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Abstract

Recent progress in the area of ICRF physics is examined and summarized. A very

brief summary of simplified theoretical predictions is given. Illustrative examples of exper-

imental results in the area of ICRF heating and fast wave current drive are given. ICRF

heating is found to be highly effective in heating plasmas to high temperatures in modern

tokamaks. Fast wave current drive has been demonstrated in several experiments and the

results are in good agreement with theory. Mode conversion heating and current drive

should be effective for profile control, but experimental results are still preliminary.

I. Introduction

In this paper we shall review recent progress in RF physics in the ICRF regime (Ion

Cyclotron Range of Frequencies). We shall concentrate on the experimental developments

in the past few years, and theoretical progress will be summarized only very briefly, and

only to the extent that is necessary to understand the experimental results. Furthermore,

we shall not summarize here the results obtained in DT plasmas in JET and TFTR, neither

shall we say much about the use of ICRF power for attaining improved confinement regimes

through profile control. These latter topics are discussed by other authors in this volume.

The main topics discussed in this paper are the following:
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i. ICRF fundamental resonance minority heating regimes and second harmonic majority

(and minority) heating;

ii. Direct electron heating by the Fast Magnetosonic Wave (or simply Fast Wave, or FW)

by Landau/TTMP absorption;

iii. Absorption by mode conversion of the FW into ion Bernstein waves (or IBW);

iv. Current drive by the FW (or FWCD) or by the mode-converted IBW (MCCD);

v. Absorption of the FW at the higher cyclotron harmonics in the presence of energetic

ions, mostly due to neutral beam injection; this may have implications for alpha

particle absorption in burning plasmas;

vi. On and off-axis heating and current drive for profile control;

vii. Plasma control by ICRF power, in particular, pressure profile control, plasma rotation,
MHD control;

viii. Improved confinement modes by ICRF (pellet enhanced performance, or PEP, radia-

tive improved mode or RI, and internal transport barrier, or ITB formation with flow

shear);

Although it would be desirable to give a complete review of all the experimental

observations world-wide, it will be necesssary to limit the discussion here by giving only

examples of different physics topics from particular tokamaks.

II. Summary of Theoretical Predictions

The propagation of the fast magnetosonic wave (or simply fast wave, or FW) is de-

scribed by the dispersion relationship

2 2 (nj-R) (nj- L)
S,- n2

where n1l = ckj1/w, ni = cki/w, and R, L, and S are the usual Stix-parameters [1].

The regimes of propagation, evanescence and mode conversion for a typical minority heat-

ing case (H minority in a D plasma) in Alcator C-Mod are shown schematically in Fig. 1 (a

simple slab-model is used with the toroidal magnetic field decreasing as 1/R). We see that

the wave must tunnel through the evanescent region at the low field side edge, (n = R).

The evanescent wave fields coupled to the plasma propagates beyond the njj = R right-hand

cut-off layer as the fast wave Eq.(1),

W 2 ~ k2 V2 1 + C 2k 2 /W , (2)
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where vA = c1i/wp is the Alfven speed. The wave arriving to the minority cyclotron

resonance is absorbed by a single pass absorption factor,

A = 1 - e-'q (3)

while a fraction T = exp(-277) is transmitted.

(i.) H+ Minority Absorption

For the H+ minority resonance case we obtain [2]

27 = -WPD nH R . (4)
2 c nD

Here nH/nD is the hydrogen to deuterium concentration ratio (typically a few percent).

If the minority concentration is not too high (nH/nD < 0.1) the wave is strongly

attenuated as it propagates through the cyclotron resonance (and the n2 = L cut-off

layer) and is reflected from the n2 = R cut-off layer on the high field side, resulting in

multiple pass absorption. If the minority concentration is large (> 10%) the n 2 = S mode

conversion layer, the n2 = L left hand cut-off layer, and the cyclotron resonance layer are

well separated, and significant mode-conversion into ion Bernstein waves (IBW) may occur

just on the high field side of the n 2 = S mode conversion layer. Such mode converted IBW

are rapidly absorbed by electron Landau damping, offering the possibility of pressure (and

possibly current) profile control [3].

