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Abstract

The dynamic plastic response and failure of unstiffened and ring-stiffened cylindrical
shells subjected to dynamic loads were studied. The proposed solution methodology,
based on a simple computational model of the shell and the concept of equivalence
parameters, incorporated two main load-resisting mechanisms in the shell: stretching
in the longitudinal direction and bending in the circumferential direction. From this
method, the complicated two-dimensional cylindrical shell problem was reduced to
a one-dimensional problem of a string-on-foundation. In particular, the magnitude
of the transient and final shape of the transverse deflections of the shell undergoing
impact and explosive-type loading were predicted. In order to predict shell failure,
the solution for the transient deflection was coupled with a simple fracture criterion
- the critical strain to rupture. Both exact and approximate solutions for the impact
and impulsive loading of the unstiffened shell were compared and gave similar results
for high velocity impact and impulsive loading. In the ring-stiffened shell, the overall
deflection profile was shown to consist of both a global and local (between stiffeners)
deflection fields thereby revealing a complex interplay between the stiffener and the
bay. Furthermore, a parametric study on the stiffened shell showed that string-on-
foundation model for which ring-stiffeners are represented by lumped masses and
springs is a promising method of analyzing the structure.
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NOMENCLATURE

C - 0ao/p transverse wave speed

f= T/(qle) normalized shear force

h plate thickness

hb equivalent bending plate thickness

hi equivalent inertia plate thickness

hNA neutral axis

21 length between bays

li,12 lengths to divide bay and stiffener

1, characteristic length for normalization

l, length between stationary hinges

m = ph mass per unit area of cylinder

in equivalent mass per unit length

n integers

p pressure load

p equivalent line load

p, pressure load amplitude

q bending resistance per unit length

r radial component

r, radius of projectile

t time

tf response time

u axial deformation

ui components of displacements vector

v tangential displacement

w transverse or radial deflection

wf final transverse deflection

x axial coordinate

X0 = N /q characteristic length

z through thickness coordinate
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W work rate

P axial force

F., G., H coefficients of eigenvalue expansion terms

I impulse

Ic critical impulse to rupture

2L extent of pressure load

Rt stiffener mass

Mb total bending moment

M, characteristic mass

M, impacting mass

M,1 fully plastic bending moment

Ma, bending moment tensor

N equivalent tensile force

N,1 fully plastic membrane force

Na, membrane force tensor

Q stiffener bending resistance

R shell radius

T shear force

Ti surface traction

V impulse velocity

Vc characteristic velocity

V, impact velocity

a0 fixed hinge angle

#3 hinge angle

= (cqMo)/(477N]V0 ) critical parameter for impact

Sf final central deflection

8g global central deflection

S local central deflection

e strain

Eav average strain
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Ec critical rupture strain

'Ema maximum strain

9 circumferential coordinate

= Q/(qle) stiffness ratio

= Mc/(;inlc) mass ratio

o integrals in the circumferential coordinate

K curvature

.A eigenvalues

i / = 1/12 length ratio

V = Va/c velocity ratio

2 length of deformed zone

2 f final length of deformed zone

p material density

a stress

C-. flow stress

r decay constant

4 hinge angle

1 jump in rotation

() or () time derivative

0' or (), derivative with respect to x

() normalized quantity

() quantity integrated in 9-direction
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Chapter 1

Introduction

Accurate predictions of the dynamic plastic deformation and rupture of unstiffened

and stiffened cylindrical shells subjected to high intensity transient loading are of

great importance in many industrial applications. In the offshore industry, for in-

stance, tubular members such as the corner legs or bracing element of drilling plat-

forms may undergo local damage due to collisions with supply vessels or dropped

object impact. Nuclear and chemical industries are interested in the safety of piping

systems and pressure/containment vessels subjected to accidental pressure burst, pipe

whipping, or missile impact. Research in submarine survivability against underwater

explosion is actively pursued by the defense industry. Finally, the aerospace industry

is interested in limiting or containing damage that may occur to transport aircraft

fuselages, rockets or space stations caused by different types of accidental loads.

Early research on dynamic buckling and failure of cylinders was restricted to axi-

symmetric external radial pulse loading [1]. The corresponding analysis, however,

is of limited applicability because axi-symmetric dynamic loading seldom occurs in

practice. In real world situations loading is usually applied to one side of the cylinder

and is characterized by various degrees of locality. It may consist of a projectile,

missile or mass impact, stand-off explosion described by a pressure pulse or contact

explosion which can be often approximated as an ideal impulsive loading.

Depending on the load intensity and the spatial distribution of contact pressures,

various forms of damage may result ranging from large amplitude lateral deflections to

15



punch-through penetration, fracture initiation at the base plate or the so-called stiff

interfaces (clamped boundaries/base of stiffeners) [2], progression of tearing fracture,

and finally massive structural damage. Damage to stiffeners themselves may include

tripping failure (lateral plastic instability) [3] and detachment from the base plate.

With still increasing load intensity, fragmentation of the shell will occur [4]. Due

to the complexities introduced by unsymmetric loading and the large displacements

and rotations of the shell amplified by material nonlinearities, the problem does not

easily lend itself to an analytical treatment. However, by introducing a suitable set

of assumptions a simple and realistic shell model can be developed that captures

two dominant deformation mechanisms in locally loaded shells: axial stretching and

circumferential bending of a shell element. The model can be interpreted as a rigid-

plastic string resting on rigid-plastic foundation in which the two mechanisms are

present in the form of plastic axial resistance of the string and foundation resistance,

respectively. This model will be shown to be very effective and powerful in solving a

class of engineering problems involving impact and explosive loading. Over the past

few years a great deal of credibility has been added to the model by showing that

theoretically predicted deflection profiles and amount of structural damage agrees

with experimental data [5, 6, 7].

Finding a closed-form analytical solution for the shell under large deflection non-

symmetric loading is mathematically complex. Moreover, the case of pressure loading

on a ring-stiffened shell is further complicated by ring-stiffeners, which may undergo

tripping and fracture during the explosion. Because of the difficulties in finding closed-

form solutions to a set of coupled shell differential equations, past researchers have

resorted to using empirical methods [8] or by using computer codes [9]. Solutions

for the elastic response of the unstiffened shell due to pressure loads have been found

[10, 11, 12, 13, 14, 15], but very little has been done in addressing the plastic response

of the shell [16, 17]. Moreover, Huang [18] and Geers [19, 20] have furnished analytical

solutions to the linear elastic fluid-solid response of a submerged, infinite, circular

cylindrical shell excited by transient acoustic waves. Geers and Yen [21] attempted to

find the underwater inelastic response of a cylindrical shell by setting it up as a fluid-
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solid interaction and using the finite element method (FEM) to model the structural

behavior and the boundary element method (BEM) to model the surrounding fluid.

This thesis is concerned with the dynamic plastic response and failure of a cylindri-

cal shell subjected to several types of localized dynamic loading. Based on justifiable

assumptions on the rate of internal energy dissipation of the shell, an analytical solu-

tion for the shell deformation is found by developing a simple computational model.

In particular, three specific problems will be analyzed in detail: (i) mass impact on

metal tubes; (ii) pressure pulse loading of a stiffened cylinder; (iii) impulsive loading

of a ring-stiffened shell. Parametric studies are performed on each solution and where

possible, theoretical predictions are compared to experimental data.

-I!
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Chapter 2

Literature Review

Literature on the transient response of cylinders to impact and impulsive loading is

limited but has been rapidly growing over the past five years. Gefken [22] extended

the earlier analysis by Lindberg and Florence [1] to one-sided inward radial pressure

that varied as the cosine of the angular position around the shell and was uniform

along the length. Experiments performed on short, fully clamped shells revealed that

the response modes consisted of dynamic wrinkling in the hoop direction followed by

large inward deflections of the shell. This type of behavior is characteristic for shells

that are quite thin (radius to thickness ratio, R/h = 240).

Thicker shells or thin shells reinforced by ring stiffeners develop a single dent with-

out any wrinkling. For example, local dimple deformation of thicker tubes (R/h < 40)

subjected to missile impact were described by Stronge [23] and Corbett et al [24] and

compared to static deflection under punch loading. Localization of plastic deforma-

tion was observed with increasing impact velocity.

Over the last few years general purpose nonlinear finite element codes were used

to model and solve a class of dynamic shell problems. A successful application of

DYNA-3D computer code was reported by Kirkpatrick and Holmes [25] and Prantil

et al [26]. Work at the Stanford Research Institute over the last five years has recently

been summarized by Holmes and Kirkpatrick [27]. Trinh and Gruda [28] presented

a solution of a projectile impact problem on a cylindrical shell. The incorporation

of a continuous damage model to DYNA-3D code opened a possibility of predicting

18



failure initiation and progression of fracture in thin cylinders and other structures

[29].

Parallel to numerical studies, an entirely new and promising line of research has

emerged based on the modeling of a cylindrical shell as a plastic string resting on plas-

tic foundation. The analogy between a cylindrical shell under axisymmetric loading

and a beam-on-foundation originated in elastic shell theory [30]. In 1977, the model

was re-discovered by Calladine [31] in order to address problems of non-axisymmetric

loading of elastic spherical and cylindrical shells. Then shortly after this, Reid [32] ex-

tended the beam-on-foundation model into the plastic range by studying the pinching

of rigid-plastic tubes. Even more recently, Yu and Stronge [33, 34] used the beam-

on-foundation model to calculate the deformation of a cylindrical shell undergoing

projectile impact. To accommodate that class of problems for which the central de-

flection of the shell is of the order several times the shell thickness, it is proposed to

extend the beam-on-foundation model even further into the plastic range so that the

analogy is now made between a cylindrical shell and a string-on-foundation. Gurkok

and Hopkins [35] have shown that finite deformations cause significant geometrical

changes in a fixed rigid-plastic beam under transverse loads. When the central deflec-

tion of the beam is of the order of its thickness, membrane forces predominate thereby

enhancing the beams load carrying capacity and rendering the beam to behave like

a string (membrane state). The rigid-plastic cylindrical shell undergoing moderately

large deflection would therefore behave more like a string-on-foundation rather than

a beam-on-foundation.

The dynamic response of the plastic string (without foundation) was extensively

studied during and after World War II [36, 37]. However, apart from the problem

of the aircraft impact on a balloon barrage cable, no other practical applications of

these solutions were found. The addition of a plastic foundation constant to the string

has put the model in an entirely new perspective. While the string represents the

average weighted axial strength of a shell, the foundation describes the shell resistance

to lateral crushing. With the two major force-resisting mechanisms of the cylinder

included in the formulation, the string-on-foundation appears to be a realistic (when
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compared to experimental results) shell model for a variety of dynamic problems.

Mathematically the string-on-foundation problem is described by an inhomoge-

neous wave equation which due to the rigid-plastic assumption is subjected to non-

linear loading/unloading condition. Many interesting features of the initial value

problems for this equation are revealed in recent publications. An exact solution to

the inhomogeneous wave equation under mass impact boundary condition, recently

derived by Rosales et al [38] using the method of characteristics, serves as a bench-

mark solution to various approximate solutions and also helps determine the range

of validity of these approximations. In a study of projectile impact on a cylindri-

cal shell, Wierzbicki and Hoo Fatt [39] used the exact results of the velocity field,

a new concept of a propagating extensional hinge and the principle of conservation

of linear momentum to predict the ballistic limit of the shell. The general method-

ology was subsequently used to predict the permanent damage that results from a

drill-collar accidently falling on one of the tubular members of an offshore platform

[40]. In the higher velocity range the theoretical maximum deflections calculated by

Wierzbicki and Hoo Fatt [39] were shown to agree with experimental profiles measured

by Stronge [23]. The theory has also been successfully used in finding the ballistic

limit and post-perforation velocity for projectile impact into circular plates [7, 41].

Theoretical predictions of the ballistic limit were found to be within 10 percent of

experimental results for thin aluminum and steel plates.

The string-on-foundation model has also been also used to analyze local plas-

tic damage up to fracture of cylinders subjected to explosive loading. Suliciu et al

[42] derived a closed form solution for the large amplitude transient shell response

subjected to an exponentially decaying pressure pulse and an ideal impulse loading

distributed as a cosine square function along the axis of the cylinder. Static strength

and deformations of ring stiffened shells were studied by Onoufriou and Harding [43],

Onoufriou et al [44], Ronalds and Dowling [45] and Hoo Fatt and Wierzbicki [6].

Finally, Hoo Fatt and Wierzbicki formulated and solved approximately the problem

of impulsively loaded ring-stiffened shell [46]. The deflection profiles calculated from

these solutions were shown to correlate well with limited experimental data, taken

1:
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from Reference [47].

In many practical applications, the pressure pulse loading results from an under-

water explosion. The problem of fluid-solid interaction has received a great deal of

attention in the literature. Most of the results were restricted to elastic response of

shells, [18, 19]. More recently Geers and Yen [21] extended the analysis to the in-

elastic deformations. However, the range of deflections considered by Geers and Yen

was by far smaller than the deflection permitted by the beam-on-foundation model.

Clearly, more research is needed to close the gap between the technologies developed

using large deflection theory without the fluid-solid interaction and that considering

the fluid-solid interaction but restricted to small deflections. The analytical solution

presented here may be considered as one attempt to form this bridge.

-1
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Chapter 3

Problem Formulation

The formulation is kept general so that the proposed methodology may be applied

to both the unstiffened and ring-stiffened cylindrical shell subjected to high inten-

sity, localized, dynamic loads - impact, pressure pulse, impulsive. Consider a long

cylindrical shell of thickness h, radius R, and mass density p as shown in Figure 3-1.

If the shell is ring-stiffened, the shell thickness would be a varying function of axial

displacement x. Chapter 8 deals with such a shell. However, for simplicity we will

represent the general shell as an unstiffened one and show how ring stiffeners are

incorporated into the model in Chapter 8. The shell material is idealized as rigid,

perfectly-plastic with flow stress 0-. The cylinder is subjected to an applied pressure

load p(x, 6, t) and undergoes radial deformation w(x, 6, t), where x, 6 denotes the axial

and circumferential coordinates and t denotes time. Later it will be seen that the

maximum radial deflection becomes transverse deflection of the shell. The maximum

amplitude of the transverse deflection is denoted by 8.

For the reader's convenience, the following sections define certain basic quantities

and concepts:

Material In the range of moderately large deflection, elastic deformations are neg-

ligible compared with plastic deformations. Therefore, the material is assumed to be

rigid-perfectly plastic, described by a flow stress a,. For an actual work-hardening

material, the flow stress is understood as a constant, elevated stress corresponding to

22
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Figure 3-1: Geometry and loading of a cylindrical shell.
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an average strain e., in the loading process, o1, = g(Eav).

The determination of 0, requires an iterative procedure in which the problem is

first solved to find an average strain, then the magnitude of the flow stress is suitably

adjusted to match this average strain.

Loading In general the shell is loaded by an inward radial pressure p(x, 9, t). The

size of the "patch" load is of an order of the shell radius or smaller so that the resulting

deformations are highly localized. As shown in Fig. 3-1, the pressure distribution

is assumed to have two planes of symmetry, at x = 0 and at 9 = 0, and a variable

amplitude but a fixed shape. The pressure amplitude rises instantaneously to the

maximum value p, and then decays exponentially with a characteristic time constant

r, according to

p(x, 0, t) = p.e- f(x)g(6), (3.1)

where f(x) and g(O) are known, dimensionless shape functions. In the case of impul-

sive loading, the pressure is taken to be zero and the loading is introduced to the shell

through the initial condition for the shell velocity. In impact situations the loading

is introduced through both the boundary condition (at the point of impact) and the

initial condition (initial velocity at the point of impact). Illustrative examples of each

type of loading mentioned above will be given in the subsequent chapters.

Stresses and Strains Corresponding simplifying assumptions on the stresses will

be discussed dealing with the rate of internal energy dissipation in the shell.

