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Abstract

The spread of a fluid on a flat surface has been the subject of intense research for
a number of decades, having importance in surface treatment technologies, porous
media flow, and common naturally ocurring phenomena. In the complete wetting
case, a fluid will spread until it can cover the entire surface with a thin film of
molecular thickness; the dynamics of these fluids are well understood. In the partial
wetting case, the fluid first spreads and then stops, forming a puddle. Research
on partial wetting flows has revealed that the macroscopic behavior is impacted by
microscopic behavior, but there is no broadly accepted model that connects these
two regions. Some experimental data exist for a small volume of partial wetting fluid
spreading, but there is a distinct gap in data for larger volumes.

Here, we first review currently established understanding of the spreading problem

for the complete wetting and partial wetting cases. We then present the results of
laboratory experiments for large volume fluid spreading in the partial wetting regime.

We observe an early time spreading regime, which is followed by a relaxation to steady
state. Comparisons to similarly large volumes of a complete wetting fluid spreading
show differences even in the early time behavior. We compare the results of these
experiments with a macroscopic model in development and find agreement between
experiment and model, with the model revealing an early spreading regime of the form
A ~ t4. The results of these experiments and model of simple fluid spreading lay the
foundation for future work investigating more complex multiphase flow phenomena
in porous media under the partial wetting regime.

Thesis Supervisor: Ruben Juanes
Title: Associate Professor of Civil and Environmental Engineering
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Chapter 1

Introduction: Thin Film Flows and

Fluid Spreading

The flow of a thin film of fluid is a common phenomenon in everyday life. From

the protective coating on the cornea of the eye, to rainwater sliding down a window

pane or a spilt drink, we interact with thin films on a regular basis. In spite of their

ubiquity, they contain within a plethora of fascinating behavior which has been the

subject of study for many years. One notable problem is the spread of a fluid on a flat

surface, which, contrary to its conceptual simplicity, remains challenging to predict

in some scenarios. Thin film flows represent a fundamental multiphase flow problem,

and developments in understanding of this simple problem may be able to assist the

solution of more complicated problems such as multiphase flow in porous media.

1.1 Thin Film Flows

Thin film flows have been the subject of focused study for many years, and are a

commonly occurring phenomenon seen in unsaturated porous media flow [16], print-

ing, and coatings used to protect or modify surfaces. There has been a significant

amount of work done to probe the dynamics of these flows [18], but many important

questions remain unanswered. The equations describing such flows are nonlinear, and

modeling thin flim behavior provides a continued source of academic discourse [6].
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Flow on heterogeneous surfaces [12] and the role thin films play in dynamic systems

such as splashing drops [14] are other notable problems relating to thin films.

Deeply intertwined in probing thin films is the study of surface wettability, which

has recently experienced increased public interest with the development of super oleo-

phobic surfaces [24] and commercial products boasting super hydrophobic properties.

The design of these surfaces is of importance to the maintenance and protection of

surfaces in a variety of conditions. The wettability of a surface also plays an impor-

tant role in the dynamics of two fluids near a solid surface. In a complete wetting

case, the wetting fluid tends toward covering the surface entirely, while in the partial

wetting case, the wetting fluid experiences a constrained flow. There already exists

a large body of work reviewing the details of complete wetting flows [2], but there is

much left to study in partial wetting systems. One representative problem where this

discrepancy in understanding is apparent is the dynamics of a spreading fluid on a

solid surface.

1.2 Liquid Spreading

How a fluid spreads in air on a flat, level, solid surface is a classic problem that

has been studied for many decades. Early work examined the static configuration of

a drop of fluid, finding a force balance between the three phases given by Young's

equation [25],

7SV = 7'SL + y cos(Oeq) (1.1)

where 7ysV represents the solid-vapor surface tension, YSL the solid-liquid surface

tension, -y the liquid vapor surface tension, and Beq the equilibrium contact angle.

Figure 1-1 gives a schematic of these surface tensions acting as line forces at the

intersection of the three phases. This interface is named the contact line. Note that

Beq is macroscopically defined, and does not account for forces or behavior at the

microscopic scale [7].

