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Abstract

Energy transport in a high-recycling scrape-off layer is considered for the specific case

when anomalous cross-field transport coefficients are nearly constant in space and volumetric

power losses are small. In the case when upstream density and temperature profiles

approximately follow an exponential variation across magnetic field lines, energy balance

imposes a constraint on these profiles such that λn ≅ 0.4 λT, where λn and λT are respective

characteristic gradient scale lengths. Contrary to intuition, this relationship approximately holds

over a wide range of particle and energy transport coefficients and is simply a consequence of

the transport physics: cross-field heat flux proportional to density and temperature, parallel heat

transport  independent of density and proportional to Te7/2.
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1. Introduction

Detailed measurements and modeling of cross-field density and temperature profiles in

the scrape-off layer (SOL) of tokamak experiments are now being routinely performed (e.g.,

[1-3]). One important goal is to determine the magnitude of anomalous cross-field heat and

particle transport in the SOL and its scaling with fundamental plasma parameters. Typically,

numerical transport models employ adjustable coefficients for cross-field particle and heat

transport which are determined from a best-fit to the experimental data.

If one were allowed free choice of the energy and particle source distributions and the

transport coefficients in numerical simulations of SOL plasmas then one could produce cross-

field density and temperature profiles of arbitrary shape. However, in many SOL plasmas of

interest, volumetric heat sources/sinks are small and the heat transport is dominated by a

balance between anomalous cross-field transport and classical parallel electron conduction to

the divertor target. This regime often exists in "high-recycling divertors" in which the electron-

ion mean free path is much shorter than the distance between divertor surfaces along magnetic

field lines.

In this specific regime, one still has some "freedom" in specifying the particle source

distribution and the magnitude of the anomalous cross-field transport coefficients. However,

the energy equation enforces an interesting constraint on the problem: Since anomalous cross-

field heat transport is (most likely) proportional to the local density while classical parallel heat

transport is independent of density (proportional to Te7/2), there must exist a tight coupling

between the shapes of the cross-field density and temperature profiles. Only within this

constraint is one able to "independently" adjust density and temperature profiles via "external"

fitting parameters (particle sources, transport coefficients). In the case when the cross-field

profiles are well approximated by exponential functions (similar to many experimental

situations), these "external" parameters offer little or no separate control over the density and
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temperature gradient scale lengths. Here, energy conservation simply enforces a relationship

between gradient scale lengths, λn ∼ 0.4 λT.

The idea of a close coupling between λn and λT is not new. Previous analyses (e.g.,

[4,5]) of SOL transport physics have concluded that λn and  λT must be of similar size.

However, these arguments have been based on particle and energy balance considerations

within a single flux tube (e.g., [4]) or on a dimensional analysis of cross-field gradient scale

lengths (e.g., [5]). Although the latter analysis does yield the scaling, λn ∼ 0 . 4  λT, the

underlying physics and its consequences are not immediately apparent in this kind of analysis.

In examining a large set of discharges on JET and Alcator C-Mod, one does indeed find a

tendency for λn ∼ 0 . 5  λT in high-recycling regimes, prompting a more detailed look at

possible reasons for this behavior [6] and motivating the discussion in this paper.

The following two sections examine the coupling between λn and λT arising from the

physics of energy transport in a high-recycling regime by considering two example cases.

Section 2 considers SOL plasmas with constant anomalous cross-field transport coefficients

and exponential cross-field Te profiles. Section 3 uses a slightly different approach and

considers SOL plasmas with D⊥ = 0.4 χ⊥,  V⊥ = 0, and with electron pressure profiles having

a local gradient scale length that varies linearly with cross-field coordinate. The principal points

of this analysis are summarized in Sec. 4.

2. Constant Cross-Field Transport Coefficients

Consider the specific case when the parallel heat flux in the scrape-off layer,  q / / ,  is

dominated by classical electron conduction such that

   q / / = – 2
7 κ0 / / ∇ / /T e

7 / 2
, (1)
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where the Spitzer coefficient,   κ0 / / , is approximately 2800 W m-1 eV-7/2. (Standard SI units

are used throughout this paper with Te in units of eV, e = 1.6x10-19 J eV-1.) This situation

can arise when the electron-ion mean free path (λei) is much shorter than the distance along

field lines to the divertor surfaces (L),

   λei

L
≅ 1.5x1016 Te

2

n L
< < 1 ,

or equivalently, the plasma is in a "high-recycling" transport regime, i.e., significant

temperature gradients exist along a magnetic field line. In this regime, one also typically finds

strong collisional energy transfer between electrons and ions such that Ti ~ Te.

