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55 Niels Bohr Institutet, Københavns Universitet, Juliane Maries Vej 30, 2100 Copenhagen, Denmark
56 Centre for Star and Planet Formation, Geological Museum, Øster Voldgade 5, 1350 Copenhagen, Denmark
57 Institut für Astrophysik, Georg-August-Universität, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany

58 Armagh Observatory, College Hill, Armagh, BT61 9DG, UK
59 Jodrell Bank Centre for Astrophysics, University of Manchester, Oxford Road, Manchester, M13 9PL, UK

60 Max Planck Institute for Astronomy, Königstuhl 17, D-619117 Heidelberg, Germany
61 Department of Physics, Sharif University of Technology, P.O. Box 11155–9161, Tehran, Iran

62 Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON N2L 2Y5, Canada
63 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA

64 Max Planck Institute for Solar System Research, Max-Planck-Str. 2, D-37191 Katlenburg-Lindau, Germany
65 Astrophysics Group, Keele University, Staffordshire, ST5 5BG, UK

Received 2012 October 22; accepted 2013 March 22; published 2013 May 6

ABSTRACT

We analyze MOA-2010-BLG-311, a high magnification (Amax > 600) microlensing event with complete data
coverage over the peak, making it very sensitive to planetary signals. We fit this event with both a point lens and a
two-body lens model and find that the two-body lens model is a better fit but with only Δχ2 ∼ 80. The preferred
mass ratio between the lens star and its companion is q = 10−3.7±0.1, placing the candidate companion in the
planetary regime. Despite the formal significance of the planet, we show that because of systematics in the data the
evidence for a planetary companion to the lens is too tenuous to claim a secure detection. When combined with
analyses of other high-magnification events, this event helps empirically define the threshold for reliable planet
detection in high-magnification events, which remains an open question.

Key words: Galaxy: bulge – gravitational lensing: micro – planets and satellites: detection

Online-only material: color figure

1. INTRODUCTION

High-magnification events, events in which the maximum
magnification of the source, Amax, is greater than 100, have
been a major focus of microlensing observations and analysis.
Because the impact parameter between the source and the lens
is very small in such cases, u0 � 1/Amax, it is likely to probe a
central caustic produced by a planetary companion to the lens
star. Furthermore, such events can often be predicted in advance
of the peak, allowing intensive observations of the event at
the time when it is most sensitive to planets. Consequently,
a substantial amount of effort has been put into identifying,
observing, and analyzing such events.

Observed high-magnification events are classified into two
groups for further analysis: events with signals obvious to

66 Microlensing Follow Up Network (μFUN) Collaboration.
67 Microlensing Observations in Astrophysics (MOA) Collaboration.
68 Probing Lensing Anomalies Network (PLANET) Collaboration.
69 Royal Society University Research Fellow.
70 Microlensing Network for the Detection of Small Terrestrial Exoplanets
(MiNDSTEp) Consortium.
71 RoboNet Collaboration.
72 Optical Gravitational Lensing Experiment (OGLE).
73 Sagan Fellow.

the eye and events without. Only events in the first category
are systematically fit with two(or more)-body models. The
other events are only analyzed to determine their detection
efficiencies. As a result, no planets have been found at or close to
the detection threshold, and furthermore this detection threshold
is not well understood.74 Gould et al. (2010) suggest a detection
threshold in the range of Δχ2 = 350–700 is required to both
detect the signal and constrain it to be planetary, but they note
that the exact value is unknown. With the advent of second-
generation microlensing surveys, which will be able to detect
planets as part of a controlled experiment with a fixed observing
cadence, it is important to study the reliability of signals close to
the detection threshold, since a systematic analysis of all events
in such a survey will yield signals of all magnitudes, some of
which will be real and some of which will be spurious.

In this paper, we present the analysis of a high-magnification
microlensing event, MOA-2010-BLG-311, which has a plan-
etary signal slightly too small to claim as a detection. We
summarize the data properties in Section 2 and present the
color–magnitude diagram (CMD) in Section 3. In Section 4,
we fit the light curve with both point lens and two-body models.

74 The need for a well-defined detection threshold is also discussed in Yee
et al. (2012).
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Table 1
Data Properties for Two Methods of Error Renormalization

Observatory Filter One-parameter Errors Two-parameter Errors

k Ndata k emin Ndata

Mount Bigelow I 1.63 44 1.63 0.0 44
Molehill Unfiltered 0.72 69 0.72 0.0 69
Kumeu Wratten #12 1.19 188 1.18 0.0 188
Farm Cove Unfiltered 1.27 52 1.26 0.0 52
Auckland Wratten #12 0.98 84 1.00 0.0 84
Vintage Lane Unfiltered 4.87 112 3.05 0.004 112
B&C I 4.07 132 1.01 0.025 136

V 1.15 53 0.66 0.03 55
MOA MOA-Red 1.68 4452 1.55 0.003 4434
Canopus I 3.02 28 2.87 0.0 29
Wise Unfiltered 0.52 70 0.53 0.0 70
Bronberg Unfiltered 1.26 727 1.27 0.0 727
SAAO I 2.60 128 2.21 0.0015 127
Liverpool SDSS-i 1.85 120 1.04 0.007 119
La Silla I 10.02 169 3.79 0.004 174
CTIO I 1.33 22 1.34 0.0 22

V 0.50 3 0.50 0.0 3
Ha . . . 74 . . . . . . 74

OGLE I 1.36 429 1.32 0.008 429

Notes. The observatories are listed in order of longitude starting with the most eastward. If data were taken in more than one filter at
a given site, different filters are given on successive lines. The error renormalization coefficients and method for removing outliers are
described in Section 4.2.
a These data were not used in the modeling. They were only used to determine the source color (see Section 3).

We then discuss why a planetary detection cannot be claimed
in Section 4.5. We calculate the Einstein ring size and relative
proper motion in Section 5 and discuss the possibility that the
lens is a member of the cluster NGC 6553 in Section 6. We give
our conclusions in Section 7.