Reinterpreting the line forces in 1.1 as surface energies, it is then possible to define

a spreading parameter, Seq, to describe the wetting state of a system at thermody-
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Figure 1-1: Schematic of a partial wetting static drop in some passive gas with surface
tension force balance at the contact line.

namic equilibrium,

Seq = 'sv - (ESL + 7) = 7 (cos Beq - 1) (1.2)

For Seq > 0, the energy of the dry surface is balanced by the combined energy

of the wet surface and air liquid interface, resulting in a film of fluid that covers

the entire surface to minimize the system energy. This is called complete wetting.

For Seq < 0 and 00 < e < 900, the energy of the system is minimized by the

formation of a finite fluid area, with a dry portion remaining, which is called partial

wetting. Larger contact angles with Seq < 0 are termed non-wetting systems. A

feature of the partial wetting system at thermodynamic equilibrium is that there are

adsorbed molecules of the fluid attached to the soild surface throughout [2]. Figure

1-2 displays a schematic of these different wetting states. 7Ysv is not a measurable

quantity [20], and the spreading parameter prescribes only the equilibrium contact

angle. As a result, the details of the shape of a fluid mass are not part of this

description. In practice, thermodynamic equilibrium can be difficult to achieve, and

it is more common to observe fluids that are in a static configuration, but are not

necessarily at thermodynamic equilibrium.

It is also possible to define an initial spreading parameter, Si, for a droplet spread-

ing out of thermodynamic equilibrium, where 'Yso replaces -ysv in equation 1.1. 7Yso

represents the energy of surface far from thermodynamic equilibrium without ad-

sorbed fluid molecules [7]. Positive values of SL favor the spread of a liquid as one

might expect, though there is no longer a clear relation with Beq. The dynamics of

13



(a) Equilibrium state for a (b) Equilibrium state for a
complete wetting fluid partial wetting fluid with

contact angle 0 eq.

Figure 1-2: Schematic of a fluid at equilibrium in various wetting states.

the spreading fluid are not described by the spreading parameter.

The dynamics of a spreading fluid have also been of interest for the past few

decades. A variety of scaling laws, describing the evolution of a drop or small mass of

fluid, were developed through some experiments 123, 13J, and take the form of R ~ t",

where R is the fluid's radial extent, t is the time elapsed, and n is some exponent

relating to the regime of flow. These power laws were then confirmed by further

experimental work for small drops in the complete wetting state [21, 4]. Of note are

experiments with well controlled thermal conditions, which also confirm these scalings

[10], as well as experiments with larger volumes of fluid [21, 17J. A more in-depth

treatment of the mathematics of these dynamics is given in Chapter 2. Despite some

difficulties, particularly in resolving the motion of the contact line, complete wetting

spread is well characterized at a variety of scales. Current research focuses on the

dynamics on surfaces with defects, as well as the dynamics of partial wetting systems,

where contact line motion is not clearly understood [2].

1.3 Motivation

With a few exceptions, the study of these spreading fluids has been mainly restricted

to small droplets in the complete wetting state. There is very little experimental work

examining the spread of large volumes of fluid in a partially wetting system. Studies

of thermal impacts on spreading included a few experiments with drops in a partial

wetting system [10], and a few others captured the spread of a droplet, and fit its

exponential relaxation [15]. Common sense along with understanding of the spreading

parameter predicts that a mass of fluid in a partial wetting system will have a finite
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area at equilibrium. To date, however, there is little, if any, data on the partial wetting

spread of volumes of fluid larger than 10 mL. We seek to contribute experimental data

in hopes of providing useful comparison with theoretical descriptions and simulations

of similarly large volumes of fluid in partial wetting systems.
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Chapter 2

Overview of Thin Film Mathematical

Modeling

There is a significant amount of research devoted specifically to the mathematical

and theoretical treatment of thin films flows. Here, we will give a cursory overview of

this research, with a focus on the problem of spreading. For a more in-depth review,

the reader is directed toward the references [2], [5], and [8]. First we will cover

complete wetting, followed by partial wetting, and we will end with a discussion of

open questions in the mathematical description of thin films.

