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Abstract

Developing parallel numerical applications, such as simulators and solvers, in-
volves a variety of challenges in dealing with data partitioning, workload balancing,
data dependencies, and synchronization. Many numerical applications share the need
for an underlying parallel framework for parallelization on multi-core/multi-machine
hardware. In this thesis, a computing platform for parallel numerical applications is
designed and implemented. The platform performs parallelization by multiprocessing
over MPI library, and serves as a layer of abstraction that hides the complexities
in dealing with data distribution and inter-process communication. It also provides
the essential functions that most numerical application use, such as handling data-
dependency, workload-balancing, and overlapping communication and computation.
The performance evaluation of the parallel platform shows that it is highly scalable
for large problems.
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Chapter 1

Introduction

1.1 Parallel Numerical Simulation

The fields of scientific computing and numerical modeling and simulation have

grown rapidly in the past few decades. They became widely acceptable as a third

mode of discovery, complimenting theory and physical experimentation. This growth

is due to not only the development of efficient numerical methods and techniques that

are used these days, but also the explosive advancements in computer technology that

enabled such methods to be conducted fast and in large scale.

Computers have changed dramatically in the last ten years. The development of

microprocessors has moved from single-core to multicore processors. All computers

today have processors with several cores inside them. This has pushed the develop-

ment of parallel and distributed programming, as it is the only way to take advantage

of today's computing power efficiently.

1.2 Research Motivation

Parallel programming is usually looked at as challenging. It is "conceptually harder

to undertake and to understand than sequential programming, because a programmer
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has to manage the coexistence and coordination of multiple concurrent activities" [1].

This thesis addresses the challenges that lie ahead of building parallel computationally-

intensive numerical applications, such as solvers and simulators, that are efficient for

both small and large problems, and scale well with increasing computing resources.

Problems related to data- and resource-management are particularly tackled, and

a general parallel programming platform is designed and implemented to act as a

foundation for building such numerical applications.

1.3 Thesis Objectives

The objective of this thesis is to design and implement a parallel and scalable

programming library that serves as a development platform for different computa-

tional applications such as numerical simulators. This library is meant to add a layer

of abstraction that hides some of the complexities that most parallel software de-

velopers have to tackle, such as data distribution, inter-process communication and

synchronization, and workload partitioning.

1.4 Thesis Contributions

The main contributions of this thesis can be summarized in the following points:

" Overview over the requirements of building a parallel numerical simulation plat-

form.

" Tackling the challenge of workload partitioning among different parallel pro-

cesses to achieve better load-balancing.

" Implementation of efficient techniques for data distribution and synchronization

between different processes, as well as using overlapped communication and

processing to hide the overhead.
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* Evaluating the platform's performance and scalability by building different nu-

merical applications, such as a finite-difference solver, and compare different

workloads and system configurations.

1.5 Thesis Organization

The Thesis is organized into the following chapters. Chapter 2 explores the chal-

lenges of parallel programming, and the requirements for parallelizing numerical ap-

plications. It also gives an overview of the current parallel and distributed computing

technologies and libraries that utilize techniques such as multiprocessing and multi-

threading. Additionally, an overview of the general requirements of parallel numerical

applications is presented to serve as a guidance for building the proposed parallel plat-

form.

In chapter 3, the design and implementation of the parallel platform is described

in detail. The chapter starts by describing the architecture of the platform, along

with the execution flow of a parallel numerical application. After that, a detailed

explanation of the internal design of the platform is presented. This includes the

technical approach used for data management, synchronization and communication.

The performance of the proposed parallel platform is then evaluated for scalability

in chapter 4, where two different types of numerical applications are built using the

platform.

The thesis finally concludes in chapter 5, where the overall contributions of the

thesis are summarized, with a list of potential improvements and unresolved issues as

future work.

13
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Chapter 2

Parallelizing Numerical Applications

In this chapter, an overview of the requirements and tools for parallelizing nu-

merical applications is presented. The chapters starts by explaining the motivations

for using parallel and concurrent programming in numerical applications, followed

by a description of the challenges and issues that are faced in software paralleliza-

tion. A literature review of the available parallel programming tools and techniques

is then presented. The chapter concludes with a discussion of how different types of

numerical applications could be parallelized, and how to overcome the parallelization

challenges.

2.1 Motivations for Parallel Programming

2.1.1 Development of Computer Technology

The development of computer processors has changed dramatically in the past

decade. In the past, processors were developed with only one core that could ex-

ecute a single stream of instructions. Multi-tasking in these single-core processors

was achieved using concurrent processing, where context-switching between different

running streams of instructions, or threads, was used. The technology of single-core

processors was advanced over the years by decreasing the transistors' size, and in-
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creasing the clock frequency. In early 2000s, a ceiling in frequency scaling was reached

because of the heat dissipation barrier that prevented processors from having faster

clocks. Multicore processors started to appear where a single processor has two or

more processing cores that can run independent threads in true parallel fashion. To-

day, most CPUs in desktop computers, office workstations, servers, and even smart

phones are multicore. Desktop computers nowadays have processors with up to 6

cores, while larger computer systems, such as servers, may have processors with up

to 15 cores.

In addition to the use of multicore processors, multiprocessor computers have

been used for a long time. Most servers today have two processor sockets, each has

a multicore processor. A typical server has up to 24 physical cores. Moreover, multi-

machine systems have also been popular for many applications. A computer cluster

is a multi-machine system where a number of similar but independent computers are

interconnected using a high-speed network to act as one powerful system. These type

of computers are commonly used in data centers and research facilities. [2]

One could plainly see that today's computer systems are multiprocessor systems.

Utilizing such systems require writing software that can run efficiently in parallel

over multiple processors and machines. While parallel programming has been used

for a long time, the recent development of multiprocessor technology has resulted in

a growing interest in parallel computing.