Assuming plane stress and the Love-Kirchhoff hypothesis,

iaa = i'ao(x, 9) + Z ak0(X, 9), [a,f] = [X, ], (3.2)

Equilibrium The overall shell equilibrium is expressed via the principle of virtual

velocities
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knt, (3.3)

where We.,t is the rate of external work and Win is the rate of internal dissipation of

energy. Equation (3.3) can be expressed in shell coordinates for which dSO = dxRdO:

FUIenda + TWIenda + TinidSo + j (-mii)itidSo =h j ij iijdSo, (3.4)
fso foSO

where the velocity vector are ii[iL, i, zb] corresponding to the x, 6, r axis, the dot de-

notes time derivative, m = ph is the mass per unit area, aij and i;j denote components

of stress and strain rate vector, and Ti a vector of surface tractions with components

Ti[0, 0, p] in the x, 0, r direction. In addition there may be an axial load P(t) applied

along the axis of the tube and a concentrated shear load T(t) at the ends (the bars on

these quantities will later denote quantities that are integrated in the circumferential

direction). Notice also that rigid body velocities, it and ib, are assumed beyond the

plastically deformed region of the shell. Hence the first two terms of Eq. (3.4) are

not integrated over the surface area. The radial deflection w can also be interpreted

as deflection in the transverse direction (see Fig. 3-1).

It is assumed that u = 0. The justification of this approximate assumption follows

from the symmetry of the problem it(x = 0) = 0 and that outside the local deforming

region the axial displacement of the shell is zero. Therefore it is small in the deforming

region and can be neglected compared to the remaining components i; and tb.

Using the Love-Kirchhoff assumption, Eq. (3.4) reduces to

TwIend. + f ptbdSo + f -m(ibi + ib)dSo =

(Naoao + Mcqik;ce)dSo, (3.5)

where i,, and *a are the generalized strain and curvature rate tensors, and NO

and Mp are the corresponding tensors of the membrane force and bending moment.
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Here, a Lagrangian formulation is used so that the components of the strains and

curvature rate vectors should be calculated in the material description.

For moderately large deflections, certain simplifying assumptions can be made

to reduce the internal forces to only the membrane stretching and circumferential

bending. These assumptions will be fully explained in the following section.

3.1 Assumptions and Simplifications

Most of our assumptions and simplifications will be concerned with the generalized

forces and displacements of the shell and will be valid only for relatively thin shells,

20 < R/h < 150. The rate of internal work dissipation in the shell is given explicitly

by

Wt = 2 2R j M(X ke. + Me kee + 2MxeekTe + Nexi.. + Nee ee + 2Nxae)dOdx.
0 0

(3.6)

However, for shells undergoing moderately large deflection, 6/R < 0.2, some of

these energy components are negligible. The following simplifications are made in a

step-by-step fashion:

1. Experiments show that the shell is can be assumed to be inextensible in the

circumferential direction, ee = 0. (For very thin shells, R/h > 100, this would

not be the case.) Hence the rate of energy associated with hoop compression

or tension is zero.

2. The rate of bending work rate in the axial direction is neglected, M,,k,, = 0.

During early shell deformation, the curvature rate in the axial direction is small,

k ~ 0 (this assumption will be re-examined in Chapter 8). When the shell

deflections are several time the magnitude of shell thickness, *.. increases but

the axial bending forces Mr, becomes negligible (membrane state). The net

result is that M.*e = 0 throughout deformation of the shell.
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3. A previous analysis of a tube under knife loading [48] shows that the shear work

rate components, 2M.eke and 2N.9i.0, are insignificant in the early stages of

deformation, S/R < 0.2. This theory is further substantiated by previous work

done on the crushing of tubes by Wierzbicki and Suh [5] in which the neglect of

the shear energy terms led to the over-prediction of the force-deflection relation

by some 10-15 percent when compared to experimental data.

So far with respect to these three assumptions, the rate of internal energy

dissipation reduces to

Wnt = 2 2R j (M,,k,, + +N.,0,i,)d~dx. (3.7)
0 0

4. The next assumption pertains to material behavior. A rigid-perfectly plastic,

isotropic, and time independent material is assumed. Hence strain-hardening,

strain-rate effects, and elastic vibrations are neglected. These effects tend to

reduce deflections. The rigid-plastic assumption is further substantiated by the

fact that calculations for this class of problem show that the strains are two

orders of magnitude greater than the maximum elastic strains that metal shells

can tolerate. Any elastic strains are negligible during deformation.

An average flow stress o,, which lies somewhere between the yield and ultimate

strength can be used to approximate a strain hardening material. As stated ear-

lier, an iterative scheme by which the flow strength is calculated based on equal

area under the stress-strain curve may be used for a more accurate analysis.

5. As in practical applications of limit analysis, a simplified interaction surface is

assumed. In a more exact analysis N., and Me# are coupled through a yield

condition,

f(Mc, Nao) = 0 (3.8)

which is assumed to be a plastic potential for the generalized strain rates
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where A is a proportionality constant. Then together with Eq. (3.9), the first

two assumptions, iee = 0 and ki, = 0, can be used to express the yield condition

in only four independent quantities. Using a yield condition, such as the Huber-

Mises yield criterion, the interaction curve would be seen as nonlinear elliptic

yield surface in four-dimensional surface. Instead of this complicated interaction

surface, a square-type yield locus is assumed such that

|M601 = MP1, INzwI = NI, (3.10)

where Mpj = o-oh 2 /4 is the fully plastic bending moment per unit length and

Np, = ooh is the fully plastic axial force per unit length. Thus the stress distri-

butions at each cross-section normal to the principal direction are independent

of each other.

Using this final simplification Eq. (3.7) reduces to

Wit = 2 j2R ( Mpikee + IN,;i.,)dedx. (3.11)
0 0

The absolute sign is added to ensure that the rate of energy dissipation is always

positive, regardless of the sign of kee or i..

The two terms on the right hand side of Eq. (3.11) represent the rate of bending

energy in the circumferential direction (crushing of rings) and the rate of axial mem-

brane energy (stretching of generators), respectively. In a previous analysis [49], a

simplified shell model was built based these two components. The model consists of

a series of unconnected rings and a bundle of unconnected generators. The rings and

generators are loosely connected, but deformations are compatible.

28



3.2 Bending Work Rate

Under large plastic deformation of the rings, hinges develop in areas of localized

plastic flow. The first term in Eq. (3.11) contains the rate of bending work in both

continuous and discontinuous velocity fields. With the inclusion of plastic hinges, the

rate of bending work per unit length Wb can be explicitly written as

Wb = 2Rj IMii'(eeldedx + 2 M )[](), (3.12)

where [Q](') denotes a jump in the relative rotation rate across a stationary or moving

hinge line. Note that the slopes must be continuous at the moving hinge in Eq.

(3.12). The conditions for the kinematic continuity at a moving hinge can be found

in Reference [50]. Furthermore, only the last term of Eq. (3.12) is used in the

development of stationary hinge models.

3.3 Membrane Work Rate

Following moderately large deflection theory, a Lagrangian description of the axial

strain rate is given by

i_= it' + w'zb', (3.13)

where u is the deformation in the axial direction and the primes denote differentiation

with respect to x. However, the cylinder is modeled under fixed end conditions and

axial deformations may be neglected: u = 0. Substituting this into the expression for

membrane work rate Wm, one gets

Wm = 2 j 2R |Npiw'>'|d~dx. (3.14)

The following section shows that with the use of equivalent parameters both the

bending and membrane work terms can be reduced to a single integral in x.

1:
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Chapter 4

String- On-Foundation

The analogy of a cylindrical shell undergoing large plastic deformation and a string-

on-foundation will be made here. First, however, the results from the previous chapter

is substituted into the statement of global equilibrium

TIlendsa + 2 2R p(x,0,t)tb(x,0,t )ddx = 2 2Rj IMPIkeeldedx +

2 j 2R j Npiw'tb'(x, 0, t)dedx + 2 j 2R j m(&& + i&b)(x, 0, t)d0dx (4.1)
0 0

where L is the extent of the load on both sides of the symmetry plane. Notice that

the thickness h in the ring-stiffened shell will vary in a piece-wise manner along the

x-axis so that both M,1 and m are in general functions of position x.

4.1 The Concept of Equivalent Parameters

As in previous work [51], integration in the circumferential direction can be performed,

provided that the velocity field in the circumferential direction is known. Development

of the stationary hinge model not only gives a realistic deformation pattern for the

collapse of each ring but it can be used to derive certain kinematic quantities that

lend themselves to certain functions which will later on be defined as equivalent

parameters. It will be shown that these functions are roughly constant in magnitude.
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For this reason they are called equivalent parameters.

Equation (4.1) can be integrated in the 6-direction to give the following:

TW|enda + 2 p(x, t)zb(x, t)dx = 21 qtb(x, )dx +

2 j Nw'ib'(x, t)dx + 2 fiunttb (x, t)dx, (4.2)
0 fo

where the following equivalent functions are introduced:

an equivalent line load,

p(x, t)tb(x, 0, t) = 2R j p(x, 6, t)tb(x, 6, t)d6; (4.3)

an equivalent bending resistance,

-q(x,t)tb(x,0,t) = 2Rj IMPikeejdO; (4.4)

an equivalent tensile force,

Nu'(x,0, t)w'(x, 0, t) = 2RN, jw'ib'(x, 6, t)d6; (4.5)

an equivalent mass per unit length,

WiT7(x, 0, t)zb(x, 0, t) = 2Rm j (Ibtb + si)(x, 6, t)d6. (4.6)

Notice that all the deformation in the circumferential direction is lumped into the

deflection at 6 = 0 so that from here on, w will be only a function of x, t. As

hinted earlier, a bar is used to denote a quantity that has been integrated in the

circumferential direction. Calculation of these equivalent functions requires some

assumptions on the deformation shape of the rings. Several possible deformation

profiles in the cross-section of cylinders are shown in Fig. 4-1. Cylinders and rings

subjected to a uniform symmetric inward radial pressure deform as shown in Fig.

4-la. The process known as dynamic pulse buckling involves circumferential bending
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superposed on hoop compression [1]. The remaining three deformation modes are

inextensible in the hoop direction. The kinematic model shown in Fig. 4-1b was

developed by Wierzbicki and Suh [5] for static tube indentation under a "knife"-

type punch. It consists of a flat top section and two circular arcs. This model

was extended by Moussouros and Hoo Fatt [52] for impact or local pressure loading

by replacing the flat top portion with a circular are thereby creating a "dimple"

model, Fig. 4-1c. The kinematics used to describe the deformation of the dimple

model became very complicated because several independent variables were needed

to describe its deformation. A good approximation to the more realistic dimple model

is an unsymmetric stationary hinge model, 4-1d. The stationary hinge model consists

of five stationary plastic hinges with rigidly rotating and translating ring segments.

Notice that the kinematic model shown in Fig. 4-1d is easier to deal with because it

is essentially one-degree-of-freedom models. This means that central deflection wo or

w(O = 0) uniquely determines the kinematics of the problem provided the position of

outside hinges.

The derivation of the bending resistance q is treated as a separate problem by first

examining the crushing force of a ring (per unit width).

4.2 Equivalent Bending Resistance

Experimental observations [47] show that the cross-sectional shape of the cylinder is

a dimpled profile as shown in Fig. 4-1c. A separate analysis using the upper bound

limit analysis technique to find the crushing force was done using this profile [52].

However, the dimple model, though realistic, required several independent variables to

completely describe its deformation and thus led to a very complicated minimization

procedure. Minimization had to be done numerically. Recently, it was found that a

stationary hinge model, for which the location of hinges is defined by the angle a,

shown Fig. 4-1d, can be described by only one independent variable, the maximum

or central (9 = 0) displacement of the ring, and gives similar results to the dimple

model. Because of this one-parameter representation of the crushing force and ring

I
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kinematics, the stationary hinge model is favored and will be adopted in this analysis.

4.2.1 Non-axisymmetric stationary hinge model

The stationary hinge model described in Fig. 4-2 is non-symmetric and differs from

the earlier one proposed by De Runtz and Hodge [53], which considers the symmetric

crushing of tubes. The stationary hinge model is described by five hinges, A, B, C, D,

and E, as shown in Fig. 4-2. The angle which describes the location of the fixed

hinges, C and E, is given by a,. The remaining hinges, A, B and D, are such that

they bisect the upper portions of the ring. Therefore, ~iU = ~f~1 = B= B7fC = 10.

During deformation B and D rotate while A translates downward by a distance

w,, where w, = w(O = 0) is the central deflection of the isolated ring (see Fig. 4-2).

Thus motion is simply described by the collapse of rigid bars EP7, ~A, TlB, and fBlC.

Notice that any point in the ring that lies within LEOC does not deform.

The deformation w(9) (see Fig. 4-4) can be described by a single time-like param-

eter we,, given a fixed angle a,. However, to simplify the derivation of the deflection

profile around the ring, two intermediate angles will be defined in Fig. 4-2, q and 3.

The initial values for these angles (corresponding to w,, = 0) are denoted 0, and 3,

(see Fig. 4-2).

Initially, LAOB = LBOC = (ir - ao)/2 and both AOB and BOC form isosceles

triangles such that LOBA = LOCB = 7r/4 + a,,/4. The initial values of 0,, and P,

are therefore,

00 = 3a,,/4 - 7r/4 and 3, = r/4 - a,/4. (4.7)

During deformation, w, is related to q and 3. In the vertical direction,

w, = AA' = AO - A'O. (4.8)

Hence

wO = R(cosa, + 1) - l,(sin3 + cosO), (4.9)
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where 1, = 2Rcos(a. + q4).

Furthermore, taking components of 2ID- and BC' in the horizontal direction, f

and 0 are related to each other by

locos/ = lsinb + Rsina,. (4.10)

Note that again 0,, and 0,, can be determined for a given a, from Eqs. (4.9) and

(4.10) by setting w, = 0.

4.2.2 Ring resistance

The resistance due to bending of a force q is simply found by again using the principle

of virtual work

4A0 = 2[12Mplok + I2Mpid3]. (4.11)

This equation can be further rewritten in terms of 0 by taking the time derivatives

of Eqs. (4.9) and (4.10). From Eq. (4.10),

#OSO =(4.12)
sinfl

and also from Eq. (4.9),

= 10 Cos( . (4.13)
sin#

Substituting Eqs. (4.12) and (4.13) into Eq. (4.11) and canceling 4 on both sides

of the equation, gives the normalized crushing force of the ring as

2sin3[1 + - .51j]

MP, cos(a, + O,)cos( - ,)(

The absolute sign in Eq. (4.14) ensures that the rate of energy dissipation is always

positive. For pressure loading, the value of a, may be adjusted to match experimental

profiles.

A
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The normalized crushing force qR/M,1 for several values of a, (solid line) is com-

pared to that of the dimple model (dashed line) in Figure 4-3. Due to geometrical

constraints, the stationary hinge model undergoes locking (no additional deflection

can occur) for the smaller values of a, (for instance, see a. = 800 and ao = 85* ). In

fact, to achieve deflections of the order w,,/R = 0.2, ao should be greater than ix/2.

In a more realistic ring deformation mechanism, the angle a, should increase as the

ring deforms. One may argue, however, that in such a case the ring model would no

longer be a stationary one. For simplicity, a0 will be kept a constant value, a = Ir/2.

Incidently, a0 = 7r/2 gives the lowest crushing force curve.

As in the dimple ring model, the bending resistance varies weakly with central

deflection, and will be taken as a constant value given by

8M,1
q = . (4.15)R

This crushing force is equal to the one used by Wierzbicki and Suh [5] in which

a different non-symmetric ring model was used. The fact that these two forces are

similar is an indication of the insensitivity to the assumed mode of deformation for

non-symmetric ring models.