Anomalous cross-field heat transport may be considered as some combination of heat

conduction (n χ⊥) and heat convection arising from particle diffusion (D⊥) and convection or

"pinch" (V⊥). For this analysis it is assumed that the anomalous cross-field heat flux can be

approximated as

   q⊥ = q⊥
e + q ⊥

i ≈ – 2 e n χ⊥ ∇⊥T – 5 e T D⊥ ∇⊥ n + 5 e T n V⊥  , (2)

where the coefficients χ⊥,  D⊥, and V⊥ are taken as constants. Assuming volumetric heat

losses are small, the electron and ion energy conservation equations simply become

   ∇⊥ q⊥ + ∇ // q // = 0 , (3)

 Ti = Te = T . (3b)

Integrating (3) along a field line,

       q / / s ≈ – ∇⊥ q⊥ s , (4)

where s is the distance from the symmetry point (s = 0) towards the divertor plate and  

indicates an average over the length of the field line. For s = L, the heat flux must match the

heat through the divertor sheath,
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        q / / L = γ e nsh Cs Tsh = – ∇⊥ q⊥ L , (5)

and be consistent with the values of density (  nsh ), sound speed (  Cs ), electron temperature

(  Tsh ), and heat transmission factor ( γ ) at the sheath edge. Integrating (4) again from s = 0 to

L using (1),
   

Tsym
7 /2 – Tsh

7 / 2 ≈ – 7 L 2

4 κ 0 / /
∇⊥ q⊥ . (6)

From (5) and (6) one can show that   Tsym
7 /2 > > Tsh

7 / 2
 when 

  λei

L
< < 1 , i.e., in the high-

recycling regime.  From (2) and (6),

   4 κ 0 / /

e 7 L2Tsym
7 / 2 ≈ ∇⊥ 2 n χ ⊥ ∇⊥T – 5 T D⊥ ∇⊥ n + 5 T n V⊥ . (7)

As is customarily done in simple two-point analyses of energy transport in the scrape-off layer,

the right hand side of (7) is now approximated by its value "upstream" at the symmetry

location,

   4 κ 0 / /

e 7 L2Tsym
7 / 2 ≈ ∇⊥ 2 nsym χ⊥ ∇⊥Tsym – 5 Tsym D⊥ ∇⊥ n sym + 5 Tsym nsym V⊥ .

(8)

Now suppose experimental measurements of the upstream electron temperature profile

indicate that it is accurately represented by an exponential function of cross-field coordinate

(ρ),

   Tsym = T0 exp – ρ / λT  .

In this case, (8) can be written in the form (dropping the "sym" notation),

   ∇⊥
2 n – α ∇⊥ n + β n = δ exp – 5 ρ / 2 λ T , (9)

with the definitions:
   α = 2 χ⊥ λ T

5 D⊥
+ 1

λT
+ V⊥

D⊥
, (9a)

   β = α
λT

– 1
λT

2 , (9b)
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δ = 4 κ0 / / T0

5 / 2

35 e D⊥ L2  . (9c)

The solution to (9) is the sum of homogeneous and particular solutions,

   n ρ = nH + np .

The particular solution is,

   np = np 0 exp – 5 ρ / 2 λT , (10)

with
   

np 0 = 4 κ0 / / T0
5 /2 λT

2

35 e D⊥ L2
35
4

+ 7 χ⊥

5 D⊥
+ 7 V⊥ λT

2 D⊥

–1
. (10a)

The homogeneous solution is of the form,

   
nH = A exp ρ 2 χ⊥

5 D ⊥ λT
+ V⊥

D⊥
+ B exp ρ

λ T
, (11)

with coefficients A and B determined by two boundary conditions such as the total plasma flux

to the wall and the plasma density at the wall.

Note that in the absence of a strong inward pinch, the homogeneous solution is an

exponentially increasing function of ρ. In this case, one would require A -> 0 and B -> 0 in

order to have bounded densities at a distant wall. The density profile would therefore be

determined entirely by the particular solution in this case.