2.1.2 Large Numerical Problems

Numerical applications are used to model and simulate real-world behavior of

a system as an alternative to performing actual, physical experiments. In many

cases, numerical simulations are used because experimentation is not feasible, due

to the scale or complexity of the problem. This is why many numerical problems

are generally large in scale, and require a lot of computing resources to be run in a

reasonable time.
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A single computer does not always have the sufficient resources to run large nu-

merical applications. Some numerical problems use very large data that cannot fit

in a single computer's memory. Other problems could take infeasibly long time to

be solved on a single computer. Hence, the only way to run such large numerical

applications is to use parallel and distributed algorithms so that they could utilize

the resources of multiprocessor and multi-computer systems, and be executed in rea-

sonable time.

2.2 Challenges in Software Parallelization

Developing parallel and distributed programs introduces new challenges that are

not usually encountered in serial programs. Depending on the type of the problem,

some of these challenges could potentially limit the parallelizability of an application,

which therefore results in low speedup when comparing the performance of the parallel

application to the serial version.

2.2.1 Workload Balancing

Developing a parallel algorithm usually requires breaking a large problem into

smaller, but similar sub-problems. Each sub-problem uses a small subset of the

data, known as the working set, to perform certain computation. Usually, these

computations are done in parallel over multiple processors, where each processor is

assigned one or more of these sub-problems.

To achieve the best performance, the amount of computation done by each pro-

cessor should be similar. This results in better workload-balancing, and therefore

higher performance speedup. Unbalanced workload, where one or more processors

are spending more time performing computations than other processors, impacts the

performance of the application, as the processors that do less work will become idle

at each synchronization point, waiting for the other processors to finish their compu-
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tation, before they can start the next task. This results in poor resource utilization,

and lower speedup.

Workload balancing does not depend only on the size of the working set data, but

also on the type of processing and computation that needs to be performed on that

data. In many cases, it is easy to split the input data into smaller working sets of

the same size. However, the amount of computation that each processor will perform

on these working sets is not always possible to control or even predict. Certain

algorithms perform a fixed amount of computation on the input data, which results

in high workload balancing. On the other hand, the amount of processing other

algorithms perform depends completely on the input data, and therefore, it is highly

likely to have unbalanced workload among processors. This presents a challenge when

designing parallel applications as the performance could be significantly impacted by

this imbalance.

2.2.2 Data Dependency and inter-process Communication

The parallelizability of an algorithms depends heavily on the data-dependency be-

tween processes. When a process requires data from other processes during runtime,

inter-process communication and synchronization must take place, which are consid-

ered an overhead and therefore have an impact on the parallel algorithm performance.

Algorithms that require minimal or no communication between processes are highly

parallelizable, as each subtask is run independently of others. On the other hand,

algorithms that have a lot of inter-process data dependency are usually more difficult

to parallelize.

In serial programs, the two main metrics for measuring performance are time

and memory usage. An algorithm's cost can be determined by the amount of time it

takes to run, and the amount of memory it requires. Both of these metrics are usually

represented as a function of the input size. In parallel programs, communication is

considered as a third cost metric, since it is an overhead that has an impact on the

18



overall performance.

Most numerical applications, such as simulators and solvers, have some form

of data-dependency, and therefore require inter-process communication at a certain

point. For example, a patallel simulator with time-stepping loop usually requires

inter-process communication to exchange data that is needed to perform the compu-

tations in the next time-step. This means that there is a synchronization point at

the end of each time-step. Fortunately, most of these data dependencies are spatially-

local. That is, only a small subset of data, such as the outer data point of spatially

discretized sub-domains, needs to be communicated. Hence, the communication over-

head, while still present, is relatively small.

2.3 Parallelization Techniques and Tools

The increasing interest in parallel and distributed computing has resulted in the

introduction of, many tools and frameworks for developing parallel applications for

different computing environments. Before discussing these tools, it is important to

first introduce the different parallel computing architectures, and the different types

of parallelism.

2.3.1 Multiprocessor Memory Models

The most basic computer system model includes a single processor connected to

a uniformly-accessible memory through a fixed-width bus. Adding more processors

to a computer system could be done in a number of ways. The two main approaches

that most computer nowadays use are shared-memory architecture, and distributed-

memory architecture.
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Figure 2-1: In shared-memory architecture, all processors are connected to the mem-
ory through the system bus

Shared-Memory Architecture

In shared-memory architecture, all processors in a computer system are connected

directly to the memory through the main system bus. Since memory is shared, all

processors have access the whole memory address space. Hence, changes in memory

that are made by a program running in one processor can be observed immediately

in other processors. Figure 2-1 shows an illustration of how processors and memory

are connected.

The main advantage of shared-memory architecture is that synchronization and

communication between processes is done through memory, and that the latest-

written data is readily accessible by all processors. This reduces the overhead of

communication. However, such architecture is not scalable, as only a limited number

of processors can be connected to the system bus in one system.

Distributed-Memory Architecture

In distributed-memory architecture, each processor, or set of processors, is con-

nected to a physically-separate memory, usually in a separate computer or server unit,

as shown in figure 2-2. These computer units are interconnected through high-speed

network to form a computer cluster. Because each unit has its own memory, the mem-

ory address space is not shared between processors, and therefore, synchronization

20
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Figure 2-2: In distributed-memory architecture, processors are connected to separate

memory modules, and are usually interconnected through a network

and communication are needed.

The overhead of communication and synchronization in distributed-memory ar-

chitecture is higher, since it is done over the network. Even with high-speed networks,

such as InfiniBand [3], that are used nowadays to interconnect computer clusters, the

communication latency is still high compared to shared-memory architecture. How-

ever, the main advantage of distributed-memory architecture is its high scalability,

as a large number of processors could be connected to build supercomputers.

Most computer cluster and supercomputers today use both architectures together;

they are composed of a number of computer units that are interconnected using one

or more high-speed networks, and each computer unit has two or more multicore

processors. This hybrid approach takes advantage of both architectures, and hence

provides high scalability.