4.3 Calculation of Other Equivalent Parameters

In evaluating the other equivalent parameters, the deformation of each material point

on the ring must be calculated. A Lagrangian description of the problem is used to

describe deformation shown in Fig. 4-4. For a given deflection w,, the deformation of

each material point of the ring must be described in two regions 0 < 0 < (7r - ao)/2

and (r - a,)/2 < 0 < 7r - ao. In region (7r - a)/2 < 9 < r - a, the entire arc

BC undergoes rotation about hinge C. However, each material point on the arc BC

rotates with a different radius of rotation depending on its location on arc BC. For

instance, point P, located at w = w(02), rotates with a radius PU to P'. A point in

the region 0 < 9 < (7r - a0 )/2 undergoes both rotation as well as translation about

B'. A point Q, located at w = w(8 1), undergoes translation and rotates about B'
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Figure 4-3: Ring resistance.
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with radius QB_ to Q'. Formulas to describe w(9) in the different regions are explicitly

derived in Appendix A.

The other equivalent parameters, P, N, and in, will be further defined in terms

of new variables 00, 01, and 02 which depend on the acceleration, velocity and

displacement fields in the circumferential direction. The new quantities are defined

as follows

00 = -- Y2'(O)dO, (4.16)

01 =j (e)de, (4.17)

02 = .. .i (6)dO. (4.18)
Swow0

The above parameters can be interpreted as integrated average values of the re-

spective quantities with the associated velocity zb as a weighting function. These

parameters would depend on the central deflection wo and therefore vary for each

x-location.

Evaluation of the effective line pressure loading or 00 requires a description of the

distribution of dynamic pressure in the circumferential direction. This value differs

for specific problems, but an example of how one would calculate 00 for an assumed

pressure distribution is given in Appendix B. However, the values of 01 and 02

only depend on the kinematics of the stationary hinge model. Using the expres-

sion for (w/R)2 derived in Appendix A, the quantities tb/t60(6), w'1'/(wt6,)(9) and

tnb/(touot)(O) are evaluated in Appendix B where the kinematics are more accurately

expressed in vector components. These products obviously depend on the central de-

flection of the ring wo. They are numerically intergated for each wo (or x-location)

and Fig. 4-5 shows how 01 and 02 vary with the central deflection of the ring w0

(or location x). Notice that there is very little dependence on w, and for practical

purposes both 01 and 02 can be taken as constant, both equal to 0.25.

Introducing 00, 01, and 02, the equivalent parameters become
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p = 2RpO 0, (4.19)

N = 2RN,1 0 1, (4.20)

and

m;= 2RmO 2. (4.21)

It should be pointed out again that the equivalent parameters AV, , N and 7n- are

not constant but depend on the central deflection wo. However, in all cases their

dependence on w, is weak and in Table 4.1 average values of the respective quantities

are given in the range of ring deflection 0 < wo < 0.4R. The above intrinsic property

of the ring model that renders the equivalent parameters approximately constant

constitutes a corner stone of the string-on-foundation analogy. A more refined theory

could be developed in which p,, and fin will be known functions of an unknown

deflection w0 . However, this will lead to a nonlinear partial differential equation and

the mathematical simplicity of the present model would be lost.

4.4 The Wave Equation

Recall from Eq. 4.2 that

TIbenda + 2] ptbdx = 2] [ qz + NPIw'ii' + in-i7tb]dx. (4.22)
0 f0

Integrating Eq. (4.22) by parts

(T - 2Nw')tbends + 2 j (mib - Nw" + q - p)7bdx = 0, (4.23)

where T now represents an applied shear force at the end. From variational calculus,

the system is reduced to the following partial differential equation:
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Table 4.1: Equivalent parameters calculated for the stationary hinge model

P q I N I fI
2RpoOo 8M 1/ R 0.5RNpi O.5Rrm

ii-fb - (Nw')' +e- = 0

subject to the boundary conditions

w' = 0 at = 0

and

2Nw' = T at x=.

Equation 4.24 is also subject to the initial conditions

w = 0 at t = 0

and

ib = 0 at t = 0.

For impulsive or impact loading Eq. (4.28) would include the initial velocity.

Equations (4.24) - (4.28) represent an initial-boundary value problem for an inho-

mogeneous wave equation with an inhomogeneous boundary condition at x = . A

similar problem that was formulated for a rigid-plastic cylinder undergoing projec-

tile impact showed that the exact solution of the non-homogeneous wave equation

[38] becomes complicated by certain non-linearities. These non-linearities are due

mainly to the rigid plastic assumption of the material behavior. The complexity of

this initial-boundary value problem also depends on the type of pressure loading.

The cylindrical shell under large plastic deformation can therefore be modeled
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as a rigid-plastic string resting on a rigid-plastic foundation. If the deformations are

small (less than shell thickness), bending effects must be included and the equation of

motion to describe the shell deformation becomes very complex. Numerical schemes

may be employed in finding solutions to such problems. The problem, however,

becomes very simplified when the shell reaches its membrane state.

4.5 Dimensionless Parameters

To help perform parametric studies, a convenient set of dimensionless parameters

will be defined. First, however, two groups of parameters can be distinguished in

the transverse wave equation Eq. (4.24), the speed of the transverse wave c and a

characteristic linear dimension xO

2  IV o N
c2 = -, Xo -. (4.29)

?n p q

It is convenient to non-dimensionalize some variables using the above characteristic

parameters. A general characteristic length is denoted 1,. The characteristic length of

the unstiffened shell under line load pressure is half of the extent of the load, 1, = L,

while for the ring-stiffened shell it is half of the length of the bay, 1, = 1. For projectile

impact into an infinite cylinder, 1, is the ratio of the tensile to support strengths, x,

of Eq. (4.29).

A general characteristic mass Mc is defined such that for impact problems, M,

is the impacting mass M,, and for impulsive loading of the stiffened shell, M, is the

lumped mass of the stiffener Rl . A characteristic mass is not used in the problem of

impulsive loading of the unstiffened shell.

Likewise, a general characteristic velocity V will be used such that for the impact

problem V = V, and for the impulsive loading of the stiffened shell, V= V.

The following dimensionless quantities are introduced:

_1,
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x = x/lc

t=tc/lc

v=vc/c

S= wN/lig

p = 1p/q

In terms of these dimensionless qu

take the form

axial coordinate

time

velocity

transverse deflection

mass ratio

stiffness ratio

shear force

line load amplitude

antities, the governing equations of the problem

zbf - zb& - P(;, t) + 1 = 0 (4.30)

and

f - bi = 0 at boundaries,

subjected to the initial conditions,

0) 
(4.32)

W(, 0) = Vf(x).

The subscripts denote differentiation with respect to the corresponding dimensionless

variable and f(x) is a function used to describe the shape of the initial velocity.
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Chapter 5

Unloading Conditions

Plastically deforming bodies experience dissipative work. Therefore, final deformation

is attained after unloading has begun. According to Eq. (3.11) the plastic deformation

in the circumferential and axial directions has been decoupled. Therefore two separate

unloading criteria must be imposed for the plastic flow in these two directions.

We define a uniaxial string or U-unloading boundary by the condition of vanishing

of axial strain rate

x = 0 W 'i=O (5.1)

and a lateral support or C-unloading boundary by requiring that the transverse ve-

locity of the string becomes zero

tb = 0. (5.2)

The U-boundary is associated with the end of fully plastic tensile forces in the

string, while the C-boundary is related to the end of rigid plastic foundation defor-

mation. Given a rigid-plastic material idealization, it is necessary that both i., > 0

and tb > 0 for deformation to occur. From here on we will omit the subscript on the

axial strain rate.

An unloading boundary is understood as a curve in the (x, t) plane for which either

i = 0 or t = 0. In general U- and L-boundaries are different. At the U boundary

I
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stretching of the string ceases because there can be no more plastic flow of the shell

in the axial direction. A "frozen" section of the string can still undergo rigid body

motion, tb # 0, so that the foundation can continue to be crushed. However, if the

L-boundary is met first, the motion of the string-on-foundation will stop.

I
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Chapter 6

Projectile Impact into Cylinders

Consider an infinitely long cylinder being impacted by a mass M, moving with velocity

V,. With the string-on-foundation model, the impacting mass and the cylinder are

shown in Fig. 6-1.

The impacting mass strikes the cylinder at x = 0 and t = 0 and instantly generates

two types of waves - longitudinal and transverse. The longitudinal wave for a rigid-

perfectly plastic material travels at an infinite speed and pre-stresses the string to the

yield value X. This is followed by a transverse wave which propagates at finite speed

C = Oo-,/p. It is the transverse wave that deflects the string and leaves a permanent

local deflection in the shell.

The moving mass produces a shear force in the string which in turn decelerates

the mass. Thus, considering half of the string, one gets

T= -- O ?-(0, t), (6.1)
2

or in dimensionless form

f= - tbg(0,) (6.2)

The initial-boundary value problem is formulated by setting the pressure term 3

in Eq. (4.30) equal to zero to give
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Figure 6-1: Impact of a spherical projectile on an infinite tube and a simple compu-
tational model.

49



iv;l - zGvi + 1 = 0 i < i, (6.3)

It should be emphasized that under the rigid-plastic assumption, Eq. (6.3) is only

valid for 4j > 0 and iij > 0.

Substituting Eq.(6.2) into Eq. (4.31) also gives

i + f: = 0 at i = 0. (6.4)
2

The other boundary condition at the wave front is replaced by the conditions of

kinematic and dynamic continuity, which together in the dimensionless form take the

form of only one condition

[ib] + [7E] = 0 at z =t. (6.5)

Additionally, homogeneous initial conditions must be satisfied

t(Z, 0) = 0 (6.6)

and

v at Z = 0
= at, 0)0=(6.7)

10 for li| > 0

Note that in the present problem the linear dimension l in the definitions of

dimensionless quantities is set equal to the characteristic length xO = N/q.

6.1 Summary of the Exact Solution

Rosales et al [38] used the method of characteristics to derive an exact solution of the

problem. Rather than rederive his solution here, some of his results are summarized

and compared to an engineering approximation in the subsequent section.

Rosales' solution revealed an interesting dependence of the problem on a new pa-

1,
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rameter -y that is proportional to the ratio of normalized impacting mass to normalized

velocity

77 _eqM,71 =q" =.(6.8)
4v 4A;nNV0

The solution to this problem becomes further complicated because of the nature of

the U- and C- unloading boundaries. Recall that the U-boundary marks the onset of

i = 0, while the -boundary corresponds to ib = 0. The solution is given for various

ranges of -y as shown in the phase plane of Figure 6-2. The solid and the dashed lines

represent the loading and unloading (both types) waves, respectively. To date, only

a solution for which 1 < - < 2 exists in complete form. The expression for transverse

deflections has a particularly simple form if - is in the range 1 < 7 < 2,

,)= (2 _ 2) _ 1(i - F) + -( - 1)[e'(1-) - 1] , < F. (6.9)
4 4 2

Equation (6.9) can be differentiated to give the normalized velocity

! = - + - v(y - 1)el - ,i < F, (6.10)
2 4

and the normalized slopes

& = -- + v(- - 1)en- ,z < .(6.11)

Notice that unloading always starts at the point i = t = 2v and that at this point,

both 114 and zv are identically equal to zero, independent of 7. Also notice that the

slope given in Eq. (6.11) is always negative, independent of 7.

A quantity related to the strain rate (i = w'zb') is the rate of change in slope

S= -2 (7 - 1)e,(7-) , <F. (6.12)

Setting Eq. (6.10) equal to zero gives the L-boundary. The U-boundary (i = 0)

is found by setting Eq. (6.11) equal to zero because Eq. (6.12) is never zero.

The following arguments briefly summarize various ranges of the solution:

1,
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L-unloading path zb = 0

U-unloading path e = 0

V =2

"=1

2v

Dimensionless axial coordinate, = x/xO

Figure 6-2: Phase plane analysis of impact into cylinder.
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1. A solution of the problem does not exist for which -y < 1. At the point of

impact,

([ = 0) = 2v( - 1)e. (6.13)

If - < 1, then zb,,& = 0) > 0 and the strain rate at the point of impact is

negative because iiv(i = 0) < 0. The material cannot undergo plastic flow

using our rigid-plastic material assumption. This means that the tensile forces

in the string will never reach N and thus, transverse plastic waves cannot start

to propagate.

2. When 1 < -y < 2, the -boundary will always occur before the U-boundary, as

shown in Fig. 6-2.

3. When y = 2 the C-boundary is just tangent to the left- outgoing characteristic,

and for y > 2 the solution given by Eq. (6.9) results in an L-boundary that

lies out of the region OAB. From a set of plausible arguments, Rosales shows

that the unloading wave is of the characteristic-type and must therefore travel

with a speed less than or equal to the plastic wave speed c. It appears that

the conditions tb = 0 and i = 0 are governed by local events, not by unloading

waves sweeping in from the boundary conditions, as is commonly the case in

mechanics. If they were "true" unloading waves, they would travel with an

elastic wave of infinite speed. Perhaps the L and U-unloading waves should be

defined here as unloading events to distinguish them from the elastic unloading

waves.

It was proposed to extend the loading path out of the region OAB (ie. into the

region Z > 2v and i > 4v - Z) . A consequence of this extension, however, is a

complex interaction between the U- and L-unloading boundaries which is still

currently being resolved.

The C-unloading boundary for which 1 < y < 2 is explicitly
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1 + 77 In[97/4 - 1/2. (6.14)
2 v(-y - 1)

The permanent displacement of the string is obtained by eliminating time between

Eqs. (6.9) and (6.14). Normalized permanent deflections of the string for three

different values of the parameter y are shown in Fig. 6-3 (solid lines). The time

growth of a central deflection S = f(i = 0, t) for the same values of. the parameter 7

is shown in Fig. 6-4 (solid line).

6.2 An Approximate Solution

A good approximation to this problem can be achieved by assuming all plastic de-

formation is concentrated at the plastic wave front and that the deformed region,

X <, undergoes rigid body motion. This assumption was proved to be a limiting

case (y = 1) of the more exact solution [38]. In this case, the velocity and acceleration

of the deformed region, ?b and t , are independent of x and are functions of time only.

A typical description of the velocity field as it propagates in time is shown in Fig.

6-5.

In the interest of allowing the reader more physical insight into the problem,

variables will be non-dimensionalized only after derivation. Setting p = 0 for impact

loading and integrating Eq. (4.24) with respect to x from x = 0 to x = (, one can

satisfy equilibrium globally

Rw'If - ktb - g = 0 (6.15)

Introducing the boundary condition at x = 0 into Eq. (6.15) gives

2Nw'J,=4 - Mfb - 2inffb - 2q = 0. (6.16)

This equation can be conveniently written as

2cfiitb + [Mo + 21-n]fb3 = -2k, (6.17)
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Dimensionless axial coordinate, = x/xO

Figure 6-3: Permanent longitudinal deflection profiles of a cylinder for various values

of the mass ratio parameter.
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0.2 0.4 0.6 0.8 1 1.2

Dimensionless time, t= ct/xO

Figure 6-4: Growth of the dimensionless shell deflection with time at the point of
impact.
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Figure 6-5: Instantaneous velocity profiles of the shell.

where the first term in this equation has been transformed using the condition of

dynamic continuity

[NVw,] + iwt] = 0 at x = t. (6.18)

Equation (6.17) furnishes a linear, first order ordinary differential equation for tb

and can be re-arranged in standard form
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f+ ic =- (6.19)
MO + 2fnet Mo + 2inct'

subject to the initial condition

V(0) = 0 . (6.20)

It should be mentioned that this formulation satisfies the condition of kinematic

and dynamic continuity as well as global equilibrium, expressed via the principle of

conservation of linear momentum in the plastically deforming region.

