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Abstract

This thesis presents the development and analysis of computational methods for ef-
ficiently accessing and utilizing nuclear data in Monte Carlo neutron transport code
simulations. Using the OpenMC code, profiling studies are conducted in order to
determine the types of nuclear data that are used in realistic reactor physics simula-
tions, as well as the frequencies with which those data are accessed. The results of
the profiling studies are then used to motivate the conceptualization of a nuclear data
server algorithm aimed at reducing on-node memory requirements through the use
of dedicated server nodes for the storage of infrequently accessed data. A communi-
cation model for this algorithm is derived and used to make performance predictions
given data access frequencies and assumed system hardware parameters. Addition-
ally, a new, accelerated approach for rejection sampling the free gas resonance elastic
scattering kernel that reduces the frequency of zero-temperature elastic scattering
cross section data accesses is derived and implemented. Using this new approach,
the runtime overhead incurred by an exact treatment of the free gas resonance elastic
scattering kernel is reduced by more than 30% relative to a standard sampling proce-
dure used by Monte Carlo codes. Finally, various optimizations of the commonly-used
binary energy grid search algorithm are developed and demonstrated. Investigated
techniques include placing kinematic constraints on the range of the searchable en-
ergy grid, index lookups on unionized material energy grids, and employing energy
grid hash tables. The accelerations presented routinely result in overall code speedup
by factors of 1.2-1.3 for simulations of practical systems.
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Chapter 1

Overview

Many challenges are encountered in running the kinds of large-scale, highly detailed

simulations that are necessary to design advanced nuclear systems and more accu-

rately predict the performance of those already in existence. One of these challenges

is the management of large sets of nuclear data on local memory-limited, massively

parallel computing architectures. The aims of the work presented in this thesis are

the development and analysis of computational methods for the efficient management

and utilization of nuclear data in Monte Carlo neutron transport simulations.

In Section 1.1 of this chapter, an introduction to the role that Monte Carlo meth-

ods and nuclear data play - and the relations between them - in Monte Carlo simula-

tions is given. Following that introduction, Section 1.2 outlines some of the challenges

that are encountered in performing computationally intensive simulations of practical

nuclear systems. The general competition between memory requirements and CPU

time is discussed with respect to a typical full core nuclear reactor physics simulation.

This chapter concludes with an outline of specific computational challenges that are

addressed in this thesis. Each particular challenge is briefly described, as are the

methods that are developed in this work for its analysis and mitigation.

In Chapter 2 of this thesis, the types of nuclear data that are needed in full core re-

actor physics simulations, as well as the frequencies with which these data are needed

during a simulation, are investigated. The nuclear data access information that is

gathered is then used in the conceptualization of an algorithm for more efficiently
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managing - from a memory reduction perspective - large nuclear data sets. A com-

munication model for this algorithm is also developed and used to make performance

predictions. Then, Chapter 3 presents the derivation and implementation of a new

approach for accelerated rejection sampling of the free gas resonance elastic scattering

kernel. Verification and runtime results are also given. In Chapter 4, optimizations

for the standard energy grid lookup algorithm used by continuous-energy Monte Carlo

codes are presented. The theoretical foundations for the search accelerations are laid

out as are pertinent details of their implementations. Overall code speedup results

are presented for simulations of practical, reactor physics-relevant systems. This the-

sis concludes with Chapter 5 and its discussion of areas for future research that are

related to the present work.

1.1 Nuclear Data in Monte Carlo Neutron Trans-

port Simulations

Monte Carlo methods applied to neutron transport simulations [52] are widely re-

garded as the gold standard for accurate prediction of the neutronic behavior of

nuclear systems. In the context of particle transport, Monte Carlo methods are em-

ployed to integrate over the phase-space of a linearized form of the Boltzmann trans-

port equation by using pseudo-random numbers to stochastically sample probability

distributions that describe physical phenomena [34]. The outcomes of this sampling

describe the behavior of a single particle realization in the system under consideration.

If a large number of independent particles are simulated in this manner, quantities

describing the average behavior of a system which contains many particles (e.g. reac-

tion rate density) can be accurately calculated by taking the mean numerical values

from the collection of simulated particles.

The elegance of the Monte Carlo method is rooted in its allowance of arbitrarily

complex probability distributions to describe the elements of a system's behavior.

In the simulation of physical systems, this means that there are few inherent ap-
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Figure 1-1: Selected 2 39Pu Reaction Cross Sections [10]

proximations that must be made with regard to physics models or system geometry.

The probability distributions that describe the physical phenomena relevant to neu-

tron transport simulations are encoded in nuclear data. These data include neutron

reaction cross sections (Figure 1-1) which characterize the probabilities of various

neutron-nucleus interactions, secondary angular and energy distributions (Figures 1-

2 and 1-3, respectively) which describe the probabilities that a particular reaction

will result in secondary particles traveling in a given direction with a given energy,

respectively, and many other quantities describing a variety of physical processes.

The nuclear data that are utilized in neutron transport codes go through several

processing steps before they are actually used in a simulation. The first of these

procedures is nuclear data evaluation. For an individual nuclide, starting with the

raw data from theoretical nuclear model calculations and experimental results, an
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Figure 1-2: 2 3 9 Pu First Level Inelastic Scattering Secondary Angular Distribution [10]
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Figure 1-3: 2 39 Pu Continuum Inelastic Scattering Secondary Energy Distribution [10]
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Evaluated Nuclear Data Library Organization

ENDF/B-VII.1 [24] CSEWG, USA [3]
JEFF-3.2 [8] NEA 2 , International [11]

JENDL-4.0 [61] JAEA , Japan [7]
TENDL-2013 [15] NRG4 , The Netherlands [12]
CENDL-3.1 [40] CNDC 5 , China [2]

RUSFOND-2010 [14] IPPE , Russia [5]
BROND-2.2 [20] IPPE, USSR

Table 1.1: Selected Evaluated Nuclear Data File Libraries

evaluated nuclear data file is produced. For a given isotope, several current evaluated

nuclear data files may exist as a result of different national and international efforts.

These files almost exclusively come in the ENDF-6 format [69], an internationally-

utilized standard for evaluated nuclear data files originating from the United States

Cross Section Evaluation Working Group (CSEWG) [3], organized out of the US

National Nuclear Data Center [9]. CSEWG is also responsible for the production

of the US evaluated nuclear data file library. The current version of this library is

referred to as ENDF/B-VII. 1 [24]. A listing of evaluated nuclear data file libraries,

along with the organizations by which they are produced, is provided for reference in

Table 1.1.

1.2 Computational Challenges

High-fidelity physical models and arbitrarily complex problem geometries that render

problems intractable for deterministic computational methods can be handled rela-

tively easily in Monte Carlo simulations. For this reason, three-dimensional, full core

reactor physics simulations, in which highly complex physical processes are occurring

throughout a system with highly detailed geometry, provide a seemingly natural area

'Collectively, these evaluated nuclear data files are referred to as evaluated nuclear data libraries.
2Nuclear Energy Agency
3Japan Atomic Energy Agency
4Nuclear Research and Consultancy Group
5China Nuclear Data Center
61nstitute of Physics and Power Engineering
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of application for Monte Carlo methods. However, due to limitations on computa-

tional speed and memory, this potential has gone largely unrealized.

Historically, Monte Carlo codes have not been a viable tool for everyday reactor

analysis because the types of computers that are required to run detailed, full core

Monte Carlo simulations fast enough for practical design purposes simply did not

exist. With the advent of massively-parallel architectures, now ubiquitous in high-

performance computing, and the push towards exascale supercomputing systems,

Monte Carlo methods are increasingly being considered seriously for large reactor

physics calculations. However, challenges remain.

1.2.1 A Challenge Problem

The fidelity with which Monte Carlo methods are capable of modeling the physical

processes relevant to reactor physics comes at the expense of large data storage re-

quirements. Tally data, which contain the results of a simulation, geometry data,

which define the physical dimensions of a system, and nuclear data, which contain

necessary input information for a simulation, account for the largest shares of stored

data. Memory storage requirements are a limiting factor for realistic reactor physics

simulations in which isotopic depletion and temperature feedback effects must be

considered. For these calculations, pin-wise reaction rates must be tracked across the

core for roughly 400 nuclides in each of approximately 300 axial planes. Each pin may

also be divided into upwards of 10 radial rings and 8 azimuthal seqments. The few

terabytes of data generated by these tallies far exceeds the available memory per node

on virtually all current and proposed supercomputers. The tally server algorithm of

Romano, et. al [57] addresses this memory burden by storing tally data on separate

server nodes. Large geometry data requirements are also being addressed via domain

decomposition methods [45].

