined
from the same occultation observed at the IRTF. They observed an isothermal region
with a temperature of 130 K from 2 to 7 pbar, followed by a sharp decrease to 117 K at
10 pbar, followed by another decrease to 115 K at 13 pbar. The HST 0204 profile
remains approximately isothermal at 140 K from 2 to 6 pbar before cooling to 120 K at
12 pbar, where it then sharply cools to 110 K. The HST 0305 data remains isothermal at
130 K to 5 pbar, when it cools to 105 K at 8 pbar before sharply cooling to 80 K at 9
ubar. Computation of the thermal lapse rates (discussed in detail in Chapter 5; especially
Figures 5.3-5.5) show the lapse rates exceed 1 K/km in these regions, while Cooray et al.
estimated an overall lapse rate of 0.8 K/km in the 1995 IRTF region (82.5° to 85°

latitude).

We consider several possibilities for this change in temperature. Gravity waves
that propagate upwards from deeper in the atmosphere may eventually break, releasing
their energy by heating the atmosphere. This explanation has been put forward to explain
the sudden temperature increase seen in Jupiter’s upper atmosphere (Yelle et al. 1996;
Young er al. 1997). However, this increase was more than an order of magnitude larger
than seen here, and at lower pressures. Moreover, the role of breaking gravity waves in

heating upper atmospheres has recently been questioned (Matcheva and Strobel 1998;
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Young et al. 1998b). Thus, it is unlikely that breaking gravity waves are contributing to
this temperature change.

Dust infall from rings has been explored as a possible cause of an increase in the
temperature of the upper Uranian atmosphere that peaks at 8 pbar (Rizk and Hunten
1990). Infalling dust reaches temperatures of up to 200 K, sufficient to warm the Uranian
atmosphere in the 1-10 pbar range, where temperatures are similar to those seen in
Saturn's upper atmosphere. However, the Uranian data show a temperature increase
peaked by the equator, and Rizk and Hunten show that the dust falling from the rings
would spread into a band only ~100 km in width. This is insufficient for explaining the
Saturnian data, where similar temperature changes are seen both near the equator and

near high latitudes.

Another source for infalling material is Saturn's magnetic field. Connerney (1986)
showed from Voyager data that latitudinal albedo and temperature variations on Saturn
were in magnetic conjugacy with features of Saturn's rings. Connerney noted that the
magnetic field would be able to transport ice and dust particles from the ring to the

planet, causing the features seen at a variety of longitudes.

The only features noted by Connerney that matches up with our occultation data
is the A ring, whose particles are in conjugacy with the southern hemisphere from —48.1
to —51.4 degrees, near the IRTF 1996 immersion; and the inner D ring, from -17.3 to
—20.9 degrees, near the 28 Sgr immersion. These data sets, however, are those that do not
show a sharp temperature change (with the exception of the 0203 data set, whose
difficulties are addressed above). One possibility is that the infall of dust does generate
heat (as noted by Rizk and Hunten (1990)) and this offsets a preexisting temperature

change seen in the other data sets, assuming the affect covers a slightly wider range than

73



as listed by Connemney (both the IRTF 1996 and 28 Sgr data sets are 1-2° outside the
published extent of the features.) While this may explain why the 1996 IRTF data are
different from the other data sets, it does not explain the existence of the sharp

temperature change in the first place.

More interesting is the inversion profile of the IRTF data. It, too, shows an
approximately isothermal profile, to depths greater than those seen in the HST data or the
Cooray et al. (1998) data. The temperature of the isothermal region, though, is cooler
than the other data sets: temperature of 115-120 K. This result is similar to the half-light
temperature obtained from the isothermal model fit, and can be explained by seasonal

differences (Conrath and Pirraglia 1983; Bezard and Gautier 1985).

Hubbard e al. (1997), whose data sets span from +6° to —15° latitude, see no
significant latitudinal variation in temperature from their 1989 28 Sgr occultation
observations. However, since these obscrvations took place approximately midway in
time between the Voyager observations, with the warmer southern hemisphere, and the
1995-1996 IRTF observation, with the warmer northern hemisphere, it is possible that no
latitudinal dependence on temperature existed at that time. However, only one occultation
from the southern hemisphere in the mid-1990s has been observed, so we cannot be
certain that this was just an aberrant region of Saturn's atmosphere at the time of the
observation. Thus, this cannot be construed as conclusive evidence that temperature
difference between the northern and southern hemisphere has been measured, but it is

strongly suggestive.
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Couclusion

It is difficult to generalize about the characteristics of Saturn’s upper atmosphere
from these data, given the small number of data sets, the regions of the planet they probe,
and the inconsistencies among the data sets (particularly between the 0203 and 0204
occultations.) However, there are some key results we can draw from an examination of

the data, summarized in Figure 3.17.
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Figure 3.17: A comparison of inversion profiles and isothermal results for all the data sets examined here.
For each data set the inversion profile which started at ¢ = 0.6 of the isothermal model fit is used. Error
bars are omitted from the inversion profiles for the sake of clarity.
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The half-light temperatures of the data show wide variations that appear to be consistent
with seasonal and latitudinal variations as predicted by various atmospheric models. The
high northern latitude 0203 and 0204 data are warmer than the near-equatorial 0305
occultation by at least about the amount predicted from the radiative seasonal model of
Bezard and Gautier (1985). The southern-hemisphere IRTF 1996 data is also cooler than
the equatorial or northern hemisphere data, although the difference is greater than
expected from the model. In a direct comparison of IRTF data sets, the southern
hemisphere 1996 data is about 13 + 13 K cooler than the northern hemisphere 1995 data.
This is greater than the offset seen in infrared Voyager spectra by Conrath and Pirraglia
(1983), who saw a 5 K offset between hemispheres, but with the opposite polarity
expecied after one-half of a Saturnian year. The errors, though, indicate that this may not

be a significant difference.

We also see in some of our data sets, namely the 0204 and 0305 occultations, a
sharp temperature gradient at pressures greater than 10 pbar. This gradient is very similar
to the one seen in the IRTF 1995 data by Cooray et al. (1998), suggesting that a global
mechanism, such as aerosols or dust, may be at work. However, the 1996 IRTF data do
not show a similar gradient, which may mean whatever process is at work is temporally

or spatially limited.

We do note that the results from our model fits do not agree well with the “L+inv”
model of Hubbard er al. (1997). This is some cause for concern, as the IRTF 1995
occultation studied by Cooray et al. (1998) does agree with the model. However, our data
come from three distinct sources, were analyzed using similar techniques to Cooray e al.,
and all disagree with the model. Thus, we believe that the model may not be applicable to

Saturn’s upper atmosphere at latitudes outside the equatorial zone.



One aspect of the inversion results not discussed here is the small-scale variations
seen in the pressure-temperature profiles. Such variations are thought to be indicative of

vertical gravity wave propagation in Saturn’s upper atmosphere. A detailed analysis of

these variations is discussed in Chapters 4 and 5.
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Chapter 4
Power Spectra: Theory and Analysis

Theory

Vertically-propagating gravity waves have been extensively studied in the Earth’s
atmosphere, particularly as a method for explaining wind and temperature fluctuations in
the middle atmosphere (Fritts 1989). As the waves propagate upwards through the
atmosphere, their amplitude should increase as the density of the atmosphere decreases.
However, Fritts (1989) noted that the amplitudes decreased more slowly than predicted,
which he interpreted as evidence of gravity-wave saturation. The theory of gravity wave

saturation and breakdown is discussed extensively by Lindzen (1981).

There have been efforts to link the saturation of terrestrial atmospheric gravity
waves comes with the observed “universality” of the power spectral densities of wind and
temperature data, which show little dependence on location, time of day, season, or
meteorological conditions (Van Zandt 1982; Dewan and Good 1986; Smith e? al. 1987).
Smith et al. advance a simple theory of gravity wave saturation that predicts a power
spectral density P,(m) relationship from wind velocity data that follows a slope of

wavenumber to the —3 power:
P, (m)=bN’m™3 4.1)
where m is the wavenumber, b a coefficient (estimated to be 1/6 by Smith et al. (1987))

and N is the Brunt-Viisila frequency, the buoyancy frequency for vertically-propagating

waves:
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2_g[dr_ g)
N _T(dz+cpJ 42)

where T is temperature, d7/dz is the lapse rate, g is the acceleration due to gravity, and

g/cp 1s the adiabatic lapse rate.

Fritts ez al. (1988) derived a similar expression for the power spectra of

temperature data:
4
Pr= AI—V-:_,—m_3 4.3)
8

where 4 is a coefficient. While this equation requires that the power spectrum follow a
slope of m3, this need not always be the case. We can rewrite the equation above for a
more general case:

N* -B

Pr=A"—m “4.4)
g

where B is the exponent. Note that if B is not equal to 3, the coefficient 4’ will not be
unitless, taking on units such that Pr maintains its original units of inverse wavenumber.

We can rewrite Eq. 4.4 to keep 4’ unitless regardless of the slope by normalizing the

wavenumber to some value m P
4 ~-p
Pr= A'N—zmg{iJ (4.5)
In Eq. 4.5 the coefficient 4 is a function of 4 (from Eq. 4.3), my, and B:
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A= A(my)P3 4.6)

The power spectrum for a time series is defined as:

P= En‘.‘_mz @.7)

where A is the spacing between adjacent data points, 7 is the number of data points, and F

is the Fourier transform of the data values y and coordinates z:

n—-1 i
F(m)=Y y;e*™™ (4.8)
=0

It should be noted that this linear saturation theory for gravity waves is not the
only one postulated to explain power spectra. Hines (1991) explains the power spectra
profiles through Doppler spreading of small waves by large waves. Weinstock (1990)
uses nonlinear interactions among waves, while Gardner (1994) uses a “diffusive
filtering” explanation similar to Weinstock. However, all these theories agree that gravity
wave propagation causes the power spectra observed, and all compute a —3 power law for

the spectra.

Other atmospheric phenomena can also create fluctuations in atmospheric
temperature and pressure profiles that may not be distinguished from gravity waves.
Allen and Vincent (1995) note that convection and inversions can cause such
fluctuations, while Weinstock (1990) points to a wide range of interfering phenomena,
including wave absorption, reflection, radiation, and wind shears. All these can make it

difficult or impossible to retrieve gravity wave data from the atmospheric profiles.
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However, Allen and Vincent (1995), in their studies of power spectra from the
Earth’s atmosphere, note that convection and inversions are far more likely to appear in
the troposphere than in the stratosphere, where it is more certain that temperature and
density fluctuations are due to gravity waves. For this analysis we will assume that the
same is true for Saturn’s stratosphere and mesosphere, and that the other effects described

by Weinstock are minor. We will come back to this issue in Chapter 5.

Application to Planetary Atmospheres

While power spectrum analysis of atmospheric gravity waves has been performed
extensively for the Earth’s atmosphere, its application to other atmospheres in the solar
system has been limited. This technique has been applied recently to two solar system

bodies, Jupiter and Titan.

Upward-propagating gravity waves were detected in data collected by the
Atmospheric Structure Instrument (ASI) on the Galileo probe (Young er al. 1997). A
power spectrum of these gravity waves has a slope ~ -3 (Young ez al. 1998a), similar to
what has been seen on the Earth. Breaking of monochromatic gravity waves — different
than what was observed by Galileo — has been suggested as a way to explain a 700 K
temperature increase in Jupiter’s thermosphere (Yelle ef al. 1996; Young et al. 1997);
more recent work, however, suggests that gravity waves are capable of providing only a
fraction of the heating necessary to explain the temperature increase (Matcheva and

Strobel 1998; Young et al. 1998b).

Power spectra from the 1989 occultation of 28 Sgr by Titan have also been
computed (Sicardy et al. 1998). One dozen lightcurves were analyzed, and Sicardy et al.

found that the slopes of the power spectra from these lightcurves were in the range of § ~
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3-4, steeper than predicted by saturated gravity wave theory. They explained their results
by noting that both ray crossing from the occultation or the finite diameter of the occulted
star could contribute to the abnormally steep spectra by dampening high-frequency

components of the spectra.

Sicardy et al. ran tests using synthetic data to quantify the effects of ray crossing
and stellar diameter. They found that stellar diameter effects smoothed out high
frequencies in data whose power spectrum followed a —2 power law, making it appear to
have a slope of —3. However, stellar diameter had only a small steepening effect on data
that originally had a -3 spectrum. Damping of high-frequency data by ray crossing can,
though, cause a -3 spectrum to have a slope closer to —4. They conclude that the slope of
their spectra after accounting for these factors should lie in the range of f ~2-3. A
separate analysis of temperature gradient profiles from their data, which show no

evidence of superadibaticity, lead them to believe that their data are close to B ~3.

These results suggest there may be a common power spectrum for saturated
gravity waves in upper atmospheres, independent of other atmospheric conditions such as
composition and temperature. Analysis of power spectra from stellar occultations by

Saturn can test this claim.

Data Analysis

The power-spectrum analysis starts with the results of the inversion analysis on
each respective data set (see Chapter 3). The inversion of the occultation light curves
produces profiles of temperature and pressure, needed to generate and analyze the power

spectrum of gravity waves.
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The analysis starts by selecting a section of the temperature profile for use
generating the power spectrum. Since inversion profiles are initially highly dependent on
their initial conditions, we performed these analyses using a number of different profiles
corresponding to the initial conditions at points on the lightcurve ranging from ¢ = 0.5 to

0.9 (See Figures 3.6-3.13).

To compute the Fourier transform of the temperature data, we must evenly space
the data in the desired coordinate (here, the logarithm base 10 of the pressure, hereafter
“log pressure™). Moreover, the Fourier routines built into Mathematica™ work best when
the number of data points is an integer power of 2 because of its implementation of the
Fast Fourier Transform algorithm (Press et al. 1992). To meet these requirements, we
compute a spacing in log pressure that allows for the required number of points (usually
64, 128, or 256) with even spacing. The temperature data from the inversion analysis is
fit to an interpolation function computed within Mathematica™, which is then used to
compute new temperature values at the evenly-spaced log pressure intervals. The new
temperature versus log pressure data is compared to the original data to ensure the

interpolated data remain true to the original.

The temperature data include both short-term variations, related to gravity wave
or similar phenomena in the atmosphere, and a long-term trend. As only the short-term
variations are of interest, we remove the long-term trend by fitting a line to the data and
calculating the difference between the line and the temperature data. This removes the
long-term trend while preserving the short-term variations in the data. The temperatures
are then converted to a unitless normalized temperature 7* using the function:

« T-T

T ==~ (4.9)
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The T~ profiles for each of the five data sets examined here (see Chapter 2 for a detailed

description of each data set) are shown in Figure 4.1.
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Figure 4.1: Normalized temperature versus pressure. Normalized temperature, as defined by Eq. 4.8, is
plotted on the x-axis while the log base 10 of pressure is plotted on the y-axis, for each of the five data sets
examined here. These normalized temperatures are used to compute the power spectra discussed below.
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It is also possible to compute a power spectrum from the number density, another
set of data created by the occultation lightcurve inversion. The log base 10 of the number
density is computed and the results are normalized using a form of Eq. 4.8. The
normalized density profiles are shown in Figure 4.2. The shapes of the normalized
density profiles appear horizontally inverted but otherwise identical to the normalized
temperature profiles, which would indicate that both should have similar power spectra.
The analysis of either should be suitable for determining the power spectrum of gravity

waves in Saturn’s atmosphere.
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Figure 4.2: Normalized density versus pressure. Normalized density, generated by using Eq. 4.8 on the log
base 10 of the number density as opposed to the temperature, is plotted on the x-axis while the log base 10

of pressure is plotted on the y-axis, for each of the five data sets examined here. These normalized densities
can be used to compute the power spectra discussed below.

A problem with power-spectrum analysis is from “leakage” of power at high

frequencies. Press ef al. (1992) note that this leakage occurs when the power spectrum of



a data sample is computed with no data window function applied. This means that in
effect a square data window is used (1 for the data selected and 0 for all other values).
The Fourier transform of a square window includes components at high frequencies,

which can introduce spurious noise into a power spectrum analysis.

To prevent this, we multiply a data set by a data window w; that is unity at the
center of the data and drops to zero at both boundaries. Press et al. suggest several

possibilities:

1
Jj—5N
Bartlett: w;=1- 112\, (4.10)
2
) _1 27
Hann: w;= E[l - cos(—l\-,—)] “4.11)
2
.__LN
Welch: wj=1—(’,2) (4.12)
iN
2

(The Hann window is also known as the Hanning window; if differs from the Hamming
window as the latter uses coefficients of +0.54 and +0.46 in its window function instead
of +0.5 and —0.5.) For each window N represents the number of data points and j is the jth
data point. A plot of these various data windows is shown in Figure 4.3. The choice
among these three data windows is not critical (Press et al. 1992). For the present work

we chose to use the Hann window.
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Comparison of Data Windows
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Figure 4.3: A comparison of the Welch, Bartlett, Hann, and square data windews. A hypothetical 256-
element data set is used to plot the data windows, using Eqs. 4.10-4.12.

A power spectrum can now be computed from the normalized, detrended,
windowed temperature or density data, evenly spaced in log pressure. We use

Mathematica™’s built-in Fourier function to compute the Fourier transform coefficients

bs, defined as (Wolfram 1991):

L ¢ 2mi(r=1)(s—1)/n
b, =— 4.1
s = n r§=1: a.e (4.13)
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To correct for the difference between this definition and our preferred definition
given in the previous section, we multiply the result from the Fourier function by /n .

The power spectrum is then calculated as described in Eq. 4.7.

The wavenumbers that correspond to this power spectrum are in the form
1/log pressure, a unitless quantity. A more desirable unit for the wavenumber would be
1/length, either 1/meters or 1/kilometers. To compute this we note the relationship

between scale height and pressure:
P = poe” /¥ 4.14)

where p; is the pressure at altitude z, py is the reference (z=0) pressure, and H is the scale

height. Taking the log base 10 of both sides, we get:

logyo(py) = logyo(po) - %loglo(e) (4.15)

After some algebra, Eq. 4.14 can be written as:

z= (logio(p1) - logio(po)) (4.16)

logjo(e)

Since the data are evenly spaced in log pressure, the right-hand side of Eq. 4.16 will be a

constant, and we can write the difference in altitude between neighboring points as:

oaa(e) 2losio(2) (4.17)
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This value can now be used to compute wavenumbers in units of 1/length, so that for N

data points, the jth wavenumber £; is given by:

kp=—L— (4.18)

We can now fit Eq. 4.5 to this relationship between power spectrum and
wavenumber, after first computing the Brunt-Viisila frequency. The results of these

analyses will be discussed in the next chapter.
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Chapter 5
Power Spectra: Results and Discussion

KResults

Five data sets were examined with the techniques described in Chapters 2 and 4.
Three were HST FOS data from the November 1995 occultation of GSC 5249-01240;
two, 0203 and 0204, were immersions in far northern latitudes (~75°) and one, 0305, was
an emersion in the northern near-equatorial region. The fourth was an occultation of GSC
0010-00284 in July 1996, an immersion in mid-southern latitudes, observed with the
NSFCAM at the IRTF. The fifth was an occultation of 28 Sgr in July 1989, in northern
near-equatorial latitudes, observed at the IRTF with the Rochester camera. Full details
regarding the data sets are available in Chapter 2; the inversion techniques used to obtain

the density and temperature profiles used here are discussed in Chapter 3.