(ii.) 3He Minority Absorption

The case of 3 He minority in a D majority plasma is of special interest (see Fig. 2). In

this case (i) significant mode conversion may occur at the n = S layer since the single pass

absorption on the minority ions is reduced by a factor of 1/9 as compared to the hydrogen

case (due to unfavorable polarization of the wave); (ii) a second resonance (n2 = S)

may occur near the plasma edge on the high field side (P < SID), offering the possibility of

mode-conversion into the shear-Alfven wave (SAW). Such unwanted resonance in relatively

low-aspect ratio devices (R/a < 3.3) may result in edge heating, impurity generation, as

well as reduced central heating.

Other absorption processes of interest include the following [2].

(iii) Majority Fundamental Resonance Absorption (w = SID)

27 = PD CDR, (5)
C
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where WPD is the deuterium angular plasma frequency, and rCD is the deuterium Larmor

radius. The single pass absorption efficiency predicted by Eq.(5) is usually very small

(<1%).

(iv.) Cyclotron Harmonic Absorption by Majority Ions

This process is typically significant only for the second, or possibly third harmonic

resonance (w = MQ). The optical depth is [2]

W WPD e2 t-1 V - 1)
277= R ( )(6)

which, for f = 2 reduces to

2 = WPDIR (7)
2c

where #i is the ion-beta.

(v.) Cyclotron Harmonic Absorption by Hot Ions

In the presence of high energy beam ions we obtain [2]

277 = -h. i (f 1) (8)
2 'cD 4h ) nh}( -

where sub-h refers to the hot (beam) component with perpendicular beta of ahj-, and

density nh. This absorption can be significant even at higher harmonics (f = 6 to 8) in

the presence of high energy ions originating from neutral beams (and ultimately alpha

particles).

(vi.) Direct Electron Absorption

Direct absorption of fast waves by bulk electrons can be significant in modern tokamaks

with electron beta of one percent or more [2]:

277 ~ WPD 3,Cexp 2) (9)
2 QDc

where Ce = w/k 1 vte, vte = (2T,/m,)'/ 2 , i3 is the bulk electron beta, and L ~ 2a/3 is an

"effective" absorption length radially where by assumption C, ~ 1 (typically AL ~ a/3,
so a total absorption length may be twice this). Typically, direct electron heating by the

FW is maximum on axis, at the highest T region.

(vii.) Mode Conversion
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Mode conversion (MC) absorption is more difficult to specify, but it may be given by

a typical Budden tunneling factor 27, such that the absorption, A is

A = TB(1 - TB) , (10)

where TB = exp(-27), and the maximum value of A is 0.25 for TB = 0.5. However, under

certain optimal conditions a "resonator" system may be set up with significantly higher

absorption efficiency [3].

(viii.) Current Drive by Fast Waves

The fast wave current drive (FWCD) efficiency has been calculated in the past by

several authors [4,5]. The results may be summarized by the simple formula

7C n201R T10,(11)

where the density is in units of 1020 m-3 , the current in MA, the radius R in m, the power

in MW, and the electron temperature in 10 keV units. The coefficient Q is in the range of

0.07-0.1 and depends on the antenna launching efficiency and off-axis electron trapping.

Typically FWCD is maximized on-axis of a plasma column, where T is maximum.

III. Experimental Results

a. Minority Heating

The most successful minority absorption scenarios to date involve hydrogen or helium-

3 minority species in the deuterium majority plasma. Among these, H+ minority heating is

very efficient, and for a typical 2-5% hydrogen concentration ratio, a single pass absorption

factor of A Z 0.8 can be easily obtained in modern medium to large-size tokamaks. There

are many examples of efficient heating with such a scenario, and here we shall simply

reproduce two examples of D(H) heating. The first example is from Alcator C-Mod [6],

where H-mode is efficiently obtained by this heating method (see Fig. 3). In particular,

H-factors of 2.0 - 2.4 (as compared with ITER-89 scaling) are "routinely" obtained.

Another example of excellent minority heating, using the D(H) scenarios from JET

[7] is shown in Fig. 4. Here 42 MHz RF frequency was used at B = 2.6 T, I, = 2.6 MA.