2.1 Complete Wetting

The spread of a complete wetting fluid mass on a level, flat, solid surface, in a passive

gas is governed by the thin film equation. A sketch of the problem is shown in figure

2-1. The equation is derived from the Navier-Stokes equation using the lubrication

approximation [18]:

y a + V "-3pgh3 Vh - 9V (V2h) = 0 (2.1)

The small height, h, and large horizontal extent of a spreading fluid justify the

use of the lubrication approximation. This formulation shows that either gravity

17



i h

Figure 2-1: Diagram of a spreading mass of non-volatile fluid on a flat surface of
density p, viscosity p, and volume V. Note the dynamic contact angle, 6 d, is not the
equilibrium contact angle, Beq.

or capillarity can drive flow, and that viscosity dissipates the work done by these

forces. From this equation, it is relatively simple to construct some simple scalings

for the evolution of the radius of an axisymmetric, complete wetting drop spreading

over time. The volume of the drop is given as Vo ~ R2 h for a drop of radius, R,

and height, h. For the case where gravity is negligible, we can define a capillary force

which scales as 702O, with a dynamic contact angle Bd. This capillary force is compared

to a viscous force pUR/h where U = d, the velocity of the contact line. Solving for

U, we find:

dR aydh (2.2)
dt ptR

Since 0 d c tan d c h/R for sufficiently small angles, it is then possible to rewrite

equation 2.2 in terms of the radius and height of the drop:

dR ayh3
__c (2.3)

dt pR3

Substituting the volume of the drop for the height, and integrating in time then

gives:

R ac t , A oc t5 (2.4)

This derived scaling corresponds to Tanner's law [23], which is reported for the

spread of a complete wetting fluid in which gravity forces are negligible. The easiest

way to define this regime's occurrence is through the capillary length, rK- 1:

18



-= - (2.5)

For R « r 1, gravity is negligible, and the scaling derived applies in the case of

a spreading droplet. When this condition is not met, the force of gravity becomes

signficant and an alternate scaling can be derived. Instead of capillary force, we

compare the gravitational force pgh2 to the viscous force. In a similar manner as

above, we then find:

R oc t8, A oc t4 (2.6)

This spreading regime as well as Tanner's law has been observed experimentally

for complete wetting droplets spreading on a variety of surfaces [4]. These relations

allow for the verification of numerical techniques used to solve the thin film equation

for a drop spreading [111.

A complication arises in this hydrodynamic solution at scales smaller than the

macroscopic scale, deriving from the initial definition of the contact angle in equa-

tion 1.1. Microscopic behavior is not prescribed in this problem formulation, and

common constructions of Navier-Stokes prescribe a no-slip boundary condition at the

solid-liquid interface. The movement of the contact line is at odds with this condi-

tion, and a singularity in the fluid stress results. This is called the moving contact

line problem, which has been a leading problem in thin film dynamics. The problem

creates a challenge in formulating the boundary conditions for a spreading fluid mass

[9]. The advent of highly accurate ellipsometry, as well as advanced surface treat-

ment techniques, has allowed scientists to probe the regions near the contact line, and

uncover the presence of a microscopic precursor film [20]. Thus, the moving contact

line problem is circumvented, as the bulk fluid flows on a preceding film of itself.

The situation changes for a partial wetting fluid, which will be examined in the next

section.

19
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Figure 2-2: Schematic of a spreading fluid where the influence of gravity is felt,
resulting in a pancake shape.

2.2 Partial Wetting

Solving equation 2.1 for a partial wetting system gives incorrect results, namely, the

solution does not predict the halt of fluid spreading. Theory predicts that the radius

of a fluid mass controls its final shape in an axisymmetric system [8]. In the regime

where R < K-1, the fluid takes the form of a spherical cap due to the dominant

capillary forces, intersecting the solid surface at Beq. For R K-1, however, the fluid

mass takes on a pancake like shape with height h* given by [8]:

h, = 2K-1 sin (Oq (2.7)