6.2.1 Solutions for velocity and displacement profiles

The solution of the initial value problem, defined by Eqs. (6.19) and (6.20) is

tb(t) - MV/(2 fnc) - qt 2 /(2in) (6.21)
M,/(2?ftc) + t

The velocity diminishes to zero at

tf = M, (6.22)
qc

where t1 is the response time of the shell. The transverse displacements can be

obtained by integrating the velocity of each deforming point on the cylinder axis with

respect to time

t
w(x,t) = j v(t)dt. (6.23)

Here a point on the shell located at a distance x from the impact site acquires a

displacement after the wavefront arrives at that location at time t, = x/c.

For t > tf, the string remains rigid and motionless. Because the plastic wave

propagates at constant speed c, the maximum extent of the deformation is simply

f = Ctf. (6.24)

7T
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Introducing 1 and v to relate the impacting mass to the shell, one can express Eq.

(6.21) in dimensionless from

(t) = (v-p-4) - (6.25)
(1 + p/21) 2 4

From Eq. (6.23), the transverse displacement in normalized coordinates is

,) ( - F) + - 1)ln[ 1 + 2/77. (6.26)
4 4 2 1 + 21/77

Note that for y = 1 the last term in Eqs. (6.9) and (6.26) vanishes and the approxi-

mate solution coincides with the exact solution.

The normalized central displacement 6 is obtained from Eq. (6.26) by setting

x=O

= =i(O 0 -i -{

=(0)=- + !1+ 2 - 1)ln[1 + 2i/7] (6.27)

A comparison between the exact and approximate solutions for the central deflec-

tion as it grows with time is shown in Fig. 6-4. The solutions coincide for y = 1.

For other values than y = 1 the difference between the approximate central deflection

(dotted line in Fig. 6-4) and exact central deflection is small.

Unloading in the approximate solution (the C-boundary) occurs for the entire

string at the same time if

t = if = t. (6.28)

Equation (6.28) is substituted into Eq. (6.26), and a closed-form solution is obtained

for the permanent deflection profile w(x, tf) = w1(x)

i -- ( 77- ) + -(7 -1)In[- .(6.29)
4 4 4 2 1 + 2/7

These are also compared to the exact solution in Fig. 6-3 (dashed line). Notice that

the deflections are more localized in the exact solution.

It should be mentioned that the use of momentum conservation with the assumed
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velocity profile for the critical case of 7 = 1 (constant in space, variable in time) has

also been used and found to be quite accurate in perforation analysis of a circular

membrane [39]. Unlike the cylindrical shell, the circular membrane has a homogeneous

wave equation because there is no foundation force q to represent the ring resistance.

6.2.2 Ballistic limits

It is interesting to note that the maximum slope at the impacted end, calculated from

Eq. (6.26) is independent of the mass parameter and is a function of the velocity

parameter only

w'lI=o = b&= V = V/c. (6.30)

Perforation of the shell can either occur in a shear or tensile mode, Jones [54].

Shear plugging starts when the contact shear force between the impacting mass

and the string, 2r,Npw', is equal to the plastic through-thickness shear resistance

7rrph o-,/V'- on, say, half of the circumference of the projectile with the radius r,

2rNiw' = go hirr,. (6.31)
v/3.

Combining Eqs. (6.30) and (6.31), one may obtain a simple estimate for the onset of

the perforation process

V . = -- (6.32)

Note that at the point of fracture the flow stress 0 o is understood as the tensile

strength of the material.

Tensile failure of the shell under the projectile occurs when the maximum axial

strain is equal to the critical strain to necking, Ema, = E. Thus, using the definition of

finite axial strain, Eq. (6.30), and a strain concentration factor around the projectile

of 7r2 /4 gives
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Vtenaion = v'2~ .e , (6.33)
2 CL

Predictions from both criteria are identical if e, = 0.16. For smaller critical rupture

strain tensile necking occurs first, while, for higher values, shear plugging may be

dominant. The above equations represent a lower bound on the ballistic limit. An

upper bound can be obtained using the methodology developed by Wierzbicki and

Hoo Fatt [7] for circular membranes.

Stronge [23] performed a series of projectile impact tests on metal tubes and

measured permanent deflection profiles for a range of impact velocities up to the

ballistic limit and beyond. The material properties for two different thicknesses of

steel plates and experimental ballistic limits are gathered in Table 6.1. Predictions

from the formulas given by Eqs. (6.32) and (6.33) are shown in the last two columns.

Upper bound calculations could be performed to close the gap between the theory

and experiment using the methodology developed by Wierzbicki and Hoo Fatt [7].

6.2.3 Extension of the model

Stronge [23] measured also permanent displacement of the shell under the projectile.

Initial attempts to correlate experiments with the theoretical solution (Eq. (6.9) or

(6.26)) failed because of exceedingly large error. However, it soon becomes clear that

the present model requires important modification to described with some realism

high velocity missile impact on cylinders. According to Fig. 6-3 dynamic deflection

profiles are much more localized than static ones. The extent of plastic deformation

in the axial direction on either side of the symmetry axis is only three to four times

greater than the projectile diameter itself. In the existing formulation the resistance

of the shell to the process of dynamic denting is derived only from a portion of the

shell outside the circumferential strip of width H under the projectile (see Fig. 6-1).

Because of a double curvature dimple present in this strip, its crushing resistance may

constitute a substantial portion of the resistance of the entire tube. This important

effect can be incorporated into the theory by considering impact on an infinite cylinder
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Table 6.1: Comparison between the experimental and theoretical ballistic limit in the
tests reported by Stronge.

h P -y 0, EC V*,p V*. V*naon

(mm) (g/cm') (N/mm 2 ) (m/sec)
1.76 7.8 149 254 0.28 190 162 215
3.2 7.8 191 281 0.28 230 171 223

reinforced by a relatively stiffer ring with a prescribed crushing resistance Q and mass

R, Fig. 6-1.

Q= Hq 
(6.34)

f =. H in

Such a modified solution can be derived using the momentum conservation ap-

proach but the problem will not be pursued here any further.

6.2.4 Damage of cylinders due to dropped objects

This type of impact is of relatively frequent occurrence in offshore construction,

drilling and production activities. Most of the accidents are associated with crane

lifting operation although collisions of tubular members with ships also fall in this

category. According to Moan [55], the frequency of falling pipes is of the order of 1-5

cases per year per platform during regular drilling operations. One most dangerous

object for impact is a drill-collar, a part of the drilling string. A typical drill collar

has a mass of approximately 3200 Kg, length 10 m and inner and outer diameters

of 76 mm and 241 mm, respectively. Such massive structures may behave as almost

rigid bodies under impact conditions and may cause substantial local damage and

penetration of the impacted structure.

Because of relatively low impact velocities, a simplified analysis based on a quasi-

static indentation solution can be used. Such an analysis was recently presented by

Hoo Fatt and Wierzbicki [51], and will be briefly reviewed here.

The relationship between the force and central deflection 8 of a rigid punch in-

1.
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denting a cylinder is

P = 2 2qN_5 (6.35)

This relationship can be obtained by solving Eq. (4.24) and (4.26) with inertia

forces set equal to zero, p(x, t) = 0 and T = -P. A good estimate for the maximum

central deflection of the impacted shell can be obtained by equating the kinetic energy

of the impacting drill-collar to the plastic work of the resisting transverse force P(6)

2MV [= P(6)d6. (6.36)

Performing the integration and using Eq. (6.35) the following simple expression is

obtained

= 0.47(M0/(ph"))Z(V/c)i. (6.37)

The above approach seems reasonable because for low velocity impact, there is

time for the plastic deformation to spread farther than in high velocity impact. As a

result, the relative contribution of the "ring" just below the impacting mass should

be small compared to the resistance of the entire shell.

As an illustrative example, calculations where run for a brace tubular element

characterized by the geometry and material given in Table 6.2. The results of cal-

culations are presented in Fig. 6-6, showing the depth of the dent caused by the

impacting drill-collar versus the drop height. When the drill-collar drops from a

height of 30 m, it produces a dent of 0.376 m, roughly half of the radius of the brace.

Such an extreme damage is devastating to the affected structure and the brace will

have to be replaced.
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Figure 6-6: Damage of a tubular member caused by a dropped drill-collar as a function
of the drop height.
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Table 6.2: Geometrical and mechanical parameters of a typical offshore tubular mem-

ber hit by a drill-collar.

A (m) h (mm) oo (MPa) p (Kgcm3 )
0.8 20 360 7.8

The present analysis addresses local deformation only. Global bending deforma-

tion occur for slender tubes and some impact energy will be absorbed in this mode.

Amongst others, interaction of local and global deformation in tubes was studied by

de Oliveira et al [56] and more recently by Paik [57].
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Chapter 7

Explosive Loading on Unstiffened

Shell

Consider an infinite cylinder subjected to a dynamic pressure pulse with spatial and

temporal variation, Fig. 7-1. An approximate equation for the pressure shock and

decay [58] which results from an explosion is

1~

p(x,9 , t) = poe-1cos2 (7.1)

where po is the peak pressure, r is the decay constant, and L is the extent of pressure

load and the characteristic length in normalized parameters.

From the concept of a string-on-foundation, the equation of motion is given by

Eqs. (4.30)-(4.32), where v is calculated as a dimensionless impulse in the following

section.

7.1 Impulsive Loading

The total area under the p - t curve is defined as the applied impulse per unit length

I,

I = jpeddt = Pr. (7.2)
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2L

Figure 7-1: Unstiffened shell modeled as a rigid-plastic string on a rigid-plastic foun-
dation.

67



An ideal impulsive loading is obtained by keeping I constant and setting r -+ 0. The

peak pressure then tends to infinity. In the case of impulsive loading, the equation of

motion, Eq. (4.24), can be directly integrated in time by noting that for short times

the string tension and the support forces can be neglected compared to an infinitely

large pressure amplitude and acceleration. The result is

fiib(x, 0) = Icos2( ). (7.3)
2 L

Thus, the application of the ideal impulse is equivalent to prescribing an initial lateral

string velocity with the amplitude I/77i and specified spatial variation to the string.

The dimensionless initial velocity is

(z& )= 1 cos2( ii), (7.4)

where f is a dimensionless impulse defined by

-Ic _ prc (7.5)
qL q L

The dimensionless impulse f replaces v in the general form of the initial velocity

condition, Eq. (4.32). The string is initially undisturbed so that the first initial

condition is given as before by Eq. (4.32).

At the center of the string the shear force vanishes, ' = = 0 so that the

boundary condition (4.31) becomes

is.(0,t) = 0. (7.6)

The conditions of kinematic and dynamic continuity for w are automatically satisfied

at the moving wave front F = i.
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7.2 Summary of the Exact Solution

A full solution of the initial-boundary value problem was solved by Suliciu et al [42] for

the general case of pressure pulse loading as well as the ideal impulse loading. Again

only the salient discoveries will be described here. In the impulse case, the expression

for the transient deflection is derived again using the method of characteristics

1 1
i ) = -[P - UI - - sin(iri) cos(ini)] for < < 1 - i. (7.7)

As in Rosales' solution, this solution is only valid within a certain region [42]. One

finds from using Eq. (7.7) that the -boundary always occurs before the U-boundary

if I < 1. The equation derived from the condition zb = 0 (C-unloading boundary) is

21 - f - I cos(irT) cos(7ri) = 0. (7.8)

Furthermore, it turns out that in a phase plane analysis, unloading starts immedi-

ately from the point x = L (or , = 1) and moves towards the center. Positions of the

unloading boundaries (I-boundary) for several values of the dimensionless impulse I

are shown in Fig. 7-2. Notice that the solution for the C-unloading boundary is only

valid for impulses smaller than Le. = 0.89.

By eliminating time between Eqs. (7.7) and (7.8), one can find a solution for

permanent deflected shape of the string. The normalized deflected shapes for two

values of the dimensionless impulse, I = 0.1 and I = 0.89, are shown in Fig. 7-3

(dotted lines). For small values of the dimensionless impulse (f -+ 0), the solution of

Eqs. (7.7) and (7.8) can be expanded to give the following simple expression for the

permanent deflection

j2

izb P) = -- cos (--). (7.9)
2 2

This solution is also plotted in Fig. 7-3. Notice that the solution for I= 0.1 is almost

indistinguishable from the exact solution for 1 -+ 0.

Figure 7-3 suggests that for impulses larger than the critical impulse, the string
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Figure 7-2: Propagation of unloading waves (C-boundaries) in a pressure loaded shell
for various values of the dimensionless impulse.
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Figure 7-3: Normalized permanent deflection profiles of an unstiffened shell for small
(I = 0.1) and large (f = 0.89) dimensionless impulse.
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will tend to the shape of the applied impulse, the function cos2 T a (1 _ i2)2. It can

thus be concluded that under any circumstances, the deflected shapes will fall within

the shaded area bounded by the shape cos 4 jz, corresponding to small impulses, and

the shape cos2 g a (1 _ 32)2, corresponding to large impulses. This observation

serves as a basis for developing an approximate, engineering solution to the problem.

7.3 An Approximate Solution

Modal solutions (solutions with fixed shapes but variable amplitudes) have been ex-

tensively used in the literature, Martin and Symonds [59] and Jones [60]. Typically, a

shape function is chosen to fit the experimentally measured permanent deflections of

the given structure. Then using this shape function, the partial differential equation

is integrated over the characteristic length L thereby reducing it to an ordinary differ-

ential equation. The approach presented here is different because the shape function

is selected on the basis of a thorough analysis of the exact solution of the problem.

The modal method is illustrated by solving the problem for relatively large values

of the impulse for which the following approximation of the final deflection profile is

within 15 percent

w(x, t) = X([1 - (X)2]2. (7.10)

7.3.1 Modal analysis

Because the local equilibrium, expressed by Eq. (4.24) with j = 0, is in general

violated by the separable displacement field, the determination of an unknown, time

variable amplitude will be based on the weaker, global equilibrium statement, Eq.

(4.23), with = L. Note that the solution given by Eq. (7.10) automatically satisfies

the boundary conditions at x = 0, and with ' = 0, the boundary condition at x = L.

Substituting Eq. (7.10) into Eq. (4.24) and integrating with respect to x, one

obtains the following second order linear ordinary differential equation

4
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a3 6+ a 26+ a, = 0, (7.11)

where the coefficients a1, a2, and a3 are defined as

a, = q(1 - (x/L) 2 ) 2dx = , (7.12)

/o 18

a 2 =fL (-4x( - (x/L)2)/L 2 2  = , (7.13)
105L(

and

SL )24 128Lr
a3 = f(1 - (x/L)2) 4 dx - Lr (7.14)

fo 315

Equation (7.11) satisfies zero initial condition for displacement, 6(t = 0) = 0.

The initial velocity is calculated from Eq. (C.3) (see Appendix C) and is found as

(t = 0) = 15p/(1677i), taking f(x) = (1 - (x/L) 2 ) 2 .

In the dimensionless coordinates i'(0,1) = 3(i) so that

81 + c1 + c2 = 0, (7.15)

where the coefficients c1 and c2 are defined as

2
C, = a2 = 3 (7.16)

a1  3 21
C2= a, 2 1 (7.17)

a34C2 16

The solution in normalized coordinates is

7 15-
8(t) = (cos v' i - 1) + -Isin v (7.18)

16 16V3

The permanent deflection amplitude is defined by = (I= if) where if is the

time at which the central velocity vanishes 6;(F= iy) = 0. The final deflection shape
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is thus

tWf = S1 [1 - i212 (7.19)

One can differentiate Eq. (7.18) and set l = 0, to find the following relationship for

f and 1

tan/i = --- (7.20)
7V4

A simple relationship between Sj and the dimensionless impulse 1 is found by

using trigonometric identities and Eqs. (7.20) and (7.18)

7 [1+ (!)2] - 1). (7.21)

Comparisons between the exact and approximate solution are presented in Figs.

7-4 and 7-5. Figure 7-4 shows the time variation of central deflection amplitude, S

versus 1. The approximate solution for the central deflection is at most 10 percent

below the exact solution. The permanent central deflection is plotted versus the

applied impulse in Fig. 7-5, Sf versus 1. Again the approximate modal solution is

found to be within 10 percent of the exact solution. The agreement of exact and

modal solutions is remarkable.