This leaves the problem of on-node storage of the hundreds of gigabytes of nuclear

data required to even run realistic full core simulations in the first place. For each of

the hundreds of nuclides present in a simulation, point-wise continuous-energy neu-

tron reaction cross sections must be stored, along with secondary energy and angular

20



distribution data. The problem is exacerbated by transient temperatures, tempera-

ture gradients, or materials at different temperatures. In these cases, cross section

data must be stored on a fine temperature grid of 5 - 10 K in order to capture the

effects of Doppler broadening [70]. It has recently been suggested that temperature

dependence of secondary distribution data should also be considered [63].

1.2.2 Memory Requirements and Simulation Runtime

Several methods have been proposed for treating neutron cross section data and man-

aging the associated memory requirements. Storing cross sections for every nuclide

- each with an initially unique grid of energy points - on the same unionized energy

grid enables faster cross section calculations by requiring only a single binary search

on the unionized grid in order to determine the index of the cross section value for

every nuclide in the problem. However, use of a unionized energy grid necessitates

the storage of many extraneous energy-cross section value pairs for each nuclide. One

option for reducing the cross section memory footprint, while still preserving the com-

putational speed advantages of the unionized grid method, involves eliminating the

need for storing data for each nuclide on the same unionized energy grid. The Serpent

code [49] utilizes a so-called double indexing method in which, for each nuclide, a list

of pointers of the same length as the unionized energy grid is indexed to the list of a

nuclide's data points. This method has been combined with so-called grid thinning,

in which unnecessary points are removed from the unionized energy grid itself [48].

While these methods have been somewhat successful in reducing the memory burden

of cross section data storage, methods which result in larger reductions are needed.

One of the earliest methods aimed at this sort of large memory reduction involves

the use of so-called energy supergroups. In this method, the cross section data is

decomposed into several energy ranges, or supergroups. All of the particles in a given

supergroup are simulated until they are at energies below the bottom energy bound

of the group. Then, all of the particles in the next lower energy supergroup are

simulated, and so on. The benefit of this method is that the data for only one energy

supergroup must be stored at a time. This method can be dated as far back as the

21



late 1950's and the 05R code [30]. In the years since, a few other codes have utilized

energy supergroups including the VIM fast critical assembly code 7 [21], the KENO

criticality safety code [31], and the MCV module within the RACER reactor analysis

code [65]. Recently, there has been renewed investigation of algorithms which divide

the required cross section data into energy supergroups [36].

A handful of other methods for reducing the size of cross section data fall un-

der the scope of so-called on-the-fly Doppler broadening. The aim of these methods

is to store only a subset of cross section data, often only at a single temperature

(e.g. 0 K), and, from that, calculate - as opposed to store - the required higher

temperature data. A conceptually simple method could rely on using the SIGMA1

method [32] to Doppler broaden 0 K cross section data on-the-fly, rather than using

the NJOY nuclear data processing system [50] - which relies on an early variation

of the SIGMA1 algorithm - to generate higher temperature data prior to running

the simulation. However, the increased computational time required to numerically

perform the Doppler broadening convolution integral on-the-fly makes this method

impractical. A more promising method for on-the-fly Doppler broadening relies on

series expansions to generate cross section data at desired temperatures from the 0 K

data [74]. Another method, based on a cross section rejection sampling scheme [72],

has been proposed and implemented in Serpent. The most recent method proposed

for on-the-fly Doppler broadening [39] relies on the multipole resonance formalism

for cross section data [46] which allows for the direct calculation of a Doppler broad-

ened cross section value at a desired temperature. With calculation times that are

comparable, or even reduced, relative to linear-linear interpolation of pre-Doppler

broadened point-wise cross section data - as is current practice - this method results

in greater memory savings than are obtained with the series expansion or rejection

sampling methods. One limitation of the on-the-fly Doppler broadening methods is

that they are usually only applicable in the resolved resonance energy region.

71n VIM, supergroups are referred to as energy bands.
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1.3 Methods Development and Analysis Objectives

The purpose of the work undertaken in this thesis is the development of methods for

alleviating some of the computational problems associated with large Monte Carlo

neutron transport simulations. To this end, three specific issues have been identified

and addressed. In the following subsections, descriptions of those problems, and the

associated methods that are developed and analyzed to address them, are discussed.

1.3.1 Nuclear Data Storage and Communication

In order to guide and assess the development of methods that are aimed at reducing

nuclear data memory requirements in reactor physics simulations, it is essential to

have a firm understanding of what nuclear data are actually used in those simulations.

To this end, work is directed toward quantifying nuclear data access patterns in full

core reactor physics simulations. This involves determining the rates at which nuclear

data are accessed with attention to such parameters as data type (e.g. point-wise cross

sections, probability tables, secondary distributions, etc.), nuclide, energy range (e.g.

thermal, resolved resonance, unresolved resonance, fast, etc.), and temperature. To

accomplish this, simulations of the three-dimensional, full core BEAVRS model [44]

are run with a version of the OpenMC Monte Carlo neutron transport code [58] mod-

ified to record nuclear data accesses. Hot zero-power and hot full-power simulations

are performed as a means of gathering some information about the dependence of

nuclear data access patterns on temperature. It should be noted, though, that these

results do not capture the effects of transient temperatures or multiphysics feedback

within a simulation. Beginning-of-core and end-of-core simulations are performed

to determine the differences in nuclear data accesses resulting from the increased

complexity of isotopic compositions encountered in the simulation of a depleted core.

With a collection of results that describe how nuclear data are being accessed

in large simulations, it is possible to develop new algorithms for managing that data

more efficiently. Another phase of this work is devoted to the conceptual development

of a nuclear data server algorithm for managing the storage and flow of nuclear data
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within a simulation. Using the data access pattern information obtained from the

full core simulations, the frequencies with which certain data are accessed are cross-

referenced with the memory requirements of those data. This helps to identify blocks

of data which are infrequently accessed but take up large amounts of memory. To save

memory on compute nodes, these data can be stored on server nodes and retrieved

only when they are needed by the simulation. The nuclear data server node concept

could also be extended for use in conjunction with the existing methods for nuclear

data memory reduction, previously discussed, to further reduce memory burdens.

With multiple approaches for reducing the memory required to store cross sec-

tion data, many of which rely on fundamentally unique methods, it is important to

have tools for comparing the approaches which quantify potential benefits and draw-

backs. This is especially important because, with most of the proposed methods,

there is a tradeoff between reducing memory and increasing calculation and commu-

nication costs. With this in mind, the final phase of the nuclear data storage and

communication work focuses on developing a model for predicting the performance

of the proposed nuclear data sever algorithm. This communication model is similar

to the one developed by Romano, et. al [57] for predicting the performance of the

tally server algorithm in which large sets of tally data are decomposed and stored

on server nodes. The model analyzes the memory reduction that is achievable with

the method, as well as computational costs associated with the storage, flow, and

utilization of data. Taking into account computer architecture-specific parameters

allows the model to predict the algorithm's performance on different platforms. The

results of the nuclear data profiling studies and the theoretical development of the

nuclear data server model are found in Chapter 2.

1.3.2 Resonance Elastic Scattering Models

The accuracy of Monte Carlo neutron transport simulation results relies on the ac-

curate modeling of the individual neutron-nucleus interactions that occur over the

course of a simulation. Resonance elastic scattering is one such interaction process

that is known to bias the secondary angle-energy distribution of scattered neutrons if
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sufficient detail is not preserved in the physical model employed to describe it. Biases

in these secondary distributions can manifest themselves as biases in integral results

such as reaction rates and reactivity. These biases are of practical consequence as

they can result in significant differences in reactor design metrics such as the fuel

temperature coefficient.