Using the method described in the previous chapter, we performed this power
spectrum analysis on multiple inversion profiles representing different starting conditions
between ¢ = 0.5 and 0.9. We also compared the spectra for temperature variations and
number density variations. In each case we spaced the data evenly in log base 10
pressure, using 64 or 128 data points, depending on the number of points in the original
sample. We computed the normalized density or temperature, multiplied it by the Hann
data window (Eq. 4.11), and then computed the power spectrum. We then fit the power
spectrum to Eq. 4.5, using a least-squares fit to find the amplitude 4’ and slope . We
used three values for my, 107, 10%, and 10 m™, that spanned the range of wavenumbers
sampled by the data to check that the results were independent of the reference
wavenumber selected. The results from the temperature data are shown in Tables 5.1 -

5.5 and the results from the number density data are shown in Tables 5.6 - 5.10.
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We note that the results for both 4’ and B are approximately the same regardless
of the reference wavenumber m, used, although different values of my give different
errors, with m, = 10 providing the smallest errors. We also note that the results are
approximately the same whether number density or temperature data are used. This is
expected both by inspection of the normalized temperature and number density profiles
(Figures 4.1 and 4.2, respectively) as well as by Makhlouf et al. (1 990), who note that
normalized temperature and normalized density vary only in sign in the case of

hydrostatic equilibrium and the linearized perfect gas law.

Since our primary interest is with [, the slope of the power spectrum, we selected
as the “best” result from each data set (the result with the smallest error in B). Those
values, for both temperature and number density power spectra, are shown in Table 5.11.

Plots of the power spectra are shown in Figures 5.1 and 5.2.

Table 5.11: Summary of Power Spectrum Fit Results
—-——————_—____—___———_A———;____

Data Set Temperature Number Density
A’ B A’ B
0203 0.0024 + 0.0007 3.47+0.19 0.0019 + 0.0001 3.47+0.19
0204 0.0030 £ 0.0005 343+0.13 0.0052 +£0.0010 3.38+0.14
0305 50+£1.2x10° 4.10£0.17 3.8+09x10°6 4.12+0.17
IRTF 1996 0.0019 = 0.0006 3.48 +£0.22 0.0018 + 0.0006 3.48 £0.22
28 Sgr 0.015 +0.003 3.30+0.17 0.014 +0.003 3.31+0.17
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Figure 5.1: Power spectra from temperature data. The log base 10 of th= power spectrum of the normalized
temperature (in units of meters/cycle) is plotted against the log base 10 of wavenumber (in units of inverse
meters) for each of the five data sets. The solid line represents the data, while the dashed line is the best fit
model from Eq. 4.5.
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Power Spectrum from HST 0204
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Figure 5.2: Power spectra from number density data. The log base 10 of the power spectrum of the
normalized number density (in units of meters/cycle) is plotted against the log base 10 of wavenumber (in
units of inverse meters) for each of the five data sets. The solid line represents the data, while the dashed
line is the best fit model from Eq. 4.5.
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The above results were computed using a Hann data window (Eq. 4.11). We also
tested the Bartlett (Eq. 4.10) and Welch (Eq. 4.12) data windows, using m, = 10 and the
best-fit data sets as used in Table 5.11, to see if the results would differ. These are shown
in Table 5.12. With the exception of the 0305 data set, the Welch and Bartlett data
window functions produce values of B that are consistent within those computed using
the Hann window. This is consistent with the conclusions of Press ef al. (1992), who

noted that there is little practical difference among the three data windows.

Table 5.12: ComEarison of Welch and Bartlett Data Window Functions
m_—'—-—-——__h_—

Data Set Welch Bartlett
A’ B A’ B
0203 (temp.) .0038+.0011 |[3.44+0.18 {.0008+.0003 |3.60=+0.24
0203 (density) .0046 +.0014 [3.40+.020 |[.0022+.0007 |3.46+0.21
0204 (temp.) 0034 +.0006 |[3.43+0.14 |[.0025+.0005 |3.44+0.14
0204 (density) .0065+.0013 [3.37+0.15 |.0037+.0008 |3.40+0.15
0305 (temp.) .0043 +.0009 |3.44+0.14 |.0006+.0001 [3.64+0.15
0305 (density) .0145+.0029 |3.31+£0.14 |.0013+.0003 |3.54+0.14
IRTF 1996 (temp.) |.0091+£.0029 |[3.33+0.22 |.0045+.0013 |3.40+0.20
IRTF 1996 (density) | .0070 +.0020 [3.36+0.20 {.0043 +.0013 |3.40+021
28 Sgr (temp.) .010 +.003 3.35+0.21 |[.0038+.0010 }3.44+0.19
28 Sgr (density) .010 +.003 3.36+0.20 |.0037+.0010 |3.45+0.19

The temperature lapse rate provides additional insight regarding the potential
saturation of gravity waves. Smith er al. (1987) note that a monochromatic gravity wave

will saturate when wave perturbations cause the lapse rate to become superadiabatic. We
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can compute the lapse rate from the inversion profiles and look for regions where the
lapse rate exceeds the adiabatic lapse rate of approximately 0.6 to 0.9 K/km (the lapse
rate, g/cp, is a function of latitude, due to its dependence on the gravitational acceleration
8)- Plots of log pressure versus lapse rate are shown in Figure 5.3 through 5.5: Figure 5.3
shows all the data with their own y-axes, Figure 5.4 shows the data with a common y-axis
that spans the full range of the data for all 5 data sets, and F igure 5.5 shows the data with

a common y-axis which includes the range of log pressure common to all data sets.
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Temperature Lapge Rate for 0203 Data Temperature Lapse Rate from 0204 Data
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Figure 5.3: Lapse rate plots for each data set. Plotted is the log pressure, on the y-axis, versus the lapse rate
in K/km. The adiabatic lapse rate, ranging from -0.6 to -0.9 K/km as a function of latitude, is shown as a
gray vertical line. Each data set shows evidence of lapse rates meeting or exceeding the adiabatic limit,
suggesting that gravity wave saturation is occurring in Saturn’s upper atmosphere.
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Temperature Lapse Rate for 0203 Data

B I ———
-0.50} b
e
2
2 0.00 H d
[N
k=4
e
-t
ool ]
1,00} ]
B T M R T I R TR R Y
dT7dr (Kikm)
Temperature Lapse Rate for 0305 Data
-1.00 et
050} J— ]
°
2
g o.oof ]
a
o
o
o
-
o.50[ % ]
1.00[ ]
K R Y-J B ¥ S maar
dT/dr (KAkm)
Temperature Lapse Rate from 28 Sgr Data
-1.00 . . . :
-0 50} ]
e
2
2 ooof ]
I
a.
o
-
o
-d
o sol ]
1.000 ]
n <¥ 1 N
I 05 0 05 1 15
dT/dr (Kkm)

Log‘ o Pressure

LngI o Pressure

Temperature Lapse Rate from 0204 Data
-1.00 r

T T T Y T Y

-0.50 1 4

0.00
0.50}
1.00}

B By R Y- B Y

dT/dr (K/ikm)

Temperature Lapse Rate from IRTF 1996 Data

-1.00 v T T T T T
—
-0.50+ -
-
0.00+ 9
0.50+ ;:i:‘: E
1.00+ 4

dT/dr (K/km)

Figure 5.4: Same as Figure 5.3, but with a common y-axis for all plots, ranging from ~1.0 to 1.2.
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Temperature Lapse Rate for 0203 Data
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Figure 5.5: Same as Figure 5.3, but with a common y-axis for all the plots, ranging form 0.2 to 0.95.

105



Another way to examine the data is by studying the relationship between 4’ and B
for the various data sets. As shown in Eq. 4.6, the amplitude 4’ is a function of B, as well

as the reference wavenumber m, and the original amplitude 4, so we would expect some

variation in 4’ as a function of . Plotting 4’ versus B on a logarithmic-linear scale
(Figure 5.6) shows that nearly all the data points from the temperature and number
density analyses (as displayed in Tables 5.1 — 5.10) fall along a line. We can fit a function
to this data of the form:

A’(B) =10 (5.1)

where a least-squares fit yields ¢ = 15.82 £ 0.30 and d = 5.65 + 0.11
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A' versus Beta for All Data Sets
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Figure 5.6: A plot of 4’ versus B. This figure shows the relationship between 4’ and B for the temperature
(T) and number density (n) data sets analyzed here. The data come from Tables 5.1 — 5.10. Note that nearly
all the data points fall on the same line in this logarithmic-linear plot.

We can use Eq. 5.1 to find the value of 4’ at B = 3, the point at which, according
to Eq. 4.6, 4’ = 4. Using the values provided above we find that 4 = 0.07 + 0.07 at B=3.
We can now compare this value to terrestrial data, where B is fixed at 3. Smith e? al.
(1987) estimate that, for temperature data from saturated gravity waves in the Earth’s

upper atmosphere, 4 is approximately 0.1, similar to our resuit.
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Discussion and Conclusicns

Our analysis of the power spectra from these data yields several key points. For
nearly all our data sets, we find that the slope B falls in the range of 3 to 4. This is steeper

than predicted by gravity wave saturation theory, which predicts B of 3. However,
Sicardy et al. (1998) note that two characteristics of stellar occultation observations, the
projected diameter of the star and ray crossing caused by variations in the occulting
body’s atmosphere, can artificially steepen power spectra. Their analysis of these effects
(discussed in Chapter 4) showed that ray crossing in particular can cause data with an
original slope of -3 to appear to be closer to —4. Thus, we conclude that similar effects

here mean the actual value of B is in the range of 2 to 3.

Our method of analysis allows B to be a free parameter, while terrestrial gravity
wave saturation theory fixes [ at 3. This makes comparisons of amplitudes between our
results and terrestrial data difficult, as our amplitude 4 is a function of B. To permit a
meaningful comparison, we fit a function to our data to determine the value of 4° at B of
3, where 4’ is equal to the original amplitude 4 of terrestrial theory. We find 4’ of 0.07 +
0.07, which is very similar to the theoretical value of 4 = 0.1 predicted by Smith et al.
(1987).

Our studies of the temperature gradients of our data sets showed that in all cases
the gradient approached, but did not routinely exceed, the adiabatic lapse rate. This is
consistent with the observations of Sicardy er al. (1998), who found that the temperature
gradients in their data also approached but did not exceed the adiabatic lapse rate. Such
behavior is consistent with the saturation of gravity waves, which occurs when the
amplitude of the waves matches the adiabatic limit. We also see no evidence that wave

amplitudes are dependent on the inverse square root of the density; Dewan and Good
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(1986) note that unsaturated vertically propagating waves would show such a

dependence, while saturated gravity waves would not.

These attributes of our data are strongly consistent with observations that are
interpreted as evidence of gravity wave saturation in the Earth’s atmosphere. Fritts et al.
(1988), using radar data, found that both the amplitudes and the slopes of power spectra
of velocity and temperature data closely matched theoretical predictions for gravity wave
spectra in the stratosphere. Allen and Vincent (1995), using temperature data collected by
radiosondes above Australia, found spectral amplitudes and slopes consistent with gravity
wave saturation theory. They do note that their slopes in the stratosphere are somewhat
smaller then theory, with values of B arcund 2.5, but note that horizontal drift of the
radiosondes would distort the vertical wavenumber power spectra in a way that would
create shallower slopes. Nastrom ef al. (1997), using measurements of velocity and
temperature taken from balloons above Illinois, got spectra with B of 3 in the

stratosphere, although the mean amplitudes differed from theory by a factor of 3.

Our data shares many characteristics with these terrestrial data sets: our power
spectra have the approximately the slopes (when adjustments for stellar occultation
artifacts as discussed by Sicardy et al. (1998) are taken into account) and the amplitude of
our spectra are consistent with the theoretical amplitude for power spectra from
temperature data. We see no evidence for a p~%° dependence in the amplitudes of our
data, and the temperature gradients of our data approach, but do not exceed, the adiabatic
lapse rate. These conditions, when seen in terrestrial power spectra, have been interpreted
as evidence of gravity wave saturation. Thus, we find that our results are consistent with

gravity wave saturation in Saturn’s upper atmosphere.
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As we noted in Chapter 4, though, we need to note that gravity waves are not the
only mechanism for generating the power spectra from these data. Allen and Vincent
(1995) note that convection and inversions can cause fluctuations in temperature and
density profiles similar to those generated by gravity waves, while Weinstock (1990)
noted a number of phenomena, from wind shear to wave reflection, that can contribute to
the data. While Allen and Vincent (1995) note that convection and inversion is more
likely to happen in the lower atmosphere, with gravity wave phenomena likely to
dominate in the upper atmosphere, our data cannot in and of itself be considered
conclusive evidence of gravity wave propagation and saturation in Saturn’s upper

atmosphere, but rather suggestive that the phenomenon is occurring.

These and other results suggest the possibility of a common gravity wave power
spectra in upper atmospheres. As noted in Chapter 4, gravity wave saturation is a well-
studied phenomenon in the Earth’s atmosphere, and data from the Galileo probe suggests
that gravity waves are also saturating in Jupiter’s upper atmosphere. Our results as well
as the data from Sicardy e al. bring to four the number of planetary atmospheres where
gravity wave saturation may have been observed, and suggests this may be a common

phenomenon. This subject will be discussed in additional detail in Chapter 7.
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Chapter 6

A Method for Finding the
Helium/Hydrogen Ratio of Saturn’s
Upper Atmosphere from Mullti-
Wavelength Stellar Occultation Data

Introduction

The physical characteristics of the giant planets of the solar system, like Saturn,
inhibit the escape of even the lightest elements, meaning that the composition of these
planets should closely resemble the composition of the dust and gas cloud from which the
solar system formed. However, planetary evolution can alter the atmospheric
compositions from their original mix. Smoluchowski (1967) first argued that helium
could differentiate from hydrogen in planetary interiors as they cooled. Once a planet
cooled beyond a specific point, droplets of helium could condense in the atmosphere and
migrate to the center of the planet, depleting the atmosphere of helium and liberating
gravitational energy as they fall to the center. The larger the planet, the longer it would
hold onto its primordial heat of formation and the longer the onset of helium precipitation

would be delayed.

Evolutionary models of Jupiter indicated that that planet should still have enough
internal heat to prevent helium precipitation. This was borne out by Voyager spacecraft
data, which showed the planet’s atmosphere had a helium mass fraction ¥ of 0.18 + 0.04,
somewhat beiow the solar value of 0.28 (Gautier et al. 1981). Saturn, however, should
have lost most of its primordial internal heat, according to interior models (Slattery 1977;

Zharkov and Trubitsyn 1978; Hubbard et al. 1980), yet the observed heat flux (Hanel et
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al. 1983) exceeds the model predictions. Additional heat from the precipitation of helium

was predicted by Stevenson (1980) to explain the mismatch between model and data.

Conrath et al. (1984) used infrared spectra and radio occultation data from the
Voyager spacecraft to measure the composition of Saturn’s atmosphere. The radio
occultation provides a profile of the ratio of the temperature to the mean molecular
weight. Different temperature profiles, corresponding to different mean molecuiar
weights, were computed and used to generate spectra, which were then compared with
the measured infrared spectrum to find the mean molecular weight that best fit the data.
They found ¥ = 0.06 = 0.05 (corresponding to a number fraction f{He) of 0.037 + 0.024),
significantly lower than the solar abundance and implying that helium precipitation was
taking place in Saturn’s atmosphere. Since then there have been no further published

measurements of the helium fraction of Saturn’s atmosphere.

The large error bars on the Conrath et al. result provide no more than an upper
limit on the fraction of helium in Saturn’s atmosphere. Additional, improved
measurements of the ratio would raise our understanding of Saturn’s atmosphere as well
as its internal structure. Refined measurements of the helium content would provide one
way to estimate how long helium precipitation has been taking place within Saturn.
Variations in the amount of helium as a function of time or planetary latitude might
indicate the atmosphere is not well-mixed. In this chapter we propose a new version of
one technique to measure the helium fraction of Saturn’s atmosphere using multi-
wavelength stellar occultation data and attempt to apply this technique on a set of HST
FOS data.
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Theory

The use of timing differences in lightcurve features (“spikes™) of stellar
occultations at different wavelengths to determine the helium fraction was first suggested
by Brinkmann (1971). Brinkmann noted that light rays of different wavelengths will
traverse almost exactly the same path through a planetary atmosphere but will be
refracted by different angles by the atmosphere because of differences in refractivity of
the atmosphere as a function of wavelength. Brinkmann predicted that observation of an
occultation by Jupiter, at wavelengths of 3000 and 6000 A, would produce time scale
shifts between 1.8% (pure He atmosphere) and 6.1% (pure Hy.). Such time differences
could be measured by taking the difference in arrival times of spikes visible in the

lightcurves at both wavelengths.

Brinkmann’s approach was critically reviewed by Wasserman and Veverka
(1973a), who found that Brinkmann’s technique for an isothermal atmosphere not only
depended on the timing of spikes but on the intensity of the background occultation
curve. Measurement of the background occultation signal is necessary for accurate
determinations of the timing differences. The signal must be measured to better than +5%
accuracy to get meaningful values of the amounts of hydrogen and helium in the

atmosphere of a giant planet.

The theory was revised and expanded by Elliot ef al. (1974). They start with the
function for the angle of refraction for a monochromatic light ray passing through an
atmosphere with closest approach distance 7; to the planet:

1 dn(r)

+o0
)= _NE)- dr

6.1)



where n(r) is the index of refraction, as a function of distance from the center of the
planet, and x is along the direction of travel for the ray (Figure 6. 1). By noting that the

refractivity v(r) is simply n(r) — 1 and that n(r) ~1, one can rewrite (6.1) as:

o0
dv
o) = | d(rr)dx (6.2)
X
01
AO12
r1
D
g St

Figure 6.1: An illustration of the occultation geometry. Light rays from a distant star pass through a
planetary atmosphere with a closest approach distance r;. A ray of light of wavelength A; is bent by the

angle 8, while a ray of wavelength A, is bent by 0,. Here 6, > 8; and, for the refractive behaviors of

hydrogen and helium, A < A ;. These differences in refraction angles are detected by the observer, at a

distance D from the planet and is moving at a velocity v relative to the planet, as a delay in the arrival of the
signal. The delay increases as the refractive angle grows. After Elliot ef al. (1974).
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Different refraction angles will result when light of different wavelengths pass
through the atmosphere, as refractivity is also a function of wavelength. (For this analysis
we will consider the atmosphere well-mixed at all altitudes probed by the occultation, so
that the ratio of two refractivities is independent of altitude.) Consider light at two
wavelengths A; and A;. The difference in the refraction angles between the two

wavelengths is:

cavi(n, fdvyr), vi-v
A8, =6,-6, = —l-dx —dx=-1_"2 6.3
12=6,-6, I .'[,, o v, ) (6.3)
From geometry, we can also show:
v
ABjy = —Tp| — 6.4
12 12( D) (6.4)

where 1, is the difference in arrival times between corresponding parts of a light curve
observed at the two different wavelengths, v is the relative velocity of the observer to the

planetary limb, and D is the distance from the observer to the planet.

If we consider ¢, the normalized flux of light from the star in wavelength A, we

can use the relationship between the flux and the refraction angle derived by Goldsmith

(1963):

(6.5)

We can also note from geometry that:

dy = —vdty = dr, + Dd0,(r,) (6.6)
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Combining Eqs. 6.5 and 6.6 in such a way to eliminate dr; provides an expression

for the refraction angle 0,:

=—-—I ¢2 t) dl’ +90 (67)

where 7, is the time the occultation feature was observed in the light curve at wavelength

A2, tp is an arbitrary starting time, and 6, is the refraction angle at the starting time ¢, .

Equation 6.7 can now be combined with Egs. 6.3 and 6.4 to show:

VizVa| %0 6 enarse oo (2
v (Dj(l 0o (2"))at +90] TIZ(D) (6.8)

b

If we set ¢y arbitrarily far back so that it represents a time before the immersion
begins (or far enough forward so that it represents a time after the emersion ends), 8y will

be zero and can be discarded from Eq. 6.8. We can also define, for simplicity, a new

variable © such that:

L

O= [(1-0,())dr’ (6.9)

L

Therefore, Eq. 6.8 can now be written as:

2

Vi —V A"
112=( ]V 2)6:’(\,_;_ J@-':(Vratia-l)@ (6.10)
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Since 1, can be found from the two lightcurves, and © can be computed from the
reference lightcurve, the refractivity ratio v,,;, can be found from two lightcurves of the
same occultation event, taken at different wavelengths. This technique has an advantage
over that of Wasserman and Veverka (1973a) in that no estimate of the background flux

at the time of each spike is necessary, reducing that source of error, although the

integration of 1- ¢ will introduce its own error.