Although direct information on the pinch velocity and/or appropriate boundary

conditions is often lacking, the density profile shape must be consistent with experimental

measurements. When measurements show that the cross-field density profile closely follows

an exponential behavior,

   n = n0 exp – ρ / λn  ,

then again A -> 0 (excepting a special case below), B -> 0, and the particular solution alone

(  np ) determines the density gradient scale length. Thus, one would expect the e-folding
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lengths of the temperature and density profiles to be simply related by λn =  0 .4  λT. In this

case, the particular solution also sets the density at the separatrix. Taking values near the

separatrix in Alcator C-Mod of  D⊥ = 0.03 m2 s-1,  χ⊥ = 0.1 m2 s-1, V⊥ = 0 m s-1,  λT = 0.01

m,  L = 10 m, and T = 65 eV, eq. (10a) yields the density np = 1.7x1020 m-3 which is

consistent with measured values - although one should be aware that there is tremendous

leeway here in the choice of the transport coefficients!  For the special case when

   2 χ ⊥

5 D⊥ λT
+ V⊥

D⊥
= – 5

2
,

coefficient A may not be zero. However the relationship between e-folding lengths is the same.

This result is a bit counter-intuitive. Intuitively one might expect the cross-field density

profile to be somewhat independent of the temperature profile and set by the magnitude of

particle sources (boundary conditions) and anomalous particle transport. However, these

results show that in a regime where classical parallel heat conduction dominates the energy

equation, there exists a tendency for the density profile to be set more by the requirements of

energy balance. (Or one may consider that the reverse statement is more physically correct: the

power flow profile in the SOL,  ∝Te7/2, is constrained by the cross-field density profile.) In

actuality, plasma profiles are not exactly exponential and transport coefficients may not be

constant in space, admitting a richer set of density and temperature profile "solutions". Yet, the

tendency for λn ~ 0.4 λT exists.

Finally, one can more fully appreciate the underlying physics of this coupling by

performing the following thought experiment: Let the parallel heat flux not have the Spitzer

relationship but have the proportionality,

   q / / ∝ – n ∇ / /T . (1')

That is, take the parallel conductivity to be independent of temperature and proportional to the

local density. In this case, eq. (9) becomes a homogeneous equation with constant coefficients,
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    ∇⊥
2 n – α ∇⊥ n + β' n = 0 . (9')

In stark contrast to actual plasmas, the density gradient scale lengths in this fictitious plasma

could now be adjusted arbitrarily for virtually any value of λT by the "external" fitting

parameters, i.e., the density and/or particle flux boundary conditions and the magnitude of the

cross-field transport coefficients.

3. Special Case: D  =  0 .4 ,  V  =  0

An interesting situation arises when the cross-field diffusivities have the approximate

relationship, D⊥ ≈ 0 . 4  χ⊥. In this case, nearly exact analytic expressions for the 2-D

temperature and density profiles in the SOL can be constructed. Again, assume that volumetric

losses are small. With D⊥ = 0.4 χ⊥,  eqs. (2) and (6) yield

      
   

T(s)7 / 2 – Tsh
7 / 2 ≈ 7 e L2

– s2

4 κ 0 / /
2 χ ⊥ ∇⊥

2 n T – 5 V⊥ ∇⊥ n T . (12)

If the magnetic field lines in the SOL were straight (i.e., no poloidal flux expansion or

compression) and acceleration to sonic flows occurred close to the divertor plate such that nT≈

constant on a field line, then eq. (12) would approach the exact 2-D relationship (with the

implicit assumptions of small volumetric energy sources/sinks, classical parallel transport,

etc.),

   
T(s,ρ) 7 / 2 = Tsh(ρ)7 / 2 + 7 e L 2

– s2

4 κ0 / /
2 χ ⊥ P'' – 5 V⊥ P' , (13)

where P(ρ) = nT is defined as the stagnation electron pressure on a field line passing through

major radius R = Rsep + ρ at the outer midplane (Rsep is the major radius at the separatrix).

The prime superscript (') indicates differentiation with respect to ρ. The sheath boundary

condition, eq. (5), sets the electron temperature profile at the divertor sheath for a specified

pressure profile,
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Tsh(ρ) = 2 e m i L 2

γ2 2 χ⊥
P''
P – 5 V⊥

P'
P

2
. (14)

Here the definition of sound speed, 
  Cs
2 = 2 e T

m i
, has been used.

In experiments, it is often observed that the cross-field electron pressure profile in the

SOL approximates an exponential behavior with a local gradient scale length that increases as

function of ρ [1]. Consider the case when the midplane pressure profile varies across field

lines as,
   P(ρ) = P0 1 +

εp ρ
λp0

–1 / ε p
. (15)

This function becomes an exponential in the limit εp -> 0,

   Limε p → 0 P0 1 +
εp ρ
λ p0

–1 / εp
= P0 exp –

ρ
λp0

,

and has a "local e-folding length", λp, that varies linearly with cross-field coordinate according

to the parameter εp,

   λp(ρ) ≡ – P
P'

= λp0+ εp ρ .

