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Abstract

In resource-constrained inferential settings, uncertainty can be efficiently minimized

with respect to a resource budget by incorporating the most informative subset of

observations - a problem known as active inference. Yet despite the myriad recent ad-

vances in both understanding and streamlining inference through probabilistic graph-
ical models, which represent the structural sparsity of distributions, the propagation

of information measures in these graphs is less well understood. Furthermore, active

inference is an NP-hard problem, thus motivating investigation of bounds on the

suboptimality of heuristic observation selectors.

Prior work in active inference has considered only the unfocused problem, which

assumes all latent states are of inferential interest. Often one learns a sparse, high-

dimensional model from data and reuses that model for new queries that may arise.

As any particular query involves only a subset of relevant latent states, this thesis

explicitly considers the focused problem where irrelevant states are called nuisance

variables. Marginalization of nuisances is potentially computationally expensive and

induces a graph with less sparsity; observation selectors that treat nuisances as no-

tionally relevant may fixate on reducing uncertainty in irrelevant dimensions. This

thesis addresses two primary issues arising from the retention of nuisances in the

problem and representing a gap in the existing observation selection literature.

The interposition of nuisances between observations and relevant latent states

necessitates the derivation of nonlocal information measures. This thesis presents

propagation algorithms for nonlocal mutual information (MI) on universally embed-

ded paths in Gaussian graphical models, as well as algorithms for estimating MI on

Gaussian graphs with cycles via embedded substructures, engendering a significant

computational improvement over existing linear algebraic methods.

The presence of nuisances also undermines application of a technical diminish-

ing returns condition called submodularity, which is typically used to bound the

performance of greedy selection. This thesis introduces the concept of submodular

relaxations, which can be used to generate online-computable performance bounds,

and analyzes the class of optimal submodular relaxations providing the tightest such

bounds.
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Preface

Data are not costless; their acquisition or use requires the exchange of other resources,

such as time or energy. Data are not equally useful; informativeness derives solely

from the ability to resolve particular queries. Observations, realized as data, are

like windows that permit partial glimpses into underlying states, whose values can

never be exactly known and must be inferred. In assessing the informativeness of

observations, it is not enough to consider the clarity of these windows; they must also

face the right directions.
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Chapter 1

Introduction

1.1 Problem Domain

This thesis addresses the problem of focused active inference: selecting a subset of

observable random variables that is maximally informative with respect to a specified

subset of latent random variables. The objective is to reduce the overall cost of

inference while providing greater inferential performance. As only a portion of the

potentially high-dimensional model is useful for resolving a given query, this thesis

explicitly considers the common issue of nuisance variables, whose effective mitigation

requires efficient algorithms for nonlocal information quantification and novel methods

of bounding performance.

This section elucidates the three principal facets of the problem domain consid-

ered in this thesis: uncertainty reduction in Bayesian parameter estimation, analysis

of informational relationships in probabilistic graphical models, and the inferential

relevance of only a subset of latent variables constituent to high-dimensional models.

1.1.1 Active Parametric Uncertainty Reduction

In partially observable domains, latent states must be inferred from observations.

The process that gives rise to realized observations, or data, rarely permits a deter-

ministic mapping to the exact values of latent states. One must maintain a belief,
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a probabilistic representation over possible configurations of latent states, with the

eventual goal of reducing the uncertainty inherent in this belief.

Uncertainty reduction can be achieved through statistical inference, the melding

of existing beliefs with statistics of data to form updated beliefs. However, acquiring

or processing data requires an expense of resources (such as time, money, or energy),

presenting a tradeoff between inferential performance and cost. Consideration of the

active inference problem, in which a selector decides which observations to realize

and supply to the inference engine, can lead to dramatic improvements in utilization

of resources for uncertainty reduction. For example, control of the data acquisition

process in sensor networks can lead to higher inferential performance under constraints

on energy consumed via sensing, computation, and communication [16, 43].

The active inference problem can be specified with one of two "dual" formulations:

minimizing cost subject to an information quota that must be achieved, or maximizing

information subject to a cost constraint. This thesis, as in the larger literature of

which it is a part (e.g., [34, 39, 63, 94]), prefers the latter formulation, as it is generally

more natural to specify resource constraints than information quotas. (The quota

formulation is further discussed in Section 6.2.3.) Likewise, specifying a "cost of

ignorance" that scalarizes uncertainty in terms of a single resource - while providing

a common metric between two fundamentally different quantities - may be very

sensitive to the choice of the conversion factor.

The resource-constrained formulation can be solved by selecting observations based

on a measure of informativeness. Provided that data are not deterministic, their ex-

pected informativeness is derived from the statistical model that relates their behavior

to that of the underlying states one wishes to infer. This thesis considers informative-

ness of observations strictly in the context of Bayesian parameter estimation problems,

the structure of which is described in the following subsection. (Other, more convo-

luted problem classes involving uncertainty reduction are discussed in Section 1.3.)

14



1.1.2 Graphical Model Analysis

This thesis assumes a model has been provided, and the ensuing goal is to interpret

relationships within this model in the context of informativeness. This assumption

is motivated by the hypothesis that, regardless of the specific sensing modalities or

communication platforms used in an information collection system, the underlying

phenomena can be described by some stochastic process structured according to a

probabilistic graphical model. The sparsity of that model can potentially be exploited

to yield efficient algorithms for inference [33, 37, 45]. It bears repeating that the model

being analyzed is merely assumed. The relative appropriateness of the model is not

asserted, as the upstream process of model selection is outside the scope of this thesis.

In the framework of this thesis, data sources are modeled as observable nodes in a

probabilistic network. Subsets of informative data sources are then identified through

algorithms developed in this thesis that, in analogy to graphical inference methods,

capture how measures of informativeness propagate in graphs.

In contrast to methods for estimating information measures directly from raw data

(e.g., [38]), the framework of this thesis: does not require the prior enumeration of

interaction sets that one wishes to quantify; can capture relationships in models with

latent variable structure [17, 54]; and can be used to compute conditional information

measures that account for statistical redundancies between observations.

1.1.3 Focused Inference

It is often of benefit to learn a single, high-dimensional yet parsimonious graphical

model (with potentially many latent variables) whose structure can be exploited for

efficient inference [17, 37, 54, 85]. Given such a model, the objective of many infer-

ential problems is to reduce uncertainty in only a subset of the unknown quantities.

The set of relevant latent variables one wishes to infer may be respecified online as

particular queries or applications arise. Irrelevant latent variables, or nuisances, are

not of any extrinsic importance and act merely as intermediaries between observable

variables and those of inferential interest.
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One option is to simply marginalize out any nuisances, although this approach can

be both computationally expensive and detrimental to the graph's sparsity, which, in

the interest of efficient model utilization, one wishes to retain (cf. Section 2.3.1). As

will soon be demonstrated (in Example 1 below), observation selectors that ignore

the categoric distinctness of nuisance variables by treating them as notionally relevant

can become fixated on reducing uncertainty in irrelevant portions of the underlying

distribution. Therefore, this thesis proposes methods for selecting informative subsets

of observations in graphical models that retain both nuisance variables in the joint

distribution and their categoric distinctness in the selection process.

1.2 Problem Statement

Let x = (x1, .. . , XN) be a collection of N random variables1 indexed by V = {1,. .. ,N

and let the joint distribution px(-) over x be Markov to an undirected graph g = (V, E)

with vertex set V and edge set E. Consider a partition of V into the subsets of latent

variables U and observable variables S, with R C U denoting the subset of relevant

latent variables (i.e., those to be inferred). Given a cost function c : 2S -+ R>0 over

subsets of observations and a budget 3 E R>O, the focused active inference problem

is

maximizeACs I(xIZ; xA)

s.t. c(A) < 6,

where I(.; -) is the mutual information measure (cf. Section 2.2.2).

'Throughout this thesis, random variables may be either scalar or vectoral. In the latter case,
the elements of (XI, .. ., XN) are disjoint subvectors of x.
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1.2.1 Focused vs. Unfocused Selection

The focused active inference problem in (1.1) should be distinguished from the unfo-

cused active inference problem typically considered (e.g., in [39, 94]),

maximizeACs I(xu; xA) (1.2)

s.t. c(A) < #8,

which regards the entirety of the latent state U D R to be of interest. Both the

focused and unfocused problems are known to be NP-hard [36, 41].

By the chain rule and nonnegativity of MI (reviewed in Section 2.2.2), for any

A C S, I(xu; XA) = I(x?; XA) + I(xu\IZ; xA xR) > I(xI; xA). Therefore, maximizing

the unfocused objective does not imply maximizing the focused objective. Focused

active inference must be posed as a separate problem to preclude the possibility of

the observation selector becoming fixated on inferring nuisance variables U \ R as a

result of I(xu\x; XA I xz) being implicitly included in the quantification. In fact, an

unfocused selector can perform arbitrarily poorly with respect to a focused metric,

as the following example illustrates.

Example 1. Let x = (x1 , x 2 , x3, x4 ) C R4 be distributed according to a zero-mean

Gaussian distribution p.(-) = AP(.; 0, P) with symmetric, positive definite covariance

- - -1

J11 J12  0 0

J2 1 J22 J23  0 , (1.3)
0 J32 J33  J3 4

0 0 J43 J 44

where Ji, = Jji E R. It can be shown (cf. Section 2.4.2) that p.(-) can be structured

according to a four-vertex chain (Figure 1-la). Suppose R = {2} is the relevant

set, and that one observable variable from the set S = {1, 4} may be selected. The

focused decision rule, which is strictly concerned with reducing uncertainty in x2 , has

17



X2

X3

(a) Graphical model.

0.8

0.7

0.6

0.4

01

Score vs. J 231 (with J 2 0.3, J
2 

= 05)

- Unfocused Policy
- - - Focused Policy

------ -- ----- -

0- . . 3 . 0 0

0.1 0.2 0.3 A 0.5 0.6

(b) Policy comparison.

Figure 1-1: (a) Graphical model for the four-node chain example. (b) Unfocused
vs. focused policy comparison. The unfocused and focused policies coincide for large

IJ2 3 1; however, as IJ2 31 -+ 0+, the unfocused policy approaches complete performance
loss with respect to the focused measure.

an optimal selection A*(1Z) = argmaxa,{1 4 } I(x 2 ; xa) that can be shown to be [47]

A*(RZ4= (1 -J2 12

IJ23j1{ 1j
2
4j

2 
j:

2  >2 2l'12 3412!O < J
A*(7Z)={1} 34

where 1{.} is the indicator function, which evaluates to 1 when its argument is true

and 0 otherwise.

Conversely, the unfocused decision rule, which considers the set of all latent

states U = {2, 3} to be of inferential interest, has an optimal selection A*(U) =

argmaxagi,4} I(x 2 , x3 ; Xa) that can be reduced, by positive definiteness of P and

through conditional independences in the chain graph, to

A* (U)={4}

I J341 1<|J*4| $
1J121.

The performance gap associated with optimizing the "wrong" information measure

- i.e., using an unfocused selector for a focused uncertainty reduction problem - is

demonstrated in Figure 1-1b. Note that the unfocused decision rule is independent

of J 23 , which effectively parameterizes the informational capacity of edge {2, 3}. For

18



sufficiently large I J23, the two policies coincide and achieve the same performance.

However, as IJ231 -+ 0+, the information that x 3 can convey about x2 also approaches

zero, although the unfocused decision rule is oblivious to this fact.

1.3 Related Research

The concept of informative planning for uncertainty reduction has a long and var-

ied history, subsuming the not entirely overlapping fields of design of experiment

[5, 25, 28, 51], informative motion planning [7, 46, 49, 58, 72], active learning [18,

26, 36, 56, 62, 77, 78, 87, 88], sensor management [12, 43, 75, 93], adaptive sampling

[15, 24, 58, 66], and belief space planning [9, 70, 73, 76, 89]. The area of probabilis-

tic graphical models [33, 37, 45] has developed more recently and is arguably more

cohesive. However, despite abundant interest in probabilistic graphical models and

informative planning, the intersection of these two sets is far from voluminous.

One possible explanation for this gap is that the informative planning literature

has been primarily application-oriented. Sensing platforms and the external phenom-

ena that they are intended to sense are often modeled separately, without a common

computational structure on which to compute belief updates. The resulting opti-

mization over observation selections is necessarily myopic, as the inability to exploit

structure in the underlying distributions can complexify the quantification of long-

horizon informativeness. This would not be as problematic if the reward structure

had a local decomposition. However, in many estimation problems (e.g., simultane-

ous localization and mapping [31, 79]), uncertainty reduction may be driven by events

that unfold over long horizons in spacetime. In the focused problems of interest in

this thesis, myopic observation strategies might be uniformly uninformative about

the states of inferential interest.

This section reviews the existing research most germane to, and in the context of,

the focused active inference problem of (1.1).
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1.3.1 Focused Quantification and Goal-Oriented Inference

The focused problem class explored in this thesis is most similar to the adaptive sam-

pling problem considered in [15], wherein a sensor network selects an observation plan

in spacetime that maximizes mutual information with respect to numerical weather

predictions located in a subset of spatial states at some terminal time. The frame-

work of this thesis can be seen as a generalization of [15] insofar as the relevant set

is an arbitrary subset of latent states and is not constrained to lie in a single slice of

spacetime. The informativeness quantifications of [15] were computed with ensemble

numerical methods and did not exploit sparsity via a graphical model representation.

There are also parallels between focused quantification and the goal-oriented in-

ference framework of Lieberman for identifying or approximating sufficient parameter

subspaces in PDE-constrained stochastic systems where only a subset of prediction

dimensions are relevant [50], although the problem domains of the cited paper and

this thesis are, at least presently, disjoint.

1.3.2 Information-theoretic and Abstract Rewards

Uncertainty reduction is a critical capability for statistical artificial intelligence [86].

In partially observable sequential decision processes, stochasticities (e.g., noisy transi-

tion and emission dynamics) can induce uncertainty in the reward under a particular

policy. One method, referred to as belief space planning, involves the construction of a

notional augmented state space in which each configuration is a belief, i.e., a distribu-

tion over configurations of a lower-dimensional underlying state [8, 35]. Uncertainty

reduction actions may be executed as part of a heuristic that trades off information-

gathering and reward seeking (exploration vs. exploitation) [11, 52]. In the partially

observable Markov decision process (POMDP) framework, an abstract reward func-

tion can be convolved with the transition and emission distributions, inducing for

each policy a distribution over the return from any initial belief state. However, the

same generality that makes this framework appealing also leads to serious issues of

tractability that effectively limit the degree to which global uncertainty can be effi-
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ciently minimized. Despite this limitation, planners with local abstract rewards have

found abundant use. In robot navigation problems, for example, active mitigation

of uncertainty may be required to prevent the robot's state estimate from diverging

[9, 73].