The main conclusion drawn from the above analysis is that a suitably chosen

modal form solution could be used in transient problems with propagating loading and

unloading waves. Furthermore, in the case of impulsive loading, varying according to

(1- (x/L)2 )2 ~ cos 2 i, the resulting permanent deflection profile has a shape similar

to that of the applied load. This observation has been used to find approximate modal

solutions for the deflection profile of the ring-stiffened shell for which equilibrium is

considered within a single bay or between two ring stiffeners [46].

74



1= 0.89
0 .3f

0.25- 02 Exact

-

/ Appr
-/

II

0

U

U
Cl)
Cl)

0
Cl)

Dimensionless time, i = ct/L

Figure 7-4: Dimensionless central deflection versus time (comparison of the exact and

approximate solution).

75

)ximate

0.2

.15

0.1

IV I I I . I I I
0. 1 0.2 0.3 0.4 0.5 0.8 0.7 0.8

1.



i=#por

~~h 0.5 --

-3 0.4 -
U Exact

0.3

02 Approximate

0.1

001

0.2 0.4 0.6 0.8 1 1.2

Dimensionless impulse, I = = L
qL q L

Figure 7-5: Dependence of dimensionless permanent central deflection on the magni-
tude of impulse.

76

W1000--



7.4 Generalization for Different Pressure Distri-

bution

The solution presented so far may also be extended to the impulsive loading of

clamped shells of various lengths subjected to the general type of impulsive load-

ing

(j, 0) = if(x), (7.22)

where f(i) is a spatial distribution of impulse, for example a uniform impulse. The

exact solution of the inhomogeneous wave equation, Eq. (4.30) with P = 0, in the fixed

domain 0 < i < 1 and subjected to homogeneous boundary conditions Gi&(0,i) =

ib(1, i) = 0 can be obtained using the eigenvalue expansion technique

(i, t) = 1 T, sin(-!) cos( i!) - 2  (7.23)
n=122 

T

where the 12 term takes care of the inhomogeneity of the governing equation and the

initial velocity expansion coefficients are given by

A = -- l f() cos(--Z)dj, n = 1, 2,... (7.24)
nxr 0 2

The above solution can be used to generate the so called iso-damage curves, deter-

mined experimentally by Greenspon et al [17].
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Chapter 8

Explosive Loading on

Ring-stiffened Shell

Consider again an infinite cylindrical shell, but as shown in Figure 8-1, with ring

stiffeners equally spaced apart by a distance 21. The bays are numbered with an

index i such that i = 0 corresponds to the central bay. The deformation of the shell

is shown to consist of two components, a local deflection w, and a global deflection

Wg. As before, the extent of the applied load is 2L. It is convenient to classify shells

into three categories:

I < L Very densely spaced rings. A smearing technique can be used

in which stiffened shell is replaced by a uniform shell with an

increased, equivalent thicknesses hb and hi when evaluating the

bending energy and inertia terms, respectively. These equivalent

thicknesses give rise to an elevated bending moment per unit

length, Mp, = osh2/4, and a mass per unit area, m = phi.

Formulas for hb and hi for a T-stiffener are derived in Appendix

G.
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1 < L Moderately densely spaced rings. Such shells are considered to

be optimum with respect to strength and stiffness and there-

fore are most often encountered in industrial application. The

present paper is concerned with this type of shells.

1 ~ L Sparsely spaced rings. This case is out of the scope of this thesis.

The stiffened shell undergoes several forms of damage depending on the load

intensity. Such damage includes large plastic deformations with material or structural

failure. This chapter focuses on that mode of failure for which there is incipient

fracture at the base plate at the stiffener. In particular, the magnitude of the transient

and final deflections of the deformed shell and the crack initiation of the shell are

predicted.

Rather than start with the wave equation as in the previous chapters, the state-

ment of global equilibrium will be rederived to show how ring-stiffeners might be

incorporated into the problem formulation. As in Chapter 4, assume that at the ends

of the loaded region there are rigid motions zb in the integrated shear force T. Extend

Eq. (4.1) for half of the shell so that M,1 and m now vary in the axial direction x to

account for ring stiffeners

TIlend + L 2R j p(x, 0, t)tb(x, 0, t)dedx j 2R |MPi(x)keedOdx

fL 2R |Npiw'tb'(x,9,t )Id9dx + j 2R j m(x)(bz + i*i)(x, 0, t)d~dx. (8.1)
0 0 f

Ring stiffeners provide localized resistance to circumferential bending and therefore

cause less transverse deformation to occur at their locations. If the ring-stiffeners

are viewed as point discontinuities as in References [6, 46], then Eq. (8.1) may be

conveniently written in terms of the stiffeners parameters M and Q
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Figure 8-1: Ring-stiffened shell subjected pressure loading.

Nkn +Z{j 2R j p(x, 0,t)tb(x,0,t )dedx} =

N{ (2i+)l[2R j MpikeeId + 2R I |Npiw''(x,0,t) Id +

2R j m(ibtb + it))(x, 0, t)dO]dx + (Q + Mfi')tb_=( 2i+1)L}, (8.2)

where,

0 for i = 0
A = (2i - 1)l for i = 1, 2,3, ... (8.3)

As shown in Fig. 8-1, i denotes the bay number so that total number of stiffeners

is 2N - 1. The lumped mass of the stiffener M is defined in terms of the local shell

coordinates so that dA = dxdz

80

I



t.M= pdA[2R (tbt' + i")d8]. (8.4)

The integral for the ring resistance Q involves a distance z from the neutral axis

Q = O-zdA[2R J A Jeed . (8.5)

With these definitions, R and Q are calculated in Appendix F for the special case of

a T-stiffened shell under explosive loading. Because the bending resistance and mass

per unit length, Mp1 and m, are written only for bays in Eq. (8.2), they no longer

vary in x but are constants.

Equilibrium may now be imposed on a more local sense by writing the principle

of virtual work between stiffeners or for each separate bay. The pressure distribution

within each bay may be considered approximately constant (see Fig. 8-2). Further-

more, a solution will only be found for the central bay for cases in which several

adjacent bays are subject to nearly the same pressure and undergo nearly the same

deflection. This amounts to modeling the central bay as one in an infinitely long series

of bays and stiffeners under uniform pressure loading. The validity of this approx-

imation depends on the axial curvature from bay to bay and should be considered

later. Thus, for the central bay,

Tibend + j 2R p(x,0,t)tb(x,0,t )ddx = 2Rj |MlikeeId9dx +

j 2R j Np1w''(x, 0, t)Id~dx + j 2R j m(ibtb + i"i)(x, 0, t)dedx, (8.6)
0 0 0

where T = -(Q + Mfb)/2 is the shear force on the half bay and half of the stiffener.

The solution for the deformation within the central bay is coupled with that for the

stiffener via the boundary conditions.

Again using the concept of equivalent parameters, Eq. (8.6) can be reduced to
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Figure 8-2: Global and local deformations of a ring-stiffened shell subjected an im-
pulsive loading.
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TZ'|end + Pb(x, t)dx = qb(x, )dx +

j Nw''(x, t)dx + j iratb(x, t)dx. (8.7)

After integrating the term with w'zb' by parts, one gets

(T- NW')t| Iend + (it & - Nw" + q - p)tbdx = 0. (8.8)

Then once again the normal procedure of variational mechanics gives the partial

differential equation

ib - Xw" +4- 0, (8.9)

with boundary conditions

w'= 0 at x= 0 (8.10)

and

N w' = i' =-(Q+ )/2 at x=l. (8.11)

Notice that the membrane force is equated to the sum of the inertia and the bending

resistance of the stiffener. As in Chapter 7, the pressure load P(x, t) is replaced

by impulsive loading conditions for which p(x, t) = 0 and tb(x,0) = Vf(x), where

V is related to both the maximum pressure amplitude p, and decay constant r of a

pressure pulse shock wave (see Appendix C). The advantage of replacing the pressure

load by an impulse load is a one parameter representation of the pressure load.

The initial conditions to Eq. (8.9) are as follows

w = 0 at t = 0 (8.12)

and
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7b = Vf(x) at t = 0, (8.13)

where f(x) is a shape function used to describe the initial velocity distribution.

With p = 0, Eq. (8.9) represents the inhomogeneous wave equation and the

motion of the shell between stiffeners can be viewed as a rigid-plastic string resting

on a rigid-plastic foundation. The boundary condition at x = 1 shows the coupling

associated with the bay and the stiffener. The stiffener is modeled as a discrete system

with lumped mass R and foundation resistance Q subjected to a forcing input that

is equal to the shear force transmitted from the motion of the bay. Formulating the

principle of virtual velocities for the central bay has therefore enabled us to view the

complex two-dimensional problem as the two coupled sub-systems shown in Figure

8-3.

The computational model of the shell, shown in Fig. 8-3, consists of two discrete

elements of mass R each supported by a discrete spring of constant force Q. The

mass R and the spring Q represent the "equivalent" mass and crushing strength of

the ring stiffener, respectively. The ring-stiffened shell is therefore modeled as a series

of discrete masses and springs connected by a continuous string with an equivalent

mass 7n and foundation constant 4 per unit length.

The bending resistance is calculated once a neutral axis has been located. Cal-

culation of the neutral axis is a formidable task because its position is constantly

changing and the bay and stiffeners shift relative to it. One way of dealing with

this problem is to introduce a new parameter it which is the ratio of the length of

the stiffener footing 2l to the length of the bay 212. With the present model, all

the bending resistance of the stiffener is lumped into one quantity Q. This quantity

depends on the length of the stiffener footing and how far the stiffener has shifted

relative to the neutral axis (Fig. 8-4). Note that eventually the neutral axis of the

stiffener coincides with that of the bay as defined by Eq. (8.5). For the stationary

hinge model these differing shifts relative to the neutral axis are accommodated by

small twists in the "rigid" plates between hinges. It is postulated that the choice of
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Figure 8-3: A continuous-discrete model of a single bay in the ring-stiffened shell.
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parameter i would account for these errors. However, further research on this topic

should be done.

The problem of finding the "effective breadth" 11 has been solved only for the case

of elastic plates under in-plane loading [61]. A similar concept should also applies to

plastic, ring-stiffened shells. Therefore, in the development of the continuous-discrete

system an important decision must be made as to which part of the shell belongs to

the stiffener and which to the string. As shown in Fig. 8-5, the total length of the

bay is divided into the width of base of a stiffener 2l and the length of the string

212, 21 = 2l + 212. There is a fair amount of arbitrariness in the division of the shell

as this division varies with the deflection of the string, illustrated in Fig. 8-5. For

instance, if l = 0, then the stiffener is considered to be a "T" stiffener. On the other

hand, if 11 > 0, the stiffener becomes more of an "I" stiffener.

It must be pointed out that the partition of initial momentum imparted to the

shell between the stiffener and bay also depends on the parameter p. Therefore,

21,1 = Vtiff M (8.14)
2121 = V.h.ellff2l 2 ,

where I is the uniform impulse per unit length, and Vtf and Vhs61 denote the initial

velocity of the stiffener (rigid mass M) and the string, respectively. Furthermore, the

above initial velocity field must be distributed to avoid discontinuities at x = 12, as

shown in Fig. 8-6.

8.1 An Exact Solution of the Partial Differential

Equation

It is convenient to express the initial-boundary value problem to a set of normalized

coordinates. In the normalized coordinate system, Eqs. (8.9)-(8.13) reduce to

zbj - w& + 1 = 0, (8.15)
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with boundary conditions

z=

and with C = Q/(ql) and 7 = I/(itl),

2
wbl + -iv-{+

and initial conditions

and

0 at i = 0

C- = 0 at i = 1,
77

0 at t= 0

Insight from Reference [62] as well as an attempt to solve the problem using the

method of characteristics reveal that the solution is of the form

i = v + a1(1 _ i2) + 0 1 P, (8.20)

where the inhomogeneous terms in the partial differential equation and the boundary

condition at i = 1 are removed if

al-(C - 7
a2 + (8.21)

and

1= -(2 +() (8.22)
2(2 + )

The following describes the resulting homogeneous partial differential system:

17I - iv& = 0, (8.23)

90

1.

(8.16)

(8.17)

(8.18)

(8.19)z0v = if(FE) at i = 0.



with homogeneous boundary conditions

= at i = 0 (8.24)

and

2
Ej + -i- = 0 at i =1, (8.25)

and initial conditions

i = -al(1 - 2 2) at= 0 (8.26)

and

iv = If(x) at t= 0. (8.27)

This initial-boundary value problem can be solved using the method of Fourier series

expansion.

Assume a solution of the form

00

iv = Z[Fnsin(An!) + Gncos(AjE)]cos(Ani). (8.28)
n0O

where An are the eigenvalues and cosAnz forms a complete set of symmetric orthog-

onal functions with respect to a special orthogonality condition. Equation (8.28)

identically satisfies the partial differential equation, Eq. (8.23), and the boundary

condition at i = 0, Eq. (8.24). Satisfying the boundary condition at i = 1 gives the

eigenvalue equation

tanAn = -An. (8.29)
2

The first eigenvalue is the trivial case, Ao = 0. All other eigenvalues depend on

the mass ratio 77. The initial conditions to the partial differential equation specify the

coefficients of Fn and Gn. Notice that the boundary condition at : = 1 relates the
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acceleration to the slope and leads to an important modification of the orthogonality

condition. The special orthogonality condition for this type of boundary condition is

derived in Appendix D. Therefore from Eq. (8.26), one gets

Go + E Gncos(Ani) = -Ct1- 1 2). (8.30)
n1=1

and from Eq. (8.27), one finds

00

AoFo + E An Fn cos(An i) = if(E). (8.31)
n=1

Expressions for Gn and AnFn using the special orthogonality condition, Eq. (D.5) are

derived in Appendix E.

The coefficients are given by

Go = -4a1, (8.32)
3(2 + .)2

Gn = 4a1 (2 + y)cosA" (8.33)
A2(2 + 377COS2An)'

21[foJ f(Z)di + !If(1)]AoF =2 +(8.34)

and

- 2f[fo f(i)cos(An;Z)dx + RcosAnf(1)] (8.35)
(1 + "2.A) + 7cos2 A7 )

Notice that the coefficients AXFn depend on the value of f(1). Recall that the actual

solution for the initial-boundary value problem in a normalized coordinate system is

given by Eq (8.20). Therefore, the actual solution is

00
w- = 1: [F71sin(An!1) + G71COS(An1i)cos(A71i) + al(1 - FC2) + p,1 27 (8.36)

n=O
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4

where a,, 01, Gn, and Fn, are defined by Eqs. (8.21), (8.22), and (8.32)-(8.35). Notice

that the zeroth term of Fn is singular but not AOFO. An expanded version of Eq. (8.36)

is

00

i = AoFol+ Go + >Z[Fnsin(An1) + Gncos(AJ)]cos(An-) + a1(1 - F2) +0 11'. (8.37)

8.2 Unloading

As seen from experimental profiles [47], the total deflection consists of two parts

W = Wi + W,. Furthermore, for the central bay, on which our analysis focuses, the

global deflection wg is described by the motion of the stiffener (see Fig. 8-3),

w = 6g = w(x = 1,t), (8.38)

and the motion of the bay,

= w -w(x = lit) = w - Wg. (8.39)

From Eq. (8.39), one can express the maximum local deflection as 61 = wI(x = 0, t). It

is important to keep a distinction between local and global deflections while analyzing

unloading in order to understand the interplay of bay and stiffener.

For a perfectly plastic cylinder, deformation reaches its final state when the ve-

locity vanishes, tb = 0, -boundary. However, tensile forces in the shell may start to

unload before the velocity vanishes if i = 0, U-boundary. Therefore, several unloading

possibilities can be distinguished, and they are summarized as follows:

If in the interval 0 < x < 1,

1. zb = 0 always before i = 0, then the unloading path is described by the -

boundary and every point in the bay reaches final deflection when ?b = 0.