2. DATA

2.1. Observations

On 2010 June 15 (HJD′ 5362.967 ≡ HJD−2450000), the
Microlensing Observations in Astrophysics (MOA) Collabo-
ration (Bond et al. 2001; Sumi et al. 2011) detected a new
microlensing event MOA-2010-BLG-310 at (R.A., decl.) =
(18h08m49.s98, −25◦57′04.′′27) (J2000.0), (l, b) = (5.17, −2.96),
along our line of sight toward the Galactic Bulge. MOA an-
nounced the event through its email alert system and made the
data available in real-time. Within a day, this event was iden-
tified as likely to reach high magnification. Because of MOA’s
real-time alert system, the event was identified sufficiently
far in advance to allow intensive follow up observations over
the peak.

The observational data were acquired from multiple ob-
servatories, including members of the MOA, OGLE, μFUN,
PLANET, RoboNet (Tsapras et al. 2009), and MiNDSTEp Col-
laborations. In total, 16 observatories monitored the event for
more than one night, and thus their data were used in the follow-
ing analysis. Among these, there is the MOA survey telescope
(1.8 m, MOA-Red,75 New Zealand) and the B&C telescope
(60 cm, V, I, New Zealand); eight of the observatories are from
μFUN: Auckland (AO, 0.4 m, Wratten #12, New Zealand),
Bronberg (0.36 m, unfiltered, South Africa), CTIO SMARTS
(1.3 m, V, I, H, Chile), Farm Cove (FCO, 0.36 m, unfiltered, New

75 This custom filter has a similar spectral response to R band.

Zealand), Kumeu (0.36 m, unfiltered, New Zealand), Molehill
(MAO, 0.3 m, unfiltered, New Zealand), Vintage Lane (VLO,
0.4 m, unfiltered, New Zealand), and Wise (0.46 m, unfiltered,
Israel); three are from PLANET: Kuiper telescope on Mount
Bigelow (1.55 m, I, Arizona), Canopus (1.0 m, I, Australia),
and SAAO (1.0 m, I, South Africa); one is from RoboNet: Liv-
erpool (2.0 m, I, Canaries); and one is from MiNDSTEp: La
Silla (1.5 m, I, Chile). The event also fell in the footprint of the
OGLE IV survey (1.3 m, I, Chile), which was in the commis-
sioning phase in 2010. The observatory and filter information is
summarized in Table 1.

In particular, observations from the MOA survey telescope,
MOA B&C, PLANET Canopus, μFUN Bronberg, and μFUN
VLO provided nearly complete coverage over the event peak
between HJD′ = 5365.0 and HJD′ = 5365.4.

2.2. Data Reduction

The MOA and B&C data were reduced with the standard
MOA pipeline (Bond et al. 2001). The data from the μFUN
observatories were reduced using the standard DoPhot reduction
(Schechter et al. 1993), with the exception of Bronberg and
VLO data, which were reduced using difference image analysis
(DIA; Alard 2000; Wozniak 2000). Data from the PLANET and
RoboNet Collaborations were reduced using pySIS2 pipeline
(Bramich 2008; Albrow et al. 2009). Data from MiNDSTEp
were also initially reduced using the pySIS2 pipeline. The
OGLE data were reduced using the standard OGLE pipeline
(Udalski 2003). Both the MOA and MiNDSTEp/La Silla data
were reduced in real-time, and as such the initial reductions
were sub-optimal. In fact, the original MOA data over the
peak were unusable because they were corrupted. After the
initial analysis, both the MiNDSTEp and MOA data were
rereduced using optimized parameters.
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Figure 1. Color–magnitude diagram (top) and color–color diagram (bottom)
of the field of view of MOA-2010-BLG-311 constructed from the CTIO
observations. The small black dots represent the field stars; stars used in
constructing the color–color diagram are shown as squares in both panels. The
black line in the bottom plot shows the measured instrumental (I − H ) color of
the source. The (V − I ) color of the source is then derived from the intersection
of this line with the (V − I )–(I − H ) relation established by the field stars
(gray squares), producing the black dot in the bottom panel. The position of the
source in the CMD (large black dot) is given by this (V − I ) measurement and
the source flux from the fits to the light curve. The large, crossed square shows
the centroid of the red clump.

3. COLOR–MAGNITUDE DIAGRAM

To determine the intrinsic source color, we construct a CMD
of the field of view containing the lensing event (Figure 1) based
on V- and I-band images from CTIO SMARTS ANDICAM
camera. The field stars in the CMD are determined from three
V-band images and multiple I-band images. Four V-band images
were taken; however, only three of the images are of sufficient
quality to contribute to the CMD. We visually checked each of
the three images to make sure that there were no obvious defects
such as cosmic-ray events in the images.

From the fit to the light curve, we find that the instrumental
magnitude of the source is I = 19.0 with an uncertainty of
0.05 mag due to differences between the planet and point
lens models as well as the error parameterizations. In the
top right-hand corner of Figure 1, the large, crossed square
at (V − I, I )cl = (0.40, 15.5) marks the centroid of the red
clump. The intrinsic color and magnitude of the clump are
(V − I, I )cl,0 = (1.06, 14.3) (Bensby et al. 2011; Nataf et al.
2013). Using the offset between the intrinsic magnitude of the
clump and the observed, instrumental magnitude, we can then
calibrate the magnitude of the source to find IS,0 = 17.8 ± 0.1.

The color of the source is normally estimated from V- and
I-band images using the standard technique in Yoo et al. (2004).
However, with only one highly magnified V-band image, this
method is unreliable, so we use an alternative technique to
determine the instrumental (V − I ) color by converting from
the instrumental (I − H ) color. Using the simultaneous CTIO
I- and H-band observations, we measure the instrumental (I−H )
color of the source by linear regression of H on the I flux at
various magnifications during the event. We then construct a
VIH instrumental color–color diagram from stars in the field
(bottom panel of Figure 1). The stars are chosen to be all stars
seen in all three bands with instrumental magnitude brighter
than HCTIO = 19.0 (note that the field of view for H-band
observations is 2.′4 × 2.′4 compared to 6′ × 6′ for the optical
bands). The field stars form a well defined track, which enables
us to estimate the (V −I ) source color from the observed (I−H )
source color. This yields (V − I )0 = 0.75 ± 0.05. Note that this
method would not work for red stars, (V − I )0 > 1.3, because
for these red stars, the VIH relation differs between giants and
dwarfs (Bessell & Brett 1988). However, the observed color is
well blueward of this bifurcation. There is also a spectrum of
the source taken at HJD′ = 5365.001 (Bensby et al. 2011). The
“spectroscopic” (V − I )0 reported in that work is 0.77, in good
agreement with the value calculated here.