This height results from the force balance of capillarity given by Young's law and

hydrostatic pressure. The edges of the fluid intersect with the surface at Beq, and rise

up to the fluid thickness given by h* in figure 2-2. The traditional thin film equation

does not predict this final configuration, or that of a small partial wetting drop, thus

the scalings derived in section 2.1 are not necessarily applicable for this flow. Despite

these inaccuracies in equation 2.1, it is possible to use this equation to derive a non-

dimensional time to scale data with. We choose to pick a time scale that marks when

the effects of gravity cease to act on the puddle. First we rewrite the equation in

radial coordinates, neglecting the capillarity term:

&h _pg ( 3 &h\
at _ P rh ) =0 (2.8)
at 3 pr ar ar

This form corresponds with forms previously reported for an axisymmetrically

spreading drop [13]. We use the equilibrium state to pick the following characteristic

20



length scales: for the height, we pick h*, and for the radius, r, we pick the equilibrium

radius R* = V/h,. To complete the non-dimensionalization, we can then define

the characteristic time, tc as:

tc = p* (2.9)
pgh,

To nondimensionalize the areas, we simply pick the final area:

A* = Volh* (2.10)

When comparing to historical complete wetting data, we will use the same char-

acteristic area and time, even though for a complete wetting fluid, h* is meant to

be zero. We expect, based on this scaling, that for experiments displaying the same

contact angle 6, the curves describing the areal evolution over time will collapse.

Preceeding this work are a number of experiments examining the spread of par-

tially wetting drops. Studies of the early time spreading as a drop just impacted a

surface suggested an inertially dominated regime where the area evolves in an equa-

tion of the form A ~ t", where n depends on the equilibrium contact angle [1]. Other

work examined the transition to steady state, proposing an exponential power law

relaxation [15]. The presence of a dynamically varying contact angle, which does not

match the equilibrium contact angle, complicates prediction and characterization of

partial wetting flows in all time regimes. The time dependent contact angle is tied to

questions of fluid behavior at the contact line, which remain unanswered for partial

wetting systems [2]. It is clear that microscopic features have some notable impact on

the macroscopic spread, but there is not a currently established method to reliably

connect the flow at these two scales.

2.3 Open Questions in the Problem of Spreading

As noted previously, there remain a number of open questions in the mathematics

of fluid spreading. A key question revolves around the moving contact line problem,
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where formulating boundary conditions for solving thin film flow problems remains

uncertain [22]. There are many proposed theories about the physical behavior at the

contact line, and there are equally many numerical techniques used to circumvent or

resolve the contact line singularity [2]. These uncertainties are generally connected

with the development of a complete formulation for the spread of a fluid droplet,

and clearly indicate a need for a theory connecting macroscopic flow in the bulk

of a fluid and microscopic/mesoscopic flow near the contact line. Improvements in

experimental techniques can help reveal the physical phenomenon occurring.

A second open question is the derivation of a macroscopic model for a partial wet-

ting fluid flow. One promising approach takes advantage of a Cahn-Hilliard frame-

work, modeling the movement of the spreading fluid by tracking the system free

energy E [3]. The free energy is composed of two components, the bulk free energy

f(h), and the interfacial energy, K(h). These are given by:

f(h) = -pgh2 - S + E1(h) (2.11)

K(h) = y + E2(h) (2.12)

Note the terms E in both energy terms refer to a microscopic contributions to

the free energy resulting from the microscopic features of the spreading fluid. The

final form of the evolution equation is given by:

=-h& ( of B'&
= h38 a h Bo - (h) a y h) ah (2.13)

A more detailed derivation of this particular model can be found in [19], and its

results will be used to compare with the experimental results of this work. Given the

correct microscopic energies Ei, it is possible to model the macroscopic fluid spread,

without explicitly modeling the fluid behavior near the contact line region as well as

determine the macroscopic contact angle and contact line speed U.
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Chapter 3

Experimental Investigation

We have conducted a series of experiments allowing a large (R K-1) mass of fluid

to spread under gravity after being deposited onto a flat, level, partial wetting surface

until the mass reaches a steady state. To characterize this spread, we image the fluid

mass and calculate its area over time. We vary the volume of fluid in each experiment,

while keeping constant the density, viscosity, and equilibrium contact angle. This set

of experiments represents a useful initial data set of large volume partial wetting fluid

spread.