With this pressure profile (and setting V⊥ = 0 for algebraic simplicity), eqs. (13) and (14)

become,
   

T(s,ρ) 7 / 2 = Tsh(ρ)7 / 2 + 7 e L 2
– s2

2 κ0 / /

χ⊥ 1 + εp P0

λp0
2 1 +

εp ρ
λp0

1 / εp + 2 , (16)

   
Tsh(ρ) = 8 e m i L 2χ⊥

2

γ2
1 + εp

2

λp0+ εp ρ 4  . (17)

Now consider the temperature profile at the symmetry point (s=0) from eq. (16). In high-

recycling flux tubes where   Tsym
7 /2 > > Tsh

7 / 2
, the cross-field temperature profile at the

symmetry point has the form,

   Tsym(ρ) = Tsym 0 1 +
εp ρ
λp0

– 2 / 7εp – 4 / 7
.
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From eq. (15), the density profile must have the form,

   nsym(ρ) = n sym 0 1 +
εp ρ
λ p0

– 5 / 7εp + 4 / 7
,

yielding local e-folding lengths for temperature,

  
λT(ρ) =

7 λp(ρ)
2 + 4εp

and density,
   

λn(ρ) =
7 λ p(ρ)
5 – 4εp

.

In this case, the energy equation imposes a relationship between local density and temperature

gradient scale lengths of
   λn(ρ) =

2 + 4εp

5 – 4εp
λT(ρ) . (18)

As before, the relationship λn ~ 0.4 λT is obtained for purely exponential electron pressure

profiles. Larger values of    λn/ λ T  result when the local pressure gradient scale length

increases with ρ (see Table I).

Since one expects the kinetic energy density (i.e., pressure) in all SOL plasmas to

decay across the magnetic field more or less exponentially (independent of ionization source

locations, wall boundary conditions, flows, etc.), then eq. (18) indicates that one should also

expect that the temperature and density profiles decay more or less exponentially with λn ~ 0.4

λT in high-recycling regimes (with implicit assumptions of low volumetric power losses,

Spitzer parallel conduction, etc.). Note that this relationship is not a consequence of the

assumption made here of D⊥ = 0.4 χ⊥ (recall Sec. 2). The reason λn ~ 0.4 λT is because the

cross-field heat flux is proportional to density and temperature while parallel heat transport is

independent of density and proportional to Te7/2.
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Finally, it is worth commenting on the cross-field temperature profile at the divertor

sheath edge. For purely exponential pressure profiles (εp = 0), eq. (17) yields a flat

temperature profile at the sheath edge. Thus, if the SOL plasma is in the high-recycling regime

at some ρ coordinate (yielding an exponential cross-field Te profile at the symmetry point),

then a transition to a sheath-limited regime (   Tsym ≅ Tsh ) can occur at some larger ρ value in

the SOL. This behavior is seen in experiments [1].

4. Summary

The physics of energy transport in a high-recycling scrape-off layer imposes a strong

coupling between the shapes of the cross-field density and temperature profiles. In scrape-off

layers where volumetric power losses are small and upstream density and temperature profiles

approximately follow an exponential variation across magnetic field lines, energy balance

requires that λn ≅ 0.4 λT, where λn and λT are respective characteristic gradient scale lengths.

The relationship is a consequence of the assumptions that cross-field heat flux is locally

proportional to density and temperature and that parallel heat flux is independent of density and

proportional to Te7/2. Contrary to intuition, the trend holds over a wide range of cross-field

particle and energy transport coefficients and is insentive to boundary conditions of density

and/or particle flux. Thus, for the purposes of modeling exponential density and temperature

data in high-recycling regimes, the relative magnitudes of spatially constant, cross-field particle

and energy transport coefficients offers little or no control over the ratio of temperature and

density gradient scale lengths. Although plasma profiles are not exactly exponential and

transport coefficients may not be constant in space, with the exception of extreme cases, the

underlying transport physics still imposes a tendency for a local gradient scale length

relationship, λn ~ 0.4 λT.
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Table I - Values of    λn/ λ T from eq. (18)
=================================================

  εp 0 0.083 0.25 0.375

   λn/ λ T 0.4 0.5 0.75 1
=================================================
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