Active inference can be seen as a specific case of belief space planning with a purely

information-theoretic reward function [42]. One can make the following analogy:

active inference is to general belief space planning (i.e., with rewards not exclusive

to uncertainty reduction) as estimation is to direct adaptive control. In estimation,

the performance measure is exclusive to statistics on the error signal of the state

estimates. In direct adaptive control, estimation performance is not specified and is

merely a byproduct of attempting to improve control performance. One consequence

is that it may be problematic to extract a measure of plan informativeness from

variations in abstract reward functions. This thesis considers purely information-

theoretic rewards, which may be nonlocal due to nuisances. A broader goal is the

clarification of uncertainty reduction properties that would enable better scalability

for belief space planning with general, abstract rewards.

1.3.3 Active Learning and Informativeness

An arguably orthogonal problem to active inference is active learning [18, 26, 36],

wherein a set of unlabeled, partially labeled, or incomplete examples are used to

learn a model, which may include structure and/or parameters. (For a comprehensive

review of active learning, see [78].) As in active inference, the overall goal of active

learning is to reduce labeling/completion querying costs while improving the quality

of the model.

Active learning has typically been attempted to reduce the overall labeling cost

in semisupervised discriminative model learning settings. For example, Lizotte et al.

actively learn a naive Bayes discriminative model under a constrained querying bud-

get; the problem is cast as a Markov decision process (MDP), and heuristic solutions

akin to the greedy algorithm are presented [56].

There are, however, examples of active learning of generative models. Tong and
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Koller consider two problem types that involve actively learning a Bayesian network

(directed model) [87, 88] with fewer labeled examples than needed when learning

from independent, random samples of the underlying distribution. In [87], Tong and

Koller actively learn the parameters of a hierarchical categorical distribution (i.e.,

over a finite alphabet) with known structure. The algorithm proposed in [87] is

based on a greedy reduction in the expected posterior risk resulting from making a

query to the network that returns a labeled example. The manipulation of the risk

calculation based on properties of the Dirichlet distribution - the conjugate prior

to the categorical distribution - affords tractability. (Tong and Koller also consider

actively learning the structure of a Bayesian network [88].)

Anderson and Moore present several objective functions, and subsequently algo-

rithms, for actively learning models, states, and paths through homogeneous hidden

Markov models (HMMs) [3]. They later extended their results to minimizing user-

specified risk functions in directed polytrees; all vertices are assumed to be selectable

for observing, and a comparison between their proposed method and mutual infor-

mation quantification assumes an unfocused setting [4].

1.3.4 Active Inference Performance Bounds

The intersection of graphical model analysis and observation selection has been ex-

plored most extensively in the recent active inference literature, primarily to derive

bounds on the suboptimality of heuristic observation selectors in the unfocused set-

ting [27, 39, 94]. These bounds are all based on variations of the greedy selection

heuristic and differ depending on whether the bounds: hold a priori or are computed

online; are open-loop or closed-loop with respect to realizations of selected observa-

tions; or assume homogeneous or heterogeneous costs for observations. The structure

inherent in all such bounds developed thus far has assumed unfocused selection.

Krause and Guestrin leveraged seminal work on submodularity [64] to bound the

suboptimality of open-loop, greedy unfocused selections of unit-cost observations [39].

Similar bounds have also been established when the costs are heterogeneous [40].

Williams et al. provide bounds when the underlying state has additional latent struc-
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ture and when there exist selection constraints [94]. The analysis in [94] also leads

to tighter online-computable suboptimality bounds - using the set of next-best ob-

servable variables not selected by the greedy algorithm at each stage - and diffusive

bounds based on local information measures in graph neighborhoods. A general-

ization of submodularity called adaptive submodularity has also been introduced to

derive closed-loop bounds when the realized observations may be incorporated into

future observation selection decisions [27].

1.4 Main Issues

The contributions of this thesis are directed towards resolving the two primary issues

that arise when retaining - i.e, neither marginalizing out nor willfully ignoring -

nuisance variables in the problem: nonlocality and nonsubmodularity of the informa-

tion measure. Both issues are unresolved in the existing literature and represent gaps

bridged in this thesis.

1.4.1 Nonlocality

In the unfocused problem (1.2) typically considered in the literature, since all latent

variables are of inferential interest, the information measures that must be quantified

are local to the Markov blanket of every observation [39, 94]. In the focused problem

(1.1), observable and relevant latent variables may be nonadjacent in the graphical

model due to the interposition of nuisances between them. Thus, focused observa-

tion selection requires the development of information measures that extend beyond

adjacency, or locality, in the graph. To be of practical use, such nonlocal information

measures must also be efficiently computable.

1.4.2 Nonsubmodularity

Given the exponential complexity inherent in verifying the optimality of solutions to

both the focused and unfocused problems, practitioners of active inference require
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methods for bounding the suboptimality of heuristically generated solutions. In the

unfocused problem, under very mild additional assumptions about the Markov struc-

ture of the graph, performance bounds derived from submodularity can be invoked [39,

64, 94]. In the focused problem, the absence of certain conditional independences,

particularly between observations when conditioned on the relevant latent variable

set, violates the assumptions that permit application of existing submodularity-based

performance bounds [47]. Thus, focused active inference requires the development of

new methods for bounding performance of heuristic selections.

1.5 Summary of Thesis Contributions

Chapter 2 reviews preliminary results, primarily in graphical inference and infor-

mation theory, upon which the contributions of this thesis are constructed. Those

contributions include:

" Decomposition of nonlocal mutual information on universally embedded paths

in scalar and vectoral Gaussian graphical models, enabling a reduction in the

complexity of greedy selection updates on Gaussian trees from cubic to linear

in the network size [Chapter 3, first published in [47]];

* Efficient information quantifications in loopy Gaussian graphs by leveraging the

computational structure in embedded tree estimation of conditional covariance

matrices [Chapter 4, first published in [48]];

" Introduction of submodular relaxations in general (i.e., non-Gaussian) undi-

rected graphical models to derive new, online-computable suboptimality bounds

for observation selection in the presence of nuisance variables, which invalidate

previous submodular bounds; and characterization of the optimal submodular

relaxation providing the tightest such bounds, as well as heuristics for approxi-

mating the optimum [Chapter 5].
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Chapter 2

Preliminaries

This chapter presents general background material upon which the contributions of

this thesis in subsequent chapters are predicated. Additional material specific to

individual chapters will be presented where appropriate.

2.1 Bayesian Inference

Let px(-) denote the joint distribution over a collection x = (x 1 ,..., XN) of N random

variables (or disjoint random subvectors) indexed by the set V = {1,..., N}. For

some subset A C V, the marginal distribution PA () over A may be calculated by

marginalizing out the components of x indexed by B := V \ A according to

PXA (-) = Px(xA, xB) dXB, (2.1)

XB

where XB = HIbEB Xb is the space of all feasible joint configurations of XB.

For disjoint A, C c V, the posterior distribution pxA1x(-Ixc) over XA given the

realization xC := xc may be calculated via Bayes rule, i.e.,

(XIX PXA,XC (XA, XC)
Pxalxc(xAIXC) = ., ,) d . (2.2)
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2.2 Information-theoretic Measures

This section reviews the key results that lead up to the definition, and some useful

properties, of mutual information (MI), the information measure central to this the-

sis. MI is arguably a fundamental statistical quantity, but other measures have been

used to actively select observations. The entropy measure indicates where there is

uncertainty but, as has been noted, does not capture the degree to which it can be re-

duced [74]. A synopsis of the "alphabetical" optimality criteria of experimental design

[5, 51] and their relationships with active inference can be found in [42]. Ali-Silvey

information measures, also known as f-divergences, can be viewed as generalizations

of MI and are discussed as future work in Section 6.2.6.

2.2.1 Entropy

Entropy is one measure of the uncertainty entailed by a probabilistic distribution. As

this thesis primarily considers real-valued data sources, a review of Shannon entropy

for discrete random variables is provided merely to build intuition. The rest of this

subsection proceeds with the differential form for continuous random variables.

Shannon Entropy

For a discrete random vector x = (x1,... ,XN) with alphabet Xv and probability mass

function (pmf) px(-), the Shannon entropy H(x) is defined as [19]

H(x) =A E [ log = p"(x) log px(x), (2.3)
- X XEXv

where the base of the logarithm determines the units (e.g., base e for nats, and base 2

for bits). As 0 < px(x) 5 1 for all x E Xv (by the definition of a pmf), then H(x) > 0.

One interpretation of Shannon entropy is the average length of the shortest description

of a random variable, e.g., in bits. If Xv is finite, the maximum-entropy pmf over x
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can be shown to be the uniform distribution

-1 7X E Xv, 
24PE() = uniform(x; Xv) 11 (2.40, otherwise,

whereby 0 < H(x) 5 log IXv .

Differential Entropy

For a continuous random vector x with probability density function (pdf) px(-) over

the support set Xv, the differential entropy W(x) is defined as

-(x) A E. log = - px(x) log px(x) dx. (2.5)

P X(X) IJ '

Note that px(-) > 0 but is not generally bounded from above at unity, so differential

entropy is not always nonnegative.1

If the partition V = A U B (with U denoting the union of disjoint sets) induces

marginal distributions PXA(.) and pX,(-), then the conditional differential entropy

7-(xAIxB) of XA given XB is

?i(xAIxB) = Px(XA, XB) log pXAIXB (XA XB) dXA dXB (2.6)

= W(XA, xB) - W (xB)- (2.7)

Relative Entropy

Let x E Xv be a continuous random vector, and let p and q be two densities over x.

The relative entropy, or Kullback-Leibler divergence, between p and q is

D(p 11 q) A p(X) logP(X dx. (2.8)
f q(X)

IThis somewhat limits intuitive interpretations of differential entropy. One must also take care
in handling differential entropies that are infinite.
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Note that relative entropy is not generally symmetric, i.e., D(p 11 q) 0 D(q || p), and

is finite only if the support set of p is contained in that of q. (By convention and as

motivated by continuity, let 0 log 0 := 0 =: 0 log 0.) One particularly notable result,

due to Jensen's inequality, is that

D(p 11 q) > 0, (2.9)

with equality if and only if p = q almost everywhere. Therefore, even though differ-

ential entropy can be negative, relative entropy is always nonnegative.

2.2.2 Mutual Information

Mutual information (MI) is an information-theoretic measure of dependence between

two (sets of) random variables. Its interpretation as a measure of entropy reduction

appeals to its use in uncertainty mitigation [10].

Let x E X and y E Y be two random variables with joint distribution px,y and

marginal distributions px and py. Mutual information is a particular evaluation of

relative entropy, namely,

I(x; y) A D(pxy pxpy) = fpXy(x, y) log Px'y(X, dy dx. (2.10)
Ix Jy Px(X)Py (y)

Because relative entropy is always nonnegative, so is MI. Some manipulation of the

MI definition immediately leads to

I(x; y) = R(x) - W(xly)

- N(x) + W(y) - R(x, y)

=Wi(y) - W(yx)

= I(y; x),

so MI is symmetric with respect to its (nonconditional) arguments.

Of particular concern in this thesis are conditional MI measures. Consider the
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continuous random vector x = (x, ... , XN) E Xv, with V = {1, ... , N}. For disjoint

subsets A, B, C C V (with C possibly empty), conditional mutual information can be

specified by augmenting all entropy terms with the appropriate conditioning set, i.e.,

I(xA; XBIXC) - i(xAIxC) + ?i(xBIXC) - 7(XAUBIXC). (2.11)

For convenience, the index sets will often be used as arguments of mutual informa-

tion in place of the random variables they index, i.e., I(A; BIC) = I(xA;xBIXC).

Manipulation of entropy terms leads to the chain rule of MI,

I(A; B U C) = I(A; C) + I(A; BIC). (2.12)

From Equation (2.9), it is clear that

I(A; BC) ;> 0, with equality iff xA I xB XC, (2.13)

where the last statement may be parsed as, "XA is conditionally independent of XB

when conditioned on xC." An intuitive result of the above is the "information never

hurts" principle,

R(AIB U C) < ?i(AIC), with equality iff XA - XB I XC- (2.14)

2.3 Probabilistic Graphical Models

A graph G = (V, E), with vertex set V and edge set E linking pairs of vertices, can

be used to represent the conditional independence structure of a joint distribution

Px(-) over a collection x = (x1,... , XN) of N random variables (or disjoint random

subvectors). While there exist several classes of probabilistic graphical models [37, 45],

many inferential procedures are currently best understood for undirected graphs.

Alternative models are briefly discussed in Section 2.3.2.
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2.3.1 Undirected Graphs

Graph Topology

An undirected graphical model, or Markov random field (MRF), has an undirected

edge set E C ('), where (') denotes the set of all unordered pairs of distinct ver-

tices drawn from V. The neighborhood function I : 2 V -+ 2 V returns the ver-

tices adjacent to any input vertex subset A C V and is defined such that F(A) =

{j :3{i,j} E E for some i E A}.

The topology of an undirected graph g can be characterized, in part, by its

set of paths. A path is a sequence of distinct adjacent vertices (v,... , vm) where

{Vk, Vk+1} E E, k = 1, . . . , m - 1. The diameter of g, denoted as diam(g), is the

length of its longest path.

For disjoint subsets A, B, C C V, where C is possibly empty, let P(A, BIC) denote

the set of all paths between every u E A and v E B in g that do not include vertices

in C.2 If P(A, BIC) = 0, then A and B are graph disconnected conditioned on C. If

IP(u, v) = 1 for distinct u, v E V, then there is a unique path between u and v, and

the sole element of P(u, v) is denoted by fru:. If lP(u, v)I > 1 for some u, v E P, the

Q contains a cycle and is called "loopy."

A graph without cycles is called a tree (or, if disconnected, a disjoint union of

trees appropriately called a forest). A chain is a simple tree with diam(g) = lVi.

A potentially loopy graph g = (V, E) contains a number of useful embedded sub-

structures. A graph GT = (VT, ET) without cycles is a spanning tree of g = (V, E) if

VT = V and ET C E. A maximal spanning tree 9,r of 9 cannot be further augmented

with an edge from 8 \ Er without introducing a cycle. A path is universally embedded

in g if it is contained in every maximal spanning tree embedded in g.

2Alternatively, one could specify paths in the subgraph induced by V \ C. Since this thesis
is framed with the problem of reusing a single high-dimensional model, and since conditioning in
undirected graphs entails simply "deafening" vertices in the conditioning set, directly specifying the
conditioning set wherever possible is preferred over induced subgraph notation.
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Conditional Independence

An MRF can represent conditional independences of the form given by the global

Markov condition: XA -LL XB I xc iff P(A, BIC) = 0. A distribution is said to be

Markov with respect to a graph 9 if it satisfies the conditional independences implied

by g.