3.1 Experimental Set Up

We choose a 1000 cSt Silicone Oil from Sigma Aldrich, dyed with Orcosolve Blue

Oil dye at a concentration of 0.07 g L- 1 . The mass of fluid that is on the surface is

measured for each experiment, and is then converted to volume with the manufacturer

reported density of 0.971g mL 1 . For the experimental surface, we use a flat, 60 cm

by 60 cm by 0.65 cm borosilicate glass which is treated manually with Nanogate Pro

Glass Clear 105 surface treatment. The thickness tolerances, as reported by the

distributor of the glass, are 0.02 cm. The advancing contact angle for this fluid, air,

and this treated surface was measured with a goniometer and is (75 3)0. Before

starting an experiment, the surface is cleaned with isopropyl alcohol, and treated with

the pro glass compound. After an experiment, the surface is cleaned by mechanically
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Figure 3-1: Schematic of experimental setup

removing the silicone oil, followed by cleaning with isopropyl alcohol. The same

surface is used for subsequent experiments.

The glass surface is levelled with a Starret Machinist Level before each experiment

to an accuracy of 1/2400. This is accomplished by the use of micrometer driven

vertically translating stages attached to an optical table. In addition, the micrometer

reading is taken after levelling the surface, and after the experiment, to establish

that the levelness was maintained over the course of the experiment. The fluid is

deposited from a beaker on to the glass while kept at a height close to the surface,

without allowing the beaker to touch the surface. Once the fluid is deposited, the

experiment is imaged from above until the mass reaches a static configuration. Typical

experiment times were one to two days. A schematic of the experimental setup can

be seen in figure 3-1.

To study the spread of a mass of fluid on a partial wetting surface, we choose

to examine the evolution of the fluid area over time. The fluid mass is illuminated

from below with a light panel, and imaged at 16 bit-depth from above using a Pike

AVT firewire camera with a 16 mm focal length lens controlled with a MATLAB

script. The camera is sufficiently far from the surface that the whole surface can be

seen, but we do not explicitly measure the camera height. The script allows for the

measurement of the time each picture is taken to accuracy of milliseconds.

To get an independent measure of the fluid height, we also took images of the

fluid in its static condition from the side with a macro lens. We used a Canon EOS
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iD DSLR, along with a 65 mm macro lens at lx zoom. In this way, we were able

to measure the height of the pancake of fluid, independent of the volume and area

measurements. The height mesaured was (1.8 + 0.1) mm. To compare, we calculate

the height of the final fluid configuration by dividing the measured volume by the

experimental area. This assumes the edges are insignificant in their contribution to

the volume. Using this approach, we find a average height, h*, of (1.7 0.1) mm.

3.2 Image Processing

The raw experimental images, which are greyscale PNG files, are processed using a

MATLAB script. A background image of the illumintaed surface is taken before each

experiment, and is subtracted from the original image. Then, a region of larger than

100 by 100 pixels up to 200 by 200 pixels is selected such that it is always in the

spreading fluid mass over the course of the experiment, and the average region inten-

sity is found at each time step. A value of 50% of that average intensity in this region

is used as the threshold value to convert the greyscale image into a binary image.

The total area is found by then counting the number of black pixels in the image over

both dimensions. Before each experiment is run, an image of a known measurement

scale is taken, and used to establish the conversion from pixels to cm, giving the area

of fluid in each image, with a known time. The measurement uncertainty in the area

is < 6%.

Some experiments showed variations in the area, even after appearing to reach

a steady configuration, or, upon visual inspection, showed a clear preferential flow.

Given that we expect the spread to be homogenous excepting for heterogeneities in

the surface, we expect the spread to be relatively even in all directions. Since it was

not clear these expeirments had reached a static configuration, we have excluded the

results of those experiments in the subsequent analysis.
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Chapter 4

Results and Analysis

The results of the experiment in chapter 3 are reported here, detailing the spread of

a mass of partial wetting fluid on a flat glass surface. In addition to this data, we

will also compare these results to some historical data for the complete wetting case

[17]. The equilibrium height of the fluid was measured, and can also be calculated

based on the area, giving insight into whether the fluid mass has reached equilibrium.