We see that relatively low amplitude ELMs are observed in the presence of RF heating, as

opposed to the NBI injection case (see Da signals). We see that ICRF heats as well, or

better than NBI in the present case, with an H-factor of 2.0 - 2.3 (as compared to ITER-89

scaling).

The D( 3 He) minority case is much more problematic, and the heating results are

generally less efficient than the D(H) case. Typical H factors are at most 1.6 (and often
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less). The reason for this is not well understood. One issue is the difficulty of controlling, or

measuring the 3He concentration in the typical D plasma. Recent results from Alcator C-

Mod indicate that the heating efficiency may be optimized by maintaining a 2-3% minority

concentration ratio. At higher concentrations off-axis mode-conversion processes may begin

to play a significant role, and at lower concentrations the single pass absorption becomes

too low. As pointed out in the Theory Section, in moderate aspect ratio tokamaks such as

JET or C-Mod, the shear-Alfv6n wave mode conversion layer may provide an undesirable

parasitic edge absorption mechanism. At the present time in the D( 3He) case a quantitative

demonstration of the various absorption processes (i.e., power balance) is not yet available.

Furthermore, not even a qualitative demonstration of the SAW MC process is available.

Since "seeding" a D-T plasma with a few percent 3He for minority absorption is thought

to be important for initial heating in a D-T plasma [8] (and ultimately 2 QT would take

over at sufficiently high beta), a thorough experimental documentation of power balance

with D( 3He), including both central (IBW) and edge (SAW) mode conversion processes,

is of great importance.

b. Plasma Rotation During ICRF Heating

Impurity toroidal rotation has been measured in JET, TFTR and in Alcator C-Mod

during ICRF heating [9,10,11]. The rotation has been deduced from the Doppler shifts of

argon x-ray lines in C-Mod. As an example, a typical shot from Alcator C-Mod is shown in

Fig. 5. Rotation velocities greater than 1.2 x 10 7 cm/s (w = 200 kRad/sec) in the co-current

direction have been observed in H-mode discharges that had no direct momentum input.

The increase in the central impurity rotation velocity was approximately proportional to

the increase in the plasma stored energy (confinement enhancement). The toroidal rotation

veocity is highest near the magnetic axis, and decreases with increasing minor radius. A

radial electric field of 300 V/cm at r/a = 0.3 has been inferred from the force balance

equation. The direction of the rotation changed when the plasma current direction was

reversed, remaining co-current. Impurity toroidal rotation in ICRF heated plasmas is in

the direction opposite to the rotation in ohmic L-mode plasmas; co-current rotation has

also been observed during purely ohmic H-modes. When the ICRF heating was turned

off, the toroidal rotation decayed with a characteristic time of order 50 ms, similar to the

energy confinement time, and much shorter than the calculated neoclassical momentum

damping time. This phenomenon is presently not well understood.
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c. Harmonic Heating at 2 11T

Harmonic heating at w = 29H was carried out earlier on the JT-60U tokamak, and

more recently on JET [12] at 2 11H and (2-3)SID. Since the absorption efficiency is propor-

tional to the ion-beta, this is not an efficient scenario for initial plasma heating (for 2 nD,

there is always the 1H fundamental minority resonance backup). Recent results may be

found in D-T plasmas in JET [131. We note that in moderate to high field devices (B > 4

T) the 2 11H scenario requires a rather high transmitter frequency (f Z 120 MHz) where

power generation becomes less efficient (tube powers decrease to below 1.5 MW). As we

shall see below, 2 QD absorption in the presence of NBI injection becomes important via

the energetic beam deuterons.

d. Mode Conversion Heating Experiments

Direct electron heating and current drive via mode converted ion Bernstein waves

using a low field side antenna in a tokamak were first demonstrated in the TFTR device

[14]. Mode conversion electron heating (MCEH) experiments were done in gas-puffed

plasmas consisting of 3 He, 4 He, and D, at BO = 4.5 T, ne(0) = 4.0 x 1019 m-3, and

I4 = 1.7 MA. The ICRF transmitters were operated at 43 MHz with a symmetric fast wave

power spectrum characterized by k11 ~ 10 m 1 . Up to 10 keV peak electron temperatures

were achieved using 3.3 MW of ICRF power with 3 keV target plasma. The position of

the peak in electron heating could be changed by varying the concentration of 3He, in

agreement with theory. The full-width at half maximum of the power deposition profile

was typically 0.15 - 0.20 m, as deduced from break in slope measurements of the electron

temperature versus time.