The model that has most typically been applied by Monte Carlo codes to the

treatment of elastic scattering events approximates the scatterer's 0 K elastic scatter-

ing cross section as a constant, independent of incident neutron energy. In the vicinity

of scattering resonances this approximation is quite inaccurate as cross section values

can vary by orders of magnitude in tight energy intervals. The problem caused by

this approximation arises from its effect on the distribution of target nuclei velocities

that is sampled when calculating the kinematics of a scattering event. At incident

neutron energies just below scattering resonances, allowing for the energy dependence

of target nuclei cross sections results in relatively more elastic scattering events with

higher-velocity target nuclei. This phenomenon results in a higher fraction of scat-

tering events in which the energy of the secondary neutron is greater than that of the

incident (i.e. upscatter). Proposed by Rothenstein [59], and first demonstrated by

Becker, et. al [18], the Doppler broadening rejection correction (DBRC) is currently

the model that is most often used by Monte Carlo codes to account for target nuclei

elastic scattering cross section energy dependence, if it is accounted for, at all. This

method is computationally expensive as it can result in the rejection sampling of a 0

K resonance in the elastic scattering cross section of target nuclei.

In this work, we develop and analyze an accelerated resonance elastic scattering

kernel sampling procedure that avoids the costly 0 K elastic scattering resonance

rejection sampling. This is accomplished while still accounting for the energy depen-

dence of cross sections, and, thus, preserving the physics of the free gas resonance

elastic scattering model as accurately as is possible. More detailed discussions of the

resonance elastic scattering process, its effects in practical problems, and the models

commonly used to describe it are given in Chapter 3. The new, accelerated resonance

elastic scattering kernel sampling technique is also derived and verified. Results illus-
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trating the simulation runtime reductions achievable with the method are shown.

1.3.3 Energy Grid Searches

The neutron reaction cross section data that are used by continuous-energy Monte

Carlo neutron transport codes most often come in the form of piece-wise linearly

interpolable, point-wise energy-cross section pairs. That is, for each nuclide, the cross

section values characterizing the probabilities of various interactions are tabulated on

a discrete grid of energy values. In the course of a simulation, a code will need to

utilize the cross section values corresponding to the current neutron energy in order

to compute the probabilities of various events or calculate contributions to the tallies

being recorded in the simulation. Because cross section values are tabulated at points

on energy grids unique to each nuclide, determining the correct point on a nuclide's

energy grid is a prerequisite for determining any desired nuclide cross section value.

The determination of the location of the current neutron energy value in a one-

dimensional array of tabulated energy values for a given nuclide is typically accom-

plished with a binary search algorithm. This procedure can prove costly, from a

simulation runtime perspective, if the system that is being modeled contains a large

number of nuclides and/or nuclides with many points in their respective energy grids.

This is often the case in realistic simulations which contain hundreds of nuclides that

each exhibit resonance cross section structure that must be accounted for on a fine

energy grid.

To lighten the computational burden associated with performing these energy

grid lookups, three principle techniques, along with a few minor variations to each,

are proposed, implemented, and tested, here, as part of this work'. Overall code

speedup results are shown for simulations of practical systems in which the optimiza-

tion schemes are applied. Methods for the optimization of the energy grid search

algorithm are presented and analyzed in Chapter 4.

8 1n some cases, where noted, the techniques presented here are extensions of previously proposed
energy grid search accelerations.
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Chapter 2

Nuclear Data Profiling Studies and

Server Model Development

In this chapter we discuss the nuclear data memory requirements and access patterns

in Monte Carlo full core reactor physics simulations. Profiling studies are conducted

with the OpenMC code to determine the types of nuclear data that are accessed

in these simulations, as well as the frequencies of their accesses. The memory re-

quirements associated with these nuclear data are also recorded. The results of these

memory and data access profiling studies provide the motivation for the conceptu-

alization of a nuclear data server algorithm in which infrequently accessed data are

stored off of compute nodes and retrieved from dedicated server nodes only as nec-

essary, when required by the simulation. A theoretical performance model for the

proposed nuclear data server algorithm is derived. With the results of the memory

and data access profiling studies as input, the model is used to predict the perfor-

mance of the nuclear data server algorithm across a range of computing platform

hardware parameters.

2.1 Introduction

Monte Carlo neutron transport codes rely on a variety of nuclear data to describe

the individual physical processes that occur throughout a simulation. Among these
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nuclear data are neutron reaction cross sections, which characterize the probabilities

of particular neutron-nucleus interactions, secondary angular distributions which give

the probabilities of secondary neutrons emerging from an interaction with specific

flight directions, and secondary energy distributions which provide the probabilities

of a neutron having a specified energy after an interaction. In the types of Monte

Carlo neutron transport simulations where memory considerations become a limiting

factor, these three types of nuclear data, along with tally data, typically dominate

memory requirements.

In order to develop algorithms that more efficiently manage nuclear data, it is

important to understand the specific types of data that are actually needed within a

simulation and how often those data are accessed. It is also necessary to understand

the memory requirements associated with these different data. The determination and

analysis of these nuclear data access patterns and memory requirements comprise the

first part of the work presented in this chapter. Then, equipped with quantitative

information about the access frequencies and memory requirements for different blocks

of nuclear data, we turn to the theoretical development of an algorithm for managing

these data in a more computationally efficient manner. A communication model for

the proposed algorithm is derived and used to make performance predictions. These

predictions take into account the access frequency and memory for a given block

of nuclear data, as well as computing platform-specific parameters such as network

latency, bandwidth, and neutron simulation rate.

2.2 Profiling Studies

In this section, we discuss the profiling studies that are carried out in order to deter-

mine the access frequencies and memory requirements associated with different blocks

of nuclear data. The modifications that are made to OpenMC for the purpose of car-

rying these studies out are outlined in Subsection 2.2.1. In Subsection 2.2.2, nuclear

data access patterns in full core reactor simulations are presented and discussed. The

memory requirements in these same simulations are also given.
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2.2.1 Code Modifications to OpenMC

Nuclear data profiling studies for this work are performed with a modified release 0.5.3

of the OpenMC neutron transport code that is capable of recording nuclear data

accesses and memory requirements. Specifically, the tally system within OpenMC

is modified to tally the accesses of neutron cross section and energy grid data, as

well as secondary angular and energy distribution data whenever they occur within

a simulation. Slight code modifications are also made to compute and output the

memory requirements for these different types of nuclear data. The data access tallies

can be filtered by nuclide, by energy range, and by type of data. Said another way,
the modified OpenMC code tallies the accesses of a specific type of data (e.g. elastic

scattering cross section), in a defined energy range, for a defined nuclide. The desired

data access tallies are specified by the user in the tallies.xml input file. At the end of a

simulation, the results of these data access tallies are output as any other tally result

would be. The use of this expanded tally system in nuclear data profiling studies is

discussed below.

2.2.2 Access Patterns and Memory Requirements

In order to quantify the nuclear data access patterns in large Monte Carlo calcula-

tions, simulations of the three-dimensional, full core Benchmark for Evaluation and

Validation of Reactor Simulations (BEAVRS) [44] model are performed. The accesses

of nuclear data in these simulations are tallied and analyzed. Two different variations

of the BEAVRS model are examined. The first variation is simply the beginning-of-

core (BOC) hot zero-power (HZP) model that is defined in the BEAVRS specification

[1]. This model contains fresh fuel and all core materials are at 600 K. The second

model is an end-of-core (EOC) hot full-power (HFP) case. In this model, all fuel is

at 900 K and a burnup of 20.0 MWd/kg. The nuclide densities for the fuel materials

in the EOC HFP model come from the results of depletion calculations performed

with the CASMO-5 lattice physics code [56]. For reference, these nuclide density val-

ues are provided in Appendix A. Both simulations are performed with the modified
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version of release 0.5.3 of OpenMC compiled with release 4.9.0 of the GNU Fortran

(GFortran) compiler [4]. Each simulation consists of 100 inactive neutron cycles, 100

active neutron cycles, and 2.5E6 neutrons per cycle. A fission spectrum energy source,

spatially uniform over fissionable material, is used to initiate each run.