2.3.2 Parallel Programming Models

There are several ways to write parallel programs. Today's processors are ca-

pable of performing several levels of parallelism. Some of them, such as data- and

instruction-level parallelism, are built-in into the CPU architecture, and are per-

formed transparently without the need for any specially programming. Task-level

parallelism, on the other hand, requires actual parallel programming, where the de-

veloper has to write multiprocess or multithread application, and handle the needed

21
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data distribution, communication, and synchronization. [4]

Data- and Instruction-Level Parallelism

Data-level parallelism is the processor's ability to perform operations on multiple

data at the same time. This approach is called Single-Instruction Multiple-Data

(SIMD). An instruction that performs an arithmetic or logical operation is executed

over multiple data in the CPU at the same time.

Instruction-level parallelism, on the other hand, allows a single processor to exe-

cute multiple instructions at the same time, using different components of its data-

path. Instructions that can be executed in parallel do not have any data-dependency

between them. Most CPUs today can also perform out-of-order execution, where in-

structions can be executed in a different order than they were in memory, increasing

the CPU's execution throughput. This, of course, is done only when the execution

re-order does not affect the correctness of data. This type of parallelism is also done

entirely by the processor, and does not require any changes in the code to take ad-

vantage of it.

Thread-Level Parallelism

Parallel programming usually refers to task-level parallelism, where the program-

mer has to write code that is executed concurrently and in parallel on one or more

processors.

A process is the unit task that most operating systems deal with as an executing

program. Within a process, one or more flows of instructions, or threads, are executed.

Multiple processes and threads can be executed concurrently on a single processor.

Thread-level parallelism is the use of multiple threads of a single process to perform

a certain task. Threads within a process share the same address space that belong to

that process, and therefore can directly read and write data to that shared memory.

Most processors today can execute multiple threads at the same time by using multiple
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cores. Additionally, a single core can execute two threads at the same time using

thread-level speculation, also known as hyper-threading.

In parallel applications that use multithreading, synchronization is crucial to avoid

race-conditions, where two or more threads try to write to the same memory address,

resulting in inconsistent data.

Because multithreaded programs run as a single process, they cannot be run on

distributed-memory systems. Hence, shared-memory systems are the only suitable

environment for multithreading.

Process-Level Parallelism

Process-level parallelism is a similar concept, but single-threaded processes are

used as units of execution instead of threads. A multiprocess application launches

a number of processes to perform a certain task. Unlike threads, each process has

a separate memory address space, and processes do not have direct access to each

other's memory space. Therefore, one or more inter-process communication (IPC)

tools are used to communicate data between processes. Similar to multithreading,

synchronization in multiprocessing is also needed when accessing shared resources,

such as files on disk.

multiprocessing is suitable for both shared-memory and distributed-memory sys-

tems. Inter-process communication for processes that are running on a single system

is usually done through memory using operating system tools, such as semaphores or

pipes. When processes are running on multiple systems (in a distributed-memory en-

vironment), communication is usually performed over the network that interconnects

these systems.

2.3.3 Parallel Programming Libraries

There are several libraries and frameworks for building multithreading and multi-

processing parallel applications. All modern operating systems provide Application-
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Programming Interface (API) for creating and managing threads and processes. Ad-

ditionally, a number of third-party libraries and standards are designed to provide

more functionality and hide some of the system complexities.

Operating System API

The most direct way of writing. parallel programs is to use the operating system's

API for multithreading or multiprocessing. Operating systems provide means to

create, control, synchronize and terminate processes and threads.

In Unix-based operating systems, the POSIX standard interface for threads and

processes allows the programmer to make system calls to create processes and threads

that are executed immediately in parallel to the main process or thread. It also

provides a set of synchronization tools, such as mutexes, locks, and semaphores. The

API for multithreading in POSIX is called pthreads.

Windows operating system also provides similar set of APIs and system calls for

managing threads and processes. While the system calls are different under Windows

system, the functions these APIs provides are essentially the same.

There are many third-party libraries that are written to hide the system-dependent

APIs, and provide a standard way of creating and managing threads and libraries.

This allow programmers to write portable code that can run on different systems.

Boost library [5], for example, provides portable C++ multithreading functions that

can be used to create and manage threads. Similarly, other multithreading libraries

provide more advanced features, such as the use of worker-thread pools and job

queues. The multithreaded library developed by Alhubail [6] for numerical appli-

cation is an example.

OpenMP

OpenMP [7] is a programming interface for shared-memory systems. Unlike oper-

ating system APIs, OpenMP provides a simple way to create threads through the use
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of programming directives in the code. OpenMP simplifies converting serial programs

to parallel ones, as only few changes need to be made.

Parallelization using OpenMP is done by marking sections of the code using C++

preprocessor directives. These directives are also used to specify the shared and

private variables in the code. At run time, OpenMP creates a number of threads to

perform these parallel tasks.

OpenMP provides a simple and flexibly way to create multithreaded applications,

and hides the complexity of dealing with the operating system low-level APIs. How-

ever, there are a number of cons for using OpenMP, such as its limited scalability and

the lack of error handling.

Message-Passing Interface (MPI)

Message-Passing Interface (MPI) [8] is a popular standard for parallel program-

ming. It has became the de facto standard for writing multiprocessing applications.

MPI, as its name suggest, provides means for inter-process communication through

message-passing, which are done within a single system through memory, or be-

tween multiple system through the network. This flexibility makes MPI suitable for

distributed-memory systems.

A parallel application written using MPI can run on a single or multiple systems.

MPI provides means for communicating data between processes, as well as tools for

synchronization and process-management. Each processes is assigned an MPI process

number, known as rank, that identifies it. Communication between processes could

be performed point-to-point, where one processes sends data to another process, or

collectively, where all the processes exchange data at the same time such that each

process has the same data. Processes could also be grouped into subsets, called

worlds, such that processes within one world could perform collective communications

together.

MPI also hides the underlying communication and synchronization layers. The
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medium of communication, whether through the main memory or the interconnecting

network, is automatically picked by MPI based on where the communicating processes

reside. This provides better performance when running multiple processes in the same

system.