Let CI(.) denote the set of conditional independences either satisfied by a distri-

bution or implied by a graph. If CI(9) C CI(p), then g is an independence map, or

I-map, of p. The trivial I-map is a fully connected graph. A minimal I-map is one

such that adding any further conditional independences renders it no longer an I-map;

a minimal undirected I-map is one such that no edge may be removed without vio-

lating the I-map condition. Any particular distribution has within the set of all of its

undirected I-maps a single minimal undirected I-map [37]. It is assumed throughout

this thesis that the structure of the distribution is represented by its unique minimal

undirected I-map.

Conversely, if CI(p) c CI(g), then g is a dependence map, or D-map, of p. The

trivial D-map is a fully disconnected graph, which has no edges. D-maps can be

used as embedded substructures to perform iterative belief updates, as illustrated in

Chapter 4.

Factorization

A subset C C V is a clique in g = (V, E) if for all distinct i, j E C, {i, I} E E. A clique

C is maximal if no strict superset C' D C is also a clique. The Hammersley-Clifford

theorem [30] relates the structure of a graph to the factorization of all distributions

that satisfy its implied conditional independence structure: If px (x) > 0 for all x E X,

then for any undirected graph g to which p is Markov,

Px(X) Oc JJ VPc(xc), (2.15)
CEC

where C is the set of all maximal cliques of g, and for each C E C, )c(-) is a

nonnegative potential function that assigns a weight to every joint configuration xc
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Algorithm 1 STRUCTURALELIMINATION(V, E, B C V, (bi, ... bIBI))

Require: undirected graph Q = (V, E), B C V, elimination ordering (bi, ... , BI)

V +- V, E +- E, 9 +- (V, E)
for k 1,.. ., BI do

V<-V\ {bk}
*- U {{i, j} :i, j E (b), i i}

5: \ {.iJ} EF: i = bk}
9 +- (V, E)

end for
return g

of random subvectors xc participating in C.

Structural Elimination

Let disjoint subsets A, B, C C V form a partition of V, and let b = (bi,..., bIBI) be

an ordering over the elements of B. Marginalizing out XB from the joint distribution

under elimination order b involves the integration

PXAXC (XA, XC) = I . - P(XA, XB, XC) JbbE .. B - - 1- (2.16)

By substituting the factorization (2.15), it is straightforward to show that the integra-

tions of (2.16) induce intermediate marginal distributions Markov to marginal graphs

i, . .. uB. Consider the innermost integration, which corresponds to marginalizing

out bl. Cliques in which b1 does not participate may be moved outside this integral.

The resulting definite integral generates a new potential function corresponding to a

maximal clique over F(bi).

Given only a graph structure g = (V, C), the structural elimination algorithm (Al-

gorithm 1) can be used to examine the marginal graphs resulting from eliminating ran-

dom variables indexed by B C V under a particular elimination ordering (bi,..., bIBI)-

Consider eliminating bk, k E {2,... , IBI}. The resulting graph Ok = (Vk, 4k) will have

a vertex set 9k = ek_1\{bk} and edge set ek = k1U{{i, j} : i, j E gkI1(b), i#i}

{ {iJ} E 4 k-i : i = bk}.

An example of structural elimination is depicted in Figure 2-1, from which it is
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Figure 2-1: Example of marginalizing out nuisances under the elimination order (7,6).

clear that marginalization of nuisances, in addition to being potentially computation-

ally expensive (as incurred by (2.16)), mars the sparsity of the graph.

2.3.2 Alternative models

Several graphical model classes provide an alternative to undirected graphs. Fac-

tor graphs [571 provide a more fine-grained factorization of the distribution than is

permissible in (2.15). Directed models [68] factorize the joint distribution into condi-

tional probability distributions along directed edges in an acyclic graph and can be

used to imply causal relationships. The sets of conditional independences that can be

implied by directed and undirected models are generally not completely overlapping.

The extension of the results of this thesis to factor and directed graphs is an area of

future work.

2.4 Multivariate Gaussian Distributions

This section examines the special case in which x = (x1 ,... , XN) is distributed ac-

cording to a (nondegenerate) multivariate Gaussian

px (x) = ((x; p, P) =- 12.P1/2 exp {-(x - /1)TPl (x - A) (2.17)

with mean vector 1L E [x] and (symmetric, positive definite) covariance matrix

P A E [(x - p) (x - A)T]. Assume without loss of generality3 that each component

3The extension to varying subvector dimensions with d = maXiv dim(xi) is straightforward.
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xi of x is a subvector of dimension d E N+, whereby P E RNdxNd can be partitioned

into an N x N grid of d x d block submatrices.

A multivariate Gaussian distribution can alternatively be represented in the in-

formation form p.(x) = K- 1 (x; h, J) oc exp{-jxTJx + hTx}, with (symmetric, pos-

itive definite) precision or inverse covariance matrix J = P-1 and potential vector

h = Jp. Estimating the mean of a Gaussian is then equivalent to solving the system

of equations

Jx = h. (2.18)

2.4.1 Fundamental Properties

Gaussian distributions have a number of fundamental properties that motivate the

study of information measure propagation in this thesis. The Gaussian is the only

absolutely continuous distribution that can be completely described by its first and

second moments; it is also the maximum entropy distribution for a given mean and

covariance. It is often used to approximate real-valued unimodal data or, due to

the central limit theorem (and under weak conditions), the sum of many arbitrarily

distributed random variables. Gaussians are also closed under various operations,

such as marginalization and conditioning, the latter of which importantly results in a

conditional covariance whose value is independent of the realized configuration of the

conditioning random variable.

2.4.2 Gaussian MRFs

If x - -1 (h, J), the conditional independence structure of px(.) can be represented

with a Gaussian MRF (GMRF) g = (V, 9), where E is determined by the sparsity

pattern of J and the pairwise Markov property: Jjj = (Jji)T # 0 if and only if {i,j} E

S [82]. (An example of an undirected graph g and the sparsity pattern of a precision

matrix J Markov to g is given in Figure 2-2.) Conversely, the covariance matrix P

is generally not sparse and does not satisfy any useful global Markov properties.
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Figure 2-2: (a) An example undirected graph g. (b) Sparsity pattern of precision
matrix J Markov to g. The structure of the graph can be read directly from g or
from the nonzero elements of J.

In a scalar (d = 1) GMRF, V indexes scalar components of x. In a vectoral

(d > 1) GMRF, V indexes disjoint subvectors of x, and the block submatrix Jii can

be thought of as specifying the sparsity pattern of the scalar micro-network within

the vectoral macro-node i E V. Thus, it is possible to have a loopy graph over Nd

scalar vertices that can be partitioned into a tree-shaped graph over N vertices of

dimension d, which can be referred to as a vectoral tree.

2.4.3 Marginalization and Conditioning

Marginalization and conditioning can be conceptualized as selecting submatrices of

P and J, respectively. Of course, in the inferential setting, one has access to J and

not P.

Let disjoint sets A and B form a partition of V = {1,.. . , N}, so that

XX JV-1 hA JAA JAB

XB ,I hB JAB JBB

V (PA PAA PAB

\\pLLB PAB PBB

The marginal distribution PXA (-) over XA is parameterized by mean vector MA and co-

variance matrix PA = PAA, the subvector of pi and block submatrix of P corresponding
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to the rows and columns indexed by A. Alternatively, the marginal distribution in

information form PXA(-) = -1 (.; hA, AA) is parameterized by hA hA - JAB JBshB

and JA = JAA - JAB J B, the latter being the Schur complement of JBB.

Conditioning on a particular realization XB of the random subvector XB induces the

conditional distribution pAIB((-xB) = N-(- ; Ei, JAIB), where hAIB = hA - JABXB,

and JAiB = JAA is exactly the upper-left block submatrix of J. It is especially

noteworthy that the conditional precision matrix is independent of the value of the

realized configuration XB.

2.4.4 Gaussian Belief Propagation (GaBP)

Solving (2.18) by inverting J requires (((Nd) 3 ) operations, which can be prohibitively

expensive for large N. If the graph contains no cycles, then Gaussian belief propaga-

tion (GaBP) [68, 91] can be used to compute the conditional mean, as well as marginal

variances, in O(Nd3 ), providing a significant computational savings for large N. For

graphs with cycles, various estimation procedures have been recently developed to

exploit available sparsity in the graph (cf. Sections 4.1.1 and 4.1.2).

Belief propagation (BP) [68] algorithms are variational inference procedures that

use message passing on a graphical structure to approximate local posterior beliefs.

BP is appealing due, in part, to its graphically intuitive mechanics, its amenability

to implementation and parallelization, and the degree to which it generalizes many

existing algorithms across disparate fields (e.g., [61]).

For Gaussian distributions, starting from the initial message set J(O) 0 and

0) :=0 for all {i, j} E E, the GaBP message passing update equations at time t + 1

are

i-tij jt Ji -i

kEr(i)\{j} (2.19)

0+1= -Jji Jii + JKt hi + E hit .

kEr(i)\{j} kEF(i)\j

For all i E V, marginal distributions px(-) = -1 (-; h{i, J{) for all i E V can
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then be determined by using messages incident to i to compute the marginal precision

matrix JI and marginal potential vector h{i} according to

Jil = Jii + E Jk-+i
kEr(i) (2.20)

hfi} = hi + E hk_,i,
kEr(i)

( 1
from which the marginal covariances P = J and marginal means pi =Pihli,

for all i E V, can be computed in O(Nd').

Conditioning on xC, C C V, can be handled in a variety of ways. Perhaps the

most convenient method is to "deafen" conditioned nodes by prohibiting them from

receiving or processing exogenous messages; if necessary (e.g., for conditional mean

estimation), they can still author their own messages.

For a tree-shaped Gaussian MRF g, it is also possible to compute other local

beliefs. Given a pair of adjacent vertices ij E V such that {i,j} E E, the joint

edge-marginal distribution p,,,,, (., -) can be computed by forming the edge-marginal

precision matrix and potential vector

J, \J- -4 hi j
Jfij} = - hi,jl = (2.21)

Ji Jj\iJ hj\i
where

kEr(i)\{j} kEr(i)\{j}

with symmetric corrections for the other terms.

Parallel GaBP

The message passing updates of (2.19) can be implemented in parallel, which is of

benefit for high-dimensional distributions. For Gaussian trees, parallel GaBP is guar-

anteed to converge to the exact vertex- and edge-marginal distributions in diam(g)

iterations. The overall complexity of parallel GaBP is then 0 (diam(G) - Nd3 ): at
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each of the diam(Q) iterations until convergence, all N nodes perform message up-

dates, each of which requires 0(d3 ) operations to compute.

Parallel GaBP on loopy Gaussian graphs (dubbed loopy GaBP) can be viewed

as a variational approximation that attempts to minimize Bethe free energy, where

the variational distribution is "tree-like" [95]. In general, loopy GaBP, when it does

converge, does so to the correct conditional mean but to incorrect vertex-marginal

variances [91]. There are subclasses of loopy GMRFs (such as diagonally dominant

and walk-summable models [59]) for which convergence in both means and variances

is guaranteed. Other graphical inference techniques for loopy Gaussian graphs are

discussed in Sections 4.1.1 and 4.1.2.

Serial GaBP

For Gaussian trees, the GaBP updates can also be implemented in serial by noting

that vertices at different tiers of the graph may cease to update their messages before

iteration t = diam(g). As G is an undirected graph, consider an arbitrarily chosen

"root" r E V. All nodes i E V \ {r} such that JI'(i)l = 1 are called "leaves." Serial

GaBP proceeds by having the leaf vertices update their messages, then all neighbors

of leaves, and so on up to the root node. When the root node has received all its

incoming messages, it begins disseminating messages back to its neighbors, down

the tree again, to the leaf vertices. At this point all vertices in the tree will have a

complete set of incident messages. The complexity of this approach is O(Nd 3 ): there

are O(N) sequential message updates, each one requiring 0(d3 ) operations to form.

Covariance analysis

The graphical inference community appears to best understand the convergence of

message passing algorithms for continuous distributions on subclasses of multivariate

Gaussians (e.g., tree-shaped [91], walk-summable [59], and feedback-separable [53]

models, among others). Gaussian trees comprise an important class of distributions

that subsumes Gaussian hidden Markov models (HMMs), and GaBP on trees is a

generalization of the Kalman filtering/smoothing algorithms that operate on HMMs.
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Just as covariance analysis is used to analyze the evolution of uncertainty in the

standard Kalman filter [60, 80], one of the goals of this thesis is to provide tools for

performing general preposterior analysis, first for Gaussian trees (cf. Chapter 3), then

for the class of general Gaussian distributions (cf. Chapter 4).

2.4.5 Gaussian Information Measures

If x ~ A/(p, P), where p E R' and P E R"f, then the (differential) entropy of x

is [19]

1
W(x) = - log ((27re)" - det(P)), (2.22)

2

where e is the natural base. For a given subset A C V, the marginal entropy of

subvector XA can be computed by replacing the full covariance matrix in (2.22) with

PA, the covariance parameterizing the marginal distribution.

Let A, B C V be disjoint, and consider the conditional distribution PXAI1B xB)

of subvector XA conditioned on a realization XB = XB. Since this distribution is only

over XA E Rd, application of Equation (2.22) implies

?i(xAIxB = XB) = log ((27re)d -det(PAIB)), (2.23)

where PAIB is the covariance matrix parameterizing PXAIXB('IXB), independent of the

actual realized value XB (cf. Section 2.4.3). Thus, the conditional entropy of XA given

XB is

'i(xAIxB) = EXB [7H(xAIxB = XB)]

1
= log ((27re)d - det(PAIB)) . (2.24)

2

Let PAIC denote the covariance Of XA given XC. For multivariate Gaussians, the
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conditional MI [19] is

I(A; BIC) = W(XA IXC) + '(XB IXC) - R-(XA, XBIXC)

1 det(PAic) det(PBIc)
= - log .(.5

2 det(PAUBIc)

The most important implication of (2.24) and (2.25) is that Gaussian mutual infor-

mation is value independent in the sense that it is in no way influenced by the actual

realized configurations of observable random variables. This suggests that in Gaussian

domains, there is no difference between forming an open-loop information collection

plan (all observations selected before any is realized) and a closed-loop policy (se-

lecting an observation, realizing it, processing it, and selecting the next observation

accordingly).

Computing the marginal covariance matrices needed in (2.25) via matrix inversion

(or taking Schur complements) of JAuBIC generally requires O((Nd) 3 ) operations,

even if one is computing pairwise MI (i.e., JAl = IBI = 1). However, in light of

Equations (2.21) and (2.25), pairwise MI quantities between adjacent vertices i, j E V

may be expressed as

1 1 1
I(i; jIC) = log det(Pilc) + log det(Psjc) - - log det(Pfj}1c), {i, j} E E, (2.26)2 2 2

i.e., purely in terms of vertex- and edge-marginal covariance matrices. Thus, for

Gaussian trees, GaBP provides a way of computing all local pairwise MI quantities

in O(Nd'). The decomposition of nonlocal MI into the sum of transformed local MI

terms is the subject of Chapter 3.