4. MODELING

4.1. The Basic Model

A casual inspection of the light curve does not show any
deviations from a point lens, so we begin by fitting a point
lens model to the data. A point lens model is characterized
by three basic parameters: the time of the peak t0, the impact
parameter between the source and the lens stars u0, and the
Einstein timescale tE. Since u0 is small, the finite size of
the source can be important. To include this effect, we introduce
the source size in Einstein radii, ρ, as a parameter in the model.
Additionally, we include limb-darkening of the source. The
temperature of this slightly evolved source was determined from
the spectrum to be Teff ∼ 5460 K by Bensby et al. (2011). Using
Claret (2000) we found the limb-darkening coefficients to be
uV = 0.7086, uI = 0.5470, and uH = 0.3624, assuming
a microturbulent velocity = 1 km s−1, log g = 4.0, solar
metallicity, and Teff = 5500 K, which is the closest grid point
given the Bensby et al. (2011) measurements. We then convert
uV , uI , and uH to the form introduced by Albrow et al. (1999)

Γ = 2u

3 − u
(1)

to obtain ΓV = 0.62, ΓI = 0.45, and ΓH = 0.28. Because the
various data sets are not on a common flux scale, there are also
two flux parameters for each data set, fS,i and fB,i, such that

fmod,i = fS,iA(t) + fB,i , (2)

where A(t) is the predicted magnification of the model at time,
t, and includes the appropriate limb-darkening for data set i. The
source flux is given by fS,i , and fB,i is the flux of all other stars,
including any light from the lens, blended into the point-spread
function (i.e., the “blend”).

4.2. Error Renormalization

As is frequently the case for microlensing data, the initial
point lens fit reveals that the errors calculated for each data

4
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point by the photometry packages underestimate the true errors.
Additionally, there are outliers in the data that are clearly seen
to be spurious by comparison to other data taken simultaneously
from a different site. Simply taking the error bars at face value
would lead to biases in the modeling. Because the level of
systematics varies between different data sets, underestimated
error bars can give undue weight to a particular set of data.
Additionally, if the errors are underestimated, the relative
Δχ2 between two models will be overestimated, making the
constraints seem stronger than they actually are.

To resolve these issues, we rescale the error bars using an
error renormalization factor (or factors) and eliminate outliers.
We begin by fitting the data to a point lens to find the error
renormalization factors. We remove the outliers according to
the procedure described below based on the renormalized errors,
refit, and recalculate the error renormalization factors. We repeat
this process until no further outliers are found.

To first order, we can compensate for the underestimated
error bars by rescaling them by a single factor, k. The rescaling
factor is chosen for each data set, i, such that ki = (χ2

i /Ni)1/2,
producing a χ2 per degree of freedom of χ2

dof = 1. We will
refer to this simple scheme for renormalizing the errors as “one-
parameter errors.”

Alternatively, we can use a more complex method to renor-
malize the errors, which we will call “two-parameter errors.”
This method was also used in Miyake et al. (2012) and Bachelet
et al. (2012a). To renormalize the errors, we rank order the data
by magnification and calculate two factors, k and emin, such that

σj = ki

√
σ 2

orig,j + e2
min,i , (3)

where σorig is the original error bar and σ is the new error bar
and the calculations are done in magnitudes. The index i refers
to a particular data set, and j refers to a particular point within
that data set. The additional term, emin, enforces a minimum
uncertainty in magnitudes, because at high magnification, the
flux is large, so the formal errors on the measurement can be
unrealistically small. The error factors, k and emin, are chosen
so that χ2

dof for points sorted by magnification increases in a
uniform, linear fashion and χ2

dof = 1 (Yee et al. 2012). Not
all data sets will require an emin term; it is only necessary in
cases for which χ2

dof has a break because the formal errors are
too small when the event is bright. Note that the emin factor
will be primarily affected by the points taken when the event is
bright, whereas k is affected by all points, so if there are many
more points at the baseline of the event, these will dominate the
calculation of k.

To remove outliers in the data we begin by eliminating any
points taken at airmass >3 or during twilight. Additional outliers
are defined as any point more than Xσ from the expected value,
where X is determined by the number of data points, such that
fewer than one point is expected to be more than Xσ from
the expected value assuming a Gaussian error distribution. The
normal procedure is to compare the data to the “expected value”
from a point lens fit. We do this for data in the wings of the
event, t(HJD′) < 5363 or t(HJD′) > 5367, when we do not
expect to see any real signals. However, the peak of the event,
5365 � t(HJD′) � 5367, is when we would expect to see a
signal from a planet if one exists. A planetary signal would
necessarily deviate from the expectation for a point lens, so in
this region instead of comparing to a point lens model, we use
the following procedure to identify outliers.

1. For each point, we determine whether there are points from
any other data set within 0.01 days. If there are more than
two points from a given comparison data set in this range,
we keep only the point(s) immediately before and/or after
the time of the point in question (i.e., a maximum of two
points). The point is not compared to other points from the
same data set.

2. If there are matches to at least two other data sets, we
proceed to (3) to determine whether or not the point is an
outlier. Otherwise, we treat the point as good.

3. We then determine the mean of the collected points, μ,
including the point in question, by maximizing a likelihood
function for data with outliers (Sivia & Skilling 2010):

L ∝
N∑

j=1

ln

(
1 − e−R2

j /2

R2
j

)
(4)

where Rj = (μ − xj )/σj and xj is the datum and σj is its
renormalized error bar. If the flux is changing too rapidly
for the points to be described well by a mean, we fit a line
to the data.

4. We compare the point to the predicted value, using the
likelihood function to see if it is an outlier: (a) if there is
only one likelihood maximum, we calculate Rj. If Rj > X,
the point is rejected as an outlier. (b) If there is more than
one maximum, and the point in question falls in the range
spanned by the maxima, we assume the point is good. If
it falls outside the range, we calculate Rj using the nearest
maximum to determine μ. If Rj > X, we flag the point as
an outlier.

Note that for this procedure, we use the point lens model values
of FS,i and FB,i to place all of the data sets on a common flux
scale.