2.3.4 Hybrid Parallel Programming Model

A common approach to write large parallel applications is to use a hybrid combi-

nation of multiprocessing and multithreading. This two-level parallelism allows the

application to take advantage of both the scalability of distributed-memory systems,

and the performance of shared-memory systems. Multiprocessing is used such that

each computer (or node) in the cluster is assigned one or two processes. Within each

process, multithreading is used to create parallel threads that will be executed in

different cores of the system processor.

MPI and OpenMP are used together to achieve this hybrid model of parallel pro-

gramming. MPI is used to create and manage processes that will run on different

nodes, while OpenMP is used to parallelize tasks within one process using multi-

threading. Figure 2-3 shows how processes and threads are created in such hybrid

approach.

The parallel computing platform that is designed in this thesis uses MPI for

process-level parallelism and data communication. Numerical applications built using

the platform utilize OpenMP to achieve thread-level parallelism.

2.4 Numerical Applications

To build a programming platform for parallel numerical applications, it is impor-

tant to understand how these applications could be parallelized, and what types of

data dependency they have.

The goal is to provide a simple yet sufficient platform that has the required func-
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Figure 2-3: Hybrid model for parallel programming using MPI for multiprocessing

and OpenMP for multithreading

tionality for writing numerical simulators and solvers that can be executed on parallel

systems. As explained earlier in this chapter, the main challenges in parallelizing a

program are balancing the workload, and handling data-dependency.

Numerical simulation methods could be classified based on their spatial data rep-

resentation into two categories: mesh-based methods, and mesh-free methods.

2.4.1 Mesh-Based Numerical Methods

Mesh-based methods are the methods that use grids to represent their data points.

Each cell of the grid represents one data point in the system. Examples of mesh-based

methods are finite-difference and finite-volume methods. Throughout this thesis,

finite-difference method will be used as the numerical application that represents

mesh-based methods.

Data Dependency in Finite-Difference Method

In finite-different methods, the differential equations are solved by approximating

the derivatives using Taylor expansion. The approximations are usually the sum of

terms that represent the values at a set of points in the domain. The number of
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Figure 2-4: Second-order finite-difference in 2D uses a 5-point stencil

points used depends on the approximation order.

One of the common approximations that are used for 1D second-derivatives is

given by the equation

a2f(x) f(x - Ax) - 2f(x) + f(x + Ax)
ax2 ~ x 2

This central-difference second-order approximation uses 3 points to compute the

approximate value of the derivatives.

The diffusion equation in 2D, for example, has a Laplacian term that can be

approximated as

f (xy) 2f 2f 'f(x - Ax, y) - 2f(x, y) + f(x + Ax, y)
8x 2 ay2 Ax2

+
f (x, y - Ay) - 2f (x, y) + f(x, y + Ay)

Ay2

This approximation uses 5 data points to approximate the derivative at a given

point, as shown in figure 2-4. The 5-point stencil is used in this case. Higher-order

approximations use more data points and larger stencils.

It is clear that the computation of data points require the use of other nearby data

points. Fortunately, this type of dependency is spatially-local, i.e. the computation
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depends only on points that are in close proximity. This limited-dependency makes

it easier to parallelize such algorithms, as only a small part of the grid, namely the

outer points of each sub-domain, need to be communicated to other process, while

internal points can be computed directly.

Workload-Balancing in Finite-Difference Method

The amount of computation that is done at each data point in finite-difference

method is almost the same. Data points near the boundaries may have different

computations, but these are only a small fraction of the total number of data points.

Moreover, data-points could be partitioned such that each process has similar number

of boundary points, resulting in higher load-balancing. As long as the input size

(number of data-points) that each process has is the same, the workload in finite-

difference method will be highly balanced.

2.4.2 Mesh-Free Numerical Methods

Mesh-free methods do not use spatial grid for data representation. Instead, com-

putations are performed directly on data-points. In some of these methods, data-

points are not stationary in space, as their location is updated in every time-step.

Smoothed-Particle Hydrodynamics (SPH) [9] is an example of mesh-free simulation,

where data-points are represented as particles that interact with each other within a

given spatial domain.

Data Dependency in Particle Simulation

In SPH, the computation of particle data, such as velocity and location, depends

on the forces that act on that particle. The forces are usually computed using the data

points of the neighboring particles within a certain radius, as figure 2-5 illustrates.

This, again, represents a spatially-local data dependency, as computation on each

particle depends only on a small subset of data points that resides within a given
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Figure 2-5: In SPH Simulation, forces are computed using data from neighboring

particles within a certain radius

spatial volume. However, because SPH is a mesh-free method, data points are not

sorted by their spatial location. This raises an issue when trying to resolve data-

dependency in this method.

Since data need to be distributed such that particles within the same spatial

region are stored together, the use of a virtual grid that sorts data points spatially is

an efficient way of achieving this. This grid is meant only to keep particles ordered

by their location, by assigning particles that belong to the same set of cells (or sub-

domain) to a single process. This also makes the search for neighboring particles

(that are needed to perform the computations) faster as only particles within the

surrounding cells are used.

Workload-Balancing in Particle Simulation

Because of the dynamic nature of mesh-free methods, and how data points, such

as particles, can move freely within the domain, load-balancing comes as a more

challenging issue. Data is distributed among processes based on the particles' initial

location using the virtual grid. When particles start to move during the simulation,

they move from one sub-domain to another. This may cause an imbalance in the
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workload of processes as one process may end up performing the computations on a

large number of data points, while another process has a much smaller set of data

points to compute. This presents a challenge in maintaining load-balancing between

processes, which will be looked at in more detail in the next chapter.

2.5 Conclusion

There nre a variety of tools for developing parallel applications. However, devel-

oping a parallel platform that targets numerical applications narrows down the scope

into a smaller subset of tools, as these applications have certain requirements that

need to be met.