2. tb = 0 occurs before i = 0 for some but not all x, then the C- and U-boundaries

meet at some points. Given a Fourier series expansion for the transient deflec-
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tion profiles, a solution for the final deformation profile becomes complicated

and will not be pursued any further.

3. i = 0 before tb = 0, the U-boundary is met before the L-boundary. Local

deflection ceases while global deformation continues. Unloading always starts

at x = 0 and propagates towards the stiffener at x = 1. Local motion ceases

because the tensile forces N in the bay are less than the fully plastic tensile

force N so that no additional stretching can take place. The resulting bay

must therefore move as a rigid body with constant but reduced tensile force

N. When this happens, the deformed shell enters Phase II corresponding to

rigid body translation of the string. Phase I is used to describe the deformation

history before any unloading takes place. Phase II unloading will be pursued

in Section 8.3.2 with a two-term Fourier series approximation for the transient

deformation of the shell.

8.3 Experimental Validation

The proposed methodology will now be applied to a ring-stiffened cylinder undergoing

explosive or shock wave loading over its entire length L = 165 in. It is worthwhile to

mention that an engineering approximation to this problem using modal analysis has

already been proposed [46]. Figure 8-7 shows some experimental profiles of a ring-

stiffened cylindrical shell resulting from three consecutive underwater explosion [47].

Since the proposed analysis is based on an undamaged shell, only data from the first

of these explosions is used. The second and the third explosions act on an already

damaged shell. Notice that after the third explosion, the shell undergoes very large

deformation and ruptures. The shell and stiffener dimensions are shown in Figure

8-8.

The assumed pressure distribution is given by Eq. (7.1). The magnitudes of p,

and r which result from each explosion are given in Table 8.1. The material flow

stress o-, is 52, 200 psi and the density p is 0.27 ibm/in3 .

While the amplitude of the pressure distribution varies in x, it is roughly constant
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Figure 8-7: Experimental profiles.
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Figure 8-8: Stiffener dimensions.
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between stiffeners. The constant local pressure amplitude in the central bay is given

by

P = LO cos2 (-)dx. (8.40)
1 o 2L

The mass MI and bending resistance Q of the stiffener must be evaluated in order

to calculate the deformation of the shell. These depend on the geometry of the

stiffeners and are evaluated in Appendix F for the given ring-stiffened shell, taking

11 = tw.

A parabolic shape function is assumed for the shape of the initial velocity distri-

bution f(x)

?b = V(1 - (X/1)2) at t = 0, (8.41)

where V = 31/27n is the amplitude of the velocity calculated so that the total mo-

mentum imparted to the shell is equal to the initial shell momentum calculated by a

parabolic velocity (see Appendix C). A parabolic distribution in the initial velocity is

assumed because it is expected that the initial velocity would be small at the stiffener.

This is because stiffeners generally have a greater mass than the bay and therefore

initially more inertial resistance. Hence, the initial transfer of momentum would be

such that the initial velocity at the stiffener is much less than at the center of the

bay. Given the initial velocity distribution represented by Eq. (8.41), f(1) = 0 and

the coefficients for F, are similar to those of Gn,

AnF - -GnI (8.42)
al

Table 8.2 shows some calculated quantities associated with the first explosion.

Notice that the calculated value of y is 1.45 so that the mass of the stiffener is only 45

percent greater than that of the bay. The assumption of a parabolic distribution for

the initial velocity (zero initial velocity at the stiffener) should therefore lead to some

inaccuracies of the model. In a more refined model, a finite velocity should occur at

the stiffener. The first ten eigenvalues calculated for a chosen mass ratio 77 = 1.45 are
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Table 8.1: Pressure loadings

Explosion No. PO T

1 6359.0 psi 0.367 msec
2 8209.0 psi 0.348 msec
3 8209.0 psi 0.348 msec

given in Table 8.3.

8.3.1 Motion before unloading: Phase I

It was found that a two term approximation (n = 0,1) of the solution for the deflection

converges rapidly because the Fourier coefficients G, are inversely proportional to An

(see Eq. (8.33)), and a good approximation (within 15 percent for the value of the

maximum central deflection) is

= FAol+ Go + [Fisin(Ai) + G1cos(All)]cos(Ap ) + ai(1 - 22) + , 1P. (8.43)

The velocity is then

tib = FoAo + [FiAlcos(A1F) - G1jAsin(Aj!)]cos(AjZ) + 2,@11. (8.44)

Upon differentiating Eq. (8.43) with respect to both time and space, one gets

= -[FijAcos(Ai) - G1jAsin(A 1i)]sin(Aj ). (8.45)

This two-term approximation greatly simplifies the unloading analysis and with

a two-term approximation (ie. i = 0 before ?b = 0), the U-boundary always occurs

before the C-boundary. In fact, unloading takes place instantaneously at a critical

time ic. From the condition that i = 0 and Eq. (8.45), the U-unloading boundary

occurs instantaneously at
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Table 8.2: Calculated quantities for the shell.

7-n N Q N 7o iI C I
15.38 lbm/in 361.64 lbm 1607.14 lb/in 94588.01 lb 3,467,729.24 lb 1.5 1.45 3.62 17.95

c= -tan- ). (8.46)
A1  Aa

This type of unloading leads to rigid body translation because no additional ex-

tensional plastic deformation can take place within the bay. For i > e, motion in

Phase II begins.

The normalized transient deflection and velocity profiles for the central bay in

Phase I which result after the first explosion are shown in Figs. 8-9 and 8-10. The

local deflections increase more rapidly than the global deflection at the stiffener in

Phase I because a greater initial velocity is given to the bay than to the stiffener.

Notice that the initial velocity distribution in Fig. 8-10 is not precisely a parabolic

function as a consequence of the two-term approximation.

8.3.2 Motion after unloading: Phase II

For simplicity, rigid body deflection will be derived in physical variables and later

represented in normalized coordinates. If the rigid body deformation of the bay in

Phase II is denoted wb, the new equation of motion for the bay is

inlib - Nw' + ql = 0, (8.47)

where w' is a constant and depends on the solution of the previous analysis, w' =

w'(l, t,), and N < N is the new value of the tensile force. Notice that Eq. (8.47) is no

longer a partial but a second order ordinary differential equation in time t because wb

is only a function of t. At t = tc, the velocity is given by wb(tc) = zb(l, t,). The final

deflection and velocity in Phase 1 provides initial deflection and velocity in Phase II.