This procedure is more complicated than usual, but because
we compare the points only to other data, rather than some
unknown model, it provides an objective means to determine
whether a point is an outlier without destroying real signals
corroborated by other data. We also visually inspect each set of
points to confirm that the algorithm works as expected. Because
finite source effects are significant in this event, one might expect
slight differences among data sets due to the different filters, so
as part of this visual inspection we also checked that this did not
play a significant role.

For both one-parameter and two-parameter errors, Table 1
lists the error normalization factors and number of points for
each observatory that survived the rejection process. Which
of these error parameterizations correctly describes the data
depends on the nature of the underlying errors. In principle, the
noise properties of the data are fully described by a covariance
matrix of all data points, but we are unable to calculate such a
matrix. Instead, we have two different error parameterizations.
The k factor is calculated primarily based on baseline data for
which statistical errors dominate. In contrast, the emin factor is
heavily influenced by points at the peak of the event when
systematic errors are important. Thus, two-parameter errors
better reflect the systematic errors, whereas one-parameter
errors better reflect the statistical errors.

Correlated errors often have a major impact on our ability to
determine whether or not the planetary signal in this event is
real. We know that correlations in the microlensing data exist,
but there has not been a systematic investigation of this in
the microlensing literature. Correlated errors (red noise) are

5



The Astrophysical Journal, 769:77 (13pp), 2013 May 20 Yee et al.

Table 2
Fits with One-parameter Errors

Model Δχ2 t0 − 5365. u0 tE ρ α log s log q πE,N πE,E

(HJD′) (days) (◦)

Point lens 136.44 0.19615(4) 0.00152(3) 20.34(42) 0.00260(5) . . . . . . . . . . . . . . .

PL, parallax 69.61 0.1978(2) 0.00167(4) 19.37(41) 0.00275(6) . . . . . . . . . 3.16(41) −1.34(20)
PL, parallax, −u0 123.89 0.19613(9) −0.00158(4) 20.23(42) 0.00262(5) . . . . . . . . . −1.07(36) −0.98(27)

A 35.26 0.19615(4) 0.00167(3) 19.04(34) 0.00279(5) 347.7(6) −0.12(1) −4.46(8) . . . . . .

A, parallax −7.02 0.1976(2) 0.00172(4) 18.92(40) 0.00283(6) 347.4(3) −0.08(1) −4.9(1) 2.82(44) −1.29(22)
A, parallax, −u0 −3.98 0.19626(9) −0.00184(5) 18.51(38) 0.00289(6) −346.(1) −0.17(2) −4.17(8) −2.11(46) −2.43(40)
A, wide 33.07 0.19615(4) 0.00167(4) 19.06(39) 0.00279(6) 348.1(6) 0.12(1) −4.44(8) . . . . . .

B 49.06 0.19614(4) 0.00159(4) 19.71(43) 0.00269(6) 118(1) −0.43(4) −3.5(1) . . . . . .

B, parallax 21.45 0.1973(2) 0.00166(4) 19.40(41) 0.00275(6) 119(2) −0.40(5) −3.6(2) 2.21(45) −1.05(21)
B, parallax, −u0 31.33 0.19617(9) −0.00169(4) 19.46(41) 0.00274(6) −115(1) −0.40(3) −3.5(1) −1.45(41) −1.50(35)
B, wide 49.11 0.19615(4) 0.00159(3) 19.76(38) 0.00268(5) 118(1) 0.43(4) −3.5(1) . . . . . .

C 0.00 0.19613(4) 0.00159(3) 19.68(41) 0.00270(6) 236.4(7) −0.26(4) −3.7(1) . . . . . .

C, parallax −10.65 0.1968(3) 0.00164(4) 19.34(39) 0.00275(6) 235(1) −0.4(1) −3.4(3) 0.89(51) −0.78(24)
C, parallax, −u0 −12.63 0.19630(9) −0.00171(4) 19.20(38) 0.00278(6) −232(1) −0.51(8) −3.0(2) −1.11(46) −1.55(41)
C, wide 0.00 0.19613(4) 0.00159(3) 19.73(39) 0.00269(5) 236.4(7) 0.26(4) −3.7(1) . . . . . .

Notes. The Δχ2 is given relative to the χ2 of the best-fit planetary model with s < 1 and without parallax (χ2 = 6637.96), i.e., model “C;” positive numbers indicate
a worse fit and negative numbers indicate an improvement relative to this model. The point lens models are given first, followed by the planetary models; “A,” “B,”
and “C” denote the three planetary models with distinct values of α corresponding to the three χ2 minima.

generally thought of as reducing the sensitivity to signals,
because successive points are not independent, giving related
information. But in fact, sharp, short timescale signals are not
degraded by correlated noise and may still be robustly detected.

Consider the case of a short-timescale signal superimposed on
a long-timescale correlation. Then a model may reproduce the
short-timescale signal, leading to an improvement in χ2 without
actually passing through the data because of the overall offset
caused by the correlations. Now suppose that the correlated,
red noise has a larger amplitude than the white noise (i.e.,
statistically uncorrelated noise). If we set the error bars by the
large-amplitude deviations, which is correct for long timescales
for which the data are uncorrelated, the significance of the short
timescale jump will be diluted, possibly to the point of being
considered statistically insignificant. However, if the timescale
of the signal is much shorter than the correlation length of the red
noise, the significance of the signal should actually be judged
against the white noise, since on that timescale, the red noise
will only contribute a constant offset.

In this case, we expect the planetary signal to be quite short,
so if the systematic noise is dominated by correlated errors, the
noise should be better described by the one-parameter errors.
Because the source in this event crosses the position of the
lens and there are no obvious deviations due to a planet, we
expect that any planetary signals will be due to very small
caustics, which are detectable only at the limb-crossing times
(tlimb = t0 ± tE

√
ρ2 − u2

0) when the caustic passes onto and
off-of the face of the source. Therefore, the timescale of such a
perturbation will be very short, equal to tE times the caustic size
w, which is �15 minutes. In contrast, observed correlations
in the microlensing data are typically on longer timescales,
O(hr) (based on our experience with microlensing data which
are usually sampled with a frequency of ∼15 minutes). Hence,
the timescale of the signal is likely to be less than the timescale
of the correlated noise.

However, there are other sources of systematic errors that are
unrelated to correlated noise such as flat-fielding errors. If such

errors dominate over correlated noise, then the two-parameter
errors are a better description of the error bars over the peak.