Both mesh-based and mesh-free numerical methods have data dependency that is

spatially-local. Hence, sorting and distributing data points by their spatial location

is the most suitable way to achieve better parallelism.
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Chapter 3

Design and Implementation of the

Parallel Platform

This chapter describes the technical details in designing and implementing the

parallel numerical application platform. The overall architecture of the platform is

overviewed, showing how numerical simulations and solvers could be built seamlessly

on top of the platform. This is followed by a detailed description of the different

components and their implementation, such as the data structures used to represent

data points, the algorithms used for workload partitioning and data exchange, and

the handling of data-dependency.

3.1 Platform Architecture

One of the main objectives of building the parallel platform is to hide the under-

lying complexities of data-distribution, communication and synchronization, and to

add a layer of abstraction that simplifies the process of building numerical applica-

tions on top of the platform. At the same time, it is important that the platform be

flexible enough to allow different types of numerical applications to use it, and not

limit the functionality of these applications.
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Figure 3-1: The conceptual architecture and abstraction layers of numerical applica-
tions that uses the parallel platform

3.1.1 Abstraction Layers

Figure 3-1 shows the general architecture of numerical applications built using

the parallel platform. As described in the previous chapter, MPI is the most popular

multiprocessing API that is used nowadays. MPI is used here by the parallel platform

to provide the necessary multiprocessing functionalities, such as process management,

and low-level inter-process communication.

The parallel platform handles data management, workload distribution, data de-

pendency, and high-level inter-process communication. All these functions are re-

quired by most numerical applications. Different numerical methods can then be

built at a layer on top of the platform, where the implementation is mainly focused

on the physics and computation, rather than data management and parallelization.

This form of abstraction makes building parallel numerical applications much simpler.

3.1.2 Parallel Execution Flow

A typical numerical application that is built on top of the parallel library would

run as multiple processes using MPI. The flow diagram in figure 3-2 shows the general

execution flow of these processes. The application starts by reading and distributing

the input data. Depending on the type of application, input data could either come

from files, or generated by the application. The partitioning of data is done spatially,

and the distribution is performed by the parallel platform, where each process handles
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Figure 3-2: Execution flow of a parallel numerical application using the parallel plat-
form

a subset of the input data that resides in its spatial sub-domain.

Once the input data in each process is ready to be processes, the application

enters the time loop, where each process performs computations on its sub-domain

data independently. After that, data is exchanged between processes. This is where

data-dependency between processes is handled. Each process sends the parts of its

data that other processes depend on, and receives parts of other processes data that

it depends on. This inter-processes communication is also handled by the parallel

platform. Processes are synchronized to ensure all data-exchanges are complete before

proceeding to the next time-step. The subsequent time-steps are executed in a similar

manner, where computations are done first, then communications and synchronization

are performed.

At the end of the last time-step, the output data is written to files by all processes.

The output writing procedure is flexible to allow parallel-writing, where multiple

processes write to the same outfile file. The applications ends after the output data
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is written.

In some applications, output data needs to be written at each time-step, or every

given number of time-steps. In this case, output-writing will take place inside the

time loop, after synchronization is done.

All the steps of this execution flow, except for the computation step, are per-

formed by the parallel platform. This signifies the importance of this platform, as it

hides most of these tasks that are usually repeatedly-implemented in each numerical

application.

3.2 Data Management and Distribution

Data points are stored in arrays in the memory of each process. A virtual grid

is used, for both mesh-based and mesh-free methods, to describe the spatial domain.

This is important for both data partitioning, and handling data-dependency.

3.2.1 Virtual Grid

Because of the spatial-locality of dependent data, data is distributed over processes

based on the location of data points. In mesh-base methods, such as finite-difference,

the domain is discretized spatially, and therefore, the mesh itself is used for data

distribution. On the other hand, mesh-free methods, such as particle simulations,

deals with moving data points that aren't bound to a spatial location. In order

to minimize data dependency between processes, data points that reside within the

same spatial volume should be assigned to the same process. This raises a challenge

since particles are not stationary and will change their location during the simulation

time-steps.

To resolve this issue, a virtual grid is used. The purpose of the grid is to store

data points that belong to the same spatial volume in contiguous memory arrays, and

assigning these arrays to the same processes. As particles change locations during
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Figure 3-3: Data arrays are allocated such that each cell holds the data of the data
points inside it

the simulation, these arrays are updated to keep their spatial-locality consistent.

The platform utilizes a uniform virtual grid that serves multiple purposes. Each

unit of the grid is called a cell. Particle data are assigned to cells based on their

location, i.e. a particle belongs to a specific cell if its location is within the cell's

boundaries. Data arrays are partitioned over multiple processes using cell numbers.

Each process is assigned a sub-domain that is represented as a sequence of cells

and their corresponding particle data. A process is responsible for managing and

processing the particles that belongs to its sub-domain.

The virtual grid, as shown in figure 3-3, consists of Nx x Ny x Nz cells. The number

of cells and cell size depend on the type of numerical application that is used. Data

points are assigned to the cells that they reside in spatially. In particle simulation,

for example, each cell holds the data of the particles that are contained within that

cell.
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3.2.2 Data Representation and structure

different numerical applications use different types of data points to perform the

computations. In finite-difference method, for example, each cell represent a single

data point with one or more properties. In particle simulation, on the other hand,

each cell contain a different number of particles, and this number could dynamically

change during the simulation. Moreover, each particle isn't represented by only one

value, but a set of properties. Therefore, it is important to design the platform such

that it allows for flexible data allocation for these different types of data.

To achieve such flexibility, data is represented as arrays that are allocated at the

start of the application. Each array represent a property for the data points. The size

of the array is set depending on the type of application. Cells of the virtual grid point

to the corresponding addresses of these arrays that represent the starting location of

the data points contained in these cells. An example of this data structured is shown

in figure 3-3. Each cell carries the information related to the particles included in that

cell, and that information is composed of a number of arrays, representing different

properties of the particles.