More recently, highly localized (FWHM ~- 0.2 a) on-axis and off-axis electron heating

via mode converted ion Bernstein waves (IBW) has been observed in Alcator C-Mod.

Direct electron heating from the IBW was measured using a break in slope analysis of the

electron temperature versus time, as measured by the grating polychromator (GPC). A

state of the art toroidal full-wave ICRF code (TORIC) [15] developed by M. Brambilla has

been implemented at MIT and has been used to analyze these mode conversion electron

heating experiments. This full-wave model solves explicitly for the mode converted IBW

electric field, as well as the electric field of the launched fast wave. An artificial broadening

of the ion-ion hybrid resonance layer has been implemented which ensures a well-behaved

solution for the electric field near mode conversion. Important effects on wave propagation

and absorption such as focussing and diffraction, as well as volumetric effects are naturally

included in this model.

The experimental and predicted RF power deposition profiles to electrons for on-

axis MCEH in an H(3 He) C-Mod plasma are shown in Fig.6. The plasma parameters
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were Bo = 6.2 T, nfe(0) = 1.8 x 10 20 m- 3 , Ip = 0.8 MA, PRF = 1.2 MW, nHe/ne =

0.25, nH/fl = 0.45, and nD/ne = 0.05. The measured and predicted RF deposition

profiles agree quite well in shape and magnitude. The integrated RF power fraction to

electrons for the predicted profile is qeF = 0.91, while the measured RF power fraction to

electrons is 7 = 0.79. The remaining RF power in the simulation is absorbed at the 3He

cyclotron resonance (nFe = 0.09). Calculations carried out with a 1-D full-wave ICRF

code (FELICE) [16] for this same case indicate similar absorbed RF power fractions but

much lower central RF power densities (by a factor of 10). The lower peak power densities

arise from the absence of wave focussing and volumetric effects in the 1-D analysis. The

peakedness of the RF power deposition profile was found to be a strong function of the

level of background deuterium in the experiment. Theoretical and numerical analysis of

this effect indicated that as the level of D increased to nD/ne Z 0.1, the wave dispersion

changes and the perpendicular damping lengths of the IBW increase because of an increase

in the perpendicular group velocity [17,18].

The experimental and predicted RF electron heating profiles for off-axis MCEH in a

D(3 He) C-Mod plasma are shown in Fig. 7. The plasma parameters were BO = 7.9 T, Ip =
1.2 MA, ne(0) = 2.5 x 1020 m- 3 , n3He/ne = 0.30 and fD/fe = 0.40. The location of the

peak in the predicted power deposition (r/a ~ 0.55) is in reasonably good agreement

with experiment. The absorbed rf power fraction to electrons predicted by TORIC is

77F = 0.56, with 77FH = 0.44. This electron absorption is close to the experimentally

deduced value of 7 F ~ 0.50.

Electron heating by mode conversion has also been observed on ASDEX-U, and the

power deposition profile was measured by modulation techniques using a 45 channel ECE

system, as well as with break-of-slope techniques [19].

e. Mode Conversion Current Drive

Mode conversion current drive (MCCD) experiments were performed in TFTR [14]

by operating the fast wave antenna with co- and counter- phasing (kjj ~ 6 m-1). Up to

130 kA of RF current was driven with 2.2 MW of ICRF power at Te(0) ~ 7 keV. The

corresponding current drive figure of merit for this case was 77cd ~ 0.07 (1020 A/W/m 2 ),

in good agreement with the theoretical values are based on a combined 1-D calculation of

the IBW power deposition to electrons (FELICE code) and the Ehst-Karney formulation

of the current drive efficiency [5]. In these experiments Q ~ 0.1 in Eq.(11), a rather high

value.