This refractivity ratio can, in turn, be used to find the relative composition of a
two-component atmosphere. If the component gases, generalized here as A and B, and
their refractivities are known, the relationship between them and the refractivity ratio is:

Vi _ S(A)va(h)+ F(B)Va(A) (6.11)

2 f(AWVA(A2)+ f(B)vp(7,)

where f{A) and f{B) are the number fractions for gases A and B, respectively, while vy

and vp represent their refractivities at wavelengths A; and A .

Elliot ef al. (1974) used data from the 1971 May 13 occultation of B Scorpii by
Jupiter to determine the abundance of hydrogen and helium in the Jovian atmosphere.
They had simultaneous lightcurves at three wavelengths — 3530, 3934, and 6201 A — with
a time resolution of 0.01 sec. They noted that the difference in refractivities of helium
and hydrogen as a function of wavelength should create differences in the arrival times of

spikes in the occultation lightcurves created by density differences in the atmosphere.
In their analysis, Elliot et al. identified a number of spikes seen in the lightcurves

and determined the time at the peak of each spike. The difference in arrival times for each

spike in different lightcurves was computed. The refractivity ratio was calculated using
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these differences and values of © computed from the lightcurve. Their best data found

fHe) = 0.162312, equivalent to a helium-to-hydrogen ratio of 0.19%333. Despite the
large error, this result compares favorably with the helium-to-hydrogen ratio obtained
from the Galileo probe data of 0.156 + 0.006 (Niemann 1996; Von Zahn and Hunten
1996).

Technique

The technique used on the HST FOS data has its basis in that used by Elliot et al.
The FOS data consist of 512 columns, one for each diode in the detector. For the Saturn
occultation observations the red digicon on the instrument was used in conjunction with
the G400H grating, yielding a wavelength range of 3235 to 4781 A and a resolution of
3.00 A per diode (Kinney 1994). This theoretically gives 130,816 different combinations
of diodes that could be tested. However, since approximately 15 diodes are dead (return
no signal) and the amount of signal on a single diode is quite small, especially at blue
waveleng s, it is more efficient to sum the signal over a range of diodes and then

compare these “virtual” diodes.

The raw signal files for each data set were grouped into sets of four virtual diodes,
each consisting of data from 128 physical diodes. The signals for each group of 128

diodes were summed together at each time step to create the signal for the virtual diodes.

As no background subtraction had been performed on the raw data, some analysis
was necessary to remove the signal from Saturn from the data. As our interest in the data
was limited to a small subset of the data during and immediately after immersion, or
during and immediately before emersion, a less rigorous subtraction than that used for

model-fitting and inversions (see Chapter 3) could be used. Data segments of
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approximately 1000 points (260 seconds) around the time of immersion or emersion were
used. In these segments, the contribution of Saturn to the total signal varied
approximately linearly. To remove this signal, a line was fit to a post-immersion or pre-
emersion section of the data. At those times the contribution to the signal should be only
from Saturn, thus the line should provide the total contribution of Saturn as a function of
time in the data segment. The line is then subtracted from the data, returning the signal

from the star alone. The full star signal is then normalized to 1.

To maximize the differences in timing in lightcurve features, only the red virtual
diode (43974781 A) and the blue virtual diode (3235-3619 A) are compared. Unlike
Elliot et al., who pre-selected a set of spikes visible in each lightcurve for timing
comparisons, we chose to begin with the full lightcurve. This technique allows the
comparison of smaller features that exist in both lightcurves but which may be

overlooked in an analysis.

In this analysis, an interpolation function of order 1 (linear intefpolation) is fit to
the red diode data. The interpolation function allows us to compare time shifts that are
not integral multiples of the time resolution of the data, approximately 0.259 seconds.
The data are then shifted in time using Eq. 6.10 with an estimate of the value of the
refractivity ratio v1/v; (values of © are computed using Eq. 6.9, with the background-
subtracted signal summed over all diodes used as the reference lightcurve.) The unshifted
blue data are then subtracted from the shifted red data, and the sum of the squares of
these residuals is computed for all data points. This analysis is performed on a range of
values for the refractivity ratio; the best-fit ratio is the one that minimizes the sum of the

square of the residuals.
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The error in the refractivity ratio is computed as follows. Consider the “curvature

matrix” 0., the inverse of the covariance matrix, where each term of the matrix is defined
as:

2 dpop,

(6.12)

where p; and p; are parameters of the model fit and x? is the traditional goodness-of-fit

measure (Press et al. 1992):
N(a_ .\
% =Z(——d"c""] (6.13)

where d; is the ith data point and m; is the model value corresponding to the ith data point.
For this case the only parameter of the model is the refractivity ratio, thus the curvature

matrix simplifies into the single term:

82 2
=—_2X (6.14)
2 a(Vratio)
Press et al. note that not only is the curvature matrix the inverse of the covariance
matrix, but the diagonal terms of the covariance matrix are the squares of the errors for

each parameter. In this case the square of the error of our parameter, G, is simply:

2.2 !
c,l=a"=2 73_1_7 (6.15)
d(vratz‘o)
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The best fit is defined as the model that minimizes the value of %2 . As the
expected value of %2 for the best fit is simply the number of points N minus the number

of constraints (here, 1) (Taylor 1982), we can find the value of & in Eq. 6.13:

13

N-1

(6.16)

where min[Z(d,- - m,-)z) is the minimum value of the sum of the squared residuals

14

between data and model. Therefore, a generalized expression for 2 becomes:

(N-DY.(d;-m;)’
x? = £ (6.17)
min(Z(d,- - m,-)ZJ

1

This can then be inserted into Eq. 6.15 which, when simplified, yields:

] I

P N-1 a(vr'atio)2

 2mnf Sar-mf #[Sa-n ) )

o)

(6.18)

The number of points N and the minimum sum of squared residuals can be easily
determined. The remaining derivative can be computed by computing the sum of squared
residuals for various refractivity ratios and then fitting the data, using a simple least-
squares fit, to a second order polynomial (parabola) of the form:

Z(di - mi)2 =0 (Vratio)2 + Cl(vratio) +¢p (619)
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The second derivative of Eq. 6.19 is simply 2c¢», thus, Eq. 6.18 reduces to:

y 2min(2(d,~ -m)’

P = T ] (2¢;) (6.20)

The error in the best-fit refractivity ratio can now be computed by taking the

square root of Eq. 6.20.

A problem with using this technique on all data points is that the data include not
only spikes, but noise as well. To remove the noise, an isothermal model is fit to both the
red and blue data sets prior to the comparison. If the data for either the red or blue
lightcurves fall below a predetermined offset from the isothermal model, called the
threshold, those data are excluded from the comparison. The value of the offset is found
by the value that produces the tightest fit to the data, using a parabola fit described above.
This process is similar to that used by Elliot et al. to pre-select spikes in the light curves;
however, here that selection is done automatically and in such a way that minimizes the

error, which together should improve the quality of the resuits.

One can use the refractivity ratio and error to find the fraction of helium and
hydrogen in Saturn’s atmosphere. This requires a knowledge of the refractivities of the
gases as a function of wavelength. Elliot ef al. used helium refractivities measured by
Mansfield and Peck (1969) and computed a fit to existing measurements of hydrogen
refractivity. Since Elliot ef al., Peck and Huang (1977) have more accurately measured
hydrogen refractivities in the visible and infrared. In addition, Smith e al. (1976) have
measured refractivities for several gases, including helium and hydrogen, in the near

ultraviolet. These new values are used in this analysis.
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The variation of refractivity with wavelength is usually expressed in a Sellmeier

equation of the form:

3 621)

where a is a constant representing oscillator strength, b is a constant for effective
absorption frequency, and m is the wavenumber (inverse wavelength), measured in units
of inverse microns. While the previous works computed their own Sellmeier functions
from their own data, we chose to combine the data sets (which do not overlap in

wavelength/wavenumber space) and fit our own Sellmeier functions to them.

Figure 6.2 shows the plot of refractivities versus wavenumber for the helium data.

Fitting a Sellmeier function to the data, using a standard least-squares fit, produces a =

1.50438 + 0.00658 x 10* and b = 433.87 + 1.87. The reduced %2 from this fit is 1.32,

indicating that the function fits the combined data well. By comparison, using just their
data, Mansfield and Peck found a = 1.470091 x 10-2 and b = 423.98 (they did not provide

error estimates with their results).
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Helium Refractivity Vs. Wavenumber

38.0 . . . Figure 6.2: A plot of
* Mansfield and Peck refractivity vs.
37.5 | e Smith et al. wavenumber (in units
of inverse microns,
370l um-1), for helium.
Circles represent data
= 36.5 from Mansfield and
3 [ Peck, while squares
% 36.0 represent data from
© - Smith et al. The line
is the best fit plot to
| the data using the
Sellmeier function
35.0¢ (Eq. 6.21), as
discussed in the text.
345

Wavenumber (pm ')

As a comparison, we also fit the refractivity data to a function of wavelength,

rather than wavenumber, using a function of the form:

v=c+d\? (6.22)

where ¢ and d are constants without necessarily any physical meaning, and A is the

wavelength in nanometers. A fit to the combined data yielded

¢ =3.4664 = 0.00067 x 10-5 and d = 8.61579 + 0.00058 x 10-2. (Figure 6.3) The reduced
X2 here was 2.86, making this a slightly worse fit than the fit using the Sellmeier

equation. We chose to use the better Sellmeier fit in the later analysis.

-~
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Hefium Refractivity Vs. Wavelength
eliim Refractivity Vs. Waveleng Figure 6.3: A plot of
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Similarly, we tried fitting a Sellmeier equation to the combined hydrogen
refractivity data. The best fit to the data yielded @ = 1.71399 + 0.00349 x 104 and b =
126.357. However, the x2 from this fit is 98.6, indicating a poor fit. A fit using Eq. 6.22
achieved ¢ = 1.35067 £ 0.00128 x 104 and d = 1.3708 =+ 0.0250, but with the
astronomically high %2 of 5040! (Figure 6.4) Neither function fit the data well.
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Hydrogen Refractivity vs. Waveiength

190 . . . Figure_ 6.4: A plot of
l e Peck and Huang] ] refractivity VS.
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] hydrogen. Circles
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o 1 Peck and Huang,
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; to the data using Eq.
1 6.22, although the fit
140 ¢ 3 appears quite poor, as
] discussed in the text.
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Peck and Huang expressed their best fit to their data in the form of a two-term

Sellmeier function of the form:

9 a
v= + 6.23
bj—m* by —m? 629

where a; and a; are similar to a and b; and b, similar to 5 in Eq. 21. Fitting the data to
this equation yields a; = 1.34 + 0.03 x 104, @, = 1.02 + 0.03 x 104, b; =343 +300, and b,
=105.3 * 8.6. (Figure 6.5) The %2 for this fit is 6.51. Peck and Huang get a somewhat
different answer when they combine their data with that from Smith e al. , witha; =
1.48956 x 102, a; =4.9307 x 10-3, b; = 180.7 and b, = 92 (no errors are given for their
results.) Huang and Peck discarded two of their data points from their fit that were
included in this fit; excluding these data, however, makes no appreciable difference in

our results.
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These refractivity equations can be used to find the refractivity of helium and
hydrogen at the desired wavelengths, which here are the middle wavelengths of the red
and blue virtual diodes, 4589 and 3427 A respectively. We use these refractivities and the
refractivity ratio found from the data in Eq. 6.11. Since we assume that helium and

hydrogen are the only components of Saturn’s atmosphere, we can define {H,) =1 —

f(He) and rewrite Eq. 6.11 as:

Vasgo _ J(He)Vp(45894) + (1 f(He))vy, (45894)
Viz;  f(He)Vvy,(34274)+(1- f(He))vy, (34274)

(6.24)

This can then be solved for f{He):
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45894) - Y458 v, (34274
f(He)= Vi (45894) V3427 s, (427 )

(va, (45894) - v, (45894)) + ::—:283(\; 1e(34274) - vy (34274))

(6.25)

The errors in this helium number fraction can be computed from the errors in the

refractivity ratio:

2
of 2
c = (o] 6.26
f(He) J( a( V4589 / V3427 )] vaSgo/VI2? ( )

where the derivative in the above equation is:

af(He) _ —VH2 (3427A) +
3(Vasso / Vaary) (i, (45894) - v, (45894)) + %@2(\: ne(34274) - vy, (34274))
3427

(Ve(34274) - vy, (3427/&))(\: u, (45894) - %ﬂv i, (3427,4))
3427

[(v i, (45894) - vy, (45894))+ 558 (v, (34274) vy (3427,4)))2

V3427
(6.27)
The helium mass fraction ¥ can be computed using the function:
_ f(He)mHe
f(He)my, + f(Hy)my, (6.28)
or, by noting that f{H,) = 1 — f{He):
_ f(He)ymy,
f(He)my, —my )+ mpy (6.29)
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The error in Y is thus:

2

Mye MHe 2

Oy = - C'r(He) (630)
[f (He)(mpy, - my, J+my  f (He)(mpy, —my ) Tt

Analysis

The first key aspect of the analysis of the three FOS data sets using the above
technique was the selection of a subset of the full data set for analysis. We chose to select
sets of 1000 points at around the time of immersion or emersion for the background
subtraction. The background subtraction process was similar to the linear method
described in Appendix A, but applied separately to data from each diode and not to the
summed data set. See Figures 6.6-6.8 for examples of the background subtraction results
from the red virtual diode; data from the blue virtual diode are similar. Once the
background was removed from the data, we selected a smaller subset, ot 575 (0203 and
0204) or 700 (0305) points, either starting just at the time of immersion or ending at the
time of emersion, for analysis. Using larger data sets would not have been more effective,
since the additional data would have consumed more computer time and would have
diminishing returns as the spikes and occultation features faded with time. © was

calculated using the background-subtracted signal from all the diodes.

The background subtraction, as seen in Figure 6.6-6.8, is far from ideal and not as
good as that when data from all the diodes are summed and used, as described in
Appendix A. This is likely because of the limited amount of data available for each

virtual diode to reduce errors. However, since we are interested primarily in the spikes in
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the light curves, the analysis can adjust for this by moving the threshold for rejecting data

up and down relative the model lightcurve to reduce the effect of these features.
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Figure 6.6: The background-subtracted red signai from the 0203 data. Time in seconds is on the x-axis, and
normalized signal is on the y-axis. This data is the result of using the last 350 points as the basis for
subtracting the background.
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Figure 6.7: The background-subtracted red signal from the 0204 data. Time in seconds is on the x-axis, and
normalized signal is on the y-axis. This data is the result of using the last 500 points as the basis for
subtracting the background.
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Figure 6.8: The background-subtracted red signal from the 0305 data. Time in seconds is on the x-axis, and
normalized signal is on the y-axis. These data are the result of using the first 350 points as the basis for
subtracting the background. Note that this background subtraction technique works poorly on the port-

emersion data, however, our concern is on the data up through the emersion, so this is not a problem for
this analysis.

As described in the previous section, we eliminated noise from the analysis by
comparing the data to isothermal models. Separate models were computed for the red and
blue data. The offsets (defined as data-model) between these models and the data were
computed, if a data point fell below the threshold in either the red or blue data, that data
point was exciuded from the analysis in both data sets. We varied the threshold value to
minimize the error. Plots of the sum of squared residuals versus refractivity ratios for
each of the three data sets are shown in Figures 6.9 - 6.11, with the best-fit results listed
in Table 6.1. The residual plots have a “jagged” appearance because of the existence of
many local minima and maxima as the red and blue lightcurves are adjusted to one

another.
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Figure 6.9: A plot of the sum of the squared residuals versus refractivity ratio for the 0203 dsta. The
background subtraction and threshold value used here correspond to the best-fit value shown in bold in
Table 6.1.
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Figure 6.10: A plot of the sum of the squared residuals versus refractivity ratio for the 0264 data. The
background subtraction and threshold value used here correspond to the best-fit value shown in bold in
Table 6.2.
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Figure 6.11: A plot of the sum of the squared residuals versus refractivity ratio for the 0305 data. The
background subtraction and threshold value used here correspond to the best-fit value shown in bold in
Table 6.3. The seven points on the left side of the plot were excluded from the fit.

Table 6.1: Initial ﬂge! and Y Resuits from HST FOS Data
—_—

Data Set Refractivity ratio f(He) (1 o) Y
0203 0.9586 + 0.0002 0.0021 + 0.0225 0.004 £ 0.046
0204 0.9618 + 0.0005 0.337 £ 0.039 0.502 £ 0.044
0305 0.9602 + 0.0024 0.194 + 0.246 0.323 +0.344

The three data sets gave significantly different results. When the wavelengths of
3427 and 4589 A were used to compute f{He), the results were non-physical, with f{He)
either less than 0 or greater than 1. Instead, the wavelengths for the endpoints of the data
were used, 3235 and 4781 A, which provided more reasonable results for f(He) listed in
Table 6.4. While the values of {He) from the 0203 and 0204 data sets lie within the error
bars of the 0305 result, the errors on the 0305 result are so large as to make it useless in
an effort to precisely determine f{He). The errors on the 0203 and 0204 values are

encouraging low, but the f{He) values are far apart from each other.
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These results suggest two possible conclusions: that the data are not of high
enough quality to extract {He) using refractivity ratios, or that the technique itself is

flawed.

Alternative Analysis

One problem that is clear from looking at the data is that the background
subtraction of the data is imperfect, as evidenced by the irregular lightcurves displayed in
Figures 6.6-6.8. While there may be little that can be done to improve the quality of the
lightcurves using the current background subtraction technique, there may be ways to
improve the quality of the lightcurve used for computing ©, another key parameter of this
analysis. The background subtraction techniques used on the summed data have also been
imperfect, which may contribute to problems in the calculation of © and thus the

refractivity ratio.

As an alternative technique, we used only the red and blue virtual diode data to
generate a lightcurve to be used to compute ©. Taking advantage of the fact that the
colors of the star and of Saturn were somewhat different, we took the ratio of the red to
the blue data. The data were smoothed using a moving boxcar average of the five points
before and after each point to remove point-to-point random noise. Those data (Figures
6.12-6.14) show changes before and after an immersion or emersion: a slight change for
the 0203 and 0204 immersion events, near Saturn’s north pole, and greater for the 0305
emersion event near Saturn’s equator. The smoothing generates an oscillation seen in all
three data sets with a minimum period, from Fourier analysis, of ~7 seconds (multiples of
this are also seen in the Fourier data). It is not clear if this is an artifact of the smoothing
process—the minimum period is approximately 2.5 times longer than the smoothing

interval—or if this a high-frequency “jitter” present in the data but lost in the point-to-
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point noise when the data are not smoothed. The oscillation is not seen if the data are

binned rather than smoothed, and the final results are the same for either method.