The list of cells within the domain is also represented as an array. This array

holds the cell information, such as the cell number, and pointers to the data arrays

that belong to that cell, as shown in figure 3-4. Because data arrays are of fixed

size, all the data arrays are continuous in memory, i.e. the data of a given cell starts

immediately after the end of the data of the previous cell. This property reduces the

time needed to allocate the arrays, as one allocation operation per property, with the

total size of all the cells, is needed, instead of allocating a smaller array for each cell.

This is also practical for applications where there is only one data point per cell, such

as finite-difference method, as only one data array is allocated, instead of a scattered

set of single-element arrays.

As the simulation proceeds, data points are moved from one cell to another based

on their new spatial location. For example, particle locations are updated based
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Figure 3-4: Particle

Figure 3-5: Particle motion

data in cells

between grid cells

on the computations that are performed. The new locations are used to find the

containing cell of each particle. If the new particle location is in a different cell, its

data is moved to the new cell, as shown in figure 3-5.

3.2.3 Time-Variant Data

There are two types of data arrays: time-variant and time-invariant. The dif-

ference is that time-variant data is updated in every time-step, while time-invariant

data is fixed throughout the simulation. Particle locations, in particle simulation, for

example, are time-variant data, while particle masses are time-invariant.

Every time-step, time-variant data is computed by using the values from the

previous time-step. Hence, some form of temporary array is needed to keep the
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Figure 3-6: Time-variant data is allocated as two arrays, and are accessed based on

the time-step

new computed values until the time-step is over, before writing it to data array and

over-writing the previous-time-step data.

To achieve this, allocation of time-variant arrays is done by allocation two memory

spaces of the same size. One is used to hold the data of the previous time-step, and

the other is used to write the new computed values of the current time-step. At

the end of each time-step, the points of these two arrays are swapped, rendering the

current time-step data to be treated as the data from the previous time-step, and

new values of the new times-step are written into the other array. This is illustrator

is figure 3-6, where the particle location data array is accessed using the time-step

as a selector to decide which array represent current data, and which one represent

previous data.

The allocation of separate two arrays has an advantage when using multithreading

in the application. Only one of the two arrays will be modified at each time-step,

while the other array is read-only. This ensure that accessing these arrays is thread-

safe, as threads can read data from any array elements, such as neighbor-particle

data, but only one thread will be writing data to a given array element.

3.2.4 Data Partitioning

The use of the virtual grid to represent data in a spatially-ordered form enables

data to be partitioned easily over multiple processes by simply breaking the domain
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Figure 3-7: Data is partition by splitting the domain into a set of sub-domains
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Figure 3-8: Domain partitioning in different directions

into smaller sub-domains, as shown in figure 3-7. Each sub-domain consist of a set of

cells with their corresponding data arrays. Each process will have a partition of data

that resides within the spatial boundaries of its sub-domain.

The choice of how the domain is partitioned could make a difference in the perfor-

mance of the simulation. Partitioning the domain in the direction of a certain axis,

such as the use of sub-domains composed of z-layers, results in different data distri-

bution among processes. Figure 3-8 shows how a given domain could be partitioned

into different sub-domains based on the selected partitioning direction.

Depending on the type of application, a certain partitioning direction can provide
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Figure 3-9: Load balancing using different domain partitioning directions

better workload balancing. An example of this is the simulation of fluid in a container,

like the one shown in figure 3-9. In this example, partitioning the domain horizontally

will result in assigning most of the data points to one process, while leaving the

other process with very little data. On the other hand, vertical partitioning leads to

much better load-balancing, as each process will have approximately the same data

workload.

The partitioning direction choice is left as an option for the numerical application

that is built on top of the platform, as this option is problem-dependent and cannot

be easily predicted using the input data.

3.3 Data-Dependency and inter-process Communi-

cation

After the initial setup, where data arrays are allocated, populated with the input

data, and distributed among processes, the numerical applications starts the main

time loop. In each time-step, each process performs the computations on its data

arrays, then all processes begin the communication process, where they exchange

parts of the data based on their data dependency.
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Figure 3-10: Exchange of ghost region data between processes

3.3.1 Ghost Regions

In the previous chapter, it was shown that data-dependency in most numerical

methods is spatially-local. Because the domain partitioning performed by the parallel

platform is done using the virtual grid, which is a spatial organization of data points,

data-dependency between processes can be represented as the set of cells of the sub-

domain that resides spatially at the edge of that sub-domain.

The implementation of such dependency in the parallel platform is accomplished

by using neighboring cells. A given particle that belongs to a certain cell is surrounded

by other particles that belong to either the same cell, or one of the directly neighboring

cells. In the case of 3D grid, a cell has 26 direct neighbors.

When a cell and all its neighbors belong to the same processor, the computation

of data can be done directly, as all the needed data are available and accessible in

that processor's memory. This is the case for most cells that belong to the interior

of the sub-domain. On the other hand, when a cell has neighbors that belong to one

or more different processors, the data of these neighboring cells need to be retrieved

first before any computation could be done. These kind of cells are called the ghost

region. These ghost-regions are the parts of data that need to be exchanged between

processes in each time-step. Figure 3-10 shows an example of six sub-domains, their
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Figure 3-11: Smaller cell size results in smaller ghost regions, and therefore, less

inter-process communication

ghost regions, and the data exchange that each process, or node, needs to perform.

For time-variant data arrays, the exchange of ghost region data is done only for

the newly computed data arrays, that represent the current time-step. The actual

exchange of ghost region data is done for each destination process. The ghost region

cell data is collected into a continuous large array, then sent to the destination process.

This is performed by each process to every other destination that has dependency on

its data.

The size of the ghost region depends on the number of cells in the domain, the

number of processes (or sub-domains), and the partitioning direction. The use of a

larger grid, or smaller cells, result in smaller ghost regions, which means less data to

be exchange, as figure 3-11 illustrates. However, there is a trade-off between the cell

size and the simulation time-step size. Smaller cells may limit the movement of data

points in the domain, as no data point is allowed to travel across more than one cell

per time-step.