To calculate current drive efficiency, the full-wave TORIC code has been combined

with an adjoint calculation [5] of the current drive efficiency. The combined model is

valid for driven current via fast magnetosonic waves or mode converted IBW. This model
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has been used to assess possible current profile control experiments in D( 3 He) plasmas in

Alcator C-Mod. One possible on-axis mode conversion current drive (MCCD) scenario is

shown in Fig. 8. The parameters used in this case were fo = 43 MHz, B0 = 5.0 T, ne(0) =

1.5 x 1020 m- 3 , Te(0) = 3.0 keV, n, = 5 (kIANT ~ 5.4 m- 1), n3He/ne = 0.25, and

nD/ne = 0.50. The normalized phase speed of the injected waves near the mode conversion

layer is VI/vte ~ 1.0 and the driven current is IMCCD ~ 100 kA, assuming 3 MW of incident

ICRF power. The resulting current drive figure of merit is i7j ~ 0.027 (1020 A/W/m 2 ),

where i7cd = (ne) (1020 m-3 ) IRF (kA) Ro(m)/RF (W). The on-axis RF current density in

Fig. 8 is comparable to the ohmic current density at about 1 MA of total current. Thus,

significant local modification of the ohmic current density profile would be expected in this

case.

An example of off-axis MCCD is shown in Fig. 9. The parameters used in this case

were were fo = 43 MHz, Bo = 4.19 T, ne(0) = 1.5 x 1020 m- 3, Te(0) = 3.0 keV, no =

5 (k11, ~ 5.4 m- 1), n3He/ne = 0.25, and nD/ne = 0.50. The normalized phase speed

of the injected waves near the mode conversion layer [(r/a)mc ~ 0.5] is vl /Vte ~ 0.97 and

the driven current is IMCCD ~ 60 - 70 kA, assuming 3 MW of injected ICRF power. The

resulting current drive figure of merit is 77e ~ 0.019 (1020 A/W/m 2). Again, the local

driven current density near the mode conversion layer is comparable to the local ohmic

current density at that point.

f. Fast Wave Electron Heating and Current Drive

Initial experiments on DIII-D showed effective central electron heating [20] and cur-

rent drive [21,22] with fast waves, and achieved full non-inductive current drive, in com-

bination with ECH, using a single fast wave antenna [23]. The good heating results were

obtained in spite of the relatively low single pass efficiency (A - 5-20%), implying efficient

multiple pass absorption. For single pass absorption of less than 4% the central heating

and current drive efficiency deteriorated rapidly in DIII-D. More recently, the FWCD sys-

tem has been extended by adding two 2 MW transmitters that have a frequency range of

30-120 MHz and two four-strap antennas to the existing four-strap antenna and 2 MW,

30-60 MHz transmitter. For the experiments reported in this paper, one antenna was

tuned to 60 MHz while the other two antennas were operated at 83 MHz; these frequencies

correspond to 4-7 times the deuterium cyclotron frequency.

Recent experiments on DIII-D have studied the physics of FWCD in a neutral beam

injection (NBI) environment. All of the advanced tokamak scenarios proposed for DIII-D

utilize NBI heating as well as RF heating, and many of the critical diagnostics on DIII-

D such as the motional Stark effect (MSE) and charge exchange recombination (CER)

emission require the NBI system. During these current drive experiments, the partial

absorption of the fast waves by energetic beam ions at high harmonics of the ion cyclotron
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frequency was also studied; this interaction is a major issue for low aspect ratio tokamaks

such as NSTX, where a combination of NBI and FWCD may be used simultaneously.

Measurements of the radial profile of the fast wave driven current in non-sawtoothing

discharges on DIII-D, formed by early NBI during the plasma current ramp-up, allows

a stringent comparison between theory and experiment. From a time sequence of mag-

netic equilibrium reconstructions using the MSE data, the profiles of toroidal electric field

and total current density were determined; the non-inductive current density was then

found by subtracting the inductive current density from the total current density assum-

ing neoclassical resistivity [241. The FWCD radial profile was found from the change in

the non-inductive current profile as the antenna phasing was changed from co to counter

current drive under otherwise similar conditions. The FWCD radial profile determined

with this method is shown in Fig. 10 for a L-mode plasma with 280 kA of integrated

FWCD. This figure also shows the theoretical predictions from 3 models: the FASTCD

model based on the ergodic, weak damping limit [25], the CURRAY ray-tracing model

that includes multiple reflections [26], and the PICES reduced full-wave model [27]. The

measured fast wave driven current is highly localized on axis and is in good agreement with

theoretical models, as found previously on DIII-D. The integrated non-inductive currents

from the 3 models all come within 10% of the measured value.