We then fit an isothermal model to this light curve (Chapter 3), fitting not only for
ry and Ay; but also the background and full signal values and the slope of the lightcurve

(Table 6.2). The background was then subtracted from the data using the equation

Drew(t) = Opig (1) —[b—r(t)-m] (6.31)

where b and m are the background and slope values, respectively, from the isothermal
model fit, r is the distance from the center of Saturn, ¢, is the original ratio data and
Gnew is the background-subtracted data. The data are then normalized so that the full pre-
immersion or post-emersion signal is 1. This new light curve can then used in place of the
original background subtraction technique to generate ©; alternatively, the model fit itself
can be used to generate ©, with the advantage of removing any anomalous noise in the
data that could affect © and hence the refractivity ratios and helium fractions. We choose

using the mode fit value of © in our analysis.
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Figure 6.12: Red/blue ratio data versus distance for the 0203 data set. Th
is plotted on the y-axis, and distance from the center of Saturn is denoted on the x-axis. The gray line

represents the best-fist isothermal model to the data. The immersion is visible in these data and can be fit
to, although smoothing is required to bring out the difference between the pre- and post-immersion data.
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Figure 6.13: Red/blue ratio data versus distance for the 0204 data set. The ratio of red signal to blue signal
is plotted on the y-axis, and distance from the center of Saturn is denoted on the x-axis. The gray line
represents the best-fist isothermal model to the data. As with the 0203 data, the immersion is visible in
these data and can be fit to, although smoothing is required to bring out the difference between the pre- and

post-immersion data.
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Figure 6.14: Red/blue ratio data versus distance for the 0305 data set. The ratio of red signal to blue signal
is plotted on the y-axis, and distance from the center of Saturn is denoted on the x-axis. The gray line
represents the best-fist isothermal model to the data. We note that while this data set has been smoothed to
the same degree as the 0203 and 0204 sets, the difference between pre- and post-emersion signal is strong
enough to be detected even without any smoothing.

Table 6.2: Parameters from the Isothermal Model Fits of the Color Ratio Data

Data Set | Background| Slope x 10 Full rg (km) Ami
0203 728+0.50 |-0.84+0.09 |7.34+0.51 |55217+18 |736=+204
0204 6.80+£1.00 |-0.76+0.18 [6.86+1.02 |55234+15 |984+373
0205

9.54+£2.05 [-1.25+0.35[9.78+2.12 |60700+26 |619+195
e e e c 20 (00

The results show a much better consistency among the various data sets for the

refractivity ratio, as shown in Table 6.3 and Figures 6.15-6.17. However, the error bars

here are large, and using the midpoint values for the wavelengths to generate the helium

number and mass fractions exacerbate this. There results are consistent with a hydrogen-

helium atmosphere on Saturn, but the errors prevent us from drawing further conclusions

on its composition.
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Table 6.3: Results from HST FOS Data Using Model Fit Values of © (128 diodes)
—_— 5 Ore T Yalues o1 © (125 diodes)

Data Set Refractivity ratio f{He) Y
0203 0.9702 + 0.0014 0.07+0.24 0.13+0.42
0204 0.9700 + 0.0008 0.03+0.15 0.06 +0.28
0305 0.9710 + 0.0015 0.19+0.21 0.32+0.30
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Figure 6.15: A plot of the sum of squared residuals versus refractivity ratio for the 0203 data. The line
represents the best-fit solution to the data, used for determining the data.
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Figure 6.16: A plot of the sum of squared residuals versus refractivity ratio for the 0204 data. The line
represents the best-fit solution to the data, used for determining the data.
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Figure 6.17: A plot of the sum of squared residuals versus refractivity ratio for the 0305 data. The line
represents the best-fit solution to the data, used for determining the data.

One possibie cause for the large errors in the 128-diode data is the large span of
wavelengths summed together to create the virtual red and blue diodes, which would tend

to smear out differences. To test this, we halved the data used, summing data from 64
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diodes from each end of the data set. These results, shown in Table 6.4, show that the

errors are reduced, but are still relatively large, as shown in the helium number and mass

fractions in the table. These results are consistent with a hydrogen-helium atmosphere

and Saturn, and appear to be larger than the results from the Voyager data found by

Conrath et al. (1984).

Table 6.4: Results from HST FOS Data Using Model Fit Values of © (64 diodes)
— e S O Y2 00 O U 0T CI0CES)

Data Set Refractivity ratio f(He) Y
0203 0.9660 + 0.0009 0.22+0.10 036+0.13
0204 0.9652 + 0.0009 0.13+£0.12 0.23+0.19
0305 0.9650 + 0.0009 0.10£0.13 0.18+0.21

To the test the validity of these results, we performed a number of tests to see how
changing the data affected the results. We tested to determine the sensitivity of the results
to different amounts of smoothing of the red/blue ratio data used to calculate ©. The
red/blue ratio data sets were smoothed by averaging the 3 points before and after each
data point, and again using 7 points before and after each data point. We also tested the
effects of using no smoothing, but found that the isothermal model could not properly fit
the 0203 or 0204 data, likely because of the small difference between the pre- and post-
immersion signal in the ratio data for those events. The results are summarized in Table
6.5. Increasing the number of points used in the averaging for the 0203 and 0204 data has
only a small impact, while decreasing it has a much greater impact, perhaps because of
the intreduction of more point-to-point noise. Note that using no smoothing at all on the
0305 data produces a result similar to that obtained using the standard +5 smoothing.
However, unlike the smoothed results, the refractivity ratio varied considerably using the

unsmocthed data if only a few points were removed from the data set.
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Table 6.5 Effects on Refractivity Ratio of

Different Smoothing Techniques (128 diodes)
e ——

Points Averaged Refractivity Ratio
for Smoothing 0203 0204 0305
+3 0.9729 + 0.0025 0.9690 + 0.0010 0.9705 + 0.0018
+5 0.9702 £ 0.0014 0.9700 + 0.0008 0.9710 + 0.0015
+7 0.9737 £ 0.0026 0.9700 = 0.0015 0.9702 + 0.0021
none N/A N/A 0.9703 £+ 0.0015

To further test the effect of the number of diodes used on the results, we ran tests
using only the 10 diodes at each end of the FOS data. The results, shown in Table 6.6 and
Figures 6.18-6.20, show that the results are reasonably consistent with the larger diode
sets, although the 10 diode set does not further reduce the errors, as was the case when

going from 128 to 64 diodes.

Table 6.6: Results from HST FOS Data Using Model Fit Values of © (10 diodes)
%

Data Set Refractivity ratio Sf(He) Y
0203 0.9617 £0.0014 0.26 £0.13 0.41+0.16
0204 0.9597 + 0.0007 0.03 £0.08 0.06 £0.15
0305 0.9613 £ 0.0010 0.22 £0.10 0.36 +0.13
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Figure 6.18: A plot of the sum of squared residuais versus refractivity ratio for the 0203 data, using only
the 10 diodes from the red and blue end of the data. The line represents the best-fit solution to the data,
used for determining the error in the minimum refructivity ratio.
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Figure 6.19: A plot of the sum of squared residuals versus refractivity ratio for the 0204 data, using only
the 10 diodes from the red and blue end of the data. The line represents the best-fit solution to the data,
used for determining the error in the minimum refractivity ratio.
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Figure 6.20: A plot of the sum of squared residuals versus refractivity ratio for the 0305 data, using only
the 10 diodes from the red and blue end of the data. The line represents the best-fit solution to the data,
used for determining the error in the minimum refractivity ratio.

Another source of error is the error in the refractivity functions for hydrogen and
helium created by fitting one- and two-term Sellmeier functions to the refractivity data. If
these errors are included, Eq. 6.26 becomes:

2 2
( ¥ J o2 +( o J 2
\O(Vasgg / Vaap7) ) v | O(vy,(45894)) )  vmeuswn

2 2
of 2 of 2
p—y -32
Gf(He) (a(vHe (3427A))) Gvy,(asssw + (a(sz (4589A))J GVH-_.(ASKM) + (6.32)

2
of 52
o(v H, (34274)) Vi, (45891)

The derivatives in Eq. 6.32 can be found in a manner similar to that shown in Eq.
6.27. The errors in Eq. 6.32 beyond the error in the refractivity ratio (which comes from

the occultation data) can be found from error analysis of the Sellmeier equations at the
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appropriate wavelengths. We found errors in helium refractivity of 0.215 x 10 and 0.218
x 10 at 4589 and 34274 respectively, or less than one percent of the refractivity at those
wavelengths from the equation, and errors in hydrogen refractivity of 9.022 x 10°¢ and
9.717 x 10 at 4589 and 3427A respectively, equal to approximately 6 percent of the

hydrogen refractivity values.

However, when we inserted these values into Eq. 6.32, we found errors in the
helium number fraction of order 1, far higher than any other source of error. While this
indicates that the results are sensitive to errors in the refractivity functions, it should also
be noted that the error information available for the hydrogen and helium refractivities is
far from ideal. The error bars for the refractivity data shown in Figures 6.2-6.5 are
inferred from the information published in the papers from which they were obtained, as
explicit error information was generally not available. The errors shown in the figures are
conservative and thus may be overestimates of the actual error. As both Mansfield and
Peck (1969) and Peck and Huang (1977) did not publish errors to their best-fit Seilmeier
functions for helium and hydrogen refractivity, no comparison with the errors from our
results are possible. Because of these uncertainties in the errors in the published data and
results, we have chosen to neglect errors from the refractivity functions at this time,

aithough it should be considered if and when more precise data are available.

Errorin ©

We also need to take into account the error contribution to the ratio by errors in ©
itself. By combining Egs. 6.7 and 6.9 we can generate an expression for © as a function

of the refraction angle :
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(633)

where 4 is the velocity of the occultation and D is the Earth-Saturn distance. From Figure

6.1 we can also derive a geometric expression for 6:

By combining Egs. 6.33 and 6.34 we get:

We note that, for isothermal atmospheres, 7 is equal to:

r=rh-Hln(%—l)

Substituting Eq. 6.36 into Eq. 6.35 and simplifying yields:

y—r, +Hln(‘l—lj
O= ¢

v

Computing the error in © above, we find:
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We note that the error in y is insignificant, so the first term of Eq. 6.38 can be ignored.
Similarly, the error in the velocity v will be insignificant, so the last term can be ignored.
The error in ¢ will be very small (see Chapter 3), and thus that term can also be ignored.
The errors in the half-light radius r, and the scale height H are of the same magnitude, but

the largest effect on the error in © will come from the error in H near the top and the
m(l - 1)
o

This analysis shows that the best way to explore the errors in the refractivity ratio

bottom of the lightcurve, when is greater than 1.

is to adjust the value of H and test its effects on the refractivity ratio analysis. We
performed this by changing the value of H by +1G and recomputing the model light curve
(based on an isothermal model which includes H as one of its parameters), from which ©
is calculated. The results, shown below in Table 6.7, show that the best-fit refractivity

ratio changes by approximately 1 ¢ or less when H was changed by 1 o.

Table 6.7: Effects of Changing H on Refractivity Ratios (128 diodes)
—_——__’_—__r_—_—————————%——————_

Data Set Normali -1 +16
0203 0.9702 £0.0014 0.9698 + 0.0020 0.9690 + 0.0017
0204 0.9700 + 0.0008 0.9710 £ 0.0012 0.9700 = 0.0010
0305 0.9710 + 0.0015 0.9710 £ 0.0015 0.9700 + ¢.0010

Summary and Discussion

Tests have shown that the technique outlined here can recover the refractivity

ratio for the two mean wavelengths of observations, and thus provide the fraction of

helium in Saturn’s atmosphere (provided that the noise levels are sufficiently low).
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However, with the current data and technique we are limited in the quality of the results
and the conclusions that can be drawn from them. We find weighted means for the
refractivity ratio from the three HST FOS data sets of 0.9604 + 0.0005 using 10 diodes of
data, 0.9654 + 0.0005 using 64 diodes of data, and 0.9702 + 0.0006 using 128 diodes of
data. Using the 64-diode set as a representative sample, we find a helium fraction f(He) of
0.153 + 0.064 and a helium mass fraction ¥ of 0.264 + 0.096. The implications of this

from a comparative planetology standpoint will be discussed further in Chapter 7.

We note that these values are higher than that found by Conrath ez al. (1984), who
found Y = 0.06 + 0.05 from Voyager data. In contrast, Stevenson (1980) notes that a drop
in Y from 0.25 to 0.15 would be sufficient to generate the observed heat flux for at least 2
billion years, while greater drops would not add to the heat flux and would be difficult to
reconcile with theoretical solubility models. In a revised work, Stevenson ( 1982) says
that depletion of helium by a factor of two from cosmic abundances is sufficient to
generate the observed heat flux. Gautier and Owen (1989), in a summary of work by
several groups, find protosolar values of Y in the range 0.27-0.28. Our results show that
Saturn has a heiium content in its atmosphere higher than found by the Voyager data, but
is also higher than predicted by Stevenson's (1980) theory, although the large error bars

on our results make it uncertain whether this is a significant difference.

There are indications (Conrath, pers. comm.) that the Voyager data were
miscalibrated, by comparing the Voyager results for Jupiter (Gautier er al. 1981) with
Galileo data (Niemann 1996; Von Zahn and Hunten 1996), which gave a higher value for
Y than the Voyager data. A reanalysis of the Voyager Saturn data by Conrath is in
progress, and preliminary results suggest that the helium fraction derived from Voyager
data is higher than originally published, bringing that data into closer accord with the
FOS results.
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Future Use of the Technique
The results could be improved with the use of higher-quality data sets. Three

attributes of any future data sets that would improve their quality for this analysis are:

1) Use higher time resolution. The FOS data had a resolution of 0.26 seconds. At
this low time resolution, spikes and other features in the occultation light curve can be
smoothed out. Since the light curve at one wavelength will be smoothed out differently
than the light curve at another wavelength (because one will be shifted in time compared
to another, as illustrated in Figure 6.21) it becomes more difficult to match up identical

features at different wavelengths.
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Figure 6.21: The effects of low time resolution. This cartoon illustrates one detrimental effect of using low
time resolution data to corapute refractivity ratios. The top half shows the actual signal of an occultation
event, including a “spike”, at two wavelengths with differing refractivities such that the “blue” (dashed)
signal is delayed relative to the “red” (solid) signal. Time is plotted on the horizontal axis using arbitrary
but equal segments. The bottom shows the data collected by a hypothetical instrument that records one data
point per time segment. Since all the signal from the spike in the red data arrives within one time segment,
the data collected matches the actual signal well. However, since the signal from the spike in the blue data
is evenly split between two time segments, the data recorded by the instrument is a poor match to the actual
signal. This mismatch causes problems when one tries to compute refractivity ratios by shifting the data
sets. Using a higher time resolution increases the sampling and improves the fidelity of the data.

Elliot et al. (1974) used photometer data with a resolution of 0.01 sec for their
analysis of f{He) in Jupiter’s atmosphere. Samples of their data illustrate that many light
curve features are smaller than 0.25 seconds in duration and feature similarities that
might be lost if the data were smoothed out at a much lower time resolution, which is
dependent on the shadow velocity of the event: faster events require higher time

resolution. Such high data rates would be difficult to duplicate with modern CCD
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systems, although systems optimized for high data rates and reading out only small

subframes on the CCD could approach those data rates.

A guideline for the mlmmum data rate comes from the Fresnel scale, which limits
the resolution of features to ~+/AD . At Saturn’s distance from the Earth and at the
average FOS wavelength of 4000 A, the Fresnel scale works out to approximately 0.75
km. The occultations observed by the FOS took place at velocities of 4-5 km/sec, so the
Fresnel length scale works out to a time scale of 0.15-0.19 sec. Moreover, the Nyquist
sampling theorem requires that data be sampled at twice the kighest frequency present in
the data. Applied here (where we are integrating, not sampling, signal), would require an
interval of 0.075-0.095 sec. This requires a considerably faster data rate than the FOS
data, which had an interval of 0.26 sec.

2) Make measurements at blue and ultraviolet wavelengths. The plots of
refractivity versus wavelength and wavenumber (F igures 6.2-6.5) show that refractivity
increases dramatically at shorter wavelengths. This means that even a small difference in
wavelengths can result in larger refractivity differences than larger differences at longer
wavelengths, where the refractivity curve is flat. The FOS data were taken in the bend in

the curve of refractivity versus wavelength (Figures 6.3 and 6.4)

A problem with this approach is that common CCD detectors are usually less
sensitive at shorter wavelengths than at longer visible and infrared wavelengths, and
ground-based ultraviolet observations are problematic at best because of increasing
atmospheric extinction at shorter wavelengths. Moreover, while the use of short
wavelengths limits the amount of background flux from the occulting planet, it also
mnakes observations of stars, particularly cooler, redder stars, more difficult. However, a

spaceborne ultraviolet-optimized instrument with a moderate aperture (like the Hubble
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Space Telescope, provided a suitably high-speed instrument were available) could
observe occultations in the ultraviolet and short visible wavelengths without the problems

of terrestrial telescopes

Another disadvantage of this approach is that it required even faster instruments
that that needed for the FOS data. Using the Fresnel scale arguments shown above in
point 1, moving the wavelength down to 2500 A would reduced the Fresnel scale to
under 0.6 km, with a corresponding change in the time scale (assuming occultation
velocities of 4-5 km/sec) to 0.12-0.15 sec. Data taken at even shorter wavelengths, or data
of an occultation event with a typical velocity of 25 km/sec, would further complicate

matters.

3) Collect data at three or more wavelengths. Using only two wavelengths allows
for only one refractivity ratio comparison and thus one value of f{He). Adding a third
wavelength to the data permits two additional refractivity ratios and values of f{He) and
permits one to check that the results are consistent with one another. If one value is
inconsistent with the other two, or if all three are inconsistent with one another, it may
imply problems with the data or the analysis that could not be detected using only a pair
of wavelengths. Such a comparison could have been possible with the FOS data, as the
instrument samples over a continuous series of wavelengths, but the problems computing
the refractivity ratio over the greatest difference in wavelength would have been

amplified trying to match up data over shorter spans of wavelength.
Better data could improve the quality of the helium mass fraction of Saturn’s

atmosphere, which could in turn be used to refine models of Saturn’s interior, particularly

the contribution helium precipitation has played on the composition of the interior. With
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present data, though, we are able to confirm that helium precipitation is occurring in

Saturn’s atmosphere, at levels in accordance with existing theoretical predictions.
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Chapter 7
Conclusions

Summary

Moedel Fits and Inversions

The model fit and inversion analysis of the five Saturn-occultation data sets
explored here has provided results on Saturn's atmospheric structure that were compared
with existing atmospheric models. The data sets confirmed latitudinal and seasonal
variations in Saturn’s temperature, with data collected in Saturn’s north polar regions at
the end of northern summer substantially warmer than equatorial or southern hemispheric
data. Existing models of the atmospheric profile in this region, such as the L+inv model
of Hubbard e? al. (1997), may not be valid outside the equatorial regions, based on data
collected at mid and high latitudes. Also, a new phenomenon was discovered: several
data sets, including two of our HST FOS inversion profiles as well as IRTF data of the
same event collected by Cooray et al. (1998) show a sharp downturn in temperature
below 6-10 pbar. Latitudinal and seasonal effects cannot explain this downturn, nor can

insolation effects or infalling dust or ice particles from the rings.

Gravity Wave Spectra

The inversion profiles of ail five data sets examined in this work show small-scale
varijations in temperature and number density, which may be caused by vertically-
propagating gravity waves. We constructed the power spectra of both the temperature and
number density data from these profiles and fit them to theoretical functions (Fritts et al.
1988; Dewan 1997) for gravity wave spectra. Several key characteristics of these data,
including the amplitudes and —3 slope of the power spectra as well as the temperature
gradients of the data—which approach but do not exceed the adiabatic lapse rate—are all

consistent with terrestrial observations which have been interpreted as saturating gravity
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waves. However, other atmospheric phenomena, including convection, inversions, and

shear, can also generate similar power spectra.

Helium/Hydrogen Ratio

We studied the relative abundances of hydrogen and helium, the two primary
components of Saturn’s atmosphere. Our HST FOS data sets were resolved in
wavelength as well as time, and since the refractivity of these two components is a
function of wavelength changes sharply at the wavelengths recorded in the FOS data, we
can compare differences in refractivity at two wavelengths to find the ratio of the two
atmospheric species. Our results yield a helium mass fraction ¥ of 0.26 + 0.1C. This value
is significantly higher than reported by Conrath e al. (1984) from Voyager observations,
but is marginally consistent with theoretical modeis for helium rainout in Saturn’s
atmosphere (Stevenson 1980; Stevenson 1982). However, the large error bars on the
result make any definitive conclusions regarding the composition of Saturn’s atmosphere

problematic.