Finally, we compare the results of these experiments with modeling results from [19],

examining possible earlier spreading regimes.

4.1 Experimental Results

The results of the experiments in chapter 3 follow. The area of the fluid mass at a given

time is scaled by Ac, and the time is scaled by t,, as described in section 2.2. Figure 4-1

displays the evolution of the spreading area of the fluid masses over time. The volume

of the spreading fluid does not appear to have significant importance in this scaling of

the spreading, and we see that the equilibrium area matches reasonably well with the

one predicted by theory. We suspect that deviations from the theoretical equilibrium

area result from heterogeneities in the surface, which are apparent when examining

the spread of the fluid, which was not perfectly circular. These heterogeneities could

be either physical or chemical in nature. An image of a typical experiment at its

end is shown in figure 4-2 for reference. We can then compare these data to the
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Figure 4-1: Time evolution of the spreading area for various volumes of silicone oil
spreading on a flat, partial wetting surface. A is the non-dimensional area, while t is
the non-dimensional time. The dotted line is placed at A =1 for reference.
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Figure 4-2: Image of the end of an experiment, with the mass of silicone oil in a static

configuration. Heterogeneity in the surface can cause deformations in the circular

shape of the fluid mass.

complete wetting data reported in figure 4-3 [17]. We scale the data using the same

A, and tc, recognizing that for the complete wetting case, there will be no static

equilibrium state where A = 1. Previous data on complete wetting spreading shows

similar early time behavior. The late time behavior, however, as predicted by theory,

is drastically different, with the complete wetting case showing no significant change

in the spreading rate, while the partial wetting case exponentially relaxes to a static

state.

For the given system described in chapter 3, we can calculate the expected pan-

cake height based on equation 2.7, which gives (1.8 + 0.1) mmi. We can compare h,

with measurements of the fluid mass profile taken, which were (1.8 0.1) mmi by

imaging, and (1.7 0.1) mm based on the average area and measured volume. These

measurements all closely agree with the expected value, suggesting the fluid masses

had reached an equilibrium state at the experiment end.

4.2 Analysis and Comparison with Modeling Results

Examining these results suggests the possiblity of a spreading law of the form A ~ t".

For complete wetting, we observe A ~ t0 4, which is close to the behavior predicted in
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Partial Wetting Complete Wetting

-187.98 ml - - - 1494 ml
-163.96 ml - - - 992 ml
- 109.75 ml - - - 493 ml
- 77.95 ml --- 350 ml

- 40.98 ml --- 229 ml

-- 37.55 ml - - - 152 ml

- 22.07 ml --- 82.7 ml

--- 36.5 ml

""- ''5 "'" ' 0 - I 0

10 10-4 10- 10- 10 10 101 102 103 104

t

Figure 4-3: Comparison of partial wetting fluid spread data (solid
wetting data from [17] (dashed lines). A dotted line is placed at

lines) with complete
A = 1 for reference.
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100

A - 1494 ml, n = 0.25
- 992 nil, n = 0.25
- 493 ml, n = 0.24

-- 350 ml, n = 0.24
10- 229 ml, n = 0.24

- 152 ml, n = 0.24
- 82.7 ml, n = 0.24
- 36.5 ml, n = 0.24

10 10 10 a 10 ; 10 10 10 10

Figure 4-4: Nondimensionalized spread of various volumes of silicone oil in a complete
wetting system, fitted with a power law relation of A ~ t'. Lines represent the fit for
a given volume, while o represent the actual experiment data gathered from [17].

equation 2.6 for spreading driven by gravity forces and balanced by viscous dissipation

as we can see in figure 4-4. This behavior has been documented in a variety of sources,

as discussed in chapter 2. For partial wetting systems, we see a possible power law

matching the partial wetting behavior with n = 0.20 0.02 figure 4-5. This value of

n does not have a clear corresponding theoretical derivation, with corresponding force

balance, unlike in the complete wetting case. It is possible that the flow is driven

by gravity, with the energy dissipation occurring both due to viscosity as well as

behavior at the contact line. In order to build some insight into these partial wetting

early time behaviors, we then compare the partial wetting behavior to the results of

modeling .