For each nuclide that is present in a model, tallies are kept for energy grid accesses,

all point-wise reaction cross section data accesses, secondary angular and energy

distribution accesses, and, where applicable, unresolved resonance region probability

table and S(a, 3) thermal scattering law table accesses'. The memory requirements

associated with each of these blocks of data are also recorded. Only a very small

subset of the many data access tallies and memory values that result from these

simulations are shown in this chapter. This is done for the sake of clarity and to

place an emphasis on key results.

For the BOC HZP simulations, the nuclear data access frequencies and memory

requirements of three nuclides are selected and shown here. Tables 2.1, 2.2, and 2.3

give the results for 1H, 235U, and 106Cd, respectively. As expected for a nuclide that

resides in a material of non-negligible density which occupies a large fraction of the

problem geometry (i.e. moderator), the nuclear data of 1H are accessed frequently

within a simulation. On average, the simulation of a single neutron will require

every type of nuclear data that is present for 1H to be accessed more than 10 times.

Somewhat similarly, we see in Table 2.2 that the nuclear data present for 23 5U are

accessed many times within a simulation. However, a notable difference relative to

the 1H results is the presence of many more reaction types. We can see that the

cross section data for many of the more exotic level inelastic scattering reactions

are accessed only a handful of times for every 1E3 neutrons simulated, on average.

Secondary angular and energy distributions may only be accessed a few times for every

1E6 neutrons. We can see this effect taken to an extreme with the access frequency

results for 106Cd presented in Table 2.3. Nearly all nuclear data are accessed zero

- or very few - times over the course of the entire simulation of 250E6 active cycle

neutrons.

'Data accesses are only tallied in active cycles.
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Nuclear Data J Memory [B] Access Frequency [source neutron-']

(n,elastic) Angular Dist. 10320 1.09192E+01

S(a, 3) 1560896 4.21083E+01

Energy Grid 4720 3.24538E+01

(n,total) Cross Section 4720 3.24538E+01

(n,absorption) Cross Section 4720 3.24538E+01

(n,elastic) Cross Section 4720 3.24538E+01

Table 2.1: BOC HZP 'H Memory Requirements and Access Frequencies

Nuclear Data Memory [B] Access Frequency [source neutron-']

(n,elastic) Angular Dist. 69752 6.09824E-02

(n,nl) Angular Dist. 3912 2.43160E-05

(n,n2) Angular Dist. 3480 8.95400E-05

(n,n3) Angular Dist. 41216 8.01996E-04

(nn4) Angular Dist. 2728 1.69368E-04

(n,n5) Angular Dist. 3400 2.04292E-04

(n,n6) Angular Dist. 33048 4.19916E-04

(nn7) Angular Dist. 2520 2.56088E-04

(n,n8) Angular Dist. 26624 1.03548E-04

(n,n9) Angular Dist. 3272 3.10196E-04

(n,nlO) Angular Dist. 20408 4.76720E-05

(n,n11) Angular Dist. 2784 8.27440E-05

(n,n12) Angular Dist. 2448 5.10240E-05

(n,n13) Angular Dist. 2856 6.63840E-05

(n,n14) Angular Dist. 2872 9.84200E-05

(n,n15) Angular Dist. 14784 8.15200E-06

(n,n16) Angular Dist. 2968 7.94720E-05
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(n,n17) Angular Dist. 14424 8.18800E-06

(n,n18) Angular Dist. 13152 8.22000E-06

(n,n19) Angular Dist. 13176 6.45600E-06

(n,n20) Angular Dist. 12496 5.32800E-06

(n,n21) Angular Dist. 13608 9.78400E-06

(n,n22) Angular Dist. 14264 4.74800E-06

(n,n23) Angular Dist. 13376 3.50760E-05

(n,n24) Angular Dist. 13296 9.86400E-06

(n,n25) Angular Dist. 12960 4.64800E-06

(n,n26) Angular Dist. 12672 4.55600E-06

(n,n27) Angular Dist. 12288 3.52800E-06

(n,n28) Angular Dist. 11776 4.43600E-06

(n,n29) Angular Dist. 11512 5.69600E-06

(n,n30) Angular Dist. 11032 6.74000E-06

(n,n31) Angular Dist. 8096 4.76000E-07

(n,n32) Angular Dist. 11456 6.27600E-06

(n,n33) Angular Dist. 10920 4.28800E-06

(n,n34) Angular Dist. 10680 2.78800E-06

(n,n35) Angular Dist. 10288 2.22000E-06

(n,n36) Angular Dist. 10048 7.64000E-07

(n,n37) Angular Dist. 9928 8.00000E-07

(n,n38) Angular Dist. 9784 8.00000E-07

(n,n39) Angular Dist. 9784 4.80000E-07

(n,n40) Angular Dist. 9368 4.76000E-07

(n,2n) Energy Dist. 53832 2.52680E-05

(n,3n) Energy Dist. 15624 3.20000E-08

(n,fission) Energy Dist. 309296 9.26668E-01

(n,4n) Energy Dist. 2584 0.OOOOOE+00
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(n,nl) Energy Dist. 16 2.43160E-05

(nn2) Energy Dist. 16 8.95400E-05

(n,n3) Energy Dist. 16 8.01996E-04

(nn4) Energy Dist. 16 1.69368E-04

(n,n5) Energy Dist. 16 2.04292E-04

(n,n6) Energy Dist. 16 4.19916E-04

(n,n7) Energy Dist. 16 2.56088E-04

(n,n8) Energy Dist. 16 1.03548E-04

(n,n9) Energy Dist. 16 3.10196E-04

(n,nlO) Energy Dist. 16 4.76720E-05

(n,nll) Energy Dist. 16 8.27440E-05

(n,n12) Energy Dist. 16 5.10240E-05

(n,n13) Energy Dist. 16 6.63840E-05

(n,n14) Energy Dist. 16 9.84200E-05

(n,n15) Energy Dist. 16 8.15200E-06

(n,n16) Energy Dist. 16 7.94720E-05

(n,n17) Energy Dist. 16 8.18800E-06

(n,n18) Energy Dist. 16 8.22000E-06

(n,n19) Energy Dist. 16 6.45600E-06

(n,n20) Energy Dist. 16 5.32800E-06

(nn21) Energy Dist. 16 9.78400E-06

(n,n22) Energy Dist. 16 4.74800E-06

(n,n23) Energy Dist. 16 3.50760E-05

(n,n24) Energy Dist. 16 9.86400E-06

(n,n25) Energy Dist. 16 4.64800E-06

(n,n26) Energy Dist. 16 4.55600E-06

(n,n27) Energy Dist. 16 3.52800E-06

(n,n28) Energy Dist. 16 4.43600E-06
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(n,n29) Energy Dist. 16 5.69600E-06

(n,n30) Energy Dist. 16 6.74000E-06

(n,n31) Energy Dist. 16 4.76000E-07

(n,n32) Energy Dist. 16 6.27600E-06

(n,n33) Energy Dist. 16 4.28800E-06

(n,n34) Energy Dist. 16 2.78800E-06

(n,n35) Energy Dist. 16 2.22000E-06

(n,n36) Energy Dist. 16 7.64000E-07

(n,n37) Energy Dist. 16 8.00000E-07

(n,n38) Energy Dist. 16 8.00000E-07

(n,n39) Energy Dist. 16 4.80000E-07

(n,n40) Energy Dist. 16 4.76000E-07

(n,nc) Energy Dist. 102776 2.38836E-03

Probability Tables 14744 1.43570E+00

Energy Grid 485088 1.46102E+01

(n,total) Cross Section 485088 1.46102E+01

(n,absorption) Cross Section 485088 1.46102E+01

(n,elastic) Cross Section 485088 1.46102E+01

(n,2n) Cross Section 472 1.82884E-04

(n,3n) Cross Section 216 3.40000E-07

(n,fission) Cross Section 485088 1.46102E+01

(n,4n) Cross Section 48 0.00000E+00

(n,nl) Cross Section 3392 5.33812E-03

(n,n2) Cross Section 2936 5.31381E-03

(n,n3) Cross Section 2480 5.22427E-03

(n,n4) Cross Section 2392 4.42227E-03

(n,n5) Cross Section 2032 4.25290E-03

(nn6) Cross Section 1816 4.04861E-03
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(n,n7) Cross Section 1784 3.62870E-03