Comparative Planetology

Gravity Wave Spectra

Saturn is not the only planet for which power spectra of gravity waves have been
determined. As noted in Chapter 4, gravity-wave spectra have been computed from
theoretical models and sounding data for the Earth's atmosphere using a number of
different techniques (Dewan and Good 1986; Smith er al. 1987; Fritts e al. 1988). Young
et al. (1998) constructed the power spectra of upward-propagating gravity waves as
detected by the Galileo probe in Jupiter’s atmosphere. Sicardy ez al. (1998) used stellar

occultation data in a manner similar to this work to compute the power spectrum of
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gravity waves in Titan’s atmosphere. In all cases B, the logarithmic slope of the power
spectrum, was approximately —3, the theoretical prediction for saturated gravity waves
(Van Zandt 1982; Smith et al. 1987; Dewan 1997), although other atmospheric
phenomena, including convection, inversions, and shear, can alse generate similar

spectra.

Some have previously suggested a “universality” of gravity waves in planetary
atmospheres (Van Zandt 1982; Dewan 1997), which can be explored by further research
into the power spectra of gravity waves in other atmospheres. There is already some
evidence for saturated or breaking gravity waves in the upper atmospheres of other
planets. Barnes (1990) argues that breaking gravity waves at altitudes of 40-80 krn in the
Martian atmosphere may adjust circulation patterns, explaining anomalous heating
observed in the middle atmosphere above some regions of the planet. Previously,
Krasnopolsky (1975) argued that a steep temperature gradient observed at altitudes of
160-200 km in the Martian atmosphere was caused by breaking and dissipating gravity

waves.

Hinson and Jenkins (1995) and Leroy (1994) have shown evidence that vertically-
propagating gravity waves exist in the atmosphere of Venus. In particular, Hinson and
Jenkins found that the atmosphere in the region where gravity waves were observed had a
lapse rate approximately the same as the adiabatic lapse rate in a region 35-60 km above
the surface, suggesting that the gravity waves were saturated in that region. Lellouch ef
al. (1994) postulated that a variation in the mesopsheric zonal flow in the atmosphere of

Venus may be caused by breaking gravity waves.

Temperature profiles of Neptune’s atmosphere from several stellar occultations

by the planet. Roques et al. (1994) have shown evidence of a 25 K increase in
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temperature above 3 pbar. Roques ez al. have interpreted this as evidence for gravity
waves breaking in the planet’s upper atmosphere. Models of Neptune’s atmosphere also
point to evidence of gravity wave breaking as the source for heating in the planet’s

atmosphere (McHugh and Friedson 1996).

These analyses strongly suggest that saturated gravity waves exist in the
atmospheres of Venus, Mars, and Neptune, however, no gravity wave power spectra have
been computed for these cases. As temperature profiles already exist for these bodies,
calculation of the power spectra would be a straightforward way to obtain additional

evidence for the existence of upward-propagating gravity waves in these atmospheres.

Hydrogen/Helium Ratio

Saturn’s atmosphere is considerably depleted in helium relative to both solar
ratios and the ratios observed in other gas giants. (Figure 7.1 and Table 7. 1) Jupiter also
shows a depletion of helium, although improved results from the Galileo probe (Niemann
1996; Von Zahn and Hunten 1996) now permit only a slight depletion from solar ratios.
However, both Uranus and Neptune show results consistent with solar ratios, ruling out

any significant helium depletion in these planets’ atmospheres.
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Table 7.1: Helium Mass Fractions for Solar System Gas Giants and Sun
—————_r*___——————“—gh

Planet Y Reference

Jupiter 0.18£0.04 | Gautier ez al. (1981)
0.24 £ 0.01 Von Zahn and Hunten (1996)

Saturn 0.06 £0.05 | Conrath et al. (1984)
' 0.26+0.10 | This work

Uranus 0.26 £ 0.05 Conrath et al. (1987)

Neptune 0.26 £ 0.05 Conrath et al. (1991); Conrath et al. (1993)

Sun/Solar Neighborhood 0.28 £0.05 | Heasley and Milkey (1978)

0.28 £0.02 | Pagel (1982)
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Figure 7.1: A plot of helium mass fractions for solar system bodies. The data plotted above is the same
data shown in Table 7.1, shown here as a function of peak interior pressure experienced by the hydrogen
inside each planet. Note the slight depletion of helium in Jupiter and the greater depletion in Saturn. Also
note that the initial results for both Jupiter and Saturn, based on Voyager data, have been revised upward by
Galileo probe data and this work. Uranus and Neptune maintain near-solar helium mass fractions because
the hydrogen in their interiors does not reach high enough pressures to convert into a metallic form.

Gautier and Owen (1989) explain this difference in values for ¥ on the internal
pressures of the gas giants. At pressures greater than 3 x 10° bars, when hydrogen exists
in a metallic form, helium will become immiscible within the hydrogen once
temperatures drop below 10* K (Stevenson 1982). On Saturn this occurs after about 2

billion years, as the core loses its initial heat of formation, at which point helium begins

158



to rain out of the atmosphere to collect in the core of the planet. This estimate for the
time, though, is based solely on measurements of Saturn’s current heat flux; Stevenson
(1982) points out that uncertainties in theoretical solubility estimates for helium in
metallic hydrogen make it difficult to make absolute theoretical predictions on the date

helium precipitation began or helium mass fraction.

This process also occurs inside Jupiter, but since the planet is larger, it lost its heat
more slowly, and thus has retained more helium in its atmosphere, explaining the helium
mass fraction that is slightly depleted compared to solar levels, but still higher than
Saturn’s. Uranus and Neptune, on the other hand, have peak hydrogen pressures of only 2
x 10° bars at the edge of their rock-ice cores (Hubbard and Stevenson 1984), below the
level at which hydrogen can exist in metallic form. Helium will not become saturated and
rain out in the interiors of these worlds, and thus should retain their primordial helium
quantities in their atmospheres. This is borne out by the data, which show helium mass

fractions near solar levels for both Uranus and Neptune.

Future Plans

Future Occultations

Stellar occultation studies provide a useful “snapshot” of the atmosphere of the
planet in the microbar pressure range, at a given time and latitude of the planet. However,
a single occultation data set provides no information on spatial or temporal variability in
the atmosphere in that range. While the data sets used in this work do provide better
spatial and temporal resolution that previous works, the combined Saturn occultation data
sets available are rather sparse. Additional data sets at different times and latitudes would
be useful to understand spatial and temporal variations in temperature as well as look for

any variations in the gravity wave power spectra.
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One way to obtain additional data is through additional stellar occultation
observations. Bosh and McDonald (1992) list a set of Saturn occultation candidate stars
through the end of 1999. While most of the list has already been exhausted, four good
candidate events remain for the end of 1999, and are listed below in Table 7.2. The “best
observing locations™ listed below are based on the portions of the Earth at night that can
view the event at the closest approach time (given in the first two columns of the table.)
Based on the geometry and velocity of the event, the best places to observe immersion

and/or emersion may be elsewhere.

Table 7.2: Ugcoming Saturn Stellar Occuitation Events in 1999

Date Time GSC Star | VMag. | Vel Best Obs. Locations
uDn (km/s)

1999 Oct 15 | 0503 | 0647-00237 | 13.0 17.5 N. and S. America
1999 Nov 24 | 1027 | 0645-00956 | 12.9 18.4 Western. N. America,

Hawaii, Australia
1999 Dec 3 | 0431 0645-01130 9.1 6.4 N. and S. America
1999 Dec 31 | 0031 0645-00845 |13.2 6.1 Eastern N. and S. America,

W. Euroge

Of particular interest in the 1999 December 3 event, which will feature not only a
bright star but a slow immersion and emersion speed, which will improve the resolution
of the data. The 1999 December 31 event also has a low velocity, but with a considerably

dimmer star.

Groundbased observations have been successfully conducted at the NASA

Infrared Telescope Facility (IRTF), using their NSFCAM infrared camera. This has
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proven to be a capable instrument for Saturn occultation observations, both of the 1996
event in this work as well as a 1995 occultation (Cooray et al. 1998). An advantage of
infrared wavelengths is that the observations can be performed in wavelength bands
where the planet is relatively dark, making the observations easier to conduct. Saturn
occultation observations can also be considered at other wavelengths and other

observatories, depending on the availability of high-speed instruments.

Another option for observing stellar occultations is through airborne astronomy.
Aircraft equipped with telescopes can fly to regions of the planet where a particular event
is visible on the Earth, and can observe the event at altitude to avoid inclement weather.
The Stratospheric Observatory for Infrared Astronomy (SOF 1A), a 747SP aircraft
equipped with a 2.5-meter telescope, will be available to observe occultations in 2001.
One of the instruments available on SOFIA will be the High-Speed Occultation
Photometer and Imager (HOPI), a visible-light CCD camera capable of intervals as short

as 0.5 milliseconds.

Our Hubble Space Telescope data came from the Faint Object Spectrograph, an
instrument removed from the telescope during the second servicing mission in February
1997. Alternative instruments are available, however. The Fine Guidance Sensors
(Benedict er al. 1992) are capable of collecting data with time intervals as small as 0.025
sec at wavelengths from 4600 to 7000 A. Although the FGS was successfully used for
observations of a stellar occultation by Triton in 1997 (Elliot et al. 1998), but the FGS
could not be used for Saturn occultations because its brightness limit would be exceeded.
The Space Telescope Imaging Spectrograph (Woodgate er al. 1997) is capable of
extremely high time-resolution data: intervals as small as 0.000125 sec at wavelength
ranges of 1100-3000 A are possible in TIME-TAG mode. This would be very useful for

further studies of the helium fraction in Saturn’s atmosphere, as both the small time
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intervais and the ultraviolet wavelengths used would greatly improve the quality of the
data.

Cassini

The Cassini spacecraft mission to Saturn (Kerridge ef al. 1992; Matson 1996) was
launched 1997 October 15 and is scheduled to arrive at Saturn in July 2004 for a four-
year primary mission. Cassini will be able to provide extensive data on Saturn’s
atmosphere at a frequency not possible from the occasional stellar occuitation. The

instrument will also be able to determine the composition of Saturn’s atmosphere.

There are several instruments on Cassini that will be able to probe the structure
and composition of Saturn’s atmosphere in the microbar and adjacent regions. The
Composite Infrared Spectrometer (CIRS) (Kunde et al. 1996) is a set of spectrographs
that will be able to detect thermal emissions from Saturn at wavelengths from 7 to 1000
um to a resolution of one to two scale heights. In particular, the instrument will be able to
provide limb profiles at a wavelength of 7.7 pm to pressure levels above 1 pbar (Taylor
et al. 1998); however, Taylor et al. note that limited sampling in temporal and spatial
domains will make measurements of upper altitude waves difficult. Complementary
studies of regions of the atmosphere above and below the microbar range will be
provided by the Ultraviolet Imaging Spectrograph (UVIS) and Radio Science Subsystem

(RSS) instruments, respectively.

These instrument characteristics make Cassini particularly well-suited for studies
of the temperature and pressure profiles of the atmosphere, as the instrument will be able
to provide repeated close looks at the atmosphere over the course of several years. Since
Cassini will arrive at Saturn nearly half a Saturnian year after the 1995 FOS and 1996

IRTF observations, Cassini’s data will complement those observations by studying the

162



changes in the temperature profiles in the northern and southern hemispheres in different
seasons. As Cassini will be at Saturn nearly a full Saturnian year after the Voyager 1 and
2 flybys, its data will serve as a check on the previous Voyager results. Cassini’s CIRS
data should also provide an additional check on the helium mass fraction of the

atmosphere.

One area Cassini data may not be of help is studies of gravity wave propagation.
The limited resolution of the CIRS instrument is far less than the resolution available
from Earth-based stellar occultation studies, and that beiter resolution is needed to
resolve small-scale gravity waves. Future studies of gravity waves in Saturn’s upper
atmosphere will have to continue to rely on Earth-based stellar occultation observations
until a future spacecraft with a higher-resolution instrument and/or an atmospheric probe

is sent to Saturn.
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Appendix A
Background Subtraction of FOS
Emersion Data

Intreduction

In the absence of a high speed photometer on the Hubble Space Telescope (HST),
the Faint Object Spectrograph (FOS) could be used to take high time-resolution
spectrally-resolved data until its removal from HST in February 1997. The signal
recorded by the instrument could then be analyzed to look for differences in the
lightcurves for different wavelengths, or they could be summed to provide a single value

for the signal measured for each integration, like an ordinary photometer.

Unlike high-speed imaging data obtained by instruments like PCCD and
NSFCAM, where information about the location of the star, planet, and any other
background effects can be determined, FOS data provide only the total signal that passed
through the entrance aperture, requiring other techniques to determine and remove the
background. This is a critical problem with the occultations observed by the FOS: in each
case the HST tracked the star, rather than remaining fixed on the limb of the planet, so
the amouni of background from the disk of the planet varies with time. Therefore, a

technique is needed to calculate the background signal level and remove it from the data.

Limb Modeling Technique
The primary source for background signal in these data is from the disk of Saturn.
Because the disk of the planet is much larger than the aperture of the FOS, and because

the disk of the planet is not uniform in brightness, a successful removal of the planet
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signal requires knowledge of the location of the aperture on Saturn’s disk at any given
time. This information is available for the FOS data in the form of fand g coordinates of
the star, if we assume that the star is centered in the aperture. FOS observations are
conducted in an effort to get the target within 0.04 arcsec of the center of the aperture
(Leitherer 1995), so this assumption is valid if the relative error between the coordinates

of the star and the ephemeris of Saturn is negligible.

To compute the brightness of the portion of the disk visible in the aperture, we use
the technique of Linear Limb Darkening discussed in Karkoschka and Tomasko (1992)
(hereafter KT92). This technique allows one to compute the reflectivity of an object using
the angle of the incident and reflected rays, the phase angle of the observations, and the
fuil-disk and half-disk geometric albedos of the object. The half-disk albedo of a planet is
defined as the geometric albedo of the disk of a planet from the center to one-half its
radius. For a uniform disk the two albedos would be equal; for a limb-darkened disk the
half-disk albedo would be greater than the full-disk albedo. KT92 define the reflectivity

as:

1/ F = p(o){g +2.5(h~ g)(1.5p; - Do /1, (A1)

where I/F is the reflectivity, p(a) is the phase angle function, g is the full-disk geometric
albedo and # is the half-disk albedo, p is the cosine of the zenith angle of the incident
ray, and p; is the average of the cosines of the zenith angle for the incident and reflected

rays.
Karkoschka and Tomasko, in their studies of Saturn, published values of gand h
based on wavelength and latitude on the planet. While the latitude range includes the

latitudes probed in the FOS occultation data sets, the shortest wavelengths listed, 460 nm,
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is at the red end of the FOS data. To compensate we used a linear extrapolation of g and A
down to 400 nm, the center of the FOS data. This seems a reasonable assumption, since
both g and 7 follow a linear trend below 650 nm (Figure A.1). This method gives the
following functions for g(A) and A(A):

g(A) =-0.280487 + 0.001408\

A2
h(A) =-0.511257 + 0.0020835\ (4-2)

With this method we compute g to be 0.2827 and 4 to be 0.3221 at 400nm.

500 600 700 800 900
Figure A.1: Changes in the full- and half-disk albedos g (bottom) and 4 (top) as a function of wavelength,
displayed on the x-axis here in nanometers. The points give the values of gand 4 from KT92. The lines are
the least-square fits to the points below 680 nm wavelength. The lines are extrapolated to values less than
400 nm, the wavelength used to find the values of g and 4 for the iimb darkening analysis.

This limb darkening function can then be used to construct a model lightcurve of
the light from the disk of Saturn. For each data point we consider the aperture of the FOS,
which is 0".86 in diameter, or 5,745 km at Saturn's distance from Earth at the time of the
observations. We then superimpose on this aperture a 5800 x 5800 km grid centered on
the aperiure, with each grid element 50 x 50 km. For each grid element we compute

whether its center is within the aperture, and discard those that are not. For each
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remaining grid element we check to see if it is within the disk of the planet at that time.
We do this by assuming a simple elliptical shape for the planet and using the fand g
value of each grid element to see if would be within the disk. For those that are within the
disk, the reflectivity is computed using Eq. A.1. The reflectivities computed for all the
grid elements are summed to provide the total reflectivity of the planet as seen at the FOS
at that time. This process is repeated for other data points. In praciice, the background
curve is very smooth, and thus only every 50th or 100th data point needs to be calculated
with interpolation sufficient for the remainder of the data, making this procedure less
computationally expensive. The results are then scaled to the actual signal recorced, and

the fit is compared.

This technique, however, did not provide a satisfactory result: the model fit the
data well at those times when the disk of the planet dominated the signal, but failed to
accurately model the background as the disk moved out of the aperture. (Figure A.2) One
possible explanation for this is an incorrect extrapolation of g and 4 to shorter
wavelengths as described above. Another is that the albedos may not be accurate near the
limb, a concern noted by KT92. A third possibility is that scattered light caused by the
point-spread function (PSF) of the FOS may play a significant role in the distribution of
signal, especially as the disk exits the aperture, contributing to the poor fit. These

concerns are all addressed below.

167



e
S o,

60000 61000 62000 63000

Figure A.2: Attempting to fit a limb-darkened background model to the data. The above plot displays
signal counts vs. radius (in km) for the 0305 data set. The black line is the actual data, the gray circles are
the backgrounc model. Note the poor fit of the background model to the data after the emersion event (the
series of oscillations in the data at around the 60,500 km level).

One solution to the problems described above is to incorporate the limb-darkening
model into the overall isothermal model for Saturn's atmosphere. In this case gand h
become two additional parameters in the least-squares fit (with the background and full
signal levels, the half-light radius, and energy ratio.) The isothermal model is then run on
the raw (no backgrcund subtraction) data, and the least-squares iteration finds the

combination cf these values that best fits the data.

For this procedure to succeed, we must know how the background model behaves
to different values of g and /. Model lightcurves are calculated as described above
(except that a 100 x 100 km grid is used to expedite the calculations) for values of g and
h from 0.15 to 0.35 in increments of 0.01. All the models can be fit by a simple

polynomial expression:

S=c0[c1(r—cz)2 +c3] (A.3)



where S is the signal, 7 is the distance from the center of the disk to the center of the FOS
aperture at a given time, and ¢y, ¢;, ¢, and c; are coefficients of the fit that are all
functions of g and 4. The addition of a linear term to Eq. A.3 does not improve the fit. In
cases where the computed value of S was less then zero the result was set equal to zero,
since the negative result corresponded with the extrapolation of the polynomial beyond
the point where the disk of the planet was no longer visible in the aperture. The
coefficients were computed for each set of g and / values used in the models, and
polynomial fits for c;, ¢, and ¢3 were then computed (it proved more expedient to have
the model interpolate the value of ¢, from the array of g, / and ¢ values computed above
because of nonlinearities in the behavior of ¢, for some values of g and 4.) The

polynomial fits for ¢;, ¢, and c3 were:

¢;(g, k) =0.00131g +0.00503hk (A.4)
c(8,h) = 67760 +168900g — 176004k ~ 402000k — 151800g2 +

579100k% +279200g°h + 268600gh> + 45750 ~ 622700k
c3(g,h) =—14790 - 1.0220 x 10°g +1.0211x 10% 4 +1.919 x 107 gh

~9.0886x10°g% —1.0607 x 107 k2 + 6.567 x 10° g1 — 2.665 x 107 gh? (A.6)
+3.9896 x 10% g> +1.6580 x 107 4

(A.5)

We incorporated this background model as a module in the overall isothermal
model fit and ran the fit on the data from the 0305 emersion event, the only HST FOS
data set which accurately recorded an emersion. This resuited in a somewhat better fit,
especially for the data just past the emersion itself, but failed to fit the signal towards the
end of the data set as the disk of Saturn exited the aperture, leaving only the star and any

remaining background signal (Figure A.3).
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Figure A.3: Incorporating the background model into the overall model fit. The black line above shows the

raw 0305 data, and the gray line is the best-fit model to the data using an isothermal model fit which
incorporates a limb-darkening model. Note that the fit still does not fit the data well after the emersion
event.