Because the systematic errors, correlated and uncorrelated,
have not been studied in detail, we are unable to determine which
is the dominant effect. Hence, we are also unable to determine
which error prescription better describes our data. We will begin
by analyzing the light curve using one-parameter errors. We
will then discuss how the situation changes for two-parameter
errors.

4.3. Point Lens Models

The best-fit point lens model and the uncertainties in the
parameters are given in Table 2. This model is shown in Figure 2,
and the residuals to this fit are shown in Figure 3. These exhibit
no obvious deviations. These fits confirm that finite source
effects are important, since ρ is well measured and larger than
the impact parameter, u0.

We also fit a point lens model that includes the microlens
parallax effect, which arises either from the orbital motion of
the Earth during the event or from the difference in sightlines
from two or more observatories separated on the surface of
the Earth. Microlens parallax enters as a vector quantity:
πE = (πE,N, πE,E). The addition of parallax can break the
degeneracy between solutions with u0 > 0 and u0 < 0, so
we fit both cases. Parallax does improve the fit beyond what
is expected simply from adding two more free parameters and
shows a preference for u0 > 0. However, we shall see in the
next section that a planetary model without parallax produces
an even better fit and adding parallax in addition to the planet
gives only a small additional improvement.

4.4. Two-body Models

We search for two-body models over a broad range of mass
ratios, from q = 10−6 to q = 10−1. For each value of q, we
chose a range for the projected separation between the two
bodies, s, for which the resulting caustic is smaller than ρ

6



The Astrophysical Journal, 769:77 (13pp), 2013 May 20 Yee et al.

Figure 2. Light curve of MOA-2010-BLG-311. Data from different observatories are plotted in different colors. The data from Bronberg (medium pink) have been
binned for clarity in the figures; only unbinned data were used in the fitting. The black line shows the best-fit point lens model; on this scale, the best-fit planetary
model appears very similar. The error bars reflect one-parameter errors (see Section 4.2).

and s < 1.0. For each combination of s and q, we allow the
angle of the source trajectory, α, to vary, seeding each run with
values of α from 0◦ to 360◦ in steps of 5◦. For our models, we
use the map-making method of Dong et al. (2006) when the
source is within two source radii of the position of the center of
magnification. Outside this time range, we use the hexadecapole
or quadrupole approximations for the magnification (Pejcha &
Heyrovský 2009; Gould 2008). We used a Markov Chain Monte
Carlo to find the best-fit parameters and uncertainties for each
s, q combination.

The grid search reveals an overall improvement in χ2 relative
to the point lens model. We find three χ2 minima for different
angles for the source trajectory. For central caustics with
planetary mass ratios, the caustic is roughly triangular in shape
with a fourth cusp where the short side of the triangle intersects
the binary axis; the three trajectories roughly correspond to the
three major cusps of the caustic. An example caustic is shown in
Figure 4 along with the trajectories corresponding to the three
minima. The angles of the three trajectories are approximately
α = 0◦, 115◦, and 235◦, and we will refer to them as trajectories
“A,” “B,” and “C,” respectively.

We then refine our grid of s and q around each of these
three minima. We repeat these fits accounting for various
microlensing degeneracies. First, we fit without parallax and
assuming s < 1. Then, we add parallax and fit both with u0 > 0
and u0 < 0 to see if this degeneracy is broken. Finally, we fit
two-body lens models with s > 1 and no parallax, since there
is a well known microlensing degeneracy that takes s → s−1.

The best-fit solution has χ2 = 6637.96 and α = 236.4. This
reflects an improvement in χ2 of Δχ2 ∼ 140 over the point
lens solution. There is no preference for s < 1 over s > 1, but
trajectory C is preferred by Δχ2 � 35 over trajectories A and
B. The parameters and their uncertainties for the planet fits are
given in Table 2. The mass ratio between the lens star and its
companion is firmly in the planetary regime: q = 10−3.7±0.1.
Furthermore, planetary mass ratios are clearly preferred over
“stellar” mass ratios (q ∼ 0.1), which are disfavored by more
than Δχ2 = 60. Parallax further improves the fit by only
Δχ2 ∼ 10 and has little effect on the other parameters.

To compare the point lens and planetary models, in Figure 5,
we plot the “χ2 residuals”: the difference between the cumula-
tive χ2 distribution and the expected value

∑N
j χ2

j = N , i.e.,

7
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Figure 3. Residuals over the peak to the best-fit point lens and planetary microlensing models. The top set of panels shows one-parameter errors, and the bottom
set shows two-parameter errors. Note that for the time range shown, which is the same as for the bottom panel for Figure 2, the error bars tend to be larger for
two-parameter errors than for one-parameter errors. Careful inspection of the residuals to the point lens and planet models shows improvement around the times of
the limb-crossings of the source star and also on the falling side of the light curve. In the middle panel of each set, the red lines show the difference between the best
planetary and best point lens models. The didactic residuals in the middle panel are the sum of the red line and the residuals to the best planet model (bottom panel).
The dashed lines indicate the limb-crossing times. The dotted lines in the top panels of each set indicate the time ranges shown in the bottom panels. Note that the
scales for the top and bottom residuals panels are not the same. The colors of the points are the same as in Figure 2. The Bronberg data have been binned for clarity
(as in Figure 2).

each point is expected to contribute χ2
j = 1. For both the point

lens and the planet fits, the distribution rises gradually over the
peak of the event. This is expected since one-parameter errors
do not account for correlated noise. However, in the χ2 residuals
for the point lens, there is a jump seen at the time of the first limb-
crossing. This jump is even more pronounced when looking at
the difference between the planet and point lens models. The

jump is caused by MOA data at the time of the limb-crossing
that do not fit the point lens well, thereby causing an excess
increase in χ2. This is exactly the time when we expect to see
planetary signals.

Finally, given the extreme finite source effects in this event,
we might be concerned that uncertainties in the limb-darkening
coefficients due to uncertainties in the source properties could

8
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Table 3
Fits with Two-parameter Errors

Model Δχ2 t0 − 5365. u0 tE ρ α log s log q πE,N πE,E

(HJD′) (days) (◦)

Point lens 81.12 0.19618(5) 0.00152(3) 20.51(44) 0.00259(6) . . . . . . . . . . . . . . .