2.5 Greedy Selection

One heuristic commonly used in combinatorial optimization problems is greedy selec-

tion, which is appealing due its computational simplicity and its relationship to the

optimality of matroidal problems [67]. In general, the greedy heuristic is suboptimal,
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Algorithm 2 GREEDYSELECTION-MAX(Z, f, c, 0)

Require: ground set Z, objective function f : 2Z -+ R, subadditive cost function

c: 2Z -+ R>O, budget # 0
1: A +- 0
2: Zfea +- {z E Z: c(z) </3}
3: while Zfea / 0 do
4: d <- argmaxaEzfea, f(A U {a})
5: A- A U {I}
6: Zfea+- {zE Z\A:c(z) :f3-c(A)}
7: end while
8: return A9:= A

although its suboptimality can in some cases be bounded; alternatively, it can be

used to establish (maximization) upper bounds or (minimization) lower bounds on

the optimal objective.

Given a ground set Z, an objective function f : 2Z -+ R one wishes to maximize,

a subadditive cost function c : 2Z -+ R>o (i.e., such that c(A) EaEA c(a) for all

A E 2 z), and a budget # 0, the general greedy selection template in Algorithm 2

sequentially selects the element with the highest marginal gain until the budget is

expended (or until no further selections are affordable).

The greedy heuristic will be referenced throughout this thesis. In Chapter 5, a

technical diminishing returns property called submodularity will be reviewed in the

context of existing unfocused performance bounds and subsequently extended to the

case of distributions with nuisances. The special case of subset selection that will

be examined is unit-cost observations (c(A) = JAl for all A E 2 Z) and bounded-

cardinality constraints (corresponding to # E N). Bounds for unfocused selection

with heterogeneous costs are considered in [40].
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Chapter 3

Gaussian Tree Information

Quantification

In an effort to pave the way for analyzing focused active inference on a broader class of

distributions, this chapter specifically examines multivariate Gaussian distributions

- which exhibit a number of properties amenable to analysis - that are Markov

to tree shaped graphs. This chapter presents a decomposition of pairwise nonlocal

mutual information (MI) measures on universally embedded paths in Gaussian graphs

that permits efficient information valuation, e.g., to be used in a greedy selection.

Both the valuation and subsequent selection may be distributed over nodes in the

network, which can be of benefit for high-dimensional distributions and/or large-scale

distributed sensor networks.

3.1 Information Efficiency

One of the underlying hypotheses of this chapter is that on a universally embedded

path in a graph, the pairwise mutual information between its endpoints should fall off

monotonically. This hypothesis is based on the understanding that graphical models

represent statistical dependencies, and when two adjacent nodes are free to take on

"different" configurations (i.e., when relationships are not deterministic), information

should diminish accordingly on the edge connecting them in the graph.
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In analogy to physical systems, consider the concept of efficiency. The presence of

dissipative forces implies that any efficiency 71 must satisfy q E [0, 1], as in the first law

of thermodynamics. In trying to derive work, for example, there are generally many

constituent energy conversion efficiencies that must be multiplied to obtain the overall

efficiency. The hypothesis of this chapter is that informational relationships can be

specified with similar efficiencies: For any chain of scalar vertices that is universally

embedded in a graph, the (nonlocal) mutual information between its endpoints is

not only monotonically decreasing with the length of the chain, it can be computed

as the product of locally defined efficiencies. The decompositions of nonlocal MI for

Gaussian trees, as presented in the following section, makes explicit the intuitions of

this hypothesis.

3.2 Nonlocal MI Decomposition

For GMRFs with N nodes indexing d-dimensional random subvectors, I(xZ; xA) can

be computed exactly in O((Nd) 3 ) via Schur complements/inversions on the precision

matrix J. However, certain graph structures permit the computation via belief prop-

agation of all local pairwise MI terms I(xi; xj), for adjacent nodes i, j E V in O(Nd')

- a substantial savings for large networks. This section describes a transformation

of nonlocal MI between uniquely path-connected vertices that permits a decompo-

sition into the sum of transformed local MI quantities, i.e., those relating adjacent

nodes in the graph. Furthermore, the local MI terms can be transformed in constant

time, yielding an O(Nd') algorithm for computing any pairwise nonlocal MI quantity

coinciding with a universally embedded path.

Definition 1 (Warped MI). For disjoint subsets A, B, C C V, the warped mutual

information measure W : 2V x 2V x 2- (-oo, 0] is defined such that W(A; BIC) =

logq(A; BIC), where q(A; BIC) A (1 - exp {-2I(xA; xBIxc)}) E [0, 1].

For convenience, let W(i; jIC) A W({i}; {j IC) for i, j E V.

Remark 2. For i, j E V indexing scalar nodes, the warped MI of Definition 1 reduces

to W(i; j) = log IpijI, where pij E [-1, 1] is the correlation coefficient between scalar
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92 9k

(a) Unique path with sidegraphs. (b) Vectoral graph with thin edges.

Figure 3-1: (a) Example of a nontree graph g with a unique path T1:k between nodes

1 and k. The "sidegraph" attached to each node i E t1:k is labeled as 9i. (b) Example

of a vectoral graph with thin edges, with internal (scalar) structure depicted.

r.v.s xi and x3. The measure log pj I has long been known to the graphical model

learning community as an "additive tree distance" [17, 23], and the decomposition for

vectoral graphs presented here is a novel application for sensor selection problems. To

the best of the author's knowledge, the only other distribution class with established

additive distances are tree-shaped symmetric discrete distributions [17], which require

a very limiting parameterization of the potentials functions defined over edges in the

factorization of the joint distribution.

Proposition 3 (Scalar Nonlocal MI Decomposition). For any GMRF 9 = (V, E)

where V indexes scalar random variables, if IP(u, vIC) = 1 for distinct vertices u, v E

V and C C V \ {u,v}, then I(xu; xvlxc) can be decomposed as

W(u; vIC) = E W(i; jlC), (3.1)
{iJ3}E(iu:,i1c)

where E(ITu:viC) is the set of edges joining consecutive vertices of tu:vIc, the sole ele-

ment of P(u,vIC).

(Proofs of this and subsequent propositions can be found in Section 3.6.)

Remark 4. Proposition 3 requires only that the conditional path between vertices u

and v be unique. If 9 is a tree, this is obviously satisfied. However, the result holds

for any induced subgraph 9(V \ C) in which the path between u and v is embedded

in every maximal spanning tree. See Figure 3-la for an example of a nontree graph

with a universally embedded path.

Corollary 5. Let u,v E V and C C V \ {u,v} such that IP(u;vIC)I > 1. Suppose
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that 3D C V \ C \ {u, v} such that IP(u; vIC U D)| = 1. Then due to (2.14), whereby

I(u; vIC) > I(u; vIC U D), Proposition 3 implies that universally embedded paths can

be used to efficiently compute lower bounds for nonlocal MI between multiply-connected

pairs of vertices.

Definition 6 (Thin Edges). An edge {i,j} E E of GMRF g = (V,E), to which the

precision matrix J is Markov, is thin if the corresponding submatrix Jij has exactly

one nonzero scalar component. (See Figure 3-1b.)

For vectoral problems, each node may contain a subnetwork of arbitrarily con-

nected scalar random variables (see Figure 3-1b). Under the assumption of thin

edges (Definition 6), a unique path between nodes u and v must enter intersti-

tial nodes through one scalar r.v. and leave through one scalar r.v. Therefore, let

((u, vjC) E (-oo, 0] denote the warped MI between the enter and exit r.v.s of in-

terstitial vectoral node i on ru:vlc, with conditioning set C C V \ {u, v}. 1 Note that

( v(u,IjC) can be computed online in O(d3 ) via local marginalization given J{ 1 c,

which is an output of GaBP.

Proposition 7 (Thin Vectoral Nonlocal MI Decomposition). For any GMRF g =

(V, 9) where V indexes random vectors of dimension at most d and the edges in E are

thin, if |P(u,vC)I = 1 for distinct u,v E V andC C V \{u,v}, then I(xu; xvlxc) can

be decomposed as

W(u;vUlC) = W(i;jlC) ( (u, v|C). (3.2)
{iaj}e (r.:vic) iE fu:viC\{u,v}

3.3 Vectoral Propagation

In Section 3.2, the scalar metric of mutual information was shown to decompose on

vectoral networks with "thin" edges, i.e., those that could be parameterized with a

single nonzero scalar. For vectoral networks with "thick" edges, mutual information

is a scalarization of a fundamentally vectoral relationship between nodes. Therefore,

'As node i may have additional neighbors that are not on the u-v path, using the notation
(j(u, vIC) is a convenient way to implicitly specify the enter/exit scalar r.v.s associated with the
path. Any unique path subsuming u-v, or any unique path subsumed in u-v for which i is interstitial,
will have equivalent (i terms.
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Algorithm 3 GAUSSMIPROP(g, J, C, r, i, j, Q)

Require: tree-shaped MRF 9 = (V, E), SPD precision matrix J Markov to G, con-

ditioning set C C V, source vertex r E V, vertices ij E V s.t. {i,j} E S, input

matrix Q J{r,i}jc

1: + Y Q, where D, Y, Z E Rdxd
YT Z

2: D +- D - Y(Z - jjs)~1yT

3: Y <- Y(Z - J544)~1Jij
4: Z +- - J (Z - Jy-4)-I ij

5: Q 7 + T Z (= J{rJ}jC)

6: I(r; jIC) +- - log det({r}c) - log det({3 },c) + log det(Q)

7: for k E F(jlC) \ {i} do
8: GAUSSMIPROP(G, J, C, r, j, k, Q)
9: end for

Algorithm 4 INFOSOURCEQ UANT(G, J, C, r)

Require: tree-shaped MRF g = (V, E), SPD precision matrix J Markov to 9, con-

ditioning set C C V, source vertex r E V

1: Run GaBP with conditioning set C (optional: root r)

2: for i E F(rIC) do
3: Q +- J{ri}IC
4: I(r; jC) +- -1 log det({r1 c) - !log det({j} c) + 1 log det(Q)

5: for j E P(iIC) \ {r} do
6: GAUSSMIPROP(G, J, C, r, i, j, Q)
7: end for
8: end for

one would not expect a similar decomposition of nonlocal MI into the sum of local

MI terms. However, the structure of the graph can still be exploited to yield algo-

rithms for efficient information quantification. In this section, a focused information

propagation algorithm with the familiar O(Nd') complexity is derived and is shown

to generalize the results of the previous section.

Proposition 8 (Vectoral Information Propagation). Given a tree-shaped MRF g =

(V, E) to which precision matrix J is Markov, for any node r E V and conditioning set

C c V \ {r}, Algorithm 4 computes the set of nonlocal pairwise mutual information

terms {I(r; iIC)}iEv\c with overall complexity O(Nd 3 ).
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The decompositions of Section 3.2 are special cases of Proposition 8.

Corollary 9. For any unique vectoral pathfru:vlc with interstitial node k E V, then

W (u; vIC) = W (u; kIC) +W (k; vIC) + (k(u; v IC) if k contains a single scalar compo-

nent whose removal completely separates u and v.

3.4 Efficient Focused Greedy Selection

The nonlocal MI decompositions of Section 3.2 can be used to efficiently solve the

focused greedy selection problem, which at each iteration, given the subset A c S of

previously selected observable random variables, is

argmax I I(x; xy xx).
{yES\A : c(y) 5-c(A)}

To proceed, first consider the singleton case R = {r} for r E U. The results

of Proposition 8 indicate that all scores {J(r; ylA)}Ys\A can be can collectively be

computed at each iteration of the greedy algorithm with overall complexity O(Nd3 ).

Now consider |RI > 1. Let R = (ri,..., rijn) be an ordering of the elements of R,

and let Rk be the first k elements of R. Then, by the chain rule of mutual information,

I(R; y I A) = Zl I(rk; y I A U Rk-1), y E S \ A, where each term in the sum is

a pairwise (potentially nonlocal) MI evaluation. The implication is that one can run

IR1 separate instances of GaBP, each using a different conditioning set A U Rk_1, to

compute the initial message set used by Algorithm 4. The chain rule suggests one

should then sum the MI scores of these IZJ instances to yield the scores I(R; yjA)

for y E S \ A. The total cost of a greedy update is then 0 (NIRld3 ).

3.4.1 Distributed Implementation

One of the benefits of the focused greedy selection algorithm is its amenability to

parallelization. All quantities needed to form the initial message set are derived from

GaBP, which is parallelizable and guaranteed to converge on trees in at most diam(g)

iterations [91]. Parallelization reallocates the expense of quantification across net-
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worked computational resources, often leading to faster solution times and enabling

larger problem instantiations than are otherwise permissible. However, full paral-

lelization, wherein each node i E V is viewed as separate computing resource, incurs

a multiplicative overhead of ((diam(g)) due to each i having to send IF(i)I messages

diam(g) times, yielding local communication costs of O(diam(g)jF(i) I - d3 ) and over-

all complexity of O(diam(g) - NIRd 3 ). This overhead can be fractionally alleviated

by instead assigning to every computational resource a connected subgraph of 9 of

appropriate cardinality.

3.4.2 Serial Implementation

It should also be noted that if the quantification is instead performed using serial BP

- which can be conceptualized as choosing an arbitrary root, collecting messages

from the leaves up to the root, and disseminating messages back down again - a

factor of 2 savings can be achieved for R2 , ... , Rj by noting that in moving between

instances k and k + 1, only rk is added to the conditioning set [47]. Therefore, by

reassigning rk as the root for the BP instance associated with rk+1 (i.e., A U Rk as the

conditioning set), only the second half of the message passing schedule (disseminating

messages from the root to the leaves) is necessary. This computational trick that

reuses previous BP results is subsequently referred to as "caching."

3.5 Experiments

To benchmark the runtime performance of the algorithm in Section 3.4, its serial

GaBP variant was implemented in Java, with and without the caching trick described

above. The algorithm of Section 3.4 is compared here with greedy selectors that use

matrix inversion (with cubic complexity) to compute nonlocal mutual information

measures. The inversion-based quantifiers, which are described in the two subsections

that follow, were implemented using Colt sparse matrix libraries [13].
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3.5.1 NaYve Inversion

Whenever a mutual information term of the form I(A; BIC) is needed, the procedure

NaiveInversion conditions J on C and computes the marginal covariance matrices

PAUBIC, PAIc, and PBIc of (2.25) using standard matrix inversion, which is O(N3 d3 ).

A greedy selection update, which requires computing marginal information gain scores

{I(JZ; yIA)}vEs\A, thereby requires O(N 3ISId3 ) operations using this procedure.