(n,n8) Cross Section 1728 3.37261E-03

(n,n9) Cross Section 1704 3.26906E-03

(n,n10) Cross Section 1576 2.95886E-03

(n,nll) Cross Section 1528 2.91119E-03

(n,n12) Cross Section 1480 2.82845E-03

(n,n13) Cross Section 1448 2.77742E-03

(n,n14) Cross Section 1408 2.71104E-03

(n,n15) Cross Section 1360 2.61262E-03

(n,n16) Cross Section 1344 2.60447E-03

(n,n17) Cross Section 1240 2.52466E-03

(n,n18) Cross Section 1192 2.50557E-03

(n,n19) Cross Section 1152 2.45054E-03

(n,n20) Cross Section 1104 2.36760E-03

(n,n21) Cross Section 1056 2.27668E-03

(n,n22) Cross Section 1016 2.18854E-03

(n,n23) Cross Section 984 2.11343E-03

(nn24) Cross Section 952 1.91758E-03

(n,n25) Cross Section 928 1.77356E-03

(n,n26) Cross Section 888 1.63154E-03

(n,n27) Cross Section 864 1.54262E-03

(n,n28) Cross Section 848 1.46365E-03

(n,n29) Cross Section 824 1.30335E-03

(n,n30) Cross Section 800 1.17742E-03

(nn31) Cross Section 776 1.09175E-03

(n,n32) Cross Section 752 1.01334E-03

(n,n33) Cross Section 720 7.16592E-04

(n,n34) Cross Section 688 5.87344E-04
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(nn35) Cross Section 664 5.09420E-04

(n,n36) Cross Section 640 4.60040E-04

(n,n37) Cross Section 616 4.30720E-04

(n,n38) Cross Section 600 4.02688E-04

(n,n39) Cross Section 576 3.76408E-04

(n,n40) Cross Section 560 3.57244E-04

(n,nc) Cross Section 1296 2.38836E-03

(n,level) Cross Section 3392 0.00000E+00

Table 2.2: BOC HZP 235U Memory Requirements and Access Frequencies

Nuclear Data Memory [B] Access Frequency [source neutron- 1]

(n,elastic) Angular Dist. 46264 4.80000E-08

(n,2n) Angular Dist. 160 0.00000E+00

(n,3n) Angular Dist. 160 0.00000E+00

(n,na) Angular Dist. 160 0.OOOOOE+00

(n,np) Angular Dist. 160 0.OOOOOE+00

(n,nd) Angular Dist. 160 0.OOOOOE+00

(n,nl) Angular Dist. 13264 4.00000E-09

(n,n2) Angular Dist. 1048 0.00000E+00

(n,n3) Angular Dist. 1624 0.00000E+00

(n,n4) Angular Dist. 1048 0.00000E+00

(n,n5) Angular Dist. 1048 0.OOOOOE+00

(n,n6) Angular Dist. 976 0.OOOOOE+00

(n,n7) Angular Dist. 1048 0.OOOOOE+00

(n,n8) Angular Dist. 11232 0.OOOOOE+00

(n,n9) Angular Dist. 1048 0.OOOOOE+00

(n,n1O) Angular Dist. 880 0.OOOOOE+00
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(n,nll) Angular Dist. 880 0.00000E+00

(n,nc) Angular Dist. 2176 0.00000E+00

(n,2n) Energy Dist. 2584 0.00000E+00

(n,3n) Energy Dist. 272 0.00000E+00

(n,na) Energy Dist. 14264 0.00000E+00

(n,np) Energy Dist. 6128 0.00000E+00

(n,nd) Energy Dist. 1944 0.00000E+00

(n,nl) Energy Dist. 16 4.OOOOOE-09

(n,n2) Energy Dist. 16 0.00000E+00

(n,n3) Energy Dist. 16 0.00000E+00

(n,n4) Energy Dist. 16 0.00000E+00

(n,n5) Energy Dist. 16 0.00000E+00

(n,n6) Energy Dist. 16 0.00000E+00

(n,n7) Energy Dist. 16 0.00000E+00

(n,n8) Energy Dist. 16 0.00000E+00

(n,n9) Energy Dist. 16 0.00000E+00

(n,n10) Energy Dist. 16 0.00000E+00

(n,n1l) Energy Dist. 16 0.00000E+00

(nnc) Energy Dist. 6024 0.00000E+00

Energy Grid 87392 8.25072E-04

(n,total) Cross Section 87392 8.25072E-04

(n,absorption) Cross Section 87392 8.25072E-04

(n,elastic) Cross Section 87392 8.25072E-04

(n,2n) Cross Section 4760 0.00000E+00

(n,3n) Cross Section 136 0.00000E+00

(n,na) Cross Section 13640 4.00000E-09

(n,np) Cross Section 8416 0.00000E+00

(n,nd) Cross Section 2256 0.00000E+00
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(n,nl) Cross Section 14616 4.00000E-09

(n,n2) Cross Section 13800 0.00000E+00

(n,n3) Cross Section 13560 0.00000E+00

(n,n4) Cross Section 13176 0.00000E+00

(n,n5) Cross Section 12976 0.00000E+00

(n,n6) Cross Section 12952 0.OOOOOE+00

(n,n7) Cross Section 12928 0.00000E+00

(n,n8) Cross Section 12888 0.00000E+00

(n,n9) Cross Section 12768 0.OOOOOE+00

(n,nlO) Cross Section 12744 0.OOOOOE+00

(n,n11) Cross Section 12720 0.00000E+00

(n,nc) Cross Section 12696 0.OOOOOE+00

Table 2.3: BOC HZP 106Cd Memory Requirements and Access Frequencies

The general trends observed in the data access frequency results of the BOC

HZP case are largely unchanged when the EOC HFP case is considered instead.

Many of the same cross section and secondary distribution data for the more exotic

threshold reactions, which occupy appreciable space in memory, are accessed quite

infrequently in either case. With respect to nuclear data requirements, though, an

important difference between the models is that the burned fuel in the EOC HFP

case contains dozens of fission products and actinides, each accompanied by cross

section and secondary distribution data that must be stored and accessed in the

simulation, that are not present in the clean fuel of the BOC HZP case. Tables

2.4 and 2.5 give the data access frequencies and memory requirements for 240 U and

239 Pu, respectively. We can see that the 239Pu nuclear data - cross sections as well as

secondary distributions - are accessed relatively frequently throughout the EOC HFP

simulation, as is expected for a common actinide. This is in stark contrast to the

data for the much less abundant 240U, the vast majority of which are never accessed
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in the simulation. This and other results of these nuclear data profiling studies can

be exploited in the development of more efficient data management algorithms.

Nuclear Data Memory [B]] Access Frequency [source neutron 1]

(n,elastic) Angular Dist. 65576 0.OOOOOE+00

(n,nl) Angular Dist. 43816 0.00000E+00

(n,n2) Angular Dist. 29496 0.00000E+00

(n,n3) Angular Dist. 24224 0.OOOOOE+00

(nn4) Angular Dist. 26848 0.OOOOOE+00

(nn5) Angular Dist. 8312 0.00000E+00

(n,n6) Angular Dist. 5088 0.OOOOOE+00

(n,n7) Angular Dist. 5568 0.00000E+00

(n,n8) Angular Dist. 3832 0.OOOOOE+00

(n,n9) Angular Dist. 9216 0.00000E+00

(n,nlO) Angular Dist. 7520 0.OOOOOE+00

(n,nll) Angular Dist. 5864 0.OOOOOE+00

(n,n12) Angular Dist. 3968 0.00000E+00

(n,n13) Angular Dist. 5744 0.00000E+00

(n,n14) Angular Dist. 9024 0.00000E+00

(n,nl5) Angular Dist. 4440 0.OOOOOE+00

(n,n16) Angular Dist. 5472 0.OOOOOE+00

(n,n17) Angular Dist. 3840 0.00000E+00

(n,n18) Angular Dist. 4344 0.00000E+00

(n,n19) Angular Dist. 5472 0.00000E+00

(n,n20) Angular Dist. 5560 0.00000E+00

(n,n21) Angular Dist. 4344 0.00000E+00

(n,n22) Angular Dist. 7280 0.OOOOOE+00

(n,n23) Angular Dist. 3536 0.00000E+00

(n,n24) Angular Dist. 3432 0.OOOOOE+00

(n,n25) Angular Dist. 3328 0.OOOOOE+00
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(n,n26) Angular Dist. 3224 0.00000E+00