PL, parallax 25.43 0.1978(2) 0.00164(4) 19.80(43) 0.00270(6) . . . . . . . . . 3.20(43) −1.14(21)
PL, parallax, −u0 72.23 0.1961(1) −0.00160(4) 20.23(44) 0.00263(6) . . . . . . . . . −1.26(42) −0.96(32)

A 6.37 0.19611(5) 0.00160(4) 19.82(43) 0.00269(6) 354(2) −0.49(5) −3.1(1) . . . . . .

A, parallax −12.98 0.1972(3) 0.00168(5) 19.25(46) 0.00278(7) 349(3) −0.3(2) −3.7(6) 1.89(70) −1.16(25)
A, parallax, −u0 −8.07 0.1963(1) −0.00172(5) 19.27(42) 0.00278(6) −348(2) −0.46(7) −3.1(2) −0.98(52) −1.59(48)
A, widea −1.59 0.19614(5) 0.00157(3) 20.05(37) 0.00266(5) 356(3) 0.539(4) −3.01(3) . . . . . .

B 13.25 0.19613(5) 0.00160(3) 19.79(41) 0.00270(6) 114(2) −0.51(6) −3.1(2) . . . . . .

B, parallax −6.42 0.1972(2) 0.00165(4) 19.54(41) 0.00274(6) 112(3) −0.5(1) −3.1(3) 1.97(48) −1.02(23)
B, parallax, −u0 4.22 0.1962(1) −0.00167(5) 19.54(41) 0.00274(6) −109(3) −0.50(6) −3.1(2) −0.99(47) −1.24(43)
B, wide 13.10 0.19613(5) 0.00159(4) 19.82(42) 0.00269(6) 113(2) 0.51(6) −3.1(2) . . . . . .

C 0.00 0.19614(5) 0.00158(3) 19.94(40) 0.00268(5) 234(1) −0.40(7) −3.3(2) . . . . . .

C, parallax −14.90 0.1970(3) 0.00164(4) 19.51(41) 0.00274(6) 231(2) −0.56(8) −2.9(2) 1.26(54) −0.96(24)
C, parallax, −u0 −10.15 0.1963(1) −0.00166(5) 19.49(42) 0.00274(6) −230(2) −0.51(7) −2.9(2) −0.44(51) −1.04(46)
C, wide −0.02 0.19613(5) 0.00158(3) 19.97(42) 0.00267(6) 234(1) 0.40(7) −3.3(2) . . . . . .

Notes. The Δχ2 is given relative to the χ2 of the best-fit planetary model with s < 1 and without parallax (χ2 = 6751.93), i.e., model “C;” positive numbers indicate
a worse fit and negative numbers indicate an improvement relative to this model. The point lens models are given first, followed by the planetary models; “A,” “B,”
and “C” denote the three planetary models with distinct values of α corresponding to the three χ2 minima.
a This solution and its parameters should be treated with caution, since it corresponds to a pathological geometry. See footnote 76.
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Figure 4. The caustic (at the origin) and three source trajectories corresponding
to the three minima discussed in Section 4.4. Trajectory C (solid) is preferred
by Δχ2 � 35 over trajectories A (dotted) and B (dashed) for models with one-
parameter errors and without parallax. The source is shown to scale as the large
circle; the lines with arrows indicate the trajectories of the center of the source.
The abscissa in these plots is parallel to the binary axis with the lens star close
to the origin and planet to the right. The scale is such that 1.0 equals the Einstein
radius.

influence our conclusions. The planetary signal has two com-
ponents: a limb-crossing signal and an asymmetry. The limb-
darkening could influence the first signal, but not the second.
To check that the limb-darkening coefficients do not signif-
icantly influence our results, we repeat the point lens fits,
allowing the limb-darkening coefficients to be free parame-
ters. In all cases (no parallax, parallax, one-parameter, or two-
parameter errors), the improvement to the fit from free limb-
darkening is Δχ2 � 10, much smaller than the planetary signal.

Furthermore, the value of ΓV decreases by >10%, which is ex-
cluded by the measured source parameters. Thus, we conclude
that our treatment of the limb-darkening is reasonable.

4.5. Reliability of the Planetary Signal

Although Δχ2 ∼ 140 appears to be significant, we are
hesitant to claim a detection of a planet. The planetary signal
is more or less equally divided between the jump at the first
limb-crossing and a more gradual rise after the second limb-
crossing (see the third panel of Figure 5 showing the difference
between the point lens and planet models). One could argue
that the gradual rise, due to a slight asymmetry in the planet
light curve, could be influenced by large-scale correlations in
the data. Comparing Figures 3 and 5 shows that most of the
signal at the first limb-crossing comes from only a few points.
A careful examination of the residuals in Figure 3 shows that
while the residuals to the planet model are smaller than for the
point lens model, they are not zero, and the didactic residuals
do not go neatly through the difference between the models as
they do for MOA-2008-BLG-310 (Janczak et al. 2010). Hence,
the evidence for the planet is not compelling.

If we repeat the analysis using two-parameter errors, we find
a similar planetary solution, although the exact values of the
parameters are slightly different.76 The total signal from the
planet is significantly degraded for two-parameter errors, with
only Δχ2 ∼ 80 between the best-fit planet and point lens models.
Table 3 gives parameters for the complete set of point lens and
planet fits for two-parameter errors. The residuals and error bars
over peak may be compared to one-parameter errors in Figure 3.