3.5.2 Block Inversion

Intuitively, the NaiveInversion procedure appears wasteful even for an inversion-

based method, as it repeats many of the marginalization operations needed to form

{I(?; yIA)},Es\A. The BlockInversion procedure attempts to rectify this. Given

a previous selection set A, BlockInversion conditions J on A and marginalizes out

nuisances U \ R (along with infeasible observation selections {y E S \ A I c(y) >

# - c(A)}) using Schur complements. The complexity of this approach, for each

greedy update, is (((ISI + IRZIS13 + |I1I31SI + N 3)d3 ). BlockInversion has the

same worst-case asymptotic complexity of O(N 3ISId3 ) as NalveInversion but may

achieve a significant reduction in computation depending on how IR| and ISI scale

with N.

3.5.3 Runtime Comparison

Figure 3-2 shows the comparative mean runtime performance of each of the quan-

tifiers for scalar networks of size N, where the mean is taken over the 20 problem

instances proposed for each value of N. Each problem instance consists of a randomly

generated, symmetric, positive-definite, tree-shaped precision matrix J, along with a

randomly labeled S (such that, arbitrarily, ISI = 0.31VI) and 1? (such that 17Z1 = 5),

as well as randomly selected budget and heterogeneous costs defined over S. Note

that all selectors return the same greedy selection; this comparison concerns how the

decompositions proposed in this thesis aid in the computational performance. In the

figure, it is clear that the GaBP-based quantification algorithms of Section 3.4 vastly
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Figure 3-2: Performance of GaBP-based and inversion-based quantifiers used in
greedy selectors. For each N, the mean of the runtimes over 20 random scalar prob-

lem instances is displayed. The BP-Quant algorithm of Section 3.4 empirically has
approximately linear complexity; caching reduces the mean runtime by a factor of

approximately 2.

outperform both inversion-based methods; for relatively small N, the solution times

for the inversion-based methods became prohibitively long. Conversely, the behavior

of the BP-based quantifiers empirically confirms the asymptotic O(N) complexity of

this chapter's method for scalar networks.

3.6 Proofs

In order to prove Proposition 3, it is convenient to first prove the following lemma.

Lemma 10. Consider a connected GMRF G = (V, E) parameterized by precision ma-

trix J Markov to g and a unique path f embedded in G. The marginal precision matrix

J* has block off-diagonal elements identical to those in the submatrix of J correspond-

ing to variables in f, and block diagonal elements that are the Schur complements of

the submatrices corresponding to the sidegraphs separated by fr.

Proof. Assume without loss of generality that the unique path under consideration

is (1,2, ... , k - 1, k). Because #T1:k is unique, the graph g induced by V \ f1:k can be

thought of as the union of conditionally independent "sidegraphs" 01, .. , QO, each of
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which is connected in g to a single node in t1: (see Figure 3-la). Let Jl,, denote

the (block tridiagonal) matrix parameterizing the joint potential (i.e., the product of

singleton and edge potentials in the factorization of the full joint distribution of x)

over the chain (1,... , k). For all i C .. . , k}, let Jig be the matrix parameterizing

the potentials over edges between i and 1'(i) \ r1:k. Likewise, let JO, denote the matrix

parameterizing the joint potential over the subgraph Oi.

Now consider a permutation to the last N-k components of J such that J 1 ,)** Jok

are ordered as such, whereby

Jifl:k lirl:kQ -
JT - J-

In this permuted matrix, J is block diagonal - due to conditional independence of

the sidegraphs - with elements Joi. Similarly, the upper-right block submatrix J,:k,,

is also block diagonal with elements Jio,. Thus, the marginal distribution PX1,..,Xk is

parameterized by a precision matrix

JTl:k = J'R,, - J7rl,, J-l J

where the subtractive term is a product of block diagonal matrices and, thus, is

itself a block diagonal matrix. Therefore, the marginal precision matrix J*:k has

block off-diagonal elements identical to those of the submatrix J,,, of the (full) joint

precision matrix; each block diagonal element is the Schur complement of each J,

i = 1, ... ,7 k.

Remark 11. Lemma 10 implies that if Proposition 3 holds for any chain of length k

between nodes u and v, it must also hold for the more general class of graphs in which

JP(u, v)I = 1 (i.e., there is a unique path between u and v, but there are sidegraphs

attached to each vertex in the path). Therefore, one need only prove Proposition 3

for chains of arbitrary length. Furthermore, conditioning only severs nodes from the

graph component considered; provided C is not a separator for u, v, in which case

I(x,; x Ixc) = 0, one need only prove Proposition 3 for the case where C = 0.

52



Proof of Proposition 3. The proof proceeds by induction on the length k of the chain.

The base case considered is a chain of length k = 3, for which the precision matrix is

Ju J12 0

J J12 J2 2 J23

0 J23 J33

By Remark 2, one need only show that IP131 = IP121 -P231. The covariance matrix

J22J33 - J223 -J12J33 J12J23

det(J) J12 J33  J1lJ33 -JllJ23

J1 2 J23  -J1 1 J23 J11 J22 - J122

can be used to form the correlation coefficients pi, = Pi2 / TiiP, where one can

confirm that

P12 = -J12 J33/ JI1 J33(J22J33 - J223)

P23 = -JuJ23/ Ju J3 (J1J22 - J 2)

P13 = J 12J23/ (J 1 22 - J?2)(J22 J33 - J23)

= P12 P23,

thus proving the base case.

Now, assume the result of the proposition holds for a unique path rl:k of length

k embedded in graph g, and consider node k + 1 E '(k) \ Ti:k. By Lemma 10, one

can restrict attention to the marginal chain over (1, . . . , k, k + 1). Pairwise decom-

position on subchains of length k yields an expression for I(xI; xk), which by (4) can

alternatively be expressed in terms of the determinants of marginal precision matri-

ces. Therefore, if one marginalizes nodes in {2,..., k - 1} (under any elimination

ordering), one is left with a graph over nodes 1, k, and k + 1. The MI between k

and k + 1, which are adjacent in g, can be computed from the local GaBP messages

comprising the marginal node and edge precision matrices. On this 3-node network,
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for which the base case holds,

W(1; k + 1) = W(k; k + 1) + W(1; k)

= W(k; k + 1) + E W(i; j)
{ij}E6(frj)k

W(i; j).
{ij}EE(frj)k+1

Therefore, Proposition 3 holds for both chains and, by Lemma 10, unique paths of

arbitrary length in GMRFs with scalar variables. E

Proof of Proposition 7. The proof follows closely that of Proposition 3. By Lemma 10,

assume without loss of generality that the unique path under consideration is a vec-

toral chain of length k with sequentially indexed nodes, i.e., (1, 2,. .. , k - 1, k). Thin-

ness of edges {i, j} E E implies W(i; j) = log pij1, as before. Let i E {2,..., k - 1}

be an arbitrary interstitial node. On section (i - 1, i, i + 1) of the chain, thinness of

{i - 1, i} and {i, i + 1} implies that on i1:k, there exists one inlet to and one outlet

from i. Let m and q denote the column of Jj-1,j and row of Ji,i+1, respectively, con-

taining nonzero elements. Then the path through the internal structure of node i can

be simplified by marginalizing out, as computed via Schur complement from Jyj in

0(d3 ), all scalar elements of i except m and q. Thus, (i(u, v) is merely the warped

mutual information between m and q, and problem reduces to a scalar chain with

alternating W and ( terms. E

Proof of Proposition 8. As in the proof of Proposition 3, consider a universally em-

bedded chain of length m and assume w.l.o.g. that the nodes in the chain are labeled

lexicographically (1, 2, ... , m). The marginal distribution over (x1 , x2 , x3 ) is parame-

terized by the precision matrix

J,\2 J12 0

J{1,2,3}1 J12 J2\{1,31 J23 ERd~,(

0 J23 J3\2j
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where Jij = (J)i3 and Ji\A = Jii + EkEr(i)\A Jk-+. The (nonlocal) marginal distribu-

tion over (xi, x3) can then be computed in O(d3 ) via Schur complement, i.e,

S[1,3}- \ 0 J2\{, 3 } [JiT2 J2 3] (3.4)
0 J3\2 j2T3

Considering the marginal chain over (1, 3,4,... , m) parameterized by J. The marginal

distribution of (xI, x3, x4) is parameterized by

J1\3 J13  0

J{1,2,3} Ji3 J3\{1,4} J34 E R3dx3d (3.5)

L0 J34  J4\3

However,

Q=J{ 1,3}= [~\3  1 (3.6)
J 3 J3\1

By repeated application of the marginalization, the update rules of Algorithm 3

follow immediately. Note that each call to Algorithm 3 entails 0(1) updates of

complexity O(d3 ), and the recursion on a tree terminates after at most N - 1 edges

have been traversed. Thus, the overall expense of Algorithm 4 is O(Nd 3), after which

one has access to all pairwise MI terms {I(r; iIC)}iEv\c between source r E V and

each other vertex.
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Chapter 4

Information Quantification in

Loopy Gaussian Graphical Models

For Gaussian belief networks with large N (many vertices), evaluating the MI objec-

tive in (1.1) via matrix inversion is cubic in N, which may be prohibitively expensive.

Chapter 3 presented an efficient, exact algorithm for reducing the complexity of pair-

wise nonlocal MI evaluations on Gaussian trees to O(Nd'), i.e., linear in the number

of vertices. The main objective of this chapter is providing a similar reduction in

complexity for loopy Gaussian graphical models. The presented approach is an itera-

tive approximation algorithm for computing (to within a specified tolerance) specific

components of conditional covariance matrices, from which MI can be computed. The

complexity per iteration is linear in N, and the convergence will be demonstrated (in

Section 4.3) to often be subquadratic in N, leading to a relative asymptotic efficiency

over naive linear algebraic techniques.

4.1 Background

4.1.1 Embedded Trees

The embedded trees (ET) algorithm was introduced in [83, 90] to iteratively compute

both conditional means and marginal error variances in Gaussian graphical models
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with cycles. Although the algorithm requires only the identification of subgraphs on

which inference is tractable, and extensions to, for example, embedded polygons [21]

and embedded hypergraphs [14] have been considered, we will focus for clarity of

discussion on embedded trees.

Let x - 1-(0, J) be a Gaussian distributed random vector Markov to an undi-

rected graph g = (V, C) that contains cycles. Consider an alternatively distributed

random vector xT ~JV 1'(0, Jr) that is of the same dimension as x but is instead

Markov to a cycle-free subgraph GT = (V, ET) of g (in the sense that Er C ). The

tree-shaped (and symmetric, positive definite) inverse covariance matrix Jr can be

decomposed as Jr = J + KT, where KT is any symmetric cutting matrix that en-

forces the sparsity pattern of JT by zeroing off-diagonal elements of J corresponding

to cut edges E \ Cr. Since many cutting matrices KT will result in a tree-shaped

inverse covariance Jr Markov to 9,r, we will restrict attention to so-called regular

cutting matrices, whose nonzero elements are constrained to lie at the intersection of

the rows and columns corresponding to the vertices incident to cut edges. Note that

Kr can always be chosen such that rank(Kr) is at most O(Ed), where we will use

E =. I \ ECT to denote the number of cut edges.

Conditional Means

Given an initial solution i(a) to (2.18), the single-tree Richardson iteration [96] in-

duced by embedded tree QT with cutting matrix Kr and associated inverse covariance

Jr = J + KT is

k(n) n j (K1(1) + h) (4.1)

Thus, each update k(n) is the solution of a synthetic inference problem (2.18) with

precision matrix J= Jr and potential vector h -KT(n-1) +h. This update requires

a total of O(Nd 3 + Ed2 ) operations, where O(Nd 3 ) is due to solving Jk(n) = h with

a tree-shaped graph, and where O(Ed 2 ) with E = E \ Eri is due to forming h. In

the case that E is at most O(N), the overall complexity per iteration is O(Nd3 ).
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Letting p(D) = maxXE{A 1 (D)} Al denote the spectral radius of a square matrix D, the

asymptotic convergence rate of the single-tree iteration (4.1) is

p(J 1 Kr) = p(I - Jj'J), (4.2)

with convergence to i guaranteed (regardless of :(0)) if and only if p(Jj Kr) < 1.

Inherent in Equations (4.1) and (4.2) is a tradeoff in the choice of embedded structure

between the tractability of solving Jr() - and the approximation strength of

Jr ~ J for fast convergence.

The ET algorithm [85] is conceptualized as a nonstationary Richardson iteration

with multiple matrix splittings of J. Let {GTj} be sequence of embedded trees

within g, and let {K} _' a sequence of cutting matrices such that J7 = J + Ks

is Markov to gr for n = 1,..., oo. The nonstationary Richardson update is then

i(n) = j-1 (KT(n-1) + h), (4.3)

with error e(n) = () - : that evolves according to

e(n) = J1Ks e("~1. (4.4)

The criterion for convergence is when the normalized residual error I|IKn(^(") -

k("-1 )) 2 /JIh| 2 falls below a specified tolerance c > 0. The sparsity of Krn permits

the efficient computation of this residual.

When {GTr, K }* I' is periodic in n, a convergence rate analysis similar to (4.2)

is given in [85]. It is also demonstrated that using multiple embedded trees can

significantly improve the convergence rate. Online adaptive selection of the embedded

tree was explored in [14] by scoring edges according to single-edge walk-sums and

forming a maximum weight spanning tree in 0(1EI log IN 1).
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Marginal Variances

Given that rank(Kr) 2Ed [83], where E = CE \ Erl, an additive rank-one decom-

position

Kr =ZWinUT, ui E RNd (4.5)

can be substituted in the fixed-point equation [85]

P = J' + J 'KTP, (4.6)

yielding

P = Je' + wi(Jlui)(Pui)T. (47)

Solving for the vertex-marginal covariances Pi = Pij, i E V which are the block-

diagonal entries of P, requires:

" solving for the block-diagonal entries of Ji+, with one-time complexity O(Nd')

via GaBP;

* solving the synthetic inference problems Jrzi = ui, for all O(Ed) vectors ui

of Kr in (4.5), with one-time total complexity O(Nd' - Ed) = O(NEd4 ) via

GaBP;

" solving the synthetic inference problems Jzj = ui, for all O(Ed) vectors ui of

KT in (4.5), with per iteration total complexity of O(NEd4 ) operations via ET

conditional means (4.3);

" assembling the above components via (4.7).