The model runs above assume perfect optics: that is, when the disk of the planet
has just exited the aperture, it no longer contributes any signal. In reality light from the
disk is still recorded after the exact limb of the planet leaves the aperture because of the
PSF (point-spread function) of the FOS, which spreads the light out to a small degree,
contributing to the signal recorded. This effect needs to be included to create a more

realistic model of the background signal.

A PSF for the FOS was determined (Koratkar 1996) but the PSF files were taken
off the Space Telescope Science Institute's Web site in early 1997 when errors were
discovered in the PSF. A corrected PSF was never provided before support for the FOS
ended in late 1997 (E. Smith, pers. comm.). In the absence of a priori knowledge of the

PSF, we used a simple Gaussian function as the PSF:

Glxy=e /o (A7)
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The width (6) of the Gaussian was determined by trial and error and eventually

set at 1135 km, or approximately 0".175 at Saturn's distance from the Earth. (The value
of ¢ could have been an additional parameter in the fit, but its inclusion would have made

the model fit procedure run much more slowly as new Gaussians were computed.) The

Gaussian was then convolved with the background model described above.

This resulted in a very realistic model of the background light. The model, which
included the background signal as well as the star signal, closely matched the data
(Figure A.4). When the background model computed in the model fit is subtracted from

the raw data, the resulting signal—which should represent the signal from the star only

—resembles a typical occultation lightcurve. (Figure A.5)
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Figure A.4: A better fit for the data. The black line represents the 0305 data, while the gray line is the best-
fit model using the limb-darkened background model and a Gaussian function convelved with the model.
The fit is very good.
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Figure A.S: The stellar signal from the 0305 data. The plot shows the actual star signal from the 0305 data

set, found by subtracting the best-fit background model from the raw data. The data resembles a typical
occultation light curve. Note the constant offset from zero of the data and the undulations in the post-
emersion data on the right, evidence that the background signal has not been completely removed.

Linear Fitting Technique

The problem with the limb-modeling technique, however, is that an offset from
the fand g coordinates of the star must be included in the analysis. While the object of
the observations was to guide on the star in the center of the aperture, even a small offset
of the star from the center of the aperture could have a considerable impact on the limb-
fitting technique described above. This is especially true for those data sets taken when
the HST was using the less precise gyros for pointing the spacecraft rather than a fine
lock on a guide star. Moreover, unless the tracking rate of the HST was continuously
adjusted during the occultation the star would drift from the center of the aperture during
the occultation itself as refraction decreases the star’s motion relative to the disk. The fits
shown in Figures A.4 and A.5 assume an offset of 600 km in both Jfand g, values chosen
because they appeared to fit the data well by a simple visual inspection. To rigorously test

this would require computing limb darkening functions for a wide range of fand g
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offsets, incorporating these into the model, and including the offsets as more parameters
of the model fit. Because of the amount of time required to compute the limb darkening
functions (12-24 hours for a single set of conditions, using a Mathematica™ 2.2.2 kernel
running on a Hewlett-Packard Series 9000 Model 735/125 workstation), this technique
becomes undesirable. Moreover, this effort would have to multiplied by a factor of three,
since the process would have to be repeated for each data set (the results for only one

data set, 0305, were presented here.)

We therefore sought alternative methods of removing the background from the
data that were far less computationally intensive. This meant abandoning a physical
model for the background flux in favor of a simple empirical model that could
successfully remove the background contribution to the data. We noted that, for regions
of the summed raw data immediately after immersion or before emersion, when the only
contributor to the signal is the flux from Saturn, the signal varied linearly with time. We
therefore fit lines to the post-immersion and pre-emersion data near the time of

immersion or emersion of the form
signal = cr + ¢ (A.8)
where ¢y and c; are parameters of the fit and r is the radius. We used that fit to subtract

Saturn’s signal from the data. Plots of the raw data and the best linear fit to the

background are shown in Figures A.6-A.8, and the fit parameters are listed in Table A.1.
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Figure A.6: Linear fit to the background for the 0203 data set. The black line is the raw, summed data from
the 0203 data set, while the gray line represents the best fit to the post-immersion data (the leftmost 1000
points shown above.) This line is subtracted from the data to remove Saturn’s contribution to the data.
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Figure A.7: Linear fit to the background for the 0204 data set. The black line is the raw, summed data from
the 0204 data set, while the gray line represents the best fit to the post-immersion data (the leftmost 1000
points shown above.) This line is subtracted from the data to remove Saturn’s contribution to the data.
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Figure A.8: Linear fit to the background for the 0305 data set. The black line is the raw, summed data from
the 0305 data set, while the gray line represents the best fit to the post-immersion data (the leftmost 900
points shown above.) This line is subtracted from the data to remove Saturn’s contribution to the data.

Table A.1: Linear Fit Parameters

—_— S v . Anear T rarameters O
data set points used Co ¢
0203 4000-5000 959300 + 2100 -16.810 £ 0.039
0204 1000-2000 1053600 + 1900 -18.547 £ 0.036
0305 1000-1900 1479900 + 2600 —23.916 £ 0.043

The coefficients of the fit for the 0203 and 0204 data sets are similar, albeit not
within their errors. As both immersions took place in approximately the same region of
Saturn and separated by less than two hours, this agreement is expected. The values for
the 0305 event are different, as this emersion event took place near the equator, where the
flux from Saturn’s disk may be different, and scattered light from Saturn’s rings may also

play a role.
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One complication to this technique is that it would cause the post-emersion and
pre-immersion data — where both the planet and star are contributing to the total flux — to
curve upwards. Since the star’s contribution to the post-emersion/pre-immersion signal
should be a constant, one explanation is that the linear fit is not taking into account the
scattered light from Saturn visible in the aperture. To correct this, we fit a quadratic curve

to the post-emersion/pre-emersion line of the form:

signal = cor? + ar+c (A.9)

where cg, ¢, and c; are coefficients of the fit. We use that fit to remove the curve from

that data, making it a straight line. Plots of the background-subtracted data and the best fit

functions are shown in Figures A.9-A.11. The fit parameters are listed in Table A.2.
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Figure A.9: Secondary background subtract fit to 0203 data. The black line is the signal from the 0203 data
set with the linear background subtraction applied. The gray line is the best fit for a quadratic function to fit
the rising pre-immersion signal. This function is used to make the pre-immersion signal constant.
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Figure A.10: Secondary background subtract fit to 0204 data. The black line is the signal from the 0204
data set with the linear background subtraction applied. The gray line is the best fit for a quadratic function
to fit the rising pre-immersion signal. This function is used to make the pre-immersion signal constant.

T

15000 |

12500

10000 |

7500t

5000

Signal (counts)

2500

0 L

50000 59500 60000 60500 61000 61500

Radius (km)

Figure A.11: Secondary background subtract fit to 0305 data. The black line is the signal from the 0203
data set with the linear background subtraction applied. The gray line is the best fit for a quadratic function
to fit the rising post-emersion signal. This function is used to make the post-emersion signal constant.
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Table A.2: Parameters from Secondag Bacligound Fit
_ﬁ‘r——‘—r——y——*—_

data set range Co €1 c2
0203 2800-3425 9960000 + 570000 | -359 +20 0.00324 + 0.00018
0204 1-350 20770000 = 4190000 |-751 + 151 0.00680 + 0.00136
0305 2360-3000 10240000 + 470000 |-342+15 0.00285 + 0.00012

The 0203 and 0305 fits have similar parameters, even though they represent data
sets taken from different regions of the planet. This could mean that the rise is signal is
something characteristic of the star itself and not of the disk and/or rings of Saturn.
However, the values for 0204 are different. Note, though, that the data set sampled was
much smaller (since the immersion took place near the beginning of the data set) and the
errors are up to an order of magnitude higher, so the difference in values may be an effect

of the small data sample available for the quadratic fit.

This technique gives background-subtracted light curves of the form expected for
such an event. The curves are shown in Figures A.12-A.14. Of some concern is the 0203
data set, where the signal begins its drop at around 55 ,400 km, levels off briefly, then
continues its drop as the immersion progresses. Such behavior would not be expected for
a typical occultation and is not seen in the 0204 or 0305 data sets. One possibility is that
the beginning of the immersion is being lost in the undulations visible in the signal before
and after the immersion (the possible sources of such wave-like activity are discussed in
Chapter 2). The effects of this on isothermal model and inversion analysis is discussed in

Chapter 3.
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Figure A.12: The background-subtracted signal for the 0203 event.
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Figure A.13: The background-subtracted signal for the 0204 event.
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Figure A.14: The background-subtracted signal for the 0305 event.

Conclusion

The ideal model would use solely known physical parameters of the planet, star,
telescope, and instrument, to determine the contribution to the total signal from sources
other than the star, and to remove that undesired signal. However, for unusual data sets
like the HST stellar occultation sets discussed here, such purely physical techniques are
not satisfactory. The need to account for everything from the known motion of Saturn
with respect to the star to unknown parameters such as the full- and half-disk albedos of
the disk at these wavelengths and the position and motion of the star relative to the center
of the aperture make attempts to construct physical models too computationally-intensive

to be completed in a reasonable time.

Empirical methods. such as the linear fit used above, are less satisfying because

they do not use a rigorous physical model to understand the sources of the background
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signal and to remove them. However, they are far easier to implement and produce the
best results. The results from this empirical method, shown above, do provide a

reasonable removal of the background an; permit further analysis of the data.
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Appendix B
LED Timing Calibration for NSFCAM

Introduction

When NSFCAM is used in Movie or MovieBurst mode, the integration time listed
in the headers of the data files does not provide the accurate timing necessary for the
analysis of occultation data, since the time base is provided by the instrument computer
clock. In addition to any errors caused by inaccuracies in the timing oscillator of the
instrument computer, the integration time provided tells how many seconds the image is
exposed in each frame, but does not give the cycle time, or the time between the start of
one integration and the start of the next integration. The difference between the cycle
time and the integration time, referred to here as the dead time, is the overhead needed to
transfer the data out of the instrument’s InSb array and into the instrument computer’s
memory and to reset the instrument for the next frame. This time will vary based on the
number, size, and location of the subframes on the array: in general, the more total pixels

in the subframe(s), the longer the dead time needed to read out the data.

While the dead time can be estimated from the timing properties of the
electronics, a more accurate way to determine the dead time, and hence the cycle time, is
through the analysis of a set of observations of a calibrated light source that turns on and
off with a known, accurate pattern. The preferred method for doing this is to take
MovieBurst mode ob;ervations of a light-emitting diode (LED), flashing at an accurately-
known period (controlled by the clock in a GPS receiver). The analysis of these data can
be used to calibrate the computer clock, and repeated measurements can test its stability
over time. If the clock is stable, this calibration can provide the accurate timing

necessary for the occultation data.
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For this and previous timing calibrations with the NSFCAM camera at the IRTF,
an infrared LED was placed in the optical path of the telescope. The LED is connected to
a GPS receiver, which generates an output trigger to turn the LED on and off. The system
is configured to turn the LED on for 100 ms at the beginning of each second, then off for
900 ms. This pattern is repeated for the duration of the timing observations using
MovieBurst mode on NSFCAM, generating a time series of light pulses with an accurate

period that can be used to find the cycle time of the observing mode.

Previous Work

LED timing calibrations have been used with NSFCAM on several occasions,
starting with a 1994 occultation by Saturn of GSC5815-01190. Smith ( 1995) developed
the analysis technique for the LED timing observations taken during this event. This
technique has since been used on similar data sets from NSFCAM observations of

occultations by Saturn, Titan, and Triton in 1995.

The readout of a NSFCAM image involves several steps (Leggett and Denault
1996). First, the InSb array is reset, pixel by pixel, by setting the charge of each pixel to
zero. Then the array is read out sequentially in a “pedestal” read. After a period of time to
allow charge to accumulate, the array is read out once again sequentially in a “sample”
read. The NSFCAM computer stores the difference between the sample and pedestal
reads. The integration time, as displayed in the header in the FITS file of the data, is the
time between the beginning of the pedestal read and the beginning of the sample read
(Leggett and Denault 1996). Since the data are read out sequentially, the start and end
times for each pixel will be slightly different and vary by the readout time; however, the

integration time for each pixel will be the same.
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NSFCAM also allows more than one non-destructive read (NDR), where the
pixels in the array are read without resetting their values. The number of pedestal and
sample reads performed by NSFCAM is each equal to the value of NDR set by the
observer. Increasing the number of NDRs reduces the read noise but increases the dead
time, and hence the cycle time, since additional pedestal and sample reads are required.
As with single reads, the integration time is equal to the time from the first pedestal read
to the first sample read (Leggett and Denault 1996). (see Figure B.1) The data stored by
the NSFCAM computer are the differences between the sum of the sample reads and the

sum of the pedestal reads for each pixel.

” cycle time R
A last pixel integration time #1 R -
. first pixel integration time #1 R -7

N last pixel integration time #2 .
first pixel integration time #2 R -7
“
% $ ” } > } } ” } > {
Reset Pedestal reads Common integration time Sample reads

Figure B.1: An illustration of a typical NSFCAM readout cycle. Each cycle begins with a reset, then a
number of pedestal reads as set by the value of NDR. This is followed by a common integration time when
no reads take place. The cycle is concluded with a number of sample reads equal to the value of NDR. In
this example NDR is equal to two. The figure illustrates the integration times for the first and last pixel in
the array for both reads. Note that while the absolute times between reads for different pixels are different,
the interval of the integration time is unchanged. Time in the cycle not allocated to integration time is
considered to be dead time.

Smith knew for his data set that the integration time was set so that the data would
have a cycle time of approximately 250 ms. Since the cycle time was not quite 250 ms,
there was a discernible pattern as the LED flashes shifted from one set of frames to an

adjacent one. A useful landmark for measuring this shift is a pair of adjacent frames with
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similar signal counts: this is a sign that the LED signal is shifting between frames (Figure
B.2). By measuring the number of frames apart these pairs of frames are, Smith
calculated the difference in the cycle time from 250 ms. Smith also found that the start
time of the data set, taken from the GPS and printed in the header of file, is offset from

the beginning of the first frame of data by only a few milliseconds, and is thus not a

significant source of timing error.

LED Mean Frame Values Mean Frame Values — Expanded View
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Figure B.2: An example of the transition effect from Smith (1995). The plot on the left shows the long-
term effects of the LED transition, while the frame on the right is a close-up which shows the transition of
the LED signal from one frame to the next, where the two adjacent frames have nearly equal LED values.

Olkin (pers. comm., 1997) discusses two methods to find the cycle time of a data
set when no good estimate of the cycle time is available. One method is to construct a
model of the LED timing pulse and then fit it to the data, using the cycle time and the
dead time of the system as parameters for the fit. However, Olkin notes that this does not
work well because the abrupt changes in the model make a least-squares fit difficult.
Instead, Olkin counted the number of frames between spikes in the data (Figure B.3) and

compared that value to the expected number of frames between spikes in the data from
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the model, given a specific cycle time. From this one can get the cycle time and thus tae

dead time of the data.

L e T e e

0.8¢

0.6t

50 100 150 2 0 0
Figure B.3: LED light curve from IRTF data of the occultation of GSC 5249-01240 by Saturn in 1995,
Note the regular series of dips in the light curve, which can be used with a model to find the cycle time and
dead time of the observations. From Olkin (pers. comm., 1997)

Technique

We recorded LED timing exposures on 1996 July 29 after observing a Saturn
occultation. Using MovieBurst mode on NSFCAM, we took exposures of 1000, 2000,
and 4800 frames each with the LED in place, using the setup described in the first section
of this appendix. We used subframes of the same number and size as those used during
the immersion, but the subframes themselves were erroneously placed in different
locations on the CCD than during the immersion. The effects of this error will be
discussed below. For these data the number of non-destructive reads (NDR) was set to

two.
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The analysis techniques described in the previous section do not work for the
LED timing data collected during the 1996 Saturn occultation. The 1996 timing data
appears significantly different from previous timing data sets with no obvious “peaks” or
“valleys” visible in the 1996 data (Figure B.4).

i 100 200 300 400
Figure B.4: LED timing data fiom the 1996 event. The signal from the first 480 frames (10%) of a 4800-
frame LED timing calibration are displayed. The signal has been normalized to values between zero and
one, corresponding to the minimum and maximum values of the data set. Note that unlike the timing data
displayed in Figure 3, there is no obvious pattern or peaks and/or dips in the data that could be used with
existing techniques to determine the cycle and dead time of the data.

In an attempt to find some pattern in the data, we fit a simple sine curve to the
data using least squares. The amplitude and zero-offset of the curve was fixed, and the
frequency and phase shift of the curve was determined from the fit process. We started by
fitting the curve to the first ten points of each data set, and then used the frequency and
phase shift parameters from that fit as the start of a new fit using twice as many points.

This process was repeated until the entire data set was included in the fit (Figure B.5).

187



o

[e 0]
— ]
——— ]
e v T
o oot I
——
o
R
T
pm———
—
—— ]
—
—
————— T
————S
omeo—TIY
ot 2ol
r————tY

Mo rt 25 3

gpu——
———
wai w1
—
Rigtig Y S
——

0.2¢% 3 .

|

10 20 30 40 S0

Figure B.5: A comparison of the data (black dots) and least-squares fit of a sine wave (gray curve). The
above set from the first 50 frames of a 4800-frame data set is representative of the quality of the fit for the
entire data set. The period of the sine wave is 1.79891 frames, or 0.55589 seconds.

For the 4800-frame data set the least-squares fit resulted in a period of 1.7989058
+0.0000019 frames. Since the GPS signal driving the LED has a period of 1 second, the
cycle time of the data is 1/1.7989058, or 0.55589347 + 0.0000006 seconds. The
integration time of each frame was 0.5 seconds (based on data in the FITS header of each

file), so the actual dead time is 0.05589347 seconds, or 55.9 ms.

We used this techi..que on the two other LED timing tests taken during the event,
one with 1000 frames and the other with 2000 frames. All three were taken in immediate
succession, in the order of the 1000-frame exposure, 2000-frame exposure, and the 4800-
frame exposure. The cycle time derived from the sine curve fit to the 2000-frame data
matches the 4800-frame data to within their errors. The fit to the 1000-frame data
produces a cycle time that is 7 — 7.5 sigma greater than that derived from the 2000- and
4800-frame data (see Table B.1). However, the 1000-frame data was not as good as the

longer data sets: there was a significant long-term increase in the mean signal values in
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addition to the variation seen in the longer data sets. This data set had to be normalized in
sets of 10 frames each, instead of normalizing over the entire data set as was done with
the longer data sets. While this removed the trend in the data, it may have introduced

other effects which may have impacted the results of the fit.

Table B.1: che Time Results from LED Timing Data
_—— e

File Name # Frames Cycle Time & Error (sec)
data2199.movie 1000 0.5559039 +0.000014

data2200.movie 2000 0.55589354 + 0.0000039
data2201.movie 4800 0.55589347 + 0.0000006

Data in the FITS header of the LED timing files confirms this result. The FITS
header produced by NSFCAM data includes a keyword entry named “F RM_RATE.”
According to NSFCAM software designer Tony Denault (personal communication),
FRM_RATE is defined as the amount of time it takes to perform a single readout of the
array, be it a reset, pedestal read, or sample read. As the integration time is defined as the
time between the first pedestal read and the first sample read, there is a time equal to
three reads of the array where data are not collected, and hence is a dead time between

frames.