I

99



Phase I
II

0

Qa

-4

0.2 0.4 0.6 0.8

0.3

~~~~~1~~

11.2

Dimensionless axial coordinate, = x/l

Figure 8-9: Normalized transient deflection profiles within the central bay.
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The boundary condition imposed at x = 1 can also be interpreted as rigid body

motion of the stiffener. In Phase II, therefore,

Mfbb + Q + 2Nw' = 0. (8.48)

Eliminating fb from Eqs. (8.47) and (8.48) gives

N= - (8.49)
(M + 2nl)wC

or in normalized coordinates,

N N. (8.50)
(2 + 77)tG

The tensile force between bay and stiffener therefore adjusts itself to a constant value

N. A necessary condition for the development of Case 3 (i = 0 before tb = 0) is that

N < N or < 1.

Equation (8.49) is substituted into either Eqs. (8.47) or (8.48), and Zub is integrated

twice with respect to time to give in normalized coordinates

fvb (2 + (2 + bil + b2, (8.51)
2(2 + 7)

where b1 and b2 are evaluated at the end of Phase I so that

[2#1(2 + 77) + 2 + ]-b1= gic)= A0F0 + [2fl(28.) 2]
(2 + ) (8.52)

and

[2,31(2 + 77) + 2 + (
b2 = 7(1c) = Go - t + cos A (G? + F12). (8.53)

An engineering approximation to this same problem was also done on the basis of

modal analysis [46]. The stiffener footing in the modal solution was such that 2l = t"

or y = 0.020. Due to uncertainties in the quoted values of p, and r, the actual

distribution of the pressure load in the circumferential direction, and an accurate

-1:
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value for the stiffener width, the value of I was adjusted to match the experimental

curve. The uncertainties associated with the loading arise from a complicated fluid-

solid interaction, not considered in the present model. Caution must be advised when

correlating the experimental results from an underwater explosion to a theory that

does not consider the fluid-solid interaction. Even though the peak amplitude p, and

time constant r used in this analysis are believed to represent the contact pressure

acting on the shell rather than the free field pressure, more research needs to be done

to clarify this point.

The transient profiles of the central bay predicted by modal analysis is compared to

the experimental profile resulting from the first explosion in Fig. 8-11. The difference

in magnitude of the maximum central deflection of the bay using modal analysis

and that of the one presented here is only 8 percent. The same plot using the two-

term series approximation would be similar with only about 10 percent difference in

deflection at any location. The modal approximation predicted the ratio of maximum

local to global deflection rather well for the specified value of I. The experimental

value for the ratio of maximum local to global deflection is 1:3, while the analytical

model predicts this ratio to be roughly 1:2. Under the assumption that the adjusted

value for the impulse compensated for the fluid-solid interaction, it is speculated that

the above discrepancy results from: (1) application of a zero initial velocity to the

stiffener (parabolic distribution assumption for the initial velocity distribution), (2)

the effect of the stiffener footing, and (3) the neglect of bending work rate of the shell

in the longitudinal direction, . The first and second factors are related to each

other. The last two influencing factors will be explained in following sections.

It should also be mentioned that if one were to use the quoted values for p, and r,

a stiffener width of 2l = t., and the circumferential pressure distribution described

in Appendix B, then the model will underpredict the deflection profile by roughly an

order of magnitude when compared to the experimental data. Conceivable effects due

to a change in the stiffness parameter with defromation do not appear to account for

this discrepancy [63].
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Table 8.3: First ten eigenvalues calculated for the mass ratio 7 = 1.45.

-1

IAOI A, A2  A'3 A4  A'5 A6  A'7 A8  A9 _
0 2.14 4.98 8.02 11.1 14.2 17.3 20.4 23.6 26.7

0.02

0.01 -

t=0.068s

t=0.114s

-0.03
t=0.161s

w
-R t

t=0.007s

=0. 01 4s

EXPERIMENTAL

Figure 8-11: Transient deflection profiles for the central bay (using modal analysis).
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8.3.3 Effect of stiffener footing

The final deflection profiles for various values of pL are shown in Fig. 8-12. Caution

must be taken when performing such a parametric study because the eigenvalues

given by Eq. (8.29) depend on q, which in turn is a function of both l and 12.

Furthermore, as more of the shell is allotted to the stiffener, the assumption of a

parabolic distribution for the initial velocity should improve the analysis because the

stiffener will have a greater initial inertia resistance.

Global amplitudes diminish as the stiffener footing increases. However, notice

from Fig. 8-12 that as the stiffener width increases the local deformation increases

because the stiffness ratio ( increases more rapidly than mass ratio 77 and that by

adjusting the stiffener footing such that 2l = 2 in, the predicted final displacement

can be brought closer to experimental results.

8.3.4 Neglect of bending work rate in the axial direction

The assumption that *., = 0 is justified for the overall (or global) shell deformations

that extend over several bays. In the global deformation mode, changes in the axial

curvature are indeed very small. However, at the level of a single bay, the curvature

., changes sign twice within a relative short distance l and this assumption would

be violated. A simple estimate of the ratio of the rate of bending work to membrane

work in the bay, per unit length in the circumferential direction is

Wb _ M.k dx h
,-- = X N X = (8.54)
Wm J'O Nxxsxxdx 261'

Therefore, for impulses resulting in the local deflection 61 of the order of shell

thickness, the bending work rate may be substantial. This is precisely the case with

the experimental data on the first explosion for which (61),,, = 0.6 in = 0.5h. The

inclusion of bending resistance would also cause the prediction of the bay deforma-

tion to be closer to experimental results both in terms of the amplitude and shape.

However, the error associated with the neglect of longitudinal bending will diminish

with large impulses and especially impulses that would cause shell rupture.
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Figure 8-12: Final deflection profiles for varying stiffener footing.
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8.4 Calculations of Strain Fields and Fracture Ini-

tiation

A criterion for the onset of shell rupture can be based on strains. The tensile strain

within each bay is expressed by

f = U' + 1(wI)2. (8.55)

Recall that u ~~ 0. For the two-term approximation, the normalized strain distribution

in the shell is therefore be given as

Z = 172 (8.56)
2

where i = (_L)2E. The maximum slope would occur at the stiffener and at time i = ti.

Substituting values for the first Fourier coefficients, one finds that

i-(( = 1, ) = c) = + ajA1) -2a1. (8.57)
A2(2 + 377cos 2A,)

A simple fracture criterion such as f -+ c,, where ec is a measure of the critical

rupture strain, is used to find the condition for first rupture

d ( = ( i = = c Lo v/2icE (8.58)

From Eqs. (8.57) and (8.58), the following failure criterion is proposed for the

stiffened shell

XO 4(2 + 7)sinAjcosA (1c2 + aA2)
1- -2+1~= + 2a 1 , (8.59)TNc A1(2 + 377CO82A,)

where 1c is the critical impulse that would cause the shell to rupture at the stiffener.

In the limiting care of ( = 7, a, = 0 and the above criterion reduces to

=O 4ic(2 + y)sinAjcosA. (8.60)
1 A2(2 + 317cos 2A)
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Equations (8.59) and (8.60) relate the critical impulse L, to all other known parameters

of the stiffened shell. Equation (8.60) is coverted to physical quantities, and thus a

critical impulse to rupture 1c is

= (2 + 37 cos2 i c/f. (8.61)
4(2 + 77)sinA, cos A,

Note that the critical strain enters the above expression in the power 1/2. Therefore,

the critical impulse to rupture depends weakly on e, but strongly on geometrical

parameters of the problem.

In the general case of 7 # C, Ic depends in a complex way on the mass and stiffness

parameters. The definitions of those parameters involve the length of the bay 1, the

width of the stiffener footing 11, and the geometry of the ring stiffener. Therefore Eq.

(8.59) can be used to optimize an explosively load shell against rupture. This will be

the subject of future research.

8.5 A Parametric Study

The simple model will now be tested by performing a parametric study on a few chosen

parameters. These parameters include the impulse velocity V, which incorporates

both the pressure amplitude and time constant; the bending resistance of the stiffener

Q; and the mass of the stiffener M.

It is first necessary to represent both the final local and global deflections in terms

of the normalized parameters v, 77, and (. The final global deflection occurs at I= ff,

where if is given by

tf (2 + (8.62)
(2+C)

Hence, the final global deflection 8gf is

b 2 (2 + 2) + b2  (8.63)
2(2) + (

where b1 and b2 are defined in Eqs (8.52) and (8.53). Notice that 5gf will directly
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depend on I, and vary with 77 and C in a complicated manner.

On the other hand, the final local deflection 61f occurs at t = te or at the end of

Phase 1 and is given by

4(2 + n)cosA1 (1 - cosA)V(12 + Ala1 (8.64)
Af(2 + 377cos 2 A)

Again 31f will depend on 1, 77, and C.

Figures 8-13 - 8-15 show how the maximum global and local deflections vary for

the impulse parameter 1, mass parameter 7, and stiffness parameter C, respectively.

It should be mentioned that for a given ring-stiffener with specified dimensions and

material properties (p and o,) such as the T-stiffener in the experimental data, C and

7 are not totally independent of each other. While C is directly proportional to 0, 71

is proportional to p, and both depend on the shape of the stiffener. However, for the

purpose of a parametric study, each will be fixed while the other is allowed to vary.

As shown in Fig. 8-13, both local and global deflections increase with increasing

impulse loading for the given ring-stiffened shell. A minimum impulse is needed to

actually start global motion and global deflections increase more rapidly than local

deflections for greater impulse values. A minimum impulse is necessary to create

tensile forces large enough to drive the stiffener mechanism.

In contrast to Fig. 8-13, the variation in local and global deflections are not the

same for increasing mass parameter. Keeping the applied impulse and C parameter

constant as in Fig. 8-14, shows how the maximum deflections vary for different values

of 71. As the stiffeners become heavier with respect to the bay, local deformations are

more pronounced while global deflections diminish.

Finally, the variation of global and local deformation with stiffness parameter

is studied in Fig. 8-15. Again the impulse and 77 parameter are kept constant,

while the stiffness parameter is allowed to vary. When C = 0, the stiffener has no

resistance to bending and the global deformation is a maximum. Theoretically, local

deflections should be negligible at C = 0, but this is not shown in Fig. 8-15 because

the mass of the stiffeners was fixed, q = 1.45. When the stiffness ratio is large, local

I
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Figure 8-13: Maximum deflection v. impulse parameter.
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Figure 8-14: Maximum deflection v. mass parameter.
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deflections become more prevalent and may even be greater than global deflections.

Theoretically, an infinite stiffener resistance would prevent any global deformation

and only cause local deformation to take place.
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Figure 8-15: Maximum deflection v. stiffness parameter.
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Chapter 9

Conclusions

A string-on-foundation model has been developed to study the large local non-axisymmetric

plastic deformations of cylindrical shells resulting from impact and explosive loading.

As a result of rigorously derived assumptions and simplifications of the shell, the

model considers two main load-resisting mechanisms in the shell, stretching in the

longitudinal direction and bending in the circumferential direction. An averaging

procedure in the circumferential direction of the shell was used to eliminate one spa-

tial variable. This averaging procedure led to the derivation of equivalent functions,

which were later realized to be equivalent parameters (constants). The problem was

then reduced to the solution of an inhomogeneous, partial differential equation in the

axial direction and time. Closed-form solutions to three particular initial-boundary

value problems were then derived: rigid mass impact on an infinite cylinder; dynamic

pressure pulse loading on an unstiffened shell; impulsive loading on a ring-stiffened

shell. In all cases closed-form solutions of the problem were derived and on that basis

approximate engineering solutions were developed.

The conclusion drawn from the detailed analysis of all the cases considered is that

the string-on-foundation is a powerful model for predicting the transient, plastic re-

sponse of cylindrical shell. To the best of authors' knowledge, such simple, analytical

solutions have never been reported in the open literature. The string-on-foundation

model reveals the important groups of parameters that control the behavior of the

shell under the prescribed dynamic loading and provides valuable insight into the
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physics of the problem. Considering the simplicity of the method, the accuracy of the

predicted deflection profiles was surprisingly good. The string-on-foundation model

may be used for estimating the amount of structural damage to tubes, pipes, and

cylinders and for serving as benchmark solutions to more refined numerical calcula-

tions. Furthermore, the fact that the present methodology gave a rather accurate

description of the displacement and velocity fields in the shell offers the possibility of

predicting the onset of fracture using the shear plugging or tensile necking failure cri-

teria. Simple formulas were derived using these two fracture criteria for the ballistic

limit and the critical impulse to rupture. However, further experimental validation

of the theory is desirable to confirm and/or improve various approximations made in

the development of the model.

One particular area for improvement in the study of projectile impact into the un-

stiffened shell is to incorporate some of the local energy dissipated in the vicinity of

the projectile penetration into the statement of global equilibrium. This is especially

important for a cylinder undergoing high velocity impact because the deformation

zone tends to become more localized with increasing impact velocity. Given a lo-

calized deformation zone, the contribution of local energy would be significant and

would lead to large errors if not considered. In regards to the stiffened shell undergo-

ing underwater explosive loading, both the fluid-solid interaction and the effect of a

shifting neutral axis (treated here as an effective stiffener width) should undergo fur-

ther investigation before any reasonable comparison can be made with experimental

results.
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Appendix A

Kinematics of the Stationary

Hinge Model

During deformation each material point in the ring undergoes displacement which

will be represented here in vector notation W', as shown in Fig. 4-4. Therefore,

W = AX+ Ayj, (A.1)

where i and 3 are unit vectors in the rectangular coordinates. The magnitude of this

vector is given by |iI = w(O), where 9 is the location of each point on the original

cross-section.

Displacements are calculated in two regions as follows:

(i) 0 < 9 < (r - ao)/2

With reference to Fig. 4-4, a point in this region moves from Q to Q'. The final

motion in this region consists of two parts, translation and rotation. The deflec-

tions due to translation are found by considering the relative motion of point B. The

translational components are therefore given by

Axt = 1,(sint - sino,,) (A.2)

and
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Ayt = l0(cosq - cos#,'), (A.3)

where 10 = 2Rcos(a,, + #,). The components due to rotation about B' is also given

by

2q$0 + a0 - 9
Ax,. = -2Rsin( 2 * )[cos(0 +

Ay, = 2Rsin(2 0 + - 9)[sin(3
0

o 9-) - cos(f 0 + -)]2 2

*+ 0)1.2

The rotation term Ax,. is negative because of clockwise rotation about hinge B. The

net displacement is

-. =-w 2 (AXt + Ax,) 2 + (Ayt + Ay.) 2 (A.6)

or after some algebra, the normalized deflection is given by

(W 2 = 16cos2(a + ,)sin2 ) + 16sin 2 0(20 +a ) 2=R" ~ I'O 2 "2 ' 2

-32cos(a, + 0,)sin( 2 )sin( )sin(
2 2

- s in + 0 - f-l - 9
2 2

(ii) (ir - a,)/2 < 0 < ir - a.

Material in this region undergoes only rigid body rotation from point P to point

P', as shown in Fig. 4-4. The x and y component are thus given by

Ax = 2Rcos(a2 )[sin(o + 4. -
2

(ao - sn(2o4- a0 - 92 2

and
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Ay = 2Rcos( 2 )cos( + 0 - ( 0 ))- cos(2,-( 2 M )2 ~ 22

Again the resultant deformation is given by

-# - = 2w .w = w = A 2+ A

(W)2 - 16cos2 (0 +2a, )si 2( -2
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Appendix B

Evaluation of 60, 01, and 02

The equivalent parameters defined in Chapter 4 are found by integration in the cir-

cumferential direction. This introduces three new variables, 00, 01, 02 which are

evaluated from the assumed ring model. Again in a more accurate vectorial represen-

tation, these values depend on the following integrals:

61 = -- --d (B.1)

0 Wo 10

02=] -- . - dO (B.2)

E00= jY .W d8. (B.3)
fo 0 o

It was shown from Appendix A that the distribution of w(O) depends on the central

deflection of the ring. Hence, these integrals vary for each w0 or each x location of the

cylinder. Once expressions are found for the product within the integrals, they can be

numerically integrated in 9 for a given w,. The following sections derive expressions

for the integrand.
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B.1 Calculation of E0

The value of 00 depends on the magnitude and direction of the applied pressure. For

example we will assume the following form for the non-dimensionalized pressure

P- = g(O)cos0i + g(f)sin83, (B.4)
Po

where g(O) describes the shape of presure distribution in the 0-direction. For simplic-

ity, a step function is introduced

r) 00 (B.5)
0 for 101 > 00,

but other functions, such as a cosine could be used without difficulties.

With this definition of the pressure force, the calculation of ), reduces to

0o = ](cosi + sin0j) -dO. (B.6)

The integrand can be easily obtained using the expressions for the derivatives of the

x and y components of ti/R calculated Appendix A. Hence in the two regions, the

integrand is given by the following expressions:

(i) 0 < < (r - a,)/2

The product is

_ Wt _ -[sinocos(a, + 40 )cos(O + 0) - sin('O*~+aO)sin(3 + L)cos]. (B.7)

PO 16o cos(q + P)cos(a0 + 40 )

(ii) (ir - a0)/2 < 0 < r - a,

The product is

P W0  sin3cos(a 0+)cos( + 0) - + (B.8)
PC, Tb ~ cos(a, + O)cos(o + 13)
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B.2 Calculation of 01

When dealing with a ring of unit width, it is not necessary to include the primes

(which denote differentiation in x) in the product ii'/t6, . '/w. The primes will be

omitted henceforth.

The product :/16, . /w, can be found by using that

- [(W)2]. (B.9)

Hence products can be found by taking the derivatives of the expressions calculated

in the previous appendix, Eq. (A.7) and Eq. (A.11). These derivatives are again

evaluated in the two regions.

(i) 0 < 0 < (ir - a.)/2

The product can be expressed as

. = -- f1 + f2 (B.10)
R R R2

where

fi = 4cos 2 (a, + 40.)sin(O - 0.)

-8cos(ao + Oo)sin( 20o + a2 0 (/ in( 2/3foe) (B.11)
2 JSf\2 2

and