We also show the χ2 residuals for two-parameter errors in the
bottom set of panels in Figure 5. They are more or less flat over

76 For two-parameter errors, model “A, wide” appears to be competitive with
model “C.” However, this solution requires that the source trajectory pass over
the planetary caustic at the exact time to compensate for a night for which the
MOA baseline data are high by slightly more than 1σ compared to other nights
at baseline. If the data from this night are removed, the remaining data predict
a different solution with the planetary caustic crossing 18 days earlier. Because
this solution is pathological, we do not consider it further.
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Figure 5. The difference between the cumulative χ2 distribution and the expected distribution (
∑N

j χ2
j = N ), i.e., the χ2 residuals, for both one-parameter (top) and

two-parameter (bottom) errors. The top two panels of each set show the distributions for the point lens model (a) and the planetary models (b). The bottom panels
(c) of each set show the difference between the top and middle panels. The distributions for each data set are plotted separately and are shown over the same time
range as the bottom panel of Figure 2; data sets without points in this time range are not shown. The colors are as in Figure 2. The thick black line shows the total
distribution for all data. The limb-crossing times are indicated by the dashed lines. Note the jump in the MOA data (light green) at the time of the first limb-crossing
(HJD′ ∼ 5361.5). The signal is much more pronounced for one-parameter errors than for two-parameter errors. Note that the vertical scales in the two sets of panels
are different.

the peak, showing that they track the data well in this region.
The offset from zero is caused by systematics elsewhere in the
light curve. The difference plot (bottom-most panel) shows that
the planet fit is still an improvement over the point lens fit, but
the signal from the planet at the first limb-crossing is much
weaker. This is a natural consequence of two-parameter errors,
since the data at the peak of the event, where the planetary
signal is seen, have much larger renormalized error bars than
for one-parameter errors.77

77 Note that while the outliers are slightly different for one-parameter and
two-parameter errors, no points were rejected in either case during the first

Regardless of the error renormalization, this planetary sig-
nal is smaller than the Δχ2 of any securely detected high-
magnification microlensing planet. Previously, the smallest Δχ2

ever reported for a high-magnification event was for MOA-
2008-BLG-310 with Δχ2 = 880 (Janczak et al. 2010). Yee
et al. (2012) discuss MOA-2011-BLG-293, an event for which
the authors argue the planet could have been detected from sur-
vey data alone with Δχ2 = 500. However, although the planet is
clearly detectable at this level, it is unclear with what confidence
the authors would have claimed the detection of the planet in

limb-crossing, 5365.13 < t(HJD′) < 5365.18, when the main planetary signal
is observed.
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Figure 6. DSS image of NGC 6553 (left). The position of the microlensing event is indicated by the circle. Excess star density over the background around the globular
cluster NGC 6553 (right). The center of the cluster is placed at r = 0. The microlensing event is at r = 6.′7 (dashed line). The dip at ∼6′ is caused by a quasi-circular
dust lane, which may be seen in the image. Even though the density of stars drops quickly as a function of radius, cluster members still comprise about 6% of the stars
at r = 6.′7.

(A color version of this figure is available in the online journal.)

the absence of the additional follow-up data, which increases the
significance of the detection to Δχ2 = 5400. At an even lower
level, Rhie et al. (2000) find that a planetary companion to the
lens improves the fit to MACHO-98-BLG-35 at Δχ2 = 20, but
they do not claim a detection. As previously mentioned, Gould
et al. (2010) suggest the minimum “detectable” planet will have
350 < Δχ2 < 700. However, this threshold has not been rigor-
ously investigated; the minimum Δχ2 could be smaller.

Because of the tenuous nature of the planetary signal, we do
not claim to detect a planet in this event, but since including a
planet in the fits significantly improves the χ2, we will refer to
this as a “candidate” planet.

Finally, it is interesting to note that even though the Δχ2 for
the planetary model is too small to be considered detectable, for
both one-parameter and two-parameter errors the parameters
of the planet (s and q) are well defined (see Tables 2 and 3).
Central caustics can be degenerate, especially when they are
much smaller than the source size, so we might expect a wide
range of possible mass ratios in this case since the limb crossings
are not well resolved (Han 2009). However, perhaps we should
not be surprised that the planet parameters are well constrained:
both Δχ2 = 80 and Δχ2 = 140 are formally highly significant,
which would plausibly lead to reasonable constraints on the
parameters. In this case, because we believe that the signal could
be caused by systematics, by the same token, the constraints on
the parameters may be overstrong. We conjecture that the limb-
crossing signal does not constrain q and that this constraint
actually comes from the asymmetry of the light curve, since
small, central caustics due to planets are asymmetric whereas
those due to binaries are not.

5. θE AND μrel

Because the source size, ρ, is well measured, we can deter-
mine the size of the Einstein ring, θE, and the relative proper
motion between the source and the lens, μrel from the following

relations:

θE = θ�

ρ
and μrel = θE

tE
. (5)

Keeping the limb-darkening parameters fixed, we find the best
fit for the normalized source size to be ρ = (2.70±0.06)×10−3

for the planetary fits; the value is comparable to the point lens
fits. We convert the (V − I ) color to (V − K) using Bessell
& Brett (1988) and obtain the surface brightness by adopting
the relation derived by Kervella et al. (2004). Combining the
dereddened I magnitude with this surface brightness yields the
angular source size θ� = 1.03 ± 0.07 μas. The error on θ�

combines the uncertainties from three sources: the uncertainty
in flux (fs,I ), the uncertainty from converting (V − I ) color to
the surface brightness, and the uncertainty from the Nataf et al.
(2013) estimate of I0,cl. The uncertainty of fs,I is 3%, which
is obtained directly from the modeling output. We estimate the
uncertainty from the other factors (Z) to be 7%. The fractional
error in θ� is given by [(1/4)(σfs,I

)2+(σZ/Z)2]1/2 = 7%, which is
also the fractional error of the proper motion μ and the Einstein
ring radius θE (Yee et al. 2009). Thus, we find θE = 0.38 ± 0.03
mas and μrel = 7.1 ± 0.6 mas yr−1.

6. THE LENS AS A POSSIBLE MEMBER OF NGC 6553

This microlensing system is close in projection to the glob-
ular cluster NGC 6553. The cluster is at (R.A., decl.) =
(18h09m17.s60, −25◦54′31.′′3) (J2000.0), with a distance of
6.0 kpc from the Sun and 2.2 kpc from the Galactic center
(Harris 1996). The half-light radius rh of NGC 6553 is 1.′03
(Harris 1996), which puts the microlensing event 6.5 half-light
radii (6.′7) away from the cluster center. By plotting the density
of excess stars over the background, we find that about 6% of
the stars at this distance are in the cluster (Figure 6).

Whether or not the lens star is a member of the cluster can
be constrained by calculating the proper motion of the lens
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star. Zoccali et al. (2001) found a relative proper motion of
NGC 6553 with respect to the Bulge of μ = (μl, μb) =
(5.89, 0.42) mas yr−1. The typical motion of bulge stars is
about 100 km s−1 corresponding to about 3 mas yr−1 given an
estimated distance of 7.7 kpc toward the source along this line
of sight (l = 5.◦1; Nataf et al. 2013). Therefore, the expected
amplitude of the lens-source relative proper motion if the lens is
a cluster member is μrel = 7 ± 3 mas yr−1, which is consistent
with the measured value in Section 5.