For the first pixel sequentially read, the integration time would include the time
for the two pedestal reads and the intermediate time between the pedestal and sample
reads, and would end at the beginning of the first sample read. The integration time
would not include the time for the rest of the sample reads or for the reset of the frame.
Similarly, for the last pixel read out, the integration time would begin at the end of the
first pedestal read, when the final pixel was read out, and continue to the end of the first

sample read, when the pixel was read out again. It would not include the second sample
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read, the reset read, or the time for the first pedestal read up until that pixel was read out

(see Figure B.1).

The length of FRM_RATE is determined by the number and location of the
subframe(s) on the image. For all the LED timing data F RM_RATE is equal to 18.79 ms.
If the dead time is three times the value for FRM_RATE, the dead time from this method
becomes 56.37 ms, less than 0.5 ms longer than the value from the sine curve fit
discussed above. Since the timing of the computer used to determining FRM_RATE is
based on an oscillator with much less accuracy than the GPS timing used to generate the
LED pulses, it is reasonable to conclude that the results of these two methods are

consistent within their respective errors.

The timing from the FRM_RATE value and the timing from the LED calibration
can be used to determining the accuracy of the timing in the NSFCAM computers. Since
the cycle time should be the same whether we calculate it from LED calibrations or FITS
file header information, the GPS-derived cycle time of 0.5589347 seconds should equal
the FITS-header-derived time of 0.55637 seconds. The GPS timing is far more accurate

than computer timing, therefore the error in the computer timing is approximately 0.1%.

However, an examination of the start and end times for some data sets gives a
different answer for the dead time. The start and end times for the 4800-frame
MovieBurst file of the immersion event of the occultation itself were recorded by the
observers (Bosh, Foust, and Elliot) in the log book. For the file, “data01 74.movie”, the
start time was recorded as 13:21:06 UT and the end time as 14:10:38 UT. The duration of
the file was thus 49:32, or 2,972 seconds. Assuming a negligible delay time at the

beginning or end of the file, this gives a cycle time of 619.2 ms, or a dead time of 119.2
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ms. This is significantly larger than 56.37 ms dead time from the FRM_RATE variable in
the FITS header.

One explanation for this difference is that the starting and ending times in the
observing log book may be in error. The difference in dead times (62.73 ms) over 4800
frames is 301.1 seconds, or just over five minutes. It seems unlikely that the observers
could have erred in the starting and/or ending times by five minutes. Another possible
source of error is the timing within the instrument computer. Since it uses an osciilator
with much less accuracy than the GPS, errors in the timing could contribute to the offset
between the deadtimes determined by the GPS timing and the deadtime obtained from the
computer-generated start and stop times. However, as noted above, the error in computer
timing is approximately 0.1%, which is far too small to account for the difference

described here.

Another possibility is that the difference in times is not a dead time at all, but the
delay in transferring the data from the Nsfpc, the computer where the data collected in
MovieBurst mode are temporarily stored in RAM, to a disk on another IRTF computer,
where the file is converted into a FITS image cube. The start and end times recorded in
the logbook include the time it takes to transfer the data from the instrument computer
and write them on disk. The size of the 4800-frame file is approximately 82 MB (in
addition to the 64 Mb of RAM for data storage in the instrument computer, the file size
includes zero-padding necessary to fit the two subframes into a single rectangular image.)
For the 301-second delay to be fully accounted by the delay in transferring the data, the
transfer rate of the data would have to be 0.27 MB/sec. Tony Denault (pers. comm.,
1997) estimates that the transfer rate is approximately 1-2 MB/sec, somewhat faster than

the required rate. However, it is not impossible that, given the condition of the computer
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system at the time of the observation, the transfer rate was running below the estimate by

Denault.

Results and Conclusions

From sine wave fits to the LED timing data as well as the information contained
in the FRM_RATE entry in the FITS header, the dead time of the data is about 56 ms,
with an overall cycle time for each frame of 556 ms. This assumes that the discrepancy
between the dead time from the sine curve fits and FRM_RATE value and the dead time
from the difference in the recorded start and end times of the data can be explained as
time spent transferring the data after the end of the exposure, or by errors in the oscillator

that provides the timing for the computer (see Table B.2).

Table B.2: Comgarison of Cycle Time from Various Methods

Method Cycle Time (seconds)
LED timing calibration 0.55589347 + 0.0000006
FRM_RATE value 0.55637

Start and end times in logbook 0.6192

The sine curve fit to the data also helps resolve another feature of the data: the
lack of an obvious period with spikes and/or dips, unlike previous LED timing sets.
When the data are folded into the period derived from the least-squares fit, a distinctive
curve forms (Figure B.6). This combination of two exponential curves resembles the
charging and discharging of a capacitor. This result suggests that the LED was not
blinking on and off throughout the course of the LED timing observations, as expected,

but was on all the time and only varying in brightness. This also explains why the LED is
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visible in every frame of the timing data, when, given the exposure times and expected

pattern of LED fiashes, it should not have been visible in every frame.

1r oo_ o

J 0.25 0.5  0.75 1 1.25 1.5 1.75

Figure B.6: The LED timing data wrapped to a period. The 4800-frame LED timing data set above has
been wrapped to the period of the least-squares fit of 1.79891 frames. Note that the result is a pair of
exponential curves: one rising up and leveling off, then one falling and leveling off. This is similar to the
charging and discharging of a capacitor, evidence that the LED was always on, and only varying in
brightness, during the LED observations.

There is one additional complication to this work. The subframes used for the

LED timing data are the same size but not in the same location as the subframes used to
record the immersion event of the occultation. The occultation data has a 16 x 32 pixel
frame starting at (112, 16) and a 80 x 80 pixel frame starting at (88, 136). The LED
timing data had a 80 x 80 frame starting at (96, 64) and a 16 x 32 frame starting at (168,
200). The difference in locations may have a diffzrence in the read time of the arrays.
This is confirmed by examining the value of FRM_RATE in the hezder of the occultation
data: there FRM_RATE is 17.05 ms, compared to 18.79 ms in the LED data. This would
imply that the dead time in the occultation data itself is 3 x 17.05 ms, or 51.15 ms, and
thus the cycle time is 0.551155 seconds. To find the true cycle time of the immersion

data, we have to take into account the timing error in the NSFCAM computer, as noted
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earlier in comparison with the more accurate timing derived from the GPS. Assuming the
computer time is 0.1% longer than the GPS time, as before, the revised cycle time for the

immersion data set becomes 0.550604 seconds.

If we assume that the error for this revised cycle time is the same as that from the
4800-frame LED test, we can determine the effects of that error on the timing of the
occultation data. The half-light level of the occultation took place at approximately frame
2600 of a 4800-frame observation. If we assume that the timing error is cumulative, then

the error in the half-light time would be 2600 x 6x1077, or 0.002 seconds. The velocity of
the event at the time of occultation is 4.96 km/sec, so an error of 0.002 seconds in the
half-light time would correspond to an error of approximately 0.01 km in the haif-light

radius. This error is much smaller than other errors from the occultation analysis.

Message from Tony Denault

Return-Path: denault@irmanoal.IFA.Hawaii.Edu
Received: from irmanoal.ifa.hawaii.edu by hale.IFA.Hawaii.Edu (4.1/halel.1)
id AA02753; Mon, 3 Mar 97 10:30:09 HST
Received: by irmanoal.ifa.hawaii.edu (SMI-8.6/SMI-SVR4)
id KAA03819; Mon, 3 Mar 1997 10:24:17 -1000
Date: Mon, 3 Mar 1997 10:24:17 -1000
From: denault@jirmanoal .IFA Hawaii.Edu (Tony Denault)
Message-1d: <199703032024.KAA03819@irmanoal.ifa.hawaii.edu>
To: jeff
Subject: Re: Question about NSFCAM FITS header entry
Cc: bryant@irmanoal.IFA Hawaii.Edu
X-Sun-Charset: US-ASCII

>
> Hi,
> We have some NSFCAM data taken last July in MovieBurst mode, and

> are wondering about one of the lines in the header of the FITS files:
>

>FRM_RATE= 18.79 / In msec. Fastmode=Off SlowCnt=1 NDR=2
>

> The NSFCAM manual doesn't seem to explain this, and since we're trying to
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> get our timing as exact as possible with these data, we're curious to know
> what this time or rate here means. If you could give us some information

> on this, or let us know who to contact about this, we'd appreciate it.
>

Frame rate is the amount of time needed to do a single readout

of the array. A single readout could be a reset, pedestal, or sample

frame. So if you were in ARC_D readout mode with 2 NDR then a single
image would consist of:

[RESET][PED][PED]]...][SAMPLE][SAMPLE]
where
[RESET] is a Reset frame.
[PED] is a pedestal frame (2 ndr).
[..] a2 pause between pedestal & reset (len depends on integrations time).
[SAMPLE] is a sample frame (2 ndr).
each [RESET], [PED], or [SAMPLE] is 18.79 ms in lenght.

Tony
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Appendix C
Astrometric Solution for the
1996 Saturn Occultation

Introduction

Proper analysis and interpretation of data collected during an occultation requires
precise knowledge of the location and relative motion of the occulting body and the star
being occulted as seen from the perspective of the observer. Without this knowledge one

does not know which part of the planet was probed by the star.

The catalog position of the star and the ephemeris of the occulting body provide
an estimate of the precise location of the event. However, both are subject to errors,
which can have a significant impact on the results of the occultation analysis: a 1-arcsec
error the position of one of the bodies is equal to approximately 6,500 km at Saturn’s
distance from the Earth at the time of the 1996 IRTF observations. Thus these positions
require a correction based on observations of the star, occulting body, and any other

objects that can improve the accuracy of the positions.

Technique

Past stellar occultations by Saturn have relied on the observation of occuitations
of the star by ring features to compute a distance scale for the event (Hubbard et al. 1997;
Cooray et al. 1998). However, the path of Saturn relative to the star for the 1996
occultation kept it clear of the rings both before atmospheric immersion and after
atmospheric emersion, so an alternative method is needed to find where the star probed
Saturn's atmosphere. In our case we chose observations of the star, Saturn, and several of

its moons to provide an astrometric solution for this event.
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In a two-hour period prior to the occultation of GSC 0010-00284 by Saturn, the
observers (A. Bosh, J Foust, J. Elliot) took 54 images of the star, Saturn, and several of
its moons (Enceladus, Mimas, Rhea, and Tethys) for later astrometric analysis. The
observers also took three images of the stars Tr59 and Tr60 (McDonald and Elliot 1992)
to determine the pixel scale and rotation angle of the detector relative to the J2000
celestial coordinate system. These images were taken in full-frame (256 x 256 pixel)

mode at a pixel scale of 0.3 arcseconds per pixel.

We later analyzed the images to find the x-y positions of the objects. The
ipMargAnal routine, part of the imageProcessing Mathematica™ package included in the
group software on “astron.mit.edu”, was used to compute the centers of the star and
Saturnian moons. Since it is difficult to compute the center of a complex image, such as

the disk of a large body with rings, the center of Saturn in the images was not determined.

The right ascension and declination of Saturn and its moons were computed with
the simple_eph program using the DE403 and sat-95-96.bsp ephemerides obtained from
the Jet Propulsion Laboratory. As a check, another set of ephemerides were calculated
using the pre-RPX (ring plane crossing) Saturn Ephemeris Generator 1.1
(http://ringside.arc.nasa.gov/www/tools/ephem_sat.html), provided by the PDS Planetary
Rings Node. The two sets of ephemerides were identical to within 15 milliarcseconds.
The position of the star came from version 1.2 of the HST Guide Star Catalog (GSC),
available online (http://www-gsss.stsci.edu/gsc/gsc12/gsc12_form.html) (Table C.1).

Table C.1: GSC 1.2 position for GSC 0010-00284 (J2000)

RA Dec
Oh 30m 50s.99 0°39'49".7
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For the later analysis of the occultation data, we adopted a f-g coordinate system
(Elliot ez al. 1993) centered at the center of Saturn, with the faxis parallei to right
ascension and the g axis parallel to declination. For simplicity, we considered the center
of the f-g plane fixed and track the motion of the star in the plane, even though the star is
actually fixed and the planet moving. Using the difference between star position from the
GSC catalog and the center of Saturn from its ephemeris, we obtained provisional fand g

positions for the star.

We used the observations of the stars Tr59 and Tr60 (McDonald and Elliot 1992)
to find the pixel scale and rotation of the images. The distance, in pixels, between the two
stars is compared with the known distance between the two stars to find the pixel scale in
arcseconds per pixel and kilometers per pixel (Table C.2). The rotation angle of the x-y
plane of the image relative to the sky (and hence the f-g plane) comes from the difference
in the position angles of the stars between the detector frame and the sky. The angle is
defined here as the difference between the y axis of the image and faxis of the f-g

coordinate system.

Table C.2: Pixel Scales and Rotation Angle from the Tr59/60 Data

Pixel Scale (arcsec/pixel) 0".2976 + 0".0014
Pixel Scale (km/pixel) 1937.9+9.1
Rotation Angle (degrees) _ 1°.0914£0°.0043

Since the goal of this analysis is to find the exact position of the path of the star
relative to Saturn, the ideal technique would be to compare the distance between the star
and Saturn in the frame, rotated into the f-g plane, with the predicted difference from the

catalog position of the star and the planetary ephemeris. However, since it is difficult to
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find an exact position for the center of Saturn, an alternate technique must be adopted.
The moons of Saturn visible in the image, whose centers can be determined, are a viable

alternative.

Not all the moons visible in the images are useful for this technique. Mimas is
dim and is lost in the glare from Saturn’s rings in most images, so it is excluded from the
analysis. Enceladus is missing from several images when it is lost off the top of the frame
when the telescope is moved. Moreover, Amanda Bosh (pers. comm.) expressed concern
that the Enceladus positions may not be as accurate as those for other moons. For these
reasons, Enceladus was excluded from the analysis. The two remaining moons, Rhea and

Tethys, were used in the analysis.

In this analysis, the x and y pixel positions of Rhea, Tethys, and the star were
determined for each frame. The distance between Rhea and the star and Tethys and the
star, in x and y, was determined and converted into arcseconds using the pixel scale from
the Tr59/Tr60 analysis. The x-y distances were converted into f~g (and thus right

ascension and declination) distances using:
f _ sin® —<.:ose x €.
g cos@ sinB |y

where 6 is the angle of rotation between the f-g and x-y axes, provided in Table C.2. This
provided the distance from each moon to the star in right ascension and declination,
which could, in conjunction with the ephemeris position of each moon, be used to find
the right ascension and declination position of the star. This position can be compared to

the catalog position of the star to find offsets in fand g, designated f;and gy, that be

applied to the fand g positions of the star computed previously.
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Results

The fand g offsets found using Tethys and Rhea are not the same, even within

their errors. (Table C.3) This is a significant difference which has a considerable impact

on the fand g position of the star.

Table C.3: f and g, using Rhea and Tethys

Moon JSo (km) go (km)
Rhea 5290 + 180 -3640 % 260
Tethys 7130 + 460 —-2330 + 200

Another aspect of this difference can be seen in the offsets in the distance between

Rhea and Tethys. Figure C.1 shows the offset between the ephemeris and measured

distance between the two satellites, in right ascension (f) and declination (g). There is a

censiderable amount of scatter in the offsets over very short periods of time. The mean

offset (Rhea—Tethys) in right ascension is —0.334 =+ 0.095 arcsec and the mean offset in

declination is —0.190 + 0.072 arcsec.
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Figure C.1: Offsets in right ascension (top) and declination (bottom) for the distance between Rhea and
Tethys. The offset is defined here as the difference between the distance as measured on the images, using
centers computed by ipMargAnel, and as computed from the ephemeris. The y-axis measures this offset in
arcseconds, and the x-axis shows time in seconds from the first image. Note the large scatter in positions
over very short periods of time.

The scatter in these positions is undesirable. An alternate method is needed to
check these results and try to improve the precision of the positions and distances
measured in the images. One method is to fit a point-spread function (PSF) to one object
and then use that PSF to find the center of another specified object. This allows one to

compute accurate distances between the centers of two objects with identical PSFs.

We used the doFit routine, an existing package that does PSF fitting, on the 54

images and the distances between the star and Rhea and the star and Tethys were
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computed. However, the scatter in the distances between Rhea and Tethys did not

appreciably change: the mean offset (Rhea-Tethys) between the distances computzd from

the ephemeris and the distances computed using doFir were —0.363 =+ 0.104 arcseconds

in right ascension and —0.145 =+ 0.062 arcseconds in declination. The scatter in the offsets

(Figure C.2) appears litde different than the scatter found using the ipMargAnal

positions.
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Figure C.2: Offsets in right ascension (top) and declination (bottom) for the distance between Rhea and
Tethys. The offset is defined here as the difference between the distance as measured on the images, using
centers computed by doFit, and the distance as computed from the ephemeris . The y-axis measures this
offset in arcseconds, and the x-axis shows time in seconds from the first image. Note the large scatter in
positions over very short periods of time, and the similarity to the scatter shown in F igure C.1.



In this case, doFit does little, if anything, to reduce the scatter in the positions.
This means that the scatter is due to either variations in the ephemeris for the moons or
variations in the actual positions of the moons as seen in the images. We can test this by
looking at the ephemeris positions as calculated and looking for evidence of variations or
other problems which might explain the scatter. The distances between Rhea and Tethys

as computed by the ephemeris are shown in Figure 3.
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Figure C.3: The distance between Rhea and Tethys as computed by the ephemeris in right ascension (top)
and declination (bottom). The y-axis is distance (Rhea-Tethys) in arcseconds, and the x-axis is time in
seconds from the first image. Although the declination distance is nonlinear, both curves follow smooth
paths with no sign of irregularities which could explain the scatter in the offsets seen in Figures C.1 and
C2.
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Although the declination distance is not linear, the smooth nature of both curves
provides no evidence of variations which could explain the scatter seexn in the offsets. As
an example, the variation in positions for the last set of declination positions (at a time of
around 7000 seconds) is less than 0.02 arcseconds. However, the scatter seen in the
declination offsets at that time is over 0.1 arcseconds, or more than five times the scatter
seen in the ephemeris positions. Thus, it seems most likely that the source of the scatter is
the positions of the moons from the images themselves, perhaps due to seeing effects, and

other techniques will not be able to improve on this scatter.

To check this conclusion the fand g residuals from the difference between the star
and Rhea and the star and Tethys were plotted against one another (Figure C.4). The f
residuals show a very high degree or correlation, with a correlation coefficient of 0.91.
The g residuals have a much lower correlation coefficient of 0.12, but the plot still shows

a noticeable correlation between the two sets of residuals.
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Figure C.4: Correlation between the two sets of residuals from this analysis. The top plot compares
residuals and the bottom compares g residuals. On each plot the residuals (differences between the star-
Rhea and star-Tethys distances) from doFit are plotted on the x-axis and residuals from mergAnal are
plotted on the y-axis. There is a strong correlation betwesn the two sets of fresiduals while the g residuals
show a weaker, but still noticeable, correlation.