(n,n27) Angular Dist. 3224 0.00000E+00

(n,n28) Angular Dist. 3120 0.OOOOOE+00

(n,n29) Angular Dist. 3120 0.OOOOOE+00

(n,n30) Angular Dist. 3120 0.OOOOOE+00

(n,n31) Angular Dist. 3120 0.OOOOOE+00

(n,n32) Angular Dist. 3016 0.00000E+00

(n,n33) Angular Dist. 3016 0.00000E+00

(n,n34) Angular Dist. 2912 0.00000E+00

(n,n35) Angular Dist. 2912 0.OOOOOE+00

(n,n36) Angular Dist. 2808 0.OOOOOE+00

(n,n37) Angular Dist. 2808 0.OOOOOE+00

(n,n38) Angular Dist. 2808 0.OOOOOE+00

(n,n39) Angular Dist. 2808 0.OOOOOE+00

(n,n40) Angular Dist. 2808 0.OOOOOE+00

(n,2n) Energy Dist. 94024 0.OOOOOE+00

(n,3n) Energy Dist. 51528 0.OOOOOE+00

(n,f) Energy Dist. 104 0.OOOOOE+00

(n,nf) Energy Dist. 104 0.OOOOOE+00

(n,2nf) Energy Dist. 104 0.OOOOOE+00

(n,4n) Energy Dist. 20184 0.OOOOOE+00

(n,3nf) Energy Dist. 88 0.OOOOOE+00

(n,nl) Energy Dist. 16 0.OOOOOE+00

(n,n2) Energy Dist. 16 0.OOOOOE+00

(n,n3) Energy Dist. 16 0.OOOOOE+00

(n,n4) Energy Dist. 16 0.OOOOOE+00

(n,n5) Energy Dist. 16 0.OOOOOE+00

(n,n6) Energy Dist. 16 0.OOOOOE+00
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(n,n7) Energy Dist. 16 O.OOOOOE+00

(n,n8) Energy Dist. 16 O.OOOOOE+00

(n,n9) Energy Dist. 16 O.OOOOOE+00

(n,nlO) Energy Dist. 16 O.OOOOOE+00

(n,nll) Energy Dist. 16 O.OOOOOE+00

(n,n12) Energy Dist. 16 O.OOOOOE+00

(n,n13) Energy Dist. 16 O.OOOOOE+00

(n,n14) Energy Dist. 16 O.OOOOOE+00

(n,n15) Energy Dist. 16 O.OOOOOE+00

(n,n16) Energy Dist. 16 O.OOOOOE+00

(n,n17) Energy Dist. 16 O.OOOOOE+00

(n,n18) Energy Dist. 16 O.OOOOOE+00

(n,n19) Energy Dist. 16 O.OOOOOE+00

(n,n20) Energy Dist. 16 O.OOOOOE+00

(n,n21) Energy Dist. 16 O.OOOOOE+00

(n,n22) Energy Dist. 16 O.OOOOOE+00

(n,n23) Energy Dist. 16 O.OOOOOE+00

(n,n24) Energy Dist. 16 O.OOOOOE+00

(n,n25) Energy Dist. 16 O.OOOOOE+00

(n,n26) Energy Dist. 16 O.OOOOOE+00

(n,n27) Energy Dist. 16 O.OOOOOE+00

(n,n28) Energy Dist. 16 O.OOOOOE+00

(n,n29) Energy Dist. 16 O.OOOOOE+00

(n,n30) Energy Dist. 16 O.OOOOOE+00

(n,n31) Energy Dist. 16 O.OOOOOE+00

(n,n32) Energy Dist. 16 O.OOOOOE+00

(n,n33) Energy Dist. 16 0.00000E+00

(n,n34) Energy Dist. 16 O.OOOOOE+00
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(n,n35) Energy Dist. 16 0.00000E+00

(n,n36) Energy Dist. 16 0.00000E+00

(n,n37) Energy Dist. 16 0.00000E+00

(n,n38) Energy Dist. 16 0.OOOOOE+00

(n,n39) Energy Dist. 16 0.00000E+00

(n,n40) Energy Dist. 16 0.00000E+00

(n,nc) Energy Dist. 178960 0.OOOOOE+00

Probability Tables 12416 1.36171E+00

Energy Grid 121376 1.44365E+01

(n,total) Cross Section 121376 1.44365E+01

(n,absorption) Cross Section 121376 1.44365E+01

(n,elastic) Cross Section 121376 1.44365E+01

(n,2n) Cross Section 936 0.OOOOOE+00

(n,3n) Cross Section 568 O.OOOOOE+00

(n,f) Cross Section 121376 0.OOOOOE+00

(n,nf) Cross Section 1808 0.OOOOOE+00

(n,2nf) Cross Section 608 0.OOOOOE+00

(n,4n) Cross Section 312 0.OOOOOE+00

(n,3nf) Cross Section 424 0.OOOOOE+00

(n,nl) Cross Section 2776 0.OOOOOE+00

(n,n2) Cross Section 2600 0.OOOOOE+00

(n,n3) Cross Section 2504 0.OOOOOE+00

(n,n4) Cross Section 2416 0.OOOOOE+00

(n,n5) Cross Section 2344 0.OOOOOE+00

(n,n6) Cross Section 2312 0.OOOOOE+00

(n,n7) Cross Section 2280 0.00000E+00

(n,n8) Cross Section 2248 0.00000E+00

(n,n9) Cross Section 2200 0.00000E+00
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(n,n10) Cross Section 2184 0.00000E+00

(n,nll) Cross Section 2160 0.00000E+00

(n,n12) Cross Section 2144 0.OOOOOE+00

(n,n13) Cross Section 2128 0.OOOOOE+00

(n,n14) Cross Section 2104 0.00000E+00

(n,n15) Cross Section 2080 0.00000E+00

(n,n16) Cross Section 2056 0.00000E+00

(n,n17) Cross Section 2032 0.00000E+00

(n,n18) Cross Section 2016 0.OOOOOE+00

(n,n19) Cross Section 2000 0.OOOOOE+00

(n,n20) Cross Section 1976 0.OOOOOE+00

(n,n21) Cross Section 1952 0.OOOOOE+00

(n,n22) Cross Section 1904 0.OOOOOE+00

(n,n23) Cross Section 1856 0.OOOOOE+00

(n,n24) Cross Section 1784 0.OOOOOE+00

(n,n25) Cross Section 1720 0.OOOOOE+00

(n,n26) Cross Section 1648 0.OOOOOE+00

(n,n27) Cross Section 1600 0.OOOOOE+00

(n,n28) Cross Section 1552 0.OOOOOE+00

(n,n29) Cross Section 1496 0.OOOOOE+00

(n,n30) Cross Section 1456 0.OOOOOE+00

(n,n31) Cross Section 1424 0.OOOOOE+00

(n,n32) Cross Section 1392 0.OOOOOE+00

(n,n33) Cross Section 1304 0.OOOOOE+00

(n,n34) Cross Section 1264 0.OOOOOE+00

(n,n35) Cross Section 1232 0.OOOOOE+00

(n,n36) Cross Section 1208 0.OOOOOE+00

(n,n37) Cross Section 1184 0.OOOOOE+00
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(n,n38) Cross Section 1160 0.00000E+00

(n,n39) Cross Section 1136 0.00000E+00

(n,n40) Cross Section 1112 0.00000E+00

(n,nc) Cross Section 1936 0.00000E+00

Table 2.4: EOC HFP 241U Memory Requirements and Access Frequencies

Nuclear Data Memory [B] Access Frequency [source neutron--]