The important experimental verification of theory is that the measured FWCD effi-

ciency was observed to increase linearly with the electron temperature. This is shown in

Fig. 11, where the BT = 1 T data were derived from a surface loop voltage analysis [21,22]

and the BT = 2 T data were derived from co/counter comparisons of the non-inductive

current profiles as in Fig. 10. The calculated first pass absorption for the points in Fig. 11

ranges typically from 9% to 13%. The predicted scaling of the FWCD efficiency from

the CURRAY code, indicated in Fig. 11 by the shaded band, is found to agree with the

experiments. This linear electron temperature dependence projects to attractive values for

the FWCD efficiency under reactor conditions (i.e, n2IMARM/PMw ~ 0.08 Teio, where

the density is measured in units of 10 2 0 m-3, I in MA, R in m, P in MW, and Te(0) in

units of 10 keV). Results from Tore-Supra [28] are also indicated on this figure, in good

agreement with theoretical predictions.

g. High Cyclotron Harmonic AbsoMtion on Beam Ions

The interaction of fast waves with energetic beam ions at high harmonics of the ion

cyclotron frequency was studied in parallel with the current drive experiments in DIII-D.

The partial absorption of fast waves by beam ions was evident from a build up of fast

particle pressure near the magnetic axis (resulting in an increased Shafranov shift) and a

correlated increase in the neutron rate. The anomalous fast ion stored energy could be

as much as a quarter of the stored energy in the plasma, and the anomalous neutron rate
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could be half of the total neutron rate. The anomalous neutron rate, AS, = S, - Sei,, and

anomalous fast ion stored energy, AW = Wtot - Wth - We,,, peaked when a harmonic

of the deuterium cyclotron frequency passed through the center of the plasma, as shown

in Fig. 12 for a L-mode magnetic field scan at constant auxiliary power and safety factor.

The anomalous neutron rate and stored energy built up during the fast wave pulse over

several tenths of a second, which is the source of the spread in AS, and AW in Fig. 12.

The largest values of AS,, were obtained when the 6th and 7th harmonics of the deuterium

cyclotron frequency for the main FWCD frequency of 83 MHz passed through the axis of

the plasma. The value of AW also peaked at the 6 nD resonance and showed a small

increase at the 7 nD resonance as well. A simple estimate of the fast wave power absorbed

by the beam ions can be made from Ps, s AW/r,, where r, is the slowing down time of

the ion tail. For the case in Fig. 12 where the 6 11D resonance passed through the plasma

center, this estimate gives Pab,/P ~ 0.3 using a calculated value of r, ~ 0.2 sec for the

plasma center.

The partial absorption of fast waves by beam ions appears to decrease the experimen-

tal FWCD efficiency. The measured FWCD efficiency, normalized to the central electron

temperature, is shown in Fig. 13 as a function of the magnetic field strength; the theoret-

ical efficiency assuming no ion absorption is also plotted for comparison. For BT 2 T,

where the interaction between the fast waves and the beam ions was weakest, the mea-

sured FWCD efficiency was in good agreement with the maximum efficiency that could be

theoretically expected. However, as BT was lowered, the experimental FWCD decreased

to approximately half of the maximum theoretical value. This reduction in the FWCD

efficiency is likely due to beam ion absorption of the fast waves, which would reduce the

amount of power available for current drive. Equation (8) has been used for estimating the

ICRF power absorption by a diffused beam ion model. Initial estimates are in reasonable

agreement with experimental observations.

h. Advanced Modes of Operation with ICRF

There are several advanced modes of operation with ICRF heating, usually in combi-

nation with some other technique to control the central particle source (PEP mode), edge

radiating mantle (RI mode), or current profile (Optimized shear, or OS mode). We shall

discuss some of these experimental results briefly here.