We can compare the differences in the Rhea and Tethys offsets with the errors in
the ephemeris positions for these bodies. Jacobson (1997) notes that both Rhea and
Tethys have the same errors: 500 km in the radial direction and in the out-of-plane
direction, and 1000 km in the “downtrack™ direction, along the orbital path. Because the
inclination of the orbits of both moons is very small (1°.86 for Tethys and 0°.35 for Rhea
(USNO 1997)), and because the orbits are observed here edge-on, the error in declination,
and hence g, will come from the out-of-plane error, while the error in right ascension G,
and hence £, will be a contribution of the radial and downtrack errors, as a function of the

position of each moon in its orbit:
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G =|Rsin@|+|Dcosq| (C.2)

where R is the radial error and D the downtrack error, while @ is the angular position of
the moon (defined such that ¢ is 90° for eastetn elongation). For these observations ()
changes from 40° to 65°.9 for Tethys and from 12° to 18°.6 for Rhea. We then find that
the right ascension error changes from 1680 to 1107 km for Rhea and from 1087 to 865
km for Tethys. The declination error is a constant 500 km for both bodies. These errors
are several times larger than the errors shown in Table C.3. However, they are still

insufficient to reconcile the large differences between the two data sets.

Alternate Technique

Since the analysis described above produces two very different answers for the f
and g offsets depending on the data used, another analysis is needed to provide an
independent result that can be compared to the results from the previous method. This
new analysis should use new data and/or a new analysis technique to avoid any errors

introduced into the previous analysis.

Previously, we noted that Saturn had been excluded from the analysis using
ipMargAnal, and later doFit, since its complex shape made it difficult for the software to
find accurate centers using their fitting routines. However, it is possible to use another
technique to locate the center of Saturn in the images. The new technique is based on

simple rules of geometry and straightforward analysis methods.

From basic geometry, the diameter of a conic section, such as an ellipse, is

defined as the locus of the midpoints of a set of parallel chords. Different diameters can
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be defined by using different sets of parallel chords. Since any diameter of an ellipse
passes through its center, the exact location of the center can be found by determining the

intersection of two different diameters. (Figure C.5)

i i
L .
Figure C.5: An illustration of the alternate technique to find the center of Saturn. The gray lines are

parallel chords which pass through the disk of Saturn. The midpoints of the chords form diameters of the
ellipse, shown above as dashed lines. The intersection of the lines is at the center of the ellipse.

Define the equation of a chord as y = mx + ¢, where m is the slope and c is the y-
intercept of the chord. The chord intercepts the ellipse at two points, (x;,y1) and (x2,52).

The midpoint of the chord, (x,,,yp) is simply found by:

_X1t+Xxo
=X
2 (C.3)
Nty
Ym 5

We can take the equation for the chord and substitute it into the general form of

the equation for the ellipse:
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LERP A (€.4)

Substituting mx + ¢ for y and simplifying gives:

( 2 2+b2)x +(2a mc)x+a2( 2 b2)=0 (C.5)

This equation has two roots, which correspond to the points x; and x,, the two
points where the chord intersects the ellipse. The sum of these roots is expressed by:
2a%me

X1+ Xxp = ——n-’-—bz (C.6)

Using the definition of the midpoint from Eq. C.6, we can now state:

2

a mc
Xy = — (C.7)

a m2+b2

By substituting for x instead of y in the general equation for the ellipse and

following the same steps, we can obtain an expression for the y value of the midpoint:

bc
g P

We can now find the equation of the line formed by the midpoints of a set of

parallel chords, by taking the ratio of y,, to x,,:

2
Im _ _”2_ (C.9)
Xm a‘m
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V=, (C.10)

This is the equation of a straight line that passes through the center of the ellipse
(which in the general form of the equation of an ellipse is defined as the point (0,0)).
When the location of the center of the ellipse is unknown, two such lines can be derived
from two different sets of parallel chords, one set with a different slope than the other: the

location of the intersection of the lines is the center of the ellipse.

This technique can be applied to the Saturn data by taking the limb of Saturn to be
an ellipse. We generated two sets of parallel chords, taking care to make sure the chords
pass through the limb of the planet on both sides and do not encounter Saturn’s ring,
system, which would invalidate this method. The point where the chord passes the limb is
found by finding the pixel location where the counts exceed a certain level well above the
background; in this case, 5000 counts. The midpoint is then computed between the two
points the chord crosses the limb, and a line is fit to the set of midpoints. The intersection
of two such lines, computed using two sets of chords, provides the center of Saturn on a

particular image.

This process was repeated for 32 of the 54 astrometric frames taken prior to the
occultation event (only those images taken in the K band were used; the remaining 22,
taken using filters at 2.12 and 2.3 pm, featured little light coming from the disk of Saturn,

making this technique usable on those images.)

With the positions of the center of Saturn, as well as positions of the center of the

star from previous analyses, we could now directly compare the distance between the star
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and Saturn between the images and the ephemeris, without the need of using positions of
Rhea, Tethys, or the other moons. We did this by simply translating the x-y pixel
distances on the image into f-g distances in kilometers, using the rotation angle and pixel
scale in Table 2. The offsets fj and gy come directly from comparing the two sets of

distances.

This analysis results in another, different set of values for fj and gy . We found f;
to be 4088 + 490 km and g to be 0 + 360 km. These results are very different from the
results found using the moons Rhea and Tethys, and cannot be used to confirm, or refute,

either result.

Conclusion

The three different analyses presented here resulted in three different results for
the offsets f; and gy. It may be impossible to determine which one is correct from those
results alone, but we can use the different offsets in lightcurve analysis to see which one
or ones gives the most reasonable results. We applied the three sets of offsets to the data
set and computed isothermal model fits for each set (see Chapter 3 for a complete
description of the model fit technique.) As with the other data sets, we fit for four
parameters: the background and full signal levels, the uncorrected half-light radius, and
the ratio of half-light radius to scale height (also known as the energy ratio.) (Table C.4)
We also computed atmospheric attributes, such as scale height, temperature, and
pressure, based on those conditions (Table C.5). We corrected the half-light radius to
account for general relativity effects, and found the equivalent equatorial half-light radius

(Table C.6).



Table C.4: Model Fit Parameters

Data Set Background Full ry (km) A
(uncorrected)
Tethys offset | -0.001+0.013 |1.065+0.010 |56708+5 1352 + 100
Rhea offset —0.002+ 0.013 |1.065+0.010 |58958+35 1412+ 106
Saturn offset -0.002+ 0.013 [1.063+0.010 |[57105=+5 1381 + 103
Table C.5: Derived Values from Modei Fits
Data Set Scale Height (km) | Temperature (K) | Pressure (ubar)
Tethys offset 42.0=+3.1 116.7 + 8.7 1.13+0.15
Rhea offset 41.8+3.1 106.0+7.9 1.00+0.13
Saturn offset 41.4+3.1 1122+ 84 1.06 +0.15
Table C.6: Equivalent Equatorial Half-Light Radii
Data Set rg (km) Latitude (degrees) a (km)
{corrected)
Tethys offset 56749 £ 5 -52.73 £0.02 60939+ 5
Rhea offset 58997 +5 —52.05 £0.02 63724 £5
Saturn offset 57146 £ 5 —48.89+0.02 60976 + 5

Using Table C.6 we can discard the Rhea offset as a viable solution, since it gives

an equivalent equatorial half-light radius that is far higher than the other two data sets or

the result from Hubbard er al. (1997). However, both the data sets using the Tethys-

derived offset and the Saturn-derived offset have similar results, and it is difficult to

select between the two.
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Fortunately, as Table C.5 shows, data sets using all three offsets generate similar
solutions for atmospheric parameters such as scale height, temperature, and pressure.
Thus, the choice of a particular offset will only have an effect on studies of the absolute
half-light radius and precise location of the immersion. For the studies conducted in
Chapter 3, we chose to use the Tethys offsets as they had marginally smaller errors in

half-light radius and energy ratio.
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Appendix D
Mathematica™ Notebooks

This appendix lists the Mathematica™ notebooks used in generating results for
this thesis, divided by chapter and appendix section. These notebooks are all stored on the
machine lowell.mit.edu, in folders contained in “Internal HD:Local
Files:Projects:Saturn™. In some cases on the most recent version of the notebook is listed;

past versions are archived in the same folder as the one listed for the given notebook.

Chapter 1
None used
Chapter 2

Period of variations in FOS data: 1995-FOS:wave test 1.0.m

1996 IRTF lightcurve: 1996 GSC 0010-00284:IRTF Observations:Model Fits:lightcurves 1.0.4.t

28 Sgr lightcurve: 1989 28 Sgr:28Sgr f&g calibration 1.0.m
Chapter 3
Model fits: 1995-FOS:Immersion:Model Fits:model fit Ib 0203 1.1.m

1995-FOS:Immersion:Medel Fits:model fit Ib 0204 1.i.m

1995-FOS:Emersion:Model Fits:model fit Ib 0305 1.1.m

1996 GSC 0010-00284:IRTF Observations:Model Fitsmodel fit 1996 IRTF 1.1.m

1989 28 Sgr:model fit 28Sgr 1.0.m

Inversions: 1995-FOS:Immersion:Inversions:inversion 0203 1.41.m
1995-FOS:Immersion:Inversions:inversion 0204 1.31.m

1995-FOS:Emersion:Inversions:inversion 0305 1.12.m

1996 GSC 0010-00284:IRTF Observations:Inversions:inversion IRTF96 1.61.m

1989 28 Sgr:inversion 28Sgr 1.2.1.m
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Chapter 4

Normalized temperature and number density: Power Spectra:power spectrum 0203 1.4.m

Chapter §

Power spectra and lapse rates:

Chapter 6

Refractivities of hydrogen and helium:

Refractivity ratio determination:

Chapter 7

None used

Appendix A

Power Spectra:power spectrum 0203 1.4.m
Power Spectra:power spectrum 0305 1.3.m
Power Spectra:power spectrum IRTF96 1.4.m

Power Spectra:power spectrum 28Sgr 1.3.m

Power Spectra:power spectrum 0203 1.4.m
Power Spectra:power spectrum 0203 1.4.m
Power Spectra:power spectrum 0305 1.3.m
Power Spectra:power spectrum IRTF96 1.4.m

Power Spectra:power spectrum 28Sgr 1.3.m

1995-FOS :refractivities 1.0.m
1995-FOS :Immersion:Color Tests:color test 0203 1.2.1.m
1995-FOS :Immersion:Color Tests:color test 0204 1.2.1.m

1995-FOS:Emersion:Color Tests:color test 0305 1.2.1.m

Physical model background subtraction tests on 0305 data:

1995-FOS:Emersion:Background Subtraction:background subtraction 1.53.b.m

Linear background subtraction:

1995-FOS:Immersion:linear bkgr subt 0203 1.0.m
1995-FOS:Immersion:linear bkgr subt 0204 1.0.m

1995-FOS:Emersion:linear bkgr subt 0305 1.0.m
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Appendix B:
LED timing tests: 1996 GSC 0010-00284:IRTF Observations:Timing:led data 1.02.m
Appendix C
Rhea-Tethys offsets:
1996 GSC 0010-00284:IRTF Observations:Prediction/Astrometry:Rhea/T ethys offsets 1.0.ra
Event astrometry notebooks (only most recent listed):
1996 GSC 0010-00284:IRTF Observations:Prediction/Astrometry:Saturn _predict_960729 2.42.m
Saturn chord technique:

1996 GSC 0010-00284:IRTF Observations:Prediction/Astrometry:saturn center chords 1.3.m
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Appendix E
Glossary

This glossary is based on Olkin (1996) with contributions from other sources cited

in the references section.

28 Sgr

absolute magnitude

adiabat

arcsecond

ASI
Astroncemical Unit (AU)

bar

Brunt-Viisili frequency

CCD
chords
CIRS

correlation coefficient

curvature matrix

a star that was occulted by the planet Saturn on 1989 July 3.

the apparent magnitude of an object if it were at a distance of 10

parsec

the trajectory in pressure-temperature space followed by a parcel of
matter which undergoes changes in volume without exchanging heat

with its surroundings

one part in 3600 of a degree, sometimes abbreviated as arcsec
Atmospheric Structure Instrument on the Galileo atmospheric probe
average distance between the Earth and Sun. 1.4959787x1011 m

2 unit of pressure: 1x106 dyne/cm3. The standard atmospheric

pressure at Earth's surface (termed “one atmosphere”) is 1.013 bar

The buoyancy frequency for vertically-propagating atmospheric

waves
charge-couple device

an occultation light curve or just the immersion or emersion section
Cassini Infrared Spectrometer instrument

a dimensionless quantity taking values from —1 to +1 measuring the
degree of linear association between two variates. A value of —1
indicates a perfect negative linear relationship, +1 a perfect positive

relationship.

the inverse of the covariance matrix
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cycle time

data window

dead time

declination

digicon

diurnal aberration

emersion

energy ratio

ephemeris

extinction

J~g plane

FGS

time from the beginning of one integration to the beginning of the
next, it includes both the full integration time plus any dead time (see

below)

a function that is convolved with a power spectrum to reduce the
problem of power “leakage” at high frequencies. Common data

windows include the Hann, Bartiett, and Welch.
the time between integrations

the angular distance on the celestial sphere north or south of the
celestial equator. It is measured along the hour circle passing through

the celestial object.

an instrument that accelerates electrons emitted by a photocathode

onto a linear array of diodes

the component of stellar aberration (see stellar aberration) resulting

from the observer's diurnal motion about the center of the Earth

that portion of an event (in this case a stellar occuitation) in which

one object (the star) reappears from behind another (the occulting

body).

a parameter in the model of Elliot and Young (1992). It is the ratio of
the half-light radius to the scale height at the half-light radius.

a tabulation of the positions of a celestial object in an orderly

sequence for a number of dates
the scattering or absorption of photons

a coordinate system centered on a planet, with the f axis aligned with
right ascension and the g axis aligned with declination, as defined by
Elliot et al. (1993)

Fine Guidance Sensors on the Hubble Space Telescope
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FITS

flat-field image

FOS

frame transfer

FWHM
geocentric

geometric albedo

GPS

gravity wave

GSC
GSC 5249-01240
GSC 0010-00254

guiding mode

half-disk albedo

Flexible Image Transport System, a commonly-used format for

storing astronomical data
an image of an evenly illuminated field

Faint Object Spectrograph on the Hubble Space Telescope from
1990-1997

a method for reading out a CCD to minimize dead time. The recorded
image is transferred to a different part of the detector after the

exposure and read out during later integrations.
full width at half maximum
with reference to, or pertaining to, the center of the Earth

the ratio of brightness of an object to the brightness of a perfectly
diffusing disk of the same radius at the same distance from the Sun

Global Positioning System, a system of satellites that transmit time
signals that allow users with GPS receivers to determine an accurate

time and position

a type of wave generated in stably-stratified atmospheres when a
vertically-displaced parcel of air undergoes buoyancy oscillations.

Such waves are also called buoyancy waves.

Guide Star Catalog for the Hubble Space Telescope
star occulted by Saturn on 1995 November 20-21
star occulted by Saturn on 1996 July 29

method used to guide the Hubble Space Telescope, options are either

fine lock on a guide star (more accurate) or gyros on spacecraft

the geometric albedo of the central region of a body out to one-half of

the object’s radius
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half-light radius

HOPI

HSP

HST

hydrostatic equilibrium

immersion

impact parameter

IRTF
K filter

L+inv medel

lapse rate
LED
lightcurve

light travel time

the radius (typically in the planet plane) probed by a stellar
occultation when the flux from the occulting star equals half its

unocculted value

High-speed Occultation Photometer/Imager, an instrument planned
for the SOFIA aircraft

High-Speed Photometer instrument on the Hubble Space Telescope
1990-1993

Hubble Space Telescope

the condition of stability that exists when gravitational forces are

exactly balanced by counteracting gas and radiation pressure

that portion of an event (in this case a stellar occultation) in which

one object (the star) disappears behind another (the occulting body).

the closest approach distance (usually measured in arcsec) between

two celestial bodies.
Infrared Telescope Facility. Located on Mauna K ea, Hawaii.
center wavelength 2.21 pm and a FWHM of 0.39 um

a model developed by Hubbard et al. (1997) to explain the
temperature and pressure profiles in Saturn’s atmosphere between
60,500 and 61,500 km in equatorial radius

the change in temperature versus altitude in the atmosphere
light-emitting diode
the record of observed flux from a body or bodies

the interval of time required for light to travel from a celestial body to
the Earth. During this interval the motion of the body in space causes
an angular displacement of its apparent place from its geometric

position.
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Linear Limb Darkening

linearized perfect gas law

magnetosphere

magnitude

mesosphere

microbar

NSFCAM

Nyquist sampling theorem

occultation

oblateness

PCCD

photometry

a model developed by Karkoschka and Tomasko (1992) to compute
the reflectivity of an object using the angle of the incident and
reflected waves, the phase angle of the observations, and the full- and
half-disk albedos of the object

a relationship where the change in temperature over initial
temperature equals the change in pressure over initial pressure minus

the change in density over the initial density
the region of space surrounding a rotating, magnetized sphere

a measurement on a logarithmic scale of the brightness of a celestial

object considered as a point source

the region of an atmosphere above the stratosphere and below the
thermosphere were temperatures are unchanged or slightly falling
with altitude

pbar, 10-6 bar
an astronomical instrument for imaging in the infrared at the IRTF

a theorem which requires that data be sampled at twice the highest

frequency present in the data

the obscuration of one celestial body by another of greater apparent

diameter

the ratio of the difference between the equatorial and polar radii to

their mean value

a Portable CCD instrument designed to perform high-speed imaging

for occultation observations. Four PCCD systems exist.

a measurement of the intensity of light usually specified for a specific

wavelength range
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pixel scale

planet plane

R filter

refraction

right ascension

rotation angle

RSS

saturation

scale height

Sellmeier equation

shadow plane

shadow velocity

SOFIA

the ratio of the distance (in arcseconds or other units) between two
objects and the distance in pixels between the two objects on a CCD

image

the plane parallel to the shadow plane at the occulting body. See
Figure 5.1.

center wavelength = 700 nm, passband = 220 nm
the bending of a light ray as it passes through an atmosphere

angular distance on the celestial sphere measured eastward along the
celestial equator from the equinox to the hour circle passing through

the celestial object

the angle between the right ascension and declination axes and the

orientation of the CCD image
Radio Science Subsystem on the Voyager and Cassini spacecraft

the condition when a gravity wave’s amplitude does not increase as

density decreases.

the distance in an atmosphere over which the pressure or number
density changes by a factor of e. For an isothermal atmosphere the

pressure and density scale heights are equal.

equation used to express the refractivity of an element or compound

as a function of wavenumber.

the plane perpendicular to the direction of the occulted star whose

origin is at the center of the Earth.
the velocity of an occultation shadow as seen from an observer.

Stratospheric Observatory For Infrared Astronomy, due to be

operational in 2002
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“Spencer 2.3”

STIS

stratosphere

subframe
subsolar

thermal conductivity

thermosphere

threshold

topocentric

tropopause

troposphere

UVIS

a filter used on the NSFCAM at the IRTF, it has a central wave'ength
0f 2.28 um and a FWHM of 0.17 pm

Space Telescope Imaging Spectrograph

an upper layer of a planetary atmosphere, above the troposphere and
below the thermosphere, characterized by a vertical temperature

gradient which is stable against convection
a subsection of an array detector
the point on a planet where the Sun is at the local zenith

the ability to transfer heat through contact between, but not exchange
of, particles

the region of temperature rise due to ionospheric heating

in studies of the helium/hydrogen ratio, the offset from the isothermal
model fit to a lightcurve used to determine which data points to

accept or reject in the analysis.

with reference to, or pertaining to, a point on the surface of the Earth,

usually with reference to a coordinate system.

the boundary between the troposphere and stratosphere (or for Triton,
the thermosphere) where the vertical temperature gradient goes to

Zero

region of atmosphere characterized by a convective (adiabatic)
temperature gradient. This is typically the region where most

weather occurs.

Universal Time. A measure of time that conforms, within a close
approximation, to the mean diurnal motion of the Sun and serves as

the basis of all civil time keeping.

Ultraviolet and Infrared Spectrometer on the Cassini spacecraft
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Ultraviolet Spectrometer on the Voyager spacecraft

vignetting the diminution of observed flux due to an obstacle in the optical path
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