f2 = 4sin2(2 0 + a2 - 9 )in(3 - f)

-8cos(ao + Oo)sin( 2 0 a0  
0 )sin( 2 2 )sin( o2P -). (B.12)

However, d is related to by Eq. (4.12), and Eq. (B.10) can be further expressed

in terms of only
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W - W (fU - .f$). (B.13)
R R sino

Note that wi,/ -OI/R can be obtained by setting i/N z-/R(O = 0). Therefore,

(f f2C04--- . -n(B.14)
w wO (f10 - f2oc *

where fio = fi(0 = 0) and f2o = f2(0 = 0). Since the distribution of zi/ut, -151w, in

the 9-direction is a function of 0 and 0 (both of which depend on wo), it will vary for

each deflection w,.

(ii) (7r - ao)/2 < 9 < 7r - ao

The product in this region is

W W 2 + ao
= 4cos2( -)sin(o - (B.15)

2

Hence,

W co2( 9 lo)w . w- Cos 2 (B.16)
o W Cos 2l

B.3 Calculation of 02

The product !'/z, -./ can be found by using the following argument. Define a

quantity W

(B.17)
-tR

But,

Rt R R
(B.18)

R 4

and after some algebra, one gets
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(B.19)el 5 - )()2TV _ (t . 11)3

R R (W )4

Most of the products on the right hand side of Eq. (B.19) were already calculated

from previous analyses. All that is new is the quantity W. Evaluation of W follows

in two regions.

(i) 0 < 0 < (7r - a,)/2

We can express W in terms of complex functions, f3 and f4

W = f342 + f 44. (B.20)

These functions are defined by

A-B cosq$f3 = + cos
2 /

szn2/3
sin3

cos2 kcosl31
sin3 3 I (B.21)

and

f = fl f2cos
sin3

(B.22)

where,

A = 4cos2(a, + 0 )cos( - 0.)

24, + a -e i3#- #3
-8cos(a. + 0,)sin( 2 0 )sin(

2q - j - -0
)cos( 2

B = -8cos(a, + 0,,)sin( 2 2 ), -0)i(2 230
2 2

C = 4sin 2(
2

0bo + ao - 0)Cos(#3 -
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(B.24)

'30)
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+8cos(a, + 0,)sin( 20 2)sin- )Cos( 0 + 0 k o23 -9). (B.25) 2 2 )2s

After substituting this result into Eq. (B.19), one gets

D 3 + E( (B.26)
R R

where,

[f, - f2C 
4 [( ! )2 f3 - [f _ 

2 2(B 
)

D =i, " R ""4 in (B.27)
(R)4

and

[fi _ f2coS4
E = ) J"4. (B.28)

(E)2

The product zw,/R - Wi50/R can be calculated by setting 9 = 0. Hence,

*R *= Do03 + E , (B.29)

where Do and E0 are D and E evaluated at 9 = 0. Thus,

W Wt

W W D.. (B.30)
Wo Wo Do + Eop

Notice that w/to w/W 0 now not only depends on wo but also on the parameter 2

(ii) (7r - ao)/2 < 0 < 7r - ao

W = 4cos2( 9 + a )[c 2 O( - 0 ) + sin(o - Oo)] (B.31)
2

Equation (B.31) is now substituted into Eq. (B.19) so that

W W 2 -snq +ao

R R*)cos 2( 2

+4cos 2( - *)cos 2 ( 2 (B.32)
2 2
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After setting 9 = 0, one finds

W0 W0 = -sin( - OO)cos2

+4cos 2( *)cos 2(-o) .
2 2

Hence,

w w-
Wo Wo

(B.33)

(B.34)
-sin(k - 0")cos2 (O O) + 4cos2(-)cos2(O+to)

-sin(o - O 0)cos
2(4) + 4cos2(-o)cos2(2 )

Again, /i 0.z/tb also depends on the parameter q/q 2. A sensitivity analysis reveals

that / ,. t/u, depends very weakly on 4 2 . For simplification, this ratio is taken

as / 2 = 1.0.
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Appendix C

Calculation of the Impulse

Velocity

When the response time of the shell is much longer than the loading time, the pressure

pulse loading can be replaced by an impulsive loading. Under impulsive loading, the

shell has no loads but is given an initial instantaneous velocity. The pressure load is

thus introduced into the initial velocity of the shell. The pressure impulse is equated

to the initial momentum of the shell

p(x,0, t)ddxdt = mb(x,0, t)ddx, (C.1)

where tj is the loading time and l represents the extent of pressure loading on the

unstiffened shell or the distance between stiffeners for the stiffened shell. Equation

(C.1) reduces to

j j p(x)e dxdt = inJ jf(x)dx, (C.2)

where V is the impulse velocity. Notice that the equivalent parameters are introduced.

Denoting the impulse as I = f' rp(x)dx, one finds the corresponding initial velocity

as
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lic .(C.3)
?in fcf(x)dx
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Appendix D

A Special Orthogonality Condition

The following analysis derives an expression for the special orthogonality condition

for the partial differential system given in Chapter 8 with the accelerating boundary

at x = 1.

The reduced eigenvalue problem for the partial differential equation is

I

WI + A'w = 0, (D.1)

with the prescribed boundary conditions

w'(0) = 0 (D.2)

and

2
- A2w(1) + -w'(1) = 0.

1
(D.3)

Denote the solutions, W1 = w(A 1 ) and w2 = w(A 2 ). After setting w = w, in Eq.

(D.1), multiplying the entire equation by w2, and integrating over the interval 0 to 1,

one finds that

(w''w 2 + Alwiw2)dx = 0. (D.4)

Then, upon integrating W't'w 2 twice by parts and using Eqs. (D.2) and (D.3) to
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evaluate the boundary conditions, one gets

(A2 - A1)[ w1 w2dx +2w1(1)w 2(1)] = 0.(.5)

Hence, for A, 5 A2 ,

w1 w2 dx + W1(1)W2(1) = 0. (D.6)

Equation (D.6) defines the orthogonality condition that must be satisfied for the

eigenvalue problem specified by Eqs. (D.1)-(D.3). Notice that this orthogonality

condition is not one in a classical sense because it describes a moving boundary

condition and not one that is fixed (commonly found in the literature).
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Appendix E

Evaluation of Fourier Coefficients

The variable Jn is used to represent either Gn and F in Chapter 8. The Fourier

coefficients Jn using the special orthogonality condition are represented as

00

E J1cos(A,,x) = f(x), (E.1)
n=O

where An are the eigenvalues and f(x) is any function. It is understood that in

Eq. (E.1) the first eigenvalue is zero, A0 = 0. Therefore, Eq. (E.1) may be more

conveniently expressed as

00

Jo + E Jncos(Anx) = f(x). (E.2)
n=1

Equation (E.1) is multiplied by cosAmx and intergrated from 0 to 1

00 11
O j Jncos(AnX)cos(Amx)dx = j f(x)cos(Amx)dx. (E.3)

The special orthogonality condition Eq. (D.6) may now be introduced into Eq. (E.3)

such that

00 1 00 771
E Jn[ cos(AnX)cos(Ama)dx + 2cosAnCOSAmZ]-E Jn-cosAncosAm = I (x) cos(An)dx.
n=2 n=0 0

(E.4)
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Notice that in using the orthogonality condition derived in Appendix D only the

terms for which n = m are non-zero under the first summation. Therefore,

Cos (mI~x jcos2 Am]VE0nCOSAnCOSm =J1

n=O J-1

f(x)cos(Amx)dx. (E.5)

However, by evaluating Eq. (E.1) at x = 1, one finds that

00

E JncosA, = f(1).
n=O

(E.6)

After substituting Eq. (E.6) into Eq. (E.5) and performing the necessary integration,

one gets

[f l f (x)cos(Amx)d + IcosAmf(1)] form = 1,2,3,...

[}(1 + '"2, 4) + !IeOS2A,]ay aa r Am]

Similarly, it may be shown that for m = 0,

JO=-

(E.7)

(E.8)
2[fJ' f (x)dx + -7f(1)]

22i~
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Appendix F

Lumped Mass M and Bending

Resistance Q

Calculations of the lumped mass R and foundation force Q that represent the T-

stiffener, depend on the extent of the shell which will be used for the stiffener, 2l,

as well as the shifting of the neutral axis (explained in Chapter 8). The length l is

left as free parameter that can be used to describe an effective width effect of the

stiffener. A lower bound of l would be the width of the web t,/2. The initial values

for R and Q (before deformation) are derived here.

The lumped mass for the stiffener shown in Figure F-1 is simply

M = 27rpRO2 [hftf + ht, + 2h1j]. (F.1)

The lumped bending resistance is more complicated because the neutral axis must

first be evaluated. Depending on the stiffener dimensions, the position of the neutral

axis may be represented for the two cases shown in Fig. F-1. Case A occurs for

large stiffeners and Case B for very small ones. Following the rigid-plastic material

assumption, the neutral axes hNA for the two cases are the following:
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F.1 Case A : hNA> h

The neutral axis in this case is

hft1 + (hw + 2h)tw - 2h1(
hNA = .t (F.2)

2tw

After taking moments about this axis, one finds that the total bending moment is

M = o-[hft(L +)hw+h-hNA w+h-hNA]2+ (hNA. +2h 1(hNA -
2 2 2

(F.3)

The total bending moment is used to calculate the bending resistance

Q = 8o[ht( +hw+h-hN A tw~h- N A-h2+2hlj(hNA

(F.4)

F.2 Case B : hNA< h

The neutral axis in this case is

hNA hftf + hwtw + 2h1j
4l

Again moments are taken about this axis

ti h )
M = ao[hft( +hw+h-hNA)+ twhw(- + h - hNA)+ 1 1(h - hNA) 2 + hNA1]

2 2

and hence,

= t +hw+h-hN A)+twhw( +h-h A2N A .
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hNA

Case A

hNA

Case B

Figure F-1: Location of the neutral axis for T-stiffeners.
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Appendix G

Equivalent Thicknesses Based on

Inertia and Bending Work

An equivalent inertia resistance can be found by smearing the ring stiffeners so that

the shell is replaced by one of equivalent thickness, hi. The foot of the stiffener is

given by 2l = ta,. For the T-stiffened shell, hi is found by setting the mass of a

representative length of the stiffened shell (taken here to be the length of the bay)

equal to an unstiffened shell of equal length but with an elevated thickness. An

equation for hi is

hi = 2hl + hwtw+ht (G.1)
21

The same idea is used to calculate the equivalent thickness due to additional

bending resistance of the stiffener. The total bending moment of the stiffened shell

Mb is set equal to the total bending moment of the bay

Mb = - t. (G.2)
4

Again the neutral axis must first be found to calculate Mb. For the perfectly

plastic, T-stiffener shown in Fig. F-1 (Case A), the neutral axis is given by

hNA - (h + hw)tw + hftf (G.3)hNA = ~2tw G3
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The total bending moment associated with the circumferential direction may now be

taken about hNA

Mb = 0,[ tw +
(h+ hw2- hNA) 2 ttw + fhf(f + h + hw - hNA)]

2 f 1 2 wN

Upon equating Eq. (G.2) to Eq. (G.5),

hy= 2 [hN + (h+hw2-hNA)2 2l + (L+h+hw - hNA)].tw 2

136

(G4)

(G.5)



ii

Bibliography

[1] H. E. Lindberg and A. L. Florence. Dynamic pulse buckling: Theory and ex-

periment. Technical Report 6503H, Defense Nuclear Agency, Washington, DC,

1983.

[2] T. A. Duffey. Dynamic rupture of shells. In Structural Failure, edited by T.

Wierzbicki and N. Jones, pages 161-192. Wiley and Sons, 1989.

[3] J. Huang and T. Wierzbicki. Plastic tripping of ring stiffeners. To be published

in Journal of Structural Engineering, Proc. ASCE., 1992.

[4] D. E. Grady and M. Kipp. Fragmentation of solids under dynamic loading. In

Structural Failure, edited by T. Wierzbicki and N. Jones, pages 1-40. Wiley and

Sons, 1989.

[5] T. Wierzbicki and M. S. Suh. Indentation of tubes under combined loading. Int.

J. Mech. Sci., 30:229-248, 1987.

[6] M. S. Hoo Fatt and T. Wierzbicki. Denting analysis of ring stiffened cylindrical

shells. International Journal of Offshore and Polar Engineering, 1(2):137-145,

1991a.

[7] T. Wierzbicki and M. S. Hoo Fatt. Deformation and perforation of a circular

membrane due to rigid projectile impact. In the Proc. of Symp. on the Dynamic

Response of Structures to High-Energy Excitations, 112th ASME Winter Annual

Meeting, volume PVP-225, pages 73-83, Atlanta, Georgia, December 1-6 1991.

137



[8] W. J. Schuman. The response of cylindrical shells to external blast loading.

Technical Report 1461, Ballistic Research Laboratories, March 1963.

[9] J. A. DeRuntz and F. A. Brogan. Underwater shock analysis of nonlinear struc-

tures: A reference manual for the USA-STAGS code (Version 3). Report DNA

554 5F, 1980.

[10] G. F. Carrier. The interaction of an acoustic wave and an elastic cylindrical

shell. Brown University Technical Report No. 4, 1951.

[11] R. D. Mindlin and H. H. Bleich. Response of an elastic cylindrical shell to a

transverse step shock wave. J. Appl. Mech., 20:189-195, 1953.

[12] M. L. Baron. The response of a cylindrical shell to a transverse shock wave.

In the Proceedings of the Second U. S. National Congress of Applied Mechanics,

pages 201-212, 14-18 June 1954.

[13] W. W. Murray. Interaction of a spherical acoustic wave with a beam of circular

cross section. Underwater Explosion Research Division Report 1-55, June 1955.

[14] R. G. Payton. Transient interaction of an acoustic wave with a circular cylindrical

elastic shell. J. Acoust. Soc. Am., 32:722-729, 1960.

[15] R. S. Haxton and J. H. Haywood. Linear elastic response of a ring stiffened

cylinder to underwater explosion loading. In Advances in Marine Structure,

edited by C. S. Smith and J. D. Clarke, pages 366-389. Elsevier Applied Science

Publishers, London, 1986.

[16] R. S. Haxton, J. H. Haywood, and I. T. Hunter. Nonlinear inelastic response

of an infinite cylindrical shell to underwater shock wave loading. In Advances

in Marine Structure, edited by C. S. Smith and J. D. Clarke, pages 334-351.

Elsevier Applied Science Publishers, London, 1991.

[17] W. J. Schuman. Theoretical calculation of iso-damage characteristics. Technical

Report TR-10, J. G. Eng. Res Assoc., February 1970.

138



[18] H. Huang. An exact analysis of the transient interaction of acoustic plane waves

with a cylindrical elastic shell. J. Appl. Mech., 37:1091-1106, 1970.

[19] T. L. Geers. Excitation of an elastic cylindrical shell by a transient acoustic

wave. J. Appl. Mech., 36:459-469, 1969.

[20] T. L. Geers. Scattering of a transient acoustic wave by an elastic cylindrical

shell. J. Acoust. Soc. Am., 51:1640-1651, 1972.

[21] T. L. Geers and C.-L. Yen. Inelastic response of an infinite cylindrical shell to

transient acoustic waves. J. Appl. Mech., 56:900-909, 1989.

[22] P. R. Gefken, S. W. Kirkpatric, and B. S. Holmes. Response of impulsively

loaded cylindrical shells. Int. J. Impact Engng., 7(2):213-228, 1988.

[23] W. Stronge. Impact on metal tubes: Indentation and perforation. In Structural

Crashworthiness and Failure, edited by N. Jones and T. Wierzbicki. Elsevier

Science Publishers, 1993.

[24] G. G. Corbett, S. R. Reid, and S. T. S. Al-Hassani. Static and dynamic pene-

tration of steel tubes by hemispherically nosed punches. Int. J. Impact Engng.,

9(2):105-190, 1990.

[25] S. W. Kirkpatrick and B. S. Holmes. Structural response of thin cylindrical shells

to impulsive external loads. AIAA Journal, 26(1):96-103, 1988.

[26] V. C. Prantil, S. W. Kirkpatrick, B. S. Holmes, and J. 0. Hallquist. Response

of a very thin shell under and impulsive load. In the Finite Element Methods for

Plate and Shell Structures 2: Formulations and Algorithms, edited by T. J. R.

Hughes and E. Hinton. Pineridge Press, Swansea, U.K., 1986.

[27] B. S. Holmes, Kirkpatrick S. W., and J. W. Simons. Application of material

failure models to structural problems. In Structural Crashworthiness and Failure,

edited by N. Jones and T. Wierzbicki. Elsevier Science Publishers, 1993.

139



[28] K. V. Trinh and J. D. Gruda. Failure resistance of thin shells against projectile

penetration. In the Proc. ASME 1991, Pressure Vessel and Piping Conference,

June 1991.

[29] D. J. Bammann, M. L. Chiesa, M. F. Horstemeyer, and Weingarten L. I. Failure

in ductile materials using finite element methods. In Structural Crashworthiness

and Failure, edited by N. Jones and T. Wierzbicki. Elsevier Science Publishers,

1993.

[30] J. P. Den Hartog. Advanced Strength of Materials. McGraw-Hill, New York,

1952.

[31] C. R. Calladine. Thin-walled elastic shells analysed by a Rayleigh method. Int.

J. Sol. Struct., 13:515-530, 1977.

[32] S. R. Reid. Influence of geometrical parameters on the mode of collapse of a

"pinched" rigid-plastic cylindrical shell. Int. J. Sol. Struct., 14:1027-1043, 1978.

[33] T. X. Yu and W. Stronge. Large deflection of a rigid-plastic beam-on-foundation

from impact. Int. J. Impact Engng., 9:115-126, 1990.

[34] W. J. Stronge. Impact and perforation of cylindrical shells by blunt missiles.

In Metalforming and Impact Mechanics, edited by S.R. Reid. Pergamon Press,

Oxford, 1985.

[35] A. Gurkok and H. G. Hopkins. The effect of geometry changes on the load carry-

ing capacity of beams under transverse load. SIAM J. Appl. Math, 25(3):500-521,

1973.

[36] K. A. Rakhmatulin. On propagation of unloading waves [in Russian]. Prikl. Mat.

Mekh, 9:1, 1945.

[37] N. Cristescu. Dynamic Plasticity. North Holland, Amsterdam, 1967.

140



[38] R. R. Rosales, M. S. Hoo Fatt, and T. Wierzbicki. Large amplitude plastic wave

propagation in a string-on-foundation caused by mass impact. To be submitted

to the Quarterly of Applied Mathematics, 1992.

[39] T. Wierzbicki and M. S. Hoo Fatt. Impact response of a string-on-foundation.

Int. J. Impact Engng., 12(1):21-36, 1992.

[40] M. S. Hoo Fatt and T. Wierzbicki. Impact damage of long plastic cylinders under

dynamic pressure loading. In the Proceeding of the First International Confer-

ence of Offshore and Polar Engineering, volume IV, pages 172-182, Edinburgh,

Scotland, 11-15 August 1991.

[41] C. B. Sweeney. Post-perforation analysis of subordnance projectile impact on

thin flat plates. Master's thesis, Massachusetts Institute of Technology, 1992.

[42] M. Suliciu, M. S. Hoo Fatt, and T. Wierzbicki. Large deflection dynamic plastic

response of long cylinders under local pressure pulse. To be submitted to the

Int. J. Impact Engng., 1992.

[43] A. Onoufriou and J. E. Harding. Residual strength of damaged ring-stiffened

cylinders. In the Proc. 4th Int. Symp. Offshore Mech. and Arctic Eng., volume 2,

pages 537-545, Houston, Texas, 1985.

[44] A. S. Onoufriou, A. S. Elnashai, J. E. Harding, and P. J. Dowling. Numerical

modeling of ring stiffened cylinder denting. In the Proc. 6th Int. Offshore Mech

and Arctic Eng. Symp., volume 1, pages 281-289, Houston, Texas, 1987.

[45] B. F. Ronalds and P. J. Dowling. A denting mechanism for orthogonally stiffened

cylinders. Int. J. Mech. Sci., 29(10/11):743-759, 1987.

[46] M. S. Hoo Fatt and T. Wierzbicki. Damage of ring-stiffened cylinders under

pressure loading. In the Proceedings of the Second International Offshore and

Polar Engineering Conference, San Francisco, June 14-19 1992.

[47] W. McDonald. Experimental results of a ring-stiffened shell undergoing under-

water explosive loading. Private Communications, 1992.

141



[48] M. Moussouros, M. S. Hoo Fatt, and T. Wierzbicki. Effect of shear on the plastic

denting of cylinders. To be submitted to Int. J. Mech. Sci., 1992b.

[49] M. S. Suh. Plastic Analysis of Dented Tubes Subjected to Combined Loading.

PhD thesis, Massachusetts Institute of Technology, 1987.

[50] T. Wierzbicki and W. Abramowicz. On the crushing mechanics of thin walled

structures. J. Appl. Mech., 50:727-734, 1983.

[51] M. S. Hoo Fatt and T. Wierzbicki. Damage of plastic cylinders under localized

pressure loading. Int. J. Mech. Sci., 33(12):999-1016, 1991b.

[52] M. Moussouros and M. S. Hoo Fatt. Static rigid-plastic analysis of unstiffened

cylindrical shells. Part 4: Model No. 4 for the cylinder. NSWCDD/TR-92/188,

1992a.

[53] J. A. DeRuntz and P. G. Hodge. Crushing of tubes between rigid plates. J. Appl.

Mech., 30:391-395, 1963.

[54] N. Jones. Plastic failure of ductile beams loaded dynamically. J. Engng. for

Industry, 98 (B):131-136, 1976.

[55] T. Moan. Loads and safety of marine structures. NIF-Course at the Norwegian

Institute of Technology, January 7-9 1985.

[56] J. De Oliveira, T. Wierzbicki, and W. Abramowicz. Plastic behavior of tubular

members under lateral concentrated loading. Technical Report 82-0708, DnV,

July 1982.

[57] J. K. Paik. Damage estimation for offshore tubular members under quasi-static

loading. J. Society Naval Architect of Korea, 26(4):81-93, 1989.

[58] R. H. Cole. Underwater Explosions. Dover Publications Inc., New York, 1948.

[59] J. B. Martin and P. S. Symonds. Mode approximations for impulsively loaded

rigid-plastic structures. J. Engng. Mech. Div., Proc. ASCE, 92(EM5):43-66,

1966.

142



[60] N. Jones. Structural Impact. Cambridge University Press, U.K., 1990.

[61] H. A. Schade. The effective breadth concept in ship structure design. Trans.

SNA ME, 61:410-430, 1953.

[62] J. M. Kelly and T. Wierzbicki. Motion of a circular viscoplastic plate subject to

projectile impact. J. Appl. Math. Phys.(ZAMP), 18:236-246, 1967.

[63] F. A. McClintock. Other possible mechanisms for the stiffened shell. Private

Communications, 1 99 2 .

143