(n,elastic) Angular Dist. 42864 9.98317E-03

(n,nl) Angular Dist. 21592 2.42152E-04

(n,n2) Angular Dist. 21888 1.83016E-04

(n,n3) Angular Dist. 16240 3.61480E-05

(n,n4) Angular Dist. 16040 1.84320E-05

(n,n5) Angular Dist. 13760 6.34800E-06

(n,n6) Angular Dist. 3584 2.12800E-05

(n,n7) Angular Dist. 13696 4.36400E-06

(n,n8) Angular Dist. 2904 8.93600E-06

(n,n9) Angular Dist. 2496 1.00360E-05

(n,n1O) Angular Dist. 2368 5.49600E-06

(n,n11) Angular Dist. 2392 3.54800E-06

(n,n12) Angular Dist. 4936 1.15320E-05

(n,n13) Angular Dist. 2656 1.22600E-05

(n,n14) Angular Dist. 18168 9.18000E-06

(n,n15) Angular Dist. 2576 6.84400E-06

(nn16) Angular Dist. 17952 4.87200E-06

(n,n17) Angular Dist. 2216 3.73600E-06

(n,n18) Angular Dist. 2880 7.60000E-07

(nn19) Angular Dist. 16232 1.11600E-06
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(nn20) Angular Dist. 17640 7.08000E-07

(n,n21) Angular Dist. 15424 1.55200E-06

(n,n22) Angular Dist. 14264 9.16000E-07

(n,n23) Angular Dist. 13376 6.33200E-06

(n,n24) Angular Dist. 13296 1.88000E-06

(n,n25) Angular Dist. 12960 8.04000E-07

(n,n26) Angular Dist. 12672 8.16000E-07

(n,n27) Angular Dist. 12288 7.04000E-07

(n,n28) Angular Dist. 11776 8.28000E-07

(n,n29) Angular Dist. 11512 1.18400E-06

(n,n30) Angular Dist. 11032 1.31200E-06

(n,n31) Angular Dist. 8096 6.80000E-08

(n,n32) Angular Dist. 11456 1.11200E-06

(n,n33) Angular Dist. 10920 7.40000E-07

(n,n34) Angular Dist. 10680 5.24000E-07

(n,n35) Angular Dist. 10288 4.20000E-07

(n,n36) Angular Dist. 10048 1.08000E-07

(n,n37) Angular Dist. 9928 1.48000E-07

(n,n38) Angular Dist. 9784 1.84000E-07

(n,n39) Angular Dist. 9784 9.60000E-08

(n,n40) Angular Dist. 9368 7.20000E-08

(n,2n) Energy Dist. 50352 1.48400E-06

(n,3n) Energy Dist. 14432 4.OOOOOE-09

(n,fission) Energy Dist. 324760 4.91352E-01

(n,4n) Energy Dist. 1792 0.OOOOOE+00

(n,nl) Energy Dist. 16 2.42152E-04

(n,n2) Energy Dist. 16 1.83016E-04

(n,n3) Energy Dist. 16 3.61480E-05

45



(nn4) Energy Dist. 16 1.84320E-05

(n,n5) Energy Dist. 16 6.34800E-06

(n,n6) Energy Dist. 16 2.12800E-05

(n,n7) Energy Dist. 16 4.36400E-06

(n,n8) Energy Dist. 16 8.93600E-06

(n,n9) Energy Dist. 16 1.00360E-05

(n,nlO) Energy Dist. 16 5.49600E-06

(n,nll) Energy Dist. 16 3.54800E-06

(n,n12) Energy Dist. 16 1.15320E-05

(n,n13) Energy Dist. 16 1.22600E-05

(n,n14) Energy Dist. 16 9.18000E-06

(n,n15) Energy Dist. 16 6.84400E-06

(n,n16) Energy Dist. 16 4.87200E-06

(n,n17) Energy Dist. 16 3.73600E-06

(n,n18) Energy Dist. 16 7.60000E-07

(n,n19) Energy Dist. 16 1.11600E-06

(n,n20) Energy Dist. 16 7.08000E-07

(n,n21) Energy Dist. 16 1.55200E-06

(n,n22) Energy Dist. 16 9.16000E-07

(n,n23) Energy Dist. 16 6.33200E-06

(n,n24) Energy Dist. 16 1.88000E-06

(n,n25) Energy Dist. 16 8.04000E-07

(n,n26) Energy Dist. 16 8.16000E-07

(n,n27) Energy Dist. 16 7.04000E-07

(n,n28) Energy Dist. 16 8.28000E-07

(n,n29) Energy Dist. 16 1.18400E-06

(n,n30) Energy Dist. 16 1.31200E-06

(n,n31) Energy Dist. 16 6.80000E-08
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(n,n32) Energy Dist. 16 1.11200E-06

(n,n33) Energy Dist. 16 7.40000E-07

(n,n34) Energy Dist. 16 5.24000E-07

(n,n35) Energy Dist. 16 4.20000E-07

(n,n36) Energy Dist. 16 1.08000E-07

(n,n37) Energy Dist. 16 1.48000E-07

(n,n38) Energy Dist. 16 1.84000E-07

(n,n39) Energy Dist. 16 9.60000E-08

(n,n40) Energy Dist. 16 7.20000E-08

(n,nc) Energy Dist. 104416 2.56696E-04

Probability Tables 54320 1.51588E+00

Energy Grid 426272 1.44365E+01

(n,total) Cross Section 426272 1.44365E+01

(n,absorption) Cross Section 426272 1.44365E+01

(n,elastic) Cross Section 426272 1.44365E+01

(n,2n) Cross Section 992 1.88600E-05

(n,3n) Cross Section 472 6.80000E-08

(n,fission) Cross Section 426272 1.44365E+01

(n,4n) Cross Section 80 0.OOOOOE+00

(n,nl) Cross Section 3368 8.67260E-04

(n,n2) Cross Section 2936 6.25108E-04

(n,n3) Cross Section 2888 4.42092E-04

(n,n4) Cross Section 2768 4.05944E-04

(n,n5) Cross Section 2728 3.87512E-04

(n,n6) Cross Section 2624 3.81164E-04

(n,n7) Cross Section 2576 3.59884E-04

(n,n8) Cross Section 2528 3.55520E-04

(n,n9) Cross Section 2464 3.46584E-04
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(n,nlO) Cross Section 2416 3.36548E-04

(n,n1l) Cross Section 2384 3.31052E-04

(n,n12) Cross Section 2352 3.27504E-04

(n,n13) Cross Section 2328 3.15972E-04

(n,n14) Cross Section 2304 3.03712E-04

(n,n15) Cross Section 2280 2.94532E-04

(n,n16) Cross Section 2256 2.87688E-04

(n,n17) Cross Section 2216 2.82816E-04

(n,n18) Cross Section 2176 2.79080E-04

(n,n19) Cross Section 1984 2.71148E-04

(n,n20) Cross Section 1944 2.67456E-04

(n,n21) Cross Section 1888 2.59228E-04

(n,n22) Cross Section 1864 2.55172E-04

(n,n23) Cross Section 1824 2.48080E-04

(n,n24) Cross Section 1776 2.27428E-04

(n,n25) Cross Section 1736 2.11796E-04

(n,n26) Cross Section 1688 1.96144E-04

(n,n27) Cross Section 1656 1.86000E-04

(n,n28) Cross Section 1624 1.76900E-04

(n,n29) Cross Section 1576 1.59200E-04

(n,n30) Cross Section 1536 1.44044E-04

(n,n31) Cross Section 1504 1.33644E-04

(n,n32) Cross Section 1472 1.24328E-04

(n,n33) Cross Section 1384 8.86000E-05

(n,n34) Cross Section 1344 7.27040E-05

(n,n35) Cross Section 1304 6.32560E-05

(n,n36) Cross Section 1280 5.72400E-05

(n,n37) Cross Section 1256 5.36080E-05
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(n,n38) Cross Section 1224 5.03320E-05

(n,n39) Cross Section 1200 4.70440E-05

(n,n40) Cross Section 1176 4.46600E-05

(nnc) Cross Section 2168 2.56696E-04

(n,level) Cross Section 3368 0.OOOOOE+00

Table 2.5: EOC HFP 239 Pu Memory Requirements and Access Frequencies

2.3 Nuclear Data Server Model

The observation that, in large reactor physics simulations, much of the nuclear data

that are loaded at initialization are accessed infrequently, or not at all, motivates

the development of a nuclear data server algorithm in which unneeded or rarely

needed nuclear data are stored on dedicated server nodes, rather than the compute

nodes. Data servers have previously been applied to Monte Carlo neutron transport

simulations in the context of off-node tally data storage [57].