3.3.2 Computation and Communication Overlap

inter-process communication over MPI takes place in different mediums, depend-

ing on where the communicating processes reside. If the two processes are on the

same computer, the communication takes place over memory. If, on the other hand,
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Figure 3-12: Without overlapping, exchange of ghost regions takes place after all the
computations are complete

the communicating processes are running on two different nodes of a computer clus-

ter, they communicate through the interconnecting network between these nodes.

Either way, communication is costly when compared to computation, since it is an

I/O-bound operation.

The execution flow described earlier in this chapter shows that communication

of ghost regions happens after the computations are fully performed on data. The

simulation time of a single time-step, as shown in figure 3-12, is composed of the

computation time, and the communication time. Larger ghost regions, or larger

number of communicating processes, will result in higher communication cost.

One way to improve the performance and reduce the required time for performing

a time-step is to overlap communication and computation. To do that, the com-

putation part starts by performing the necessary computations on the ghost region

cells first. Since ghost regions are generally small compared to the sub-domain size,

this part of the computation would be completed in a short time. At this point,

communication is initiated in a separate thread, while the main thread continues to

perform the computations on the remaining cells of the sub-domain. This overlap of

communication and computation reduces the time required for each time-step, and

can result in much better performance.

Figure 3-13 illustrates the time line for a single time-step with overlapping commu-

nication and computation. Communication is initiated as soon as the computations
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Figure 3-13: By performing the computations on the ghost regions first, commu-
nication of ghost regions could start earlier and overlap with the remaining of the
computations

are done for the ghost region cells.

3.3.3 Neighbor Search

In particle simulations, such as SPH, neighbor particles are used to perform com-

putation on the current particle. Similarly in mesh-based methods, the neighbor cells

are used as data points to perform computations on the current data point.

At each time-step, data of ghost regions are exchanged between processes. After

this exchange, each process will have data arrays of all the cells surrounding its sub-

domain. Hence, the data of all the neighboring cells of the process' sub-domain cells

are locally accessible. Hence, neighbor search can be performed immediately to find

all the surrounding cells and their data points, and use them for the computation at

that time-step.

Figure 3-14 illustrates an example of two processes that have exchange their ghost

region data. Each process now has the necessary data required to perform neighbor

search for any of its sub-domain cells. Once the computations are done, updated ghost

region data is exchanged again, as described earlier, and the time-step advances.
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Figure 3-14: Once ghost-region data is exchanged, each process can perform neighbor
search for all its cells

Depending on the type of numerical application, more than one layer of cells may

need to be exchanged as ghost region. The depth of the ghost region is determined

by the requirements of the computations that are performed. For example, higher-

order finite-difference approximations require the use of several data points in each

direction. The implementation of such solver would require exchanging several layers

of cells between processes, increasing the communication cost.

3.4 Conclusion

The proposed parallel platform provides most of the necessary parallelization func-

tionalities to the numerical applications that are built on top of it. These functions,

as explained in this chapter, include data management and inter-process communi-

cation. In the next chapter, actual numerical applications will be built using the

parallel platform to evaluate its performance.
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Chapter 4

Testing and Performance Evaluation

Two parallel numerical applications will be implemented on top of the parallel

platform. The first is a finite-difference solver, which is an example of a mesh-based

method. The other application is a particle simulation, representing an example of

a mesh-free method. The objective is to evaluate the performance and scalability of

the parallel platform for these two applications.

4.1 Finite-difference Solver

The finite-difference solver application uses the heat equation in 3D grid using

second-order central-difference approximation.

4.1.1 Solver Setup

The heat differential equation that will be implemented in the solves is given as

u + 2  u 0

0-k + +8 a2 Jz2)=

where u(x, y, z, t) represent the temperature at a given point (x, y, z) at time t.

The domain is assumed to be 3D cube of length 1 on each side.
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The initial condition is set to as a function u(x, y, z, 0) = f(x, y, z), and the

boundary conditions at each side are also set to the same function value, that is:

u(O,y,z, t) = f(0,y,z)

u(x, 0, z, t) = f(x, 0, z)

u(x, y, 0, t) = f(x, y, 0)

u(1, y, z,t) = f(1,y,z)

u(x,1, z, t) = f(x, 1, z)

u(x, y, 1,t) = f(x, y,1)

The second-order finite-difference approximation for the Laplacian operator over

a discretized domain uses a 7-point stencil, and can be expressed as

02u a2u a2u

ax2 ay2 + a*2

Ui-1,j,k - 2
2i,j,k + Ui+,j,k

Ax2

+ ui,j-1,k -
2ui,j,k + Ui,j+1,k + Ui,j,k-1 -

2 Ui,j,k + Ui,j,k+1
Ay2 Az 2

The first derivative with respect to time is approximated using forward Euler,

resulting in the time integration equation:

Uij,k - U,j,k _ -,j,k - ,j,k + Ui1,j,k

At A( x2

t -2u +u
+ Ui,j- 1 ,j,Ay+ i,j+1,k +

Ay2

+ 1 = - kot U-l~ - 2uije + U, 1

+~~ 2G~-, u~k+u~~~

t -2t +t \

Az 2 J

2uJkj2 + k,~

The simulation is considered converged when the change in the vector u over a

time-step, that is, IIut+1 - ut|, is smaller than a threshold e = 10-s.
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Figure 4-1: Finite-difference solver execution time for 1,000,000 cells

4.1.2 Performance Analysis

The finite-difference solver is run for two difference scenarios, one is using a domain

with 100 x 100 x 100 = 1,000,000 cells, and the other uses 200 x 200 x 200 = 8,000,000

cells.

The first scenario, with 1,000,000 cells, is run multiple times with different number

of parallel processes, and the solver run time is collected for each run. The plot in

figure 4-1 shows the execution time for each case. As expected, running more parallel

processes results in decreased execution time, compared to the 1-process run.