Note that there exists an alternative decomposition (4.5) into O(Wd) rank-one

matrices using a cardinality-W vertex cover of F \ Er (where W < E for any minimal

vertex cover); this alternative decomposition requires solving a symmetric quadratic

eigenvalue problem [851.
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4.1.2 Competing Methods

Other methodologies have been proposed to perform inference in loopy graphs. Loopy

belief propagation is simply parallel belief propagation performed on graphs with

cycles; if it converges, it does so to the correct mean but, in general, to incorrect

variances [91]. Extended message passing augments the original BP messages and

provides for convergence to the correct variances, but its complexity is O(NL 2) in

the scalar case, where L is the number of vertices incident to any cut edge, and

it requires the full message schedule to be executed to produce an estimate [69].

Linear response algorithms can be used to compute pairwise marginal distributions

for nonadjacent pairs of vertices, but at a complexity of O(NIEld3 ), which may be

excessive for large N and JE( = O(N) given that conditional MI requires only very

specific pairwise marginals [92].

It is also possible to perform efficient inference if it is known that the removal of a

particular subset of V, called a feedback vertex set (FVS), will induce a tree-shaped

subgraph [53]. The resulting belief propagation-like inference algorithm, called feed-

back message passing (FMP), has complexity O(Nk 2 ) for scalar networks, where k

is the cardinality of the FVS. If the topological structure of the graphical model is

well known a priori, or if the graph is learned by an algorithm oriented towards form-

ing FVSs [54], then identification of an FVS is straightforward. Otherwise, it may

be computationally expensive to subsequently identify an FVS of reasonable size; in

contrast, finding a spanning tree (as the ET algorithm does) is comparatively simple.

Moreover, for large k, standard FMP might be prohibitively expensive. In such cases,

one may form a subset of vertices called a pseudo-FVS, which does not necessarily

induce a tree-shaped subgraph upon its removal, but for which approximate FMP

returns the exact marginal variances among the pseudo-FVS and inaccurate vari-

ances elsewhere [54]. While FMP relies on a distributed message passing algorithm

for the tree-shaped subgraph and a centralized algorithm among the feedback ver-

tices, Recursive FMP [55] provides protocols to fully distribute both message passing

subroutines.
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4.2 ET Mutual Information Quantification (ET-

MIQ)

This section describes the application of embedded trees to efficient iterative compu-

tation of nonlocal mutual information measures on loopy Gaussian graphs.

It is typically intractable to enumerate all possible selection sets A E 2V and

evaluate the resulting MI objective 1(1; A). Often, one balances tractability with

performance by using suboptimal selection heuristics with either a priori or online-

computable performance bounds [39, 47]. Starting from an empty selection A +- 0,

the greedy heuristic (cf. Section 2.5)

a argmax I(Z; yIA) (4.8)
{yeS\A : c(y)<f3-c(A)}

A+- A U {a}

selects one unselected observable variable with the highest marginal increase in ob-

jective and continues to do so until the budget is expended. By comparison to Equa-

tion (2.25), the MI evaluations needed to perform a greedy update are of the form

1(Z; yIA) = - log det(PRZA) det(Py1 A) (4.9)
2 det(PZU{yJJA)

While inverse covariance matrices obey specific sparsity patterns, covariance matrices

are generally dense. Thus two of the determinants in Equation (4.9) require O(R1 3d3 )

operations to compute. If JRj is O(N) (e.g., the graph represents a regular pattern,

a constant fraction of which is to be inferred), then such determinants would be

intractable for large N. We instead fix some ordering R over the elements of R,

denoting by rk its kth element, Rk = Uf 1{ri} its first k elements, and appeal to the

chain rule of mutual information:

I(Z; y I A) = I(ri;'y I A) + I(r2 ; y I A U R1 ) +

+ I (rz1; y I A U R1i 1-1). (4.10)
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The advantage of this expansion is twofold. Each term in the summation is a pairwise

mutual information term. Given an efficient method for computing marginal covari-

ance matrices (the focus of the remainder of this section), the determinants in (2.25)

can be evaluated in 0(d3 ) operations. More pressingly, conditioning in an undirected

graphical model removes paths from the graph (by the global Markov property), po-

tentially simplifying the structure over which one must perform the quantification.

Therefore, the chain rule converts the problem of evaluating a set mutual informa-

tion measure I(R; yjA) into |R1 separate pairwise MI computations that decrease in

difficulty as the conditioning set expands.

It suffices to describe how to compute one of the [R.I terms in the summation

(4.10); the template will be repeated for the other 17?I - 1 terms, but with a modified

conditioning set. In the remainder of this section, we show how to efficiently compute

I(r; yIC) for all y E S \ C provided some r E R and conditioning set C C V \ {r}.

Since conditioning on C can be performed by selecting the appropriate submatrix of

J corresponding to V \ C, we will assume for clarity of presentation and without loss

of generality' that either C = 0 or that we are always working with a J resulting

from a larger J' that has been conditioned on C. The resulting MI terms, in further

simplification of (4.9), are of the form

I(r; y) = 1 log det(r) det(P )(4.11)
2 det(Pfr,y})

where P{r} = Prr and P{y} = Pyy are the d x d marginal covariances on the diagonal,

and where P{r,y} is the 2d x 2d block submatrix of the (symmetric) covariance P = J-:

Prr Pry
Pr,y} = .Prv)r P Vflj

In addition to the marginal covariances on the diagonal, the d x d off-diagonal

cross-covariance term Pry = (Pyr)T is needed to complete Pfry}. If it were possible to

'Alternatively, the unconditioned J can be used by treating conditioned vertices as blocked (not

passing messages) and by zeroing the elements of h and k(') in (4.1) corresponding to C.
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efficiently estimate the d columns of P corresponding to r, all such cross-covariance

terms Pry,Vy E S, would be available. Therefore, let P be partitioned into columns

{pi}N" and assume without loss of generality that r corresponds to Pi,.., Pd. Let

ei be the ith Nd-dimensional axis vector (with a 1 in the ith position). Then pi

Pei, i = 1,..., d, can be estimated using the synthetic inference problem

Jpi = ei. (4.12)

Thus, by comparison to (2.18) and (4.3), the first d columns of P can be estimated

with a complexity of O(Nd4 ) per ET iteration.

Using the results of Section 4.1.1, the marginal variances can be estimated in

O(NEd') per iteration, where E = IE \ E-I is the number of cut edges. One can

subsequently form each matrix P{ry}, y E S in 0(d2 ) and take its determinant in

0(d'). Since |SI< N, the ET-MIQ procedure outlined in the section can be used to

iteratively estimate the set {I(r; Y)} YES with total complexity O(NEd4 ) operations

per iteration. Returning to the greedy selection of Equation (4.8) and the chain rule

of (2.12), given a subset A C S of previous selections, the set of marginal gains

{I(7Z; yIA)}Es\A can be estimated in O(NIRIEd4 ) operations per iteration.

4.3 Experiments

4.3.1 Alternative Methods

In order to demonstrate the comparative performance of the ET-MIQ procedure of

Section 4.2, we briefly describe alternative methods - two based on matrix inversion

(the NaiveInversion and BlockInversion methods, as detailed in Section 3.5), and

one based exclusively on estimating columns of P - for computing mutual informa-

tion in Gaussian graphs.
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ColumnET

The ColumnET procedure uses nonstationary embedded tree estimation of specific

columns of P to compute all information measures. That is to say, the marginal error

variance terms are not collectively computed using the ET variant of Section 4.1.1.

Given a previous selection set A, and an ordering R over 1?, the columns of PIAURk,_

corresponding to {rk} U S \ A are estimated via (4.3) and (4.12). The complexity of

a greedy update using ColumnET is 0(N7?iSjd 4) operations per ET iteration.

4.3.2 "Hoop-tree" Examples

To investigate the performance benefits of ET-MIQ, we consider a subclass of scalar

(d = 1) loopy graphs containing m simple cycles (achordal "hoops") of length 1, where

cycles may share vertices but no two cycles may share edges. The structure of this

graph resembles a macro-tree over hoop subcomponents (a "hoop-tree"; see Figure 4-

1). Any embedded tree on this graph must only cut m edges (E = m), one for each

i-cycle.

Note that the difficulty in benchmarking the performance of ET-MIQ is not re-

lated to the efficiency of generating a spanning tree. Rather, the difficulty lies is

in generating a randomly structured loopy graph with a specified number of cycles.

The class of hoop-trees is considered here primarily because it permits the generation

of randomly structured loopy graphs without the subsequent need for (potentially

computationally expensive) topological analysis to characterize the number of cycles

and their lengths. Although ET-MIQ is applicable to any Gaussian MRF with cycles,

and its complexity is dependent on the number of edges that must be cut to form

an embedded tree, the class of hoop-trees affords a convenient parameterization of

the number of cycles and the cycle lengths in its members - the particular randomly

generated graphs.

For each problem instance, we generate a random hoop-tree g = (V, 6) of size

lVi = N. To generate a corresponding inverse covariance J, we sample (J)i, ~

unif orm([-1, 1]) for each {i, j} E E, and sample (J)j,j -~ Rayleigh(1), with the
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Figure 4-1: Example of a hoop-tree with 4-vertex cycles.

diagonal resealed to enforce the positive definiteness of J. We then randomly label

vertices in V as belonging to S or U (or neither), set a budget / oc SI, and sample an

integer-valued additive cost function c(.) such that c(s) ~ unif orm( [1, -]) for some

- E [0, 1] and all s E S, and such that c(A) = ZaEAc(a) for all A C S.

Let 9T and K-r, be the embedded subtree and associated regular cutting matrix

formed by cutting the edge of each i-cycle with the highest absolute precision param-

eter I (J)isy 1. Guided by the empirical results of [85], the second embedded tree 9r is

selected such that in every -cycle, KT, cuts the edge farthest from the corresponding

cut edge in the GT, (modulo some tie-breaking for odd 1).

Figure 4-2 summarizes a comparison of ET-MIQ against NaiveInversion, BlockInversion,

and ColumnET in terms of the mean runtime to complete a full greedy selection. Ran-

dom networks of size N were generated, with IR1 = 5 and 1S = 0.3N. The alternative

methods were suppressed when they began to take prohibitively long to simulate (e.g.,

N = 1200 for BlockInversion and ColumnET).

The runtime of ET-MIQ, which vastly outperforms the alternative methods for

this problem class, appears to grow superlinearly, but subquadratically, in N (ap-

proximately, bounded by o(N' 7 )). The growth rate is a confluence of three factors:

the O(NIRIEd4) complexity per Richardson iteration of updating {I(Z; yIA)}sS\A;

the number of Richardson iterations until the normalized residual error converges to

a fixed tolerance of E = 10"0; and the growth rate of 18 as a function of N, which in-
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Figure 4-2: Mean runtime of the full greedy selection as a function of the network

size N for randomized loopy graphs with m = 10 simple cycles of length 1 = 4.

directly affects the runtime through the budget # by permitting larger selection sets,

and hence more rounds of greedy selection. To better disambiguate the second and

third factors, we studied how the number of Richardson iterations to convergence (for

a random input h; cf. (2.18)) varies as a function of N and found no significant cor-

relation in the case where m is constant (not a function of N). The median iteration

count was 7, with standard deviation of 0.6 and range 5-9 iterations.

We also considered the effect of letting rn, the number of cycles in the graph,

vary with N. A runtime comparison for m = 0.1N is shown in Figure 4-3. Given

that E = fn = O(N) and Il?] = 0(1), ET-MIQ has an asymptotic complexity of

O(NRIEd4 ) = O(N 2 ). Similarly, the complexity of ColumnET is O(NRIISd4 ) =

O(N 2 ). Figure 4-3 confirms this agreement of asymptotic complexity, with ET-MIQ

having a lower constant factor.

We repeated the convergence study for m = 0.1N and varying N E [100,2000]

(see Figure 4-4). The mean iteration count appears to grow sublinearly in N; the

actual increase in iteration count over N is quite modest.

The relationship between the convergence and the problem structure was more
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Figure 4-3: Mean runtime of the full greedy selection as a function of the network

size N for randomized loopy graphs with m = 0.1N simple cycles of length 1 = 4.

As predicted, in the case where m = O(N), the ET-based algorithms have the same

asymptotic complexity; ET-MIQ has a lower constant factor.

clearly illustrated when we fixed a network size of N = 1600 and varied the number

of 4-vertex cycles m = 6N, for 6 E [0.04,0.32] (see Figure 4-5). The cycle fraction

6 is strongly correlated with the iteration count - and even slightly more correlated

with its log - suggesting an approximately linear (and perhaps marginally sublinear)

relationship with 6, albeit with a very shallow slope.

4.4 Discussion

This chapter has presented a method of computing nonlocal mutual information in

Gaussian graphical models containing both cycles and nuisances. The base compu-

tations are iterative and performed using trees embedded in the graph. We assess

the proposed algorithm, ET-MIQ, and its alternatives (cf. Sections 4.1.2 and 4.3.1)

in terms of the asymptotic complexity of performing a greedy update. For ET-MIQ,

per-iteration complexity is O(NIRIEd4 ), where N is the number of vertices in the

68



Richardson Iteration Count, m = 0.1 N
10

9.5-

09-

0) 8-
8.5-

.0

" 7.5--

E 7-

6.5-

% 200 400 600 800 1000 1200 1400 1600 18'00 2000 2200
N (network size)

Figure 4-4: Number of Richardson iterations until convergence, for m = 0.1N cycles.

network, R c V is set of relevant latent variables that are of inferential interest, E is.

the number of edges cut to form the embedded tree, and d is the dimension of each

random vector indexed by a vertex of the graph. Let r, denote the expected number

of Richardson iterations to convergence of ET-MIQ, which is a direct function of the

eigenproperties of the loopy precision matrix and its embedded trees and an indirect

function of the other instance-specific parameters (number of cycles, network size,

etc.). The experimental results of Section 4.3 suggest that the proposed algorithm,

ET-MIQ, achieves significant reduction in computation over inversion-based methods,

which have a total complexity of O(NM|S~d'), where S c V is the set of observable

vertices that one has the option of selecting to later realize.

Based on the asymptotic complexities, we expect ET-MIQ would continue to

achieve a significant reduction in computation for large networks whenever IRIEdr, =

o(N2|SI). Typically, the vertex dimension d is not a function of the network size.

For dense networks (191 = O(N2)), we would not expect significant performance

improvements using ET-MIQ; however, it is often the case that 6 is sparse in the

sense that the number of cut edges E = O(N). With |SI = O(N) (the number
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Figure 4-5: Number of Richardson iterations until convergence, for N = 1600 vertices,
m = 6N cycles.

of available observations growing linearly in the network size), asymptotic benefits

would be apparent for 1|Z~n = o(N2). Since we suspect n grows sublinearly (and very

modestly) in N, and whichever system utilizing the graphical model is free to choose

R, we expect that ET-MIQ would be beneficial for efficiently quantifying information

in a wide class of active inference problems on Gaussian graphs.
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Chapter 5

Performance Bounds via

Submodular Relaxations

Given the combinatorial nature of the focused active inference problem of Section 1.2,

it is often intractable to evaluate the information objective I(1?; A) for all A E 2'.