(a) Pellet Enhanced Mode (PEP)

This mode was originally discovered in JET [9], and further studied in Alcator C-Mod

[6]. The good confinement regime is obtained when a pellet is injected into the plasma,

followed by intense central ICRF heating (either the H or He-3 minority technique). After

an initial cooling of the plasma, rapid reheating occurs, with excellent confinement in the
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core of the plasma column, typically at radii r/a < 0.3, where the density and plasma

pressure strongly peak. By injecting a second Li pellet and observing the angle of the

ablation cloud relative to the magnetic field, the the q-profile could be determined. It

was found that a reversed shear equilibrium was present, with qmin at r/a=0.3. Within

the reversed shear region the pressure strongly peaked, and the transport was reduced to

neoclassical values. This mode of operation is then similar to negative central shear (NCS)

or reversed shear (RS) or optimized shear (OS) mode of operation regimes with NBI

central heating and fuelling. Unfortunately the PEP mode is transient, and it collapses

after a short time, apparently either due to beta-limit, or due to a diffusion of the bootstrap

current generated by the peaked pressure profile (not yet understood). Future experiments

might include driving off-axis currents to replace the bootstrap current near qmin, hence

extending the PEP mode toward quasi-steady state.

(b) Radiative Improved Mode

This mode of operation was observed in the TEXTOR experiment [29]. By seeding

the plasma with neon (or other inert gas) a radiating edge mantle was created (as much

as 80-90% of the power was radiated from the edge) but with acceptable core radiation.

Good confinement scaling was obtained and the confinement follows the neo-Alcator type

of scaling even at densities close to the Greenwald limit (see Fig. 14). In particular, an H

factor equal to ITER 93H scaling was obtained. This mode of operation does not require a

divertor, and the local heat load on the first wall of a reactor would be minimized. This is a

quasi-steady state mode of operation, hence reactor relevant. Issues include extrapolation

to large machines, and keeping Zeff at or below 1.6, as required in a working fusion reactor.

The good confinement is obtained only if 25% or more of the heating power is in the form of

Co-NBI (the remaining can be ICRF or counter-NBI or co+counter-NBI). Perhaps central

fueling is again important, just like for the PEP mode.

(c) Hot Ion H-Mode with Optimized Shear

The highest performance (neutron rate) in JET in a DD plasma has been obtained

with ICRF central heating with current ramp (reversed shear, or optimized shear) and

neutral beam heating [12,13]. An example of this technique is shown in Fig. 15. This case

corresponds to D(H) minority heating'(electrons) and 2WD harmonic cyclotron absorption

by the beam ions (ion heating). Record neutron rates have been obtained by this technique

in DD plasmas (a neutron rate of 6 x 1016 neutrons/sec. This regime shows the combined

effectiveness of electron and ion heating with ICRF techniques.

IV. Summary

Heating and current drive with RF waves in the ion cyclotron range of frequencies

(ICRF) has been found to be a highly effective means to control plasma parameters in
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present day tokamaks. In this paper we have summarized the basic theoretical predictions

and presented some of the most recent experimental results in their support. We have

found that heating in deuterium plasmas with hydrogen minority, or the D(H) scenario, is

very effective in tokamaks of all sizes, and that high quality H-modes are readily obtained.

Owing to the lower single pass absorption, heating with the D(He-3) scenario is not quite as

efficient, and lower H-factors are obtained. The underlying physics is not well understood

at the present time. Possible competing edge absorption mechanisms have been identified

in the paper. This is an area where more work needs to be done, especially since this may

be a startup scenario in D-T plasmas before second harmonic tritium absorption takes over

at sufficiently high ion betas.

We have also discussed cyclotron harmonic absorption results, and indicated that

second harmonic absorption on the majority deuterium component may also be important.

Furthermore, higher cyclotron harmonic absorption of the fast wave on fast beam ions has

been observed. This has to be understood better since FW current drive at higher cyclotron

harmonics has been shown to be an effective means of central RF current drive, at least

in the absence of a fast ion population. These results are of particular importance when

we consider applications in a burning plasma with a significant alpha particle population.

In the absence of beam ions, direct fast wave electron heating and current drive has been

thoroughly demonstrated, and the linear dependence of current drive efficiency on electron

temperature, as well as the radial variation of current profile has been documented.