Combining the measurement of the stellar density with the
proper motion information, we find that the probability that the
lens is a cluster member is considerably higher than the nominal
value based only on stellar density. First, of order half the stars in
the field are behind the source, whereas the lens must be in front
of the source. Second, the lens–source relative proper motion
is consistent with what would be expected for a cluster lens at
much better than 1σ , which is true for only about two-thirds
of events seen toward the bulge. Combining these two effects,
we estimate a roughly 18% probability that the lens is a cluster
member.

One way to resolve this membership issue is by measuring
the true proper motion of the lens as was done for a microlensing
event in M22 for which the lens was confirmed to be a member
of the globular cluster (Pietrukowicz et al. 2012). For this event,
we have calculated the relative proper motion of the lens and
the source to be 7.1 ± 0.6 mas yr−1. This is consistent with the
expected value if the lens were a member of the cluster. About
10 yr after the event, the separation between the lens and the
source star will be large enough to be measured with the Hubble
Space Telescope. Based on this follow-up observation, one will
be able to clarify whether the lens is a member of the cluster
by measuring the vector proper motion. If it is a member of the
cluster, its mass may be estimated from

Mlens = θ2
E

κπrel
, (6)

where κ ≡ 4G/c2AU = 8.14 mas/M� and πrel is the source-
lens relative parallax. In addition, the metallicity of the lens
could be inferred from the metallicity of the globular cluster.

7. DISCUSSION

We have found a candidate planet signal in MOA-2010-BLG-
311. The evidence in support of the planet is

1. the planet substantially improves the fit to the data;
2. in addition to a general improvement to the light curve, the

planet produces a signal when we most expect it, i.e., the
time of the first limb-crossing;

3. the solution has a well-defined mass ratio and projected
separation for the planet (except for the well known s →
s−1 degeneracy).

The magnitude of the signal depends on whether the error bars
are renormalized using one-parameter (Δχ2 = 140) or two-
parameter error factors (Δχ2 = 80). We conservatively adopt
Δχ2 = 80 as the magnitude of the signal, but note that if corre-
lated errors are the dominant source of systematic uncertainty,
Δχ2 = 140 should be adopted instead (see Section 4.2). Re-
gardless, this signal is too small to claim as a secure detection.

Examining the residuals to the light curve and the χ2 residuals
shows that the planetary signal is dispersed over many points at
the peak of the light curve. It comes from an overall asymmetry
near the peak plus a few points at the limb crossing. Because the

signal is the sum of multiple cases of low-amplitude deviations,
it is plausible that the microlensing model could be fitting sys-
tematics in the data, which is why the planet signal is not reliable.

Combined with other studies, this event suggests that central-
caustic (high-magnification) events and planetary-caustic events
require different detection thresholds. The detection threshold
suggested in Gould et al. (2010) of 350 < Δχ2 < 700 was made
in the context of high-magnification events, and our experience
is so far consistent with this. A planet was clearly detectable in
MOA-2008-BLG-310 with Δχ2 = 880 (Janczak et al. 2010).
However, Yee et al. (2012) are uncertain if a planet would
be claimed with Δχ2 = 500 for MOA-2011-BLG-293. Here,
Δχ2 = 80 is definitely insufficient to detect a planet. Hence, the
detection threshold for planets in high-magnification events is
around or just below Δχ2 = 500. In contrast, the planetary
caustic crossing in OGLE-2005-BLG-390 produced a clear
signal of Δχ2 = 532 (Beaulieu et al. 2006), and the planet
would most likely be detectable if the error bars were 50%
larger (Δχ2 ∼ 200) and might even be considered reliable if the
error bars were twice as large.

We suspect the reason for the different detection thresholds
is that the information about the microlens parameters and the
planetary parameters comes from different parts of the light
curve. For planetary-caustic events, the planet signal is a pertur-
bation separated from the main peak. Thus, the microlens param-
eters can be determined from the peak data independently from
the planetary parameters, which are measured from the sepa-
rate, planetary perturbation. In contrast, for high-magnification
events, the planetary perturbation occurs at the peak of the event,
so the microlens and planetary parameters must be determined
from the same data.

The detection threshold for planetary-caustic events will have
to be investigated in more detail. If it is truly lower than
for high-magnification events, this is good news for second
generation microlensing surveys since that is how most planets
will be found in such surveys. At the same time, it points to
the continued need for follow-up data of high-magnification
events since these seem to have a higher threshold for detection,
requiring more data to confidently claim a planet. This is an
important consideration because high-magnification events can
yield much more detailed information about the planets.

Additionally, Han & Kim (2009) show that the magnitude
of the planetary signal should decrease as the ratio between
the caustic size and the source size (w/ρ) decreases for the
same photometric precision.78 There are several cases of events
for which w/ρ � 1: in this case, we have w/ρ = 0.12 and
Δχ2 = 140; the brown dwarf in MOA-2009-BLG-411L has
w/ρ = 0.3 and Δχ2 = 580 (Bachelet et al. 2012b); MOA-
2007-BLG-400 has w/ρ = 0.4 and Δχ2 = 1070 (Dong et al.
2009); and in the case of MOA-2008-BLG-310, the value is
w/ρ = 1.1 with Δχ2 = 880 (Janczak et al. 2010). This sequence
is imperfect, but the photometry in the four cases is far from
uniform, and it seems that in general the trend suggested by
Han & Kim (2009) holds in practice.

Finally, we note that a large fraction of the planet signal
comes from the MOA data, but in the original, real-time MOA
data, this signal would not have been detectable since the data
were corrupted over the peak of the event. It is only after
the data quality was improved by rereductions, which in turn
were undertaken only because the event became the subject of

78 Chung et al. (2005) give equations for calculating the caustic size, w (see
also Dong et al. 2009).
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a paper, that we recovered the planet candidate. This points
to the importance of rereductions of the data when searching
for small signals. In the current system of analyzing only the
events with the most obvious signals, this is not much of a
concern. However, if current or future microlensing surveys are
systematically analyzed to find signals of all sizes, this will
become important.
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