It is also noticed that at some point, adding more parallel processes does not

effect the performance anymore. In reality, having too many processes could have

a negative impact on performance. There are several reasons for that. First, the

communication overhead increases as the number of processes increase, since more

inter-process communication is needed for the ghost regions. Additionally, having

smaller sub-domains in each process results in less computation time, and hence most

of the time-step is spent on communication rather than communication.

In the second scenario, where a finer grid of 8,000,000 cells is used, we notice

that the impact of having too many processes is delayed, as there is more data for
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Figure 4-2: Finite-difference solver execution time for 8,000,000 cells

computation per process than the previous scenario, as seen in figure 4-2. However,

there isn't much improvement in performance as the number of parallel processes

exceeds 10 processes.

To measure the scalability of this solver, the speedup for each case is computed

as

Speeup~) _Execution time of n processes

Execution time of 1 process

. The ideal speedup of n parallel processes is n.

The plot in figure 4-3 shows the execution-time speedup for both 1,000,000-cell

and 8,000,000-cell scenarios. It is noticed that the parallel platform scales well as

the number of processes increases up to 10 processes. After that, the communication

overhead starts to affect the performance negatively, which results in longer execution

time.

One could also observe from the speedup plot that the parallel platform scales

better for larger data set. The 8,000,000-cell scenario has better speedup for small

number of processes, and is only slightly affected by the communication overhead

once the number of parallel processes exceeds 10.

This could be extrapolated to conclude that the parallel platform performs better
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Figure 4-3: Finite-difference solver execution-time speedup

for larger problems. The two test-cases were relatively small, and hence there was

not sufficient computations per time-step to keep the processes busy. However, for

much larger problems, it is expected that the application will scale well for a large

number of processes.

4.2 Particle Simulation

The particle simulation application is a simple motion-simulation of particles

within a spatial domain. Particles are represented by their location, velocities, and

accelerations.

4.2.1 Simulation Setup

The main equations that will be used in this application are the simple motion

equations. Each particles has 4 properties: Particle number n, position p, velocity

v, and acceleration a. Arrays are initialized with random data, but a seeded random
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Execution Time for 64,000,000 partides

Figure 4-4: Particle simulation execution time for 64,000,000 particles

generator is used to ensure that the same data is reproduced for every run.

The acceleration a is time-invariant. It is fixed throughout the simulation. Posi-

tion p and velocity v are computed at each time step using the following equations

v'+ = v + At * a

Pt+1 = pt + At * vt

The boundaries of the domain are reflective, i.e. when a particle reaches the

boundary, its motion direction is reversed so that it moves back towards the domain's

center.

4.2.2 Performance Analysis

The simulation is run with a 100 x 100 x 100 cell virtual grid, with 64 particles

per cell. Different number of processes is used to evaluate the scalability. Fixed

time-steps are used, and the simulation is run for 60 time-steps.

The execution time is measured for each run. Figure 4-4 shows the execution time

needed by each run at different number of processes. Similar to the behavior that

was noticed before, the performance improves as the number of processes is increased.
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Figure 4-5: Speedup for particle simulation with 64,000,000 particles

At some point, however, doubling the number of processes has insignificant affect on

the simulation run time. There are two reasons for this. First, the communication

overhead starts to appear as more processes are added. The other reason is that

in particle simulation, unlike finite-difference, the workload is not balanced. Some

processes may contain more particles than others, resulting in an imbalance that

impacts performance.

The measured speedup can also be seen in figure 4-5. For the above-mentioned

reasons, the increase of number of processes beyond a certain point impacts the

speedup negatively. Using less processes is more suitable for this problem, as the grid

size and number of particles is relatively small.

4.3 Conclusion

The performance of the parallel platform shows high scalability for large problem.

The speedup of execution time is found to be high when the number of processes

is increased. For problems that do not have enough computation per time-step, the

communication overhead takes over and causes a decrease in performance as the
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number of parallel processes is increased. However, for larger problem, the parallel

platforms shows scalable performance.
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Chapter 5

Conclusion

This chapter concludes the thesis by outlining the main contributions achieved.

Additionally, some of the open problems and potential improvements are discussed

for future work.

5.1 Summary of the Contributions

In this thesis, the following work has been achieved:

1. A highly-scalable parallel framework for numerical applications is designed and

implemented.

2. A number of techniques for workload partitioning and data distribution and

inter-process synchronization are implemented.

3. Different numerical applications, such as finite-difference solver, are implemented

on top of the framework, and used to evaluate the framework's performance and

scalability.
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5.2 Future Work

Many issues in the proposed framework are open for further research. Additionally,

there are many potential performance improvements that could also be implemented.

Some of these are:

" Adaptive data-partitioning: The static data-partitioning approach used in

the framework is based on the the initial location of data points, and it does not

take into account the possible changes that could happen to their location during

the simulation. Dynamic data re-partitioning could be used to improve load-

balancing, and therefore, the overall performance. Research in this area involves

finding ways to automatically detect when data-repartitioning is needed, which

data-partitioning approach is best for the current state of data-points, and how

often should data be repartitioned to achieve maximum performance and hide

the repartitioning cost.

" Use of non-restrictive spatial domain: The current implementation of the

platform assumes a bounded spatial domain, where all the particles or data

points are within that space. Additionally, the data-structures used in the

implementation represent fully-allocated arrays at each cell. This kind of im-

plementation, while suitable for dense problems with many data points per cell,

may not be ideal for sparse problems. Hence, a potential improvement for the

parallel platform is to design data structures that are more suitable for sparse,

unbounded spatial domains.

" Dynamic addition and removal of MPI processes: The performance and

scalability of the parallel libraries depends highly on the problem size and the

amount of computation performed at each time-step. During the performance

evaluation, it was noticed that communication overhead could slow down the

application if the time-step computations are not large. One way to provide
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better scalability is to implement dynamic addition and removal of MPI pro-

cesses as the simulation progresses. The platform should be able to measure

the amount of computation and communication that is done in each time-step,

and estimate the optimal number of MPI processes that are needed to achieve

maximum scalability.
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