Another important area of progress is electron heating and current drive associated

with the mode-converted ion Bernstein waves (IBW). On-axis heating and current drive for

favourable conditions has been found to be efficient in a few experimental tries. However,

off-axis heating and current drive is still not well documented. This technique needs more

attention since profile control is of major importance in improving tokamak performance,

and MCCD with IBW is one of the more promising techniques. Similarly, formation of ion

and electron thermal barriers (ITB, ETB) using the concept of RF shear-flow will have to

be developed further, both theoretically and experimentally. Plasma rotation in the pres-

ence of minority heating may be a manifestation of such physical phenomenon, although

this idea has not been explored yet in any depth. Another promising technique in this

direction is direct IBW launch. We have not had space to discuss this promising technique

in this paper, neither have we had space to discuss the control of MHD phenomena using

ICRF waves. Along these lines, it is important to note the formation of improved toka-

mak performance by ICRF techniques in combination with particle fuelling. Noteworthy

regimes are the optimized shear (OS) scenario, the PEP mode (where central fuelling with

pellet injection is combined with ICRF heating) and the RI mode, where edge fuelling with

neon gas, combined with NBI and ICRF heating (50-50%) leads to edge thermal barrier

13



formation and effective power dissipation by edge radiation, while retaining excellent core

confinement. Clearly, in the future further work is needed in this area.
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Figure Captions

Fig 1: D(H) minority resonance case at 5.3 T and 80 MHz in Alcator C-Mod. R= 0.67

m, a = 0.22 m. The antenna surface is at R = 0.92 m.

Fig. 2: D( 3 He) minority resonance case at 7.9 T and 80 MHz in Alcator C-Mod. R =

0.67 m, a = 0.22 m. The antenna surface is at R = 0.92 m.

Fig. 3: Typical Alcator C-Mod RF shot, resulting in enhanced D. confinement with H

= 2x ITER 89P. B = 5.3 T, I, = 1.0 MA, D(H) case.

Fig. 4: D(H) minority heating with ICRF power in JET, as compared with NBI heating.

I, = 2.6 MA, B= 2.6 T, 42 MHz.

Fig. 5: The time histories of several parameters in Alcator C-Mod for a 5.3 T, deuterium

H-mode discharge, showing toroidal plasma rotation. In the third frame (c) we

show the central electron temperature (with sawteeth) and the central ion tem-

perature (smooth).

Fig. 6: On-axis MCEH in an H(3 He) C-Mod plasma. RF electron heating from break in

slope analysis compared with predictions of TORIC code.

Fig. 7: Off-axis MCEH in a D(3 He) C-Mod plasma. RF electron heating from break in

slope analysis compared with predictions of TORIC code.

Fig. 8: On-axis MCCD in an D( 3 He) C-Mod plasma (fo = 43 MHz, Bo = 5.0 T).

Fig. 9: Off-axis MCCD in a D( 3 He) C-Mod plasma (fo = 43 MHz, B0 = 4.19 T).

Fig. 10: Radial profile of the non-inductive current density driven by fast waves in DIII-D

along with theoretical profiles (B,. = 2.1 T, ft = 2.1 x 10 19 m-3 , Pf. = 2.1 MW).

Fig. 11: Experimental FWCD efficiency as a function of central electron temperature in

DIII-D. The shaded band indicates the predictions from the CURRAY ray tracing

code. The solid triangle represents data from Tore-Supra [Ref. 28].

Fig. 12: Toroidal magnetic field dependence of the (a) anomalous neutron rate and (b)

anomalous fast ion stored energy (PNI e 3.7 MW, PFW = 2.3 MW).

Fig. 13: Toroidal magnetic field dependence of the FWCD efficiency normalized to the

central electron temperature.

Fig. 14: RI mode in Textor with neon seeding. I, = 0.4 MA, B = 2.25 T, shot = 68825.

Fig. 15: Optimized shear mode in JET with NBI and ICRF.
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Figure 1: D(H) minority resonance case at 5.3 T and 80
MHz in Alcator C-Mod. R=0.67 m, a = 0.22 m. The
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Figure 15: Optimized shear mode in JET with NBI and ICRF.
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