We use equation 2.13 to model 7mL of a partial wetting fluid spreading with

Oeq = 15 in figure 4-6 [19]. Differences in the volume are scaled out through the non-
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- 187.98 ml, n = 0.20

163.96 ml, n = 0.20
- 109.75 ml, n = 0.22

77.95 ml, n = 0.21
40.98 ml, n = 0.22
37.55 ml, n = 0.19

-- 22.07 ml, n = 0.17
104

10 102 101

Figure 4-5: Nondimensionalized spread of various volumes of silicone oil in a partial
wetting system, fitted with a power law relation of A ~ t'. Lines represent the fit for
a given volume, while o represent the collected experiment data.
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dimensionalization of the data. We use an initial condition with a small area, and

another initial condition with a larger area. For the smaller area initial condition,

we observe a power law corresponding to A ~ t0 2 45 at early times, followed by a

relaxation to the equilibrium configuration. The early spreading law closely matches

with the scaling law given in equation 2.6, suggesting the early time experiences a

gravity dominated spreading regime. For the initial condition with a larger starting

area, we do not observe this gravity dominated regime, highlighting the impact of the

intial condition on the appearance of a gravity dominated regime of flow.

In light of this dependence on initial area, we re-examine the early spreading

behavior of the experimental data shown in figure 4-5. We choose the four experiments

that start at the earliest times, and fit a power law to the first fifty data points in

figure 4-7, finding an average n = 0.23 + 0.01. This is closer to the scaling for a

gravity dominated regime described in equation 2.6, but the initial area is too close

to the equilibrium area for the gravity dominated regime to appear.
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Figure 4-6: Nondimensionalized model of 7mL of partial wetting fluid spreading on
a flat, homogenous surface, using equation 2.13 [19]. There are two initial conditions,
one for a small initial area, and one with a larger one. The smaller initial area results
in the appearance a gravity dominated spreading regime of A - t 4.
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Figure 4-7: Nondimensionalized spread of various volumes of silicone oil in a partial
wetting system fitted with power laws of the form A -t. The solid lines represent
polynomial fits for the first fifty data points, and o represents the experimental data.
The values for n are larger than seen in figure 4-5, but still do not match the scaling
given by equation 2.6.
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Chapter 5

Conclusions and Future Work

We have collected data on the spread of large volumes of fluid in a partial wetting

system. As noted in section 2.2, there is a lack of experimental data covering this

particular regime of fluid spreading, despite its common occurance, and this data

begins to fill in this gap of knowledge. We see fairly uniform behavior when using

the area and time scalings proposed in section 2.2, suggesting the only important

parameter for partial wetting spread is the equilibrium contact angle, 6 eq. We observe

an early regime of spreading, followed by a relaxation to a steady state. Predictions

of the static fluid pancake height given by equation 2.7 closely match the measured

and calculated heights found in section 3.1. Comparison with previously collected

data on complete wetting also show similar early time behavior. Closer analysis of

the early time spreading, however, reveals a difference in the complete and partial

wetting. The complete wetting data closely matches the scaling predicted in section

2.1. However a theoretical explanation for the partial wetting data remains elusive,

as seen in section 4.1.

In comparison to modeling results, we find both the model and experiments show

a relaxation to the steady state. The model also appears to reveal an early time

spreading regime corresponding to the gravity dominated spread derived in 2.1, de-

pending on the intial area. The experimental data, however, did not cover the time

periods when this regime occurs because the initial area was too large relative to the

equilibrium area. Despite differences between the contact angle of the model and
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experiments, there is similar behavior resulting from the partial wetting condition.

The differences between the model and the experiments highlight a few areas of

future work. First, an expanded data set with a smaller initial area, ideally Ai = 0.1,

is requried to examine the presence of a early spreading regime as predicted by the

model. Second is a series of experiments using a variety of contact angles to verify

the model results and develop understanding of the spreading dependence on the

contact angle. Once the model is verified, the framework could then be expanded

to account for multiphase flow in porous media, or other complex multiphase flow

systems. The spread of a partially wetting fluid is a fundamental multiphase system.

Understanding the flow in this situation will have important implications for other

more complex multiphase problems.
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