Practitioners often resort to suboptimal heuristics for selecting observations; the ob-

jective then shifts to deriving appropriate bounds on the suboptimality of such heuris-

tics.

This chapter concerns the derivation and improvement of lower bounds on perfor-

mance (or, equivalently, upper bounds on the optimality gap) for the class of general

Markov random fields, to which arbitrary, non-Gaussian distributions with nuisances

may be Markov. Additional background material on MRF topology, submodular-

ity, and associated performance bounds are provided in Section 5.1. An alternative

performance bound predicated on the notion of a submodular relaxation is derived

for general graphical models with nuisances in Section 5.2. Since there exist many

submodular relaxations for a given focused active inference problem, the properties of

optimal submodular relaxations - which provide the tightest such performance bound

- are discussed in Section 5.3. Heuristics for approximating optimal submodular re-

laxations are presented in Section 5.4 and benchmarked in Section 5.5.
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5.1 Preliminaries

5.1.1 More MRF Topology

For subsets A, B, C c V, if P(A, BIC) = 0, then C is a separator set for A and

B. Given that a graph can be composed of one or many connected components, it

is useful to define functions that map vertex sets to those that are adjacent, reach-

able, and "retaining." Let A C V be a subset of vertices. Let F : 2V -+ 2V, A -+

{j : i E A, {i,j} E E} be a neighborhood function that returns all vertices adjacent

to (i.e., that share at least one edge with) elements of A. Furthermore, for any

C C V \ A, let E : 2V x 2V -+ 2V be the reachability function defined such that

E(AIC) {j : P(AjjC) =, 0}. Finally, let Q : 2V x 2V -+ 2V denote the boundary

function, which relates a vertex set to the retaining vertices of its reachability set and

is defined such that Q(AIC) = F (E(AIC)) n C. Figure 5-1 pictorially summarizes

these graph-connective functions.

...............-------------

( | -- -C-

........ . . . . . . . .

Figure 5-1: Summary of graph connectivity terms.

It is often of interest to study self-separation: instead of separating two sets, the

objective is to separate every element of a particular set from all other elements.

Definition 12. For any A C V, we say that C C V \ A is a dissector of A iff

P(i, jIC) = 0 for all distinct i, j E A.
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Thus, if C is an A-dissector, then xi LL xj I xC, for all distinct i, j E A. The

existence of a dissector is a local property relating to the nonadjacency of vertices in

A.

Lemma 13. Given an MRF g = (V, E), a vertex set A C V is dissectible if and only

if An ,(A) = 0. That is, {i,j} E E such that i,j E A.

We will hereafter denote the set of all A-dissectors as Z (A) A { D E 2V\A

D dissects A}.

5.1.2 Submodularity

For any set Z, a set function F : Z -+ R is submodular if for every A c A' C Z,

b A', the diminishing returns property

F(A U {b}) - F(A) F(A' U {b}) - F(A') (5.1)

is satisfied; that is, the marginal improvement in objective F is higher when adding

an element to a particular set than any of its supersets. An equivalent, though less

immediately useful, definition of submodularity would require that for all A, B C Z,

F(A) + F(B) F(A U B) + F(A n B).

A set function F is monotonic if for all A C Z, y E Z, F(A U {y}) F(A). The

following theorem relates monotone submodular set functions to performance bounds

in subset selection problems.

Theorem 14 (Nemhauser et al. [64]). Let F be a monotone submodular set function

over a finite ground set Z with F(0) = 0. Let Ag be the set of the first k elements

chosen by the greedy algorithm. Then

F(Ag) > 1 _ (k- 1k) max F(A) > 1 - max F(A).
- k k ACZ:IAI:5k} e {ACZ:\AIsk}

5.1.3 Unfocused Selection Performance Bounds

Let S and B be disjoint subsets of V, and let F(A) A I(B; A). It is proven in [39] that

if B c Z(S), then F is submodular and nondecreasing on S 2 A. If S is dissectible
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(cf. Lemma 13), then B := U is necessarily an S-dissector (Z(S) # 0 => U E O(S)).

Therefore, I(U; A) is submodular and nondecreasing on S D A. Thus, in the case of

unit-cost observations (i.e., c(A) = JAl for all A C S), the unfocused greedy selection

Ag of cardinality k satisfies the performance bound [39]

1(U; A) (1 - - max I(U; A). (5.2)
k e {Acs:IAIsk}

Remark 15. For any proper latent subset B C U such that B E Z(S), the performance

bound

I(8; A) > 1 - max I(B; A). (5.3)
k e {ACS:IAIsk}

can likewise be established, although such bounds were not employed in prior litera-

ture, which has hitherto only considered unfocused selection.

5.2 Focused Selection Performance Bounds

In the focused variant of the active inference problem, only a proper subset R C U

of relevant latent states is of inferential interest, and nuisance variables U \ 7Z act

merely as intermediaries between S and 1? in the joint distribution px(-). If S is

dissectible (O(S) # 0), then from Section 5.1.3, it is clear that U E Z(S). However,

a primary complication of focused active inference is that 1? C U is not necessarily

an S-dissector, so 1(1?; A) is not necessarily submodular. Inclusion of nuisances in

the model can therefore be conceptualized as a loss of certain beneficial conditional

independences, and hence a loss in the applicability of existing submodularity-based

performance bounds.

Further compounding the issue is the fact that marginalizing out nuisances U \ 1?

- in addition to being potentially computationally expensive - induces a marginal

graph in which S is may no longer be dissectible (cf. Figure 2-1).

This thesis proposes an augmentation of the relevant set R such that submod-

ularity is guaranteed and relates the performance bound to this augmented set.
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More concretely, an online-computable performance bound for focused observation

selection problems is derived by introducing the concept of a submodular relaxation

7 E 2U, where "relaxation" connotes that 7? D R, and "submodular" connotes that

R E Z(S). Therefore, let N {1Z E 2 :7 D R, 7? E (S)} denote the set of

all feasible submodular relaxations, which is guaranteed to be nonempty whenever

S is dissectible. By [39, Corollary 4], for any 7? E 91, I(R; A) is submodular and

nondecreasing on S D A.

Let A' : 2U -+ 2S be a function mapping a latent subset D C U to the associated

subset A C S that greedily maximizes the focused MI measure I(D; A), subject

to budget 3 E R O, according to the sequential greedy algorithm of Section 2.5.

Assuming unit-cost observations, a greedily selected subset A' (7) of cardinality #

satisfies the performance bound

I(R; A(7)) > ( - max I (R; A) (5.4)
- e / ACs:JAJsO}

= max [I(7?; A) + I(7 \ R; AIR)] (5.5)
e {A9s:JAJs#}

> -- max I (R; A), (5.6)
~~e {ACs:JAJ<6}

where (5.4) is due to (5.3), (5.5) to the chain rule of MI, and (5.6) to the nonnega-

tivity of MI. Then the following proposition, which follows immediately from (5.6),

provides an online-computable performance bound for any distribution px in which S

is dissectible in the (unique [37]) minimal undirected I-map of px.

Proposition 16. For any set 7? E 91, provided I(7; A9(1?)) > 0 and c(A) = IAI for

all A C S, an online-computable performance bound for any A C S in the original

focused problem with relevant set R is

I(M; A) > z(A, T) max I(R; A), (5.7)

where
A g I(; A) 1)

Jiz(A, 7) I (R Ag 1 - e (5.8)
I( 0 AX())
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Proposition 16 can be used at runtime to determine what percentage 61Z(A, 1Z)

of the optimal objective is guaranteed, for any focused selector, despite the lack of

conditional independence of S conditioned on R. Note that 61z(A, 1?) need not be

bounded above by (1 - 1/e), as the coefficient in (5.8) may exceed unity. In order

to compute the bound, a greedy heuristic running on a separate, surrogate problem

with 1? as the relevant set is required. The remainder of this chapter is devoted to

the problem of finding an 1? D1 R providing the tightest bound.

5.3 Optimal Submodular Relaxations

In light of Proposition 16, it is natural to inquire if there exists an optimal submodular

relaxation, i.e., an 1? E 9^ that provides the tightest performance bound in (5.7) by

minimizing the denominator of (5.8). Given MRF ! = (V, C), observable subset

S C V (assumed dissectible), and relevant set R C V \ S, the problem statement is

then

minimize I(1;Aj(1)). (5.9)

There are 2 0uHIID possible relaxations of R, so the feasible set 9t has worst-case

cardinality exponential in the number of nuisance variables. Therefore, confirmation

that a submodular relaxation is optimal in the sense of (5.9) can have exponential-

time complexity, which may be prohibitive for large graphs (i.e., high-dimensional

distributions) with many nuisance variables. Marginalization of nuisances lying out-

side the optimal submodular relaxation, in an effort to truncate the search space over

91, remains impracticable because specifying such an elimination order presupposes

knowledge of the members of the optimal submodular relaxation.

Several properties of submodular relaxations can be elicited by considering the

following example.

Example 2. Let D, D' E fh be submodular relaxations of R that are strictly nested
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(in the sense that D C D'), and consider without loss of generality' the case where

D'\ D = {d}.

For any A C S, and for each s E S \ A,

I(s; D'IA) Q I(s; DIA) + I(s; d I D U A)

I(s; DIA) + I(s; jID),

where (a) is due to the chain rule of MI, and (b) is due to D E 91, whereby P(s, AID) =

0 for any s E S \ A. The greedy selection Ag (D) is formed by selecting at step

k E {1, ... , I}

sk E argmax I(s; DIAk-1) (5.10)
sES\Ak-1

Ak +- Ak-1 U {Sk},

while for Ag(D'),

s' E argmax I(s; DIA'-_ 1) + I(s; jID) (5.11)
SE S\A's _1

A'i <- A'- 1 u {ks}.

Since D E 91, then for the graph conditioned on D, j lies in a component containing

at most one s E S. Thus, I(s; jID) > 0 for at most one s E S. The effect of removing

j from D' E 91 can be better delineated by considering two cases for where j lies.

Case 1: J V E (Ag(D') I D). In this case, I(s; jID) = 0 for all s E Ag(D').

Therefore, by comparison of (5.11) with (5.10), {sik}i = {s' => Ag(D) =

Ag(D'). Thus,

I(D'; Ag(D')) I(D; Ag(D')) + I(d; Ag(D')ID)

=I (D; A' (D'))

I (D; A (D))

1The general case where JD'\ DI > 1 can be established through induction.
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where (a) is due to the chain rule of MI, (b) to the assumption that c ( E (Ag(D') I D),

and (c) to the result above.

Case 2: d E E (Ag(D') I D). There exists exactly one E Ag(D') such that

dE E( |D), and P(d,sjD) = 0 for all s E S \ {}. Suppose 9 is chosen at step

k E {1,.. .,0} of (5.11). Then A (D) = A?(D').

In the (possible) case where the deletion of j from D' does not change the greedy

selection such that Ag(D) = A (D'), then the reduction in the objective I(-, Ag(-))

is exactly I(D'; A (D')) - I(D; Ag(D)) = I(D'; Ag(D)) - I(D; Ag(D)) = I(j; 91D).

However, for k = k,..., , Ag(D) and Ag(D') may diverge due to the sensitivity

of the greedy algorithm to upstream changes in the incremental marginal value of

a selection. In such cases, it is possible that Ag(D) is such that I(D; A'(D))

I(D'; Ag(D')), i.e., the deletion of d from D has led to an increase in the objective

and, thus, a looser bound.

Let 91* C 91 denote the set of all submodular relaxations of R that are optimal

w.r.t. (5.9).

Proposition 17 (Existence and Nonuniqueness). If S is dissectible, then 19*1 1,

i.e., an optimal submodular relaxation exists and is generally not unique.

Proof. If O(S) # 0, then 91 # 0, whereby 91* # 0. It suffices to prove that there

can exist cases in which l91*1 > 1. Case 1 of Example 2 provides such an example:

If D E *, then D' E 91*, so the optimal submodular relaxation is generally not

unique. E

Definition 18 (Minimum-Cardinality Subset). A subset A C C satisfying property

T is a minimum-cardinality subset if there does not exist another subset B c C that

has lower cardinality (i.e., JBI < JAI) and also satisfies T.

Proposition 19 (Nonminimum Cardinality). Minimum-cardinality extensions of R

that dissect S are not necessarily optimal submodular relaxations.

Proof. Consider the counterexample in Figure 5-2, in which S = {1, 6}, U = {2, 3,4, 5},

and 1Z = {4}. Depending on the parameterization of the distribution px(-), whose
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4 5 6
Figure 5-2: Six-vertex counterexample to minimum-cardinality, with S = {1, 6} and
1Z = {4}.

structure the graph represents, the unique optimal relaxation may be either 1* =

{2, 4} or t*= {3, 4, 5}, the latter being of nonminimum cardinality. E

In addition to minimum-cardinality subsets, one could consider minimal subsets.

Definition 20 (Minimal Subset). A set A satisfying property T is minimal if no

proper subset B C A satisfies T as well.

Let 9 1
min E { E 9 : -k is minimal} denote the set of minimal feasible submodu-

lar relaxations. Furthermore, let *1 = 9
minnf*. Note that for any D E 91, the MI

objective I(D; A) is monotonic in S D A, i.e., in the sense that I(D; A) 5 I(D; A')
for any A C A' C S. However, the function vp(D) a I(D; A'(D)) is not necessarily

monotonic in U D D, as the following proposition illustrates.

Proposition 21 (Nonminimality). * = 0 * 91 = 0, i.e., optimal submodular

relaxations are not necessarily minimal subsets.

Proof. It suffices to provide a counterexample to the following monotonicity argu-

ment: For D, D' E 91 such that D C D', I(D; A9(D)) 5 I(D'; A9(D')). Case 2 of
Example 2 provides such a counterexample. E

In summary, optimal submodular relaxations are generally neither unique nor min-

imal, thus complicating the search for a submodular relaxation providing the tightest

online-computable performance bounds. Furthermore, the notion of a submodular

relaxation requires a particular form of vertex cover, and there do not appear to

be any analogies between optimizing the choice of submodular relaxation and solu-
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tions of max-flow/min-cut (i.e., edge cutting) dual problems considered in network

optimization [1].

5.4 Iterative Tightening

Given the complexity of identifying optimal submodular relaxations, this section

presents two heuristic methods - one direct, and one somewhat more indirect -

for efficiently generating submodular relaxations with low suboptimality.

The algorithms presented in this section are predicated on the intuition that de-

spite Proposition 21, the "best" submodular relaxations t D 1Z are likely those that

remain as close as possible to the original relevant latent set R while not grossly in-

flating the apparent informativeness of observations with respect to the augmenting

nuisances t \ R.

Both heuristics are based on the idea of starting with a feasible submodular re-

laxation D' E 91 and "tightening" it by removing a single element d C D'. In order to

ensure that the resulting set D := D' \ {d} is also feasible, a list of critical boundary

vertices Qcrit must be maintained. The removal of any vertex from 2 crit would result

in a graph in which S is not dissected. An algorithm for determining Qcrit for any

tuple (G, S, 1) is presented in Algorithm 5.

Algorithm 5 GETCRITICALBOUNDARY(g, S,7 7)
Require: g = (V, ), S c V, E:

crit 0,all +- 0
for s S do

crit Qcrit U (Q(sZ) all

Qall Qa11 U Q(s8lZ)
5: end for

return Ocrit

In addition to critical boundary vertices, the heuristic class described in this sec-

tion tracks the set of observation vertices "activated" by the greedy heuristic. Speak-

ing informally, the goal of iterative tightening is to create "space" around these ac-

tivated observation vertices by removing boundary nodes from their reachable sets,
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thereby reducing the information contribution of reachable augmenting nuisances and

tightening the performance bound (5.7).

5.4.1 Direct

Starting from an initial solution2 D e 91, the direct version of ITERATIVETIGHTEN

(Algorithm 6) performs a sequential-greedy minimization of vo (D) _ I(D; Ag(D)) by

considering the element d E D whose removal (constrained so that the resulting set is

still a submodular relaxation) yields the lowest objective I (D \ {d}; Ag(D \ {d})) for

the subsequent iterate. In this sense, ITERATIVETIGHTEN-DIRECT anticipates how

the removal of an element affects the resulting greedy selection, but at the expense

of having to determine the greedy selection A$(D \ {d}) for every candidate d.

Algorithm 6 ITERATIVETIGHTEN-DIRECT(p, 9, S, R, D)

Require: p,(), =(V, E), S c V, R c V \ S, D E:
Q +-D \R
Q - Q\ rit(gS, D)
while Q $ 0 do

dde E argmindEQ I (D \ {d}; Ag (D \ {d}))
5: D+ D \{ddel}

Q + Q\crit(, S,D)
end while
return 7:= D

5.4.2 Indirect

Given the expense of computing a set of candidate greedy selections at each iteration

of ITERATIVETIGHTEN-DIRECT, the indirect form of ITERATIVETIGHTEN (Algo-

rithm 7) instead approximates the deletion of an index from the submodular relax-

ation by relating the deleted term to an anticipation of the objective reduction.

Starting from a submodular relaxation D' E 91, suppose that by removing a

d E D', the resulting set D :=D' \ {d} E 91. Example 2 describes such a situation. If

Ag(D) = Ag(D'), then the objective function is reduced by maxs I(s; dID), where

2In the absence of an initial solution, the trivial submodular relaxation D := U E 9t may be used.
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Algorithm 7 ITERATIVETIGHTEN-INDIRECT(p, g, S, R, D)

Require: px(-), Q = (V, E), S c V, R c V \ S, D E9:
Q -D\1Z
Q + Q \ Qcrit(g, 8, D)
while Q # 0 do

A <- A9(D)
5: if Q(AID) n Q =0 then

A +- S
end if
ddel E argmax,9AdEQ I (s; d I D \ {d})
D \ {ddel}

10: Q +- Q \ rit(g, S, D)
end while
return R:= D

I(s; dID) is positive for at most one s E S. By inspection of (5.11), it is clear that

i affects the baseline - and not marginal - value of such an s. It is in light of this

distinction that I(s; dID) is used as an approximation of the objective decrease under

small perturbations of the greedy selection.

5.5 Experiments

In this section, the two variants of ITERATIVETIGHTEN are benchmarked against

alternative heuristics for determining submodular relaxations.

5.5.1 Heuristics for Comparison

RANDCONSTRUCT (Algorithm 8) starts with the relevant latent set R and augments

it by randomly adding latent indices until the resulting set is an S-dissector. Con-

versely, RANDDECONSTRUCT (Algorithm 9) starts with any submodular relaxation

and randomly removes indices until the resulting submodular relaxation is minimal

w.r.t 91. The trivial relaxation U E 91 can be compactly represented by the PICKET-

FENCE heuristic, which uses 'R := R U IF(S). For networks small enough to permit

enumeration of all submodular relaxations, MINCARD samples uniformly from the

subset of those with minimum cardinality.
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Algorithm 8 RANDCONSTRUCT(g, S, R)

D <- R
while D 0 9t do

dadd ~ unif (U \ D)
D +- D U {dadd}

5: end while
return 1?:= D

Algorithm 9 RANDDECONSTRUCT(g, S, R, D)

Q -D \R
S Q Q crt(g, S, D)

while Q = 0 do
ddel - unif(Q)

5: D D \{ddel}

Q <- Q\crit(g, S, D)
end while
return 1?:= D

5.5.2 Numerical Results (4 x 4)

The ITERATIVETIGHTEN heuristics of Section 5.4 were benchmarked against those of

Section 5.5.1 over the course of 100 trials (see Figure 5-3). For each trial, a Gaussian

prior Markov to a 4 x 4 nearest neighbors grid was instantiated and tested. An

exhaustive search of 91 was tractable for this simple problem and was used to evaluate

the suboptimality of all tested heuristics; during the course of the exhaustive search,

a set of minimum cardinality submodular relaxation was retained, from which the

MINCARD heuristic submodular relaxation was sampled uniformly.

The results of this trial are encouraging, insofar as the ITERATIVETIGHTEN heuris-

tics provide a clear relative advantage in terms of suboptimality over the other heuris-

tics tested. That ITERATIVETIGHTEN-INDIRECT did slightly better than its direct

counterpart is mildly surprising, although this can easily be explained by the preva-

lence of local optima in the problem. The marked suboptimality of the PICKET-

FENCE heuristic is not surprising: By augmenting the relevant set with nuisances

directly adjacent to observable vertices, it contradicts the main intuition behind IT-

ERATIVETIGHTEN, which is of creating space between active observations and aug-

menting nuisances.
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Suboptimality, 100 trials of Grid(4,4)
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Runtime, 100 trials of Grid(4,4)
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Figure 5-3: Benchmark of submodular relaxation heuristics over 100 randomly gener-

ated Gaussian distributions Markov to the 4 x 4 nearest neighbors grid. Interquartile

ranges are shown in blue, medians in red (line segment), and outliers as +. Top:

suboptimality as measured against 9V. Bottom: Runtime in seconds, along with the

runtime needed to verify the optimality via exhaustive search.
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Relative Performance Gap, 100 trials of Grid(8,8)
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Figure 5-4: Benchmark of submodular relaxation heuristics over 100 randomly gen-
erated Gaussian distributions Markov to the 8 x 8 nearest neighbors grid. Top:
Histogram of relative rank for the five heuristics benchmarked. Middle: Relative per-
formance gap as measured vs. the highest scoring (lowest MI) heuristic for each of
the 100 randomly generated networks. Bottom: Runtime in seconds.

5.5.3 Numerical Results (8 x 8)

The ITERATIVETIGHTEN heuristics of Section 5.4 were again benchmarked against

those of Section 5.5.1, over 100 trials, each of which consisting of a randomly generated

Gaussian distribution Markov to an 8 x 8 nearest neighbors grid. This network of 64

nodes was already too large to permit exhaustive enumeration and characterization

of all submodular relaxations. As a consequence, the suboptimal heuristics were for

each trial ranked, and the rank and spread (difference between the objective and

that of the top ranked heuristic) were tallied (cf. Figure 5-4). Once again, the

ITERATIVETIGHTEN heuristics show a marked improvement in objective over their

random/uninformed competitors, with ITERATIVETIGHTEN-INDIRECT providing a

tradeoff between performance and runtime.
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5.6 Summary

This chapter has considered the class of general Markov random fields - arbitrary

distributions whose conditional independence/factorization structures can be repre-

sented by undirected graphical models - and has derived performance bounds on

the suboptimality of heuristic observation selectors in the presence of nuisances. The

conditional independence requirements that guarantee submodularity of the focus

objective, and thus applicability of existing performance bounds, are not always sat-

isfied by the relevant latent set to be inferred. This chapter has introduced the

notion of submodular relaxations as surrogate problems that can be used to establish

online-computable performance bounds on the percentage of the optimal objective

guaranteed by a heuristic selector. This percentage is not constrained to lie below

(1 - 1/e), although it must be computed online and is not known a priori.

Given the multitude of submodular relaxations for any particular focused active

inference problem, this chapter has also investigated the quality of submodular re-

laxations. Between the original focused problem and the surrogate problem, which

augments the relevant set with additional nuisances, the following intuition was of-

fered: The submodular relaxation whose augmenting nuisances provide the least in-

flation in the informativeness of greedily selected observations is, in general, preferred.

However, the predication of the online-computable bound on the greedy heuristic for

the surrogate problem led to issues in characterizing optimal submodular relaxations,

which provide the tightest such bounds. It was shown that optimal submodular

relaxations are in general not unique, not minimum-cardinality, and not minimal.

Heuristics that iteratively tighten a submodular relaxation by deleting augmenting

nuisances with the strongest apparent information contributions, as per the intuition

of the chapter, were shown to outperform other heuristics based on cardinality or

random augmentation/deaugmentation.

Performance bounds not predicated on the greedy heuristic, and thus potentially

more amenable to analysis, are the subject of future work.
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Chapter 6

Discussion

6.1 Summary of Thesis Contributions

This thesis has addressed some of the fundamental issues surrounding efficient model-

based observation selection in the presence of nuisances. Chapter 3 presented decom-

positions of nonlocal mutual information on universally embedded paths in Gaussian

graphical models; these decompositions enabled a reduction in the complexity of

greedy selection updates on Gaussian trees from cubic to linear in the network size.

Chapter 4 presented a framework for efficient information quantifications in loopy

Gaussian graphs by estimating particular conditional covariance matrices via embed-

ded substructure computations. Chapter 5 introduced the concept of submodular

relaxations to derive new online-computable bounds on suboptimality of observa-

tion selections in the presence of nuisance variables in the graph, which generally

invalidate prior submodular bounds. A subsequent characterization of optimal sub-

modular relaxations, which provide the tightest such performance bounds, yielded

efficient heuristics for approximating the optimum.

6.2 Limitations and Future Work

Despite the above summarized contributions, focused active inference is far from

a "solved" problem. A number of extensions to the contributions of this thesis are
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possible, apparent, and would greatly contribute to the understanding of information-

theoretic planning. Some of these extensions are now described.

6.2.1 Inferring Relevance

This thesis has assumed that the relevant latent set 1Z C U has been specified. This is

not a wholly unreasonable assumption, especially when queries are posed by domain

experts with experiential priors on what states are most important to infer. However,

it is not hard to envision settings in which those making use of automated observation

selection may have inexact preferences for what data to present to them, in which

case one may attempt to infer relevant latent sets from these sequential interactions.

6.2.2 Automated Transcription

This thesis has also assumed a fully parameterized graphical model has been submit-

ted to be analyzed. One extension that would make the contributions of this thesis

more readily integrable in actual observation networks would be a tool that automates

graphical model transcription. For example, a network of heterogeneous sensing re-

sources located in some set of space-time configuration could be characterized both

in terms of individual components (such as sensor modalities/noise) as well as envi-

ronmental (e.g., geochemical) properties that interrelate phenomena being observed

by all agents.

6.2.3 Prioritized Approximation

The methods described in this thesis are exact in the sense that all mutual information

measures are estimated to within a specified tolerance. If the computational cost of

quantifying mutual information were constrained (e.g., in a distributed estimation

framework with communication costs), it may be of interest to develop algorithms for

allowing prioritized approximation depending on how sensitive the overall information

reward is to these conditional mutual information terms. In addition to algorithms for

adaptively selecting embedded trees to hasten convergence, [14] propose methods for
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choosing and updating only a subset of variables in each Richardson iteration. If, in

an essentially dual problem to (1.1), the cost of sensor selections were to be minimized

subject to a quota constraint on the minimum amount of collected information -

i.e.,

minimizeAcs c(A) (6.1)

s.t. I(xR; xA) > a,

where a E R>O is an information quota that must be achieved - the ability to

truncate information quantification when a subset of the graph falls below an infor-

mativeness threshold would be of potential interest.

6.2.4 Weighted Mutual Information

The objective function considered in this thesis is focused mutual information I(1?; A),

where the relevant latent set 1Z C U is provided a priori and the observations A C S

must be chosen to maximize the objective (subject to budget constraints). Generally,

even if several or many variables are deemed relevant, their relevancy might not be

uniform, in which case one may wish to assign relative weights to the individual vari-

ables. Weighted mutual information was devised for such a purpose [29], although

it can be shown in some cases to be negative [44]. Although there have been recent

attempts to patch weighted MI to enforce nonnegativity [71], it remains to be seen if

weighted MI possesses decompositions similar to those of its unweighted counterparts.

6.2.5 Non-Gaussian Distributions

The contributions of this thesis aimed at efficient information quantification have as-

sumed Gaussianity. While multivariate Gaussian distributions are often reasonable

approximations for real-valued unimodal data, there are a variety of domains with

truncated support or multiple underlying modes. A number of impediments to mov-

ing beyond the Gaussian regime persist. Models as simple as Gaussian mixtures lack

closed-form solutions for mutual information. Few classes of continuous distributions
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are closed under marginalization and conditioning. Moments beyond the second mo-

ment may need to be exchanged to update beliefs. Despite recent developments to

extend continuous variable belief propagation beyond multivariate Gaussianity (e.g.,

through particle BP [32], nonparametric BP [84], kernel BP [813, and nonparanormal

BP [22]), information quantification in non-Gaussian regimes remains a worthwhile,

albeit formidable, challenge.

6.2.6 Other f-divergence Information Measures

Mutual information is but one (arguably fundamental) information measure specified

as a particular evaluation of relative entropy (2.8). However, there exists a more

general class of information measures specified by f-divergences [2, 20] of the form

Df (p 11 q) = f ( ) q(x) dx,

where f is a convex function. For example, f(t) := t log t recovers the relative entropy

measure. Due to the connection between f-divergences and surrogate loss functions

[6, 65], extensions of the contributions of this thesis to other information measures

would further the understanding of efficient data acquisition and processing in other

statistical settings.
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The greater the scientist, the more he is impressed with his

ignorance of reality, and the more he realizes that his laws

and labels, descriptions and definitions, are the products

of his own thought. They help him to use the world for

purposes of his own devising rather than to understand and

explain it.

The more he analyzes the universe into infinitesimals, the

more things he finds to classify, and the more he per-

cieves the relativity of all classification. What he does not

know seems to increase in geometric progression to what

he knows. Steadily, he approaches the point where what is

unknown is not a mere blank space in a web of words, but a

window in the mind, a window whose name is not ignorance

but wonder.

Alan Watts, The Wisdom of Insecurity
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