The off-node storage of nuclear data provides a reduction in on-node memory

requirements. However, there are computational costs associated with the data server

concept. Namely, when the off-node data are finally needed within a simulation, they

must be communicated to a compute node2 . In order to better understand these

costs, we derive a communication model for the proposed algorithm.

2.3.1 Derivation

In this subsection we present the derivation of a communication model for the nuclear

data server algorithm concept. Taking into account the size in memory of individual
2 Instead of storing nuclear data in the primary memory of server nodes and communicating it

to compute nodes, as needed, a variant of the proposed algorithm might call for the access of data
directly from secondary memory. The computational costs of this alternative (i.e. latency and data
transfer times associated with reading from a hard disk drive) can be analyzed in a manner analogous
to that of the proposed procedure.
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blocks of nuclear data, the frequencies with which those data are accessed, and system

parameters for the computing platform on which the simulation is being carried out,

the model can be used to make performance predictions for the algorithm. The

derivation of this model closely parallels the derivation of a similar model for the

tally server algorithm [57].

Table 2.6: Nuclear Data Server Communication Model Variables

We start by defining relevant variables that will be used in the derivation in Table

2.6. Assuming ideal parallel scaling, we have

(2.1)tc = to = N
P

in the absence of nuclear data servers and

(2.2)N~i
tc = C

C
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Symbol Meaning

c compute processes

p total processes

s data server processes

Di ith block of nuclear data memory [B]

Ai mean accesses of ith nuclear data block per particle

to batch simulation time w/ p processes [s]

t batch simulation time w/ c processes [s]

N particles per batch

tc compute time per batch [s]

ts server communication time per batch [s]

L network latency [s]

B network bandwidth [B/s]

P mean neutron simulation time [s]



with the use of servers. The total batch simulation time, with data servers employed,

is then given by
N P N Dit = tc+ts=C +- C A L+ . (2.3)

Because a compute node cannot proceed with its operations before the data required

for those operations is received from a server node, this expression assumes a blocking-

type communication model in which the compute nodes receive the required data in

discrete events. At any given time, a compute process is either receiving data from

a server node, performing computations, or sitting idle. Dividing Eq. 2.3 by Eq. 2.1

gives us a ratio of the time spent simulating a batch with data servers to the time

spent simulating a batch without data servers,

= tc + ts P 1 + 1 A L+ D (2.4)

With a fixed number of total processes, it is desirable to use as few server nodes as

possible so that more processes can be devoted to performing computations. It is also

desirable to use a number of server nodes sufficient to ensure that no compute process

must wait for a server to complete a communication with some other compute node

before it is able receive the data it needs. Realization of this ideal scenario requires

that the total time spent communicating nuclear data exactly equals the total time

spent in the simulation. That is,

ct8 _ cts
' C ' = tc + ts. (2.5)

After some algebraic manipulation, we can obtain an expression for p/c which may

then be substituted into Eq. 2.4. The result of this substitution can be manipulated

and simplified to yield an expression for the relative simulation runtime overhead that

results from employing servers for storing nuclear data off-node,

t - to 2 Di (2.6)
to p, B
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Parameter Value

network latency, L [s] 2.OE - 6

network bandwidth, B [B/s] 4.OE + 9
mean neutron simulation time, A [s] 1/140

Table 2.7: Titan Supercomputer-Specific Performance Parameters

2.3.2 Performance Predictions

Using the communication model for the nuclear data server algorithm concept, we can

make predictions of the algorithm's performance. These predictions are in the context

of the same BOC HZP and EOC HFP full core reactor models analyzed previously.

The performance of the algorithm will depend on the memory requirements and access

frequencies of the nuclear data in a simulation, as well as the computing platform on

which the simulation is performed.

To make the predictions we seek, numerical values are needed for each of the vari-

ables that appear in Eq. 2.6. The values for the nuclear data memory requirements

and access frequencies - Di and Aj, respectively - are taken from the BEAVRS model

profiling studies already described. As for the computing platform-specific param-

eters, we will take the Titan Cray XK7 supercomputer [16] at Oak Ridge National

Laboratory as an initial reference system. Best-estimate values for each of the re-

quired parameters are given in Table 2.7. We use the same values that are used in

the analysis of the tally server algorithm [57].

So, from the profiling studies, we have memory requirements and access frequen-

cies associated with different blocks of nuclear data. Using these values and the

system performance parameters in Table 2.7, we can use Eq. 2.6 to determine the

runtime overhead penalty that is incurred by storing different blocks of nuclear data

off-node. We can also vary the numerical values for the system parameters to examine

the sensitivity of runtime overhead to these variables.

There is also the issue of deciding which blocks of nuclear data should be stored

off-node. Because we want to maximize the ratio of incremental on-node memory

reduction to incremental runtime overhead, we sort the blocks of data in order of
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decreasing values for the expression

Di/ E Di
[L + Di]

(2.7)

The resulting list of nuclear data blocks gives the order in which the blocks should

be chosen for off-node storage to get the most memory reduction bang for the com-

munication overhead buck.

Using this optimal off-node storage scheme, we now look at the runtime overhead

associated with storing different fractions of the entire nuclear data set off-node.

Using the BOC HZP access frequencies and memory requirements, Figures 2-1, 2-2,

and 2-3 show the predicted runtime overhead for varying network latency, network

bandwidth, and mean neutron simulation time values, respectively. The results shown

in each plot come from varying only one parameter at a time; when one parameter is

varied, the others are held constant at the best-estimate values given in Table 2.7.

For the BOC HZP case, with the best-estimate system parameter values for the

Titan supercomputer, the communication model predicts that more than 60% of the
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combined cross section and secondary distribution data can be stored, and accessed

from, off-node without incurring a runtime overhead penalty in excess of 1%. How-

ever, the predicted overhead is very sensitive to the fraction of data that is stored

off-node. If we store data accounting for 70% of the total memory on servers, instead

of 60%, the runtime overhead jumps to nearly 80%. Favorable results are observed

over a range of system parameter values. With any one parameter increased or de-

creased - whichever is disadvantageous with respect to runtime overhead - by two

orders of magnitude, on-node memory requirements can be reduced by more than

half with a runtime penalty of less than 10%. It is also interesting to look at the

limiting case of 100% off-node data storage. It is predicted that this can be achieved

at the expense of a 25-fold increase in runtime.

As is done for the BOC HZP case, overhead predictions are obtained by using the

profiling results from the EOC HFP BEAVRS simulation. Figures 2-4, 2-5, and 2-6

show these predictions for varying network latency, network bandwidth, and mean

neutron simulation time values, respectively. Again, using best-estimate system per-

formance parameter values, the communication model predicts that the nuclear data

accounting for more than 60% of the total cross section and secondary distribution

memory requirements can be placed on server nodes without incurring an overhead

penalty of more than 1%. Also, in the EOC HFP case, with any one parameter varied

by two orders of magnitude in the direction that will result in a greater overhead, it

is predicted that 50% of the total cross section and secondary distribution data can

be stored off-node at an overhead penalty of less than 1%.'

2.4 Conclusions

The development of algorithms for efficiently managing nuclear data in large Monte

Carlo neutron transport simulations should be informed by knowledge of the types of

data that are needed in the simulations as well as how often they are needed. The first
3Caution should be exercised when interpreting the memory reduction and runtime overhead

predictions. The trends based on computing platform parameters and increased off-node storage are
more reliable than any specific numerical value.
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segment of work presented in this chapter deals with profiling studies that are carried

out in order to ascertain this data access information. Armed with these results, we

have proposed a nuclear data server algorithm concept in which infrequently accessed

nuclear data are stored on dedicated server nodes, off of the compute nodes, in order

to reduce on-node nuclear data memory requirements. A communication model for

the proposed algorithm is then derived. Taking the results of the profiling studies

and system performance parameters for the Titan supercomputer as input, the server

communication model is used to make algorithmic performance predictions. These

predictions indicate that the nuclear data server algorithm may allow appreciable on-

node memory reductions, with only modest runtime overhead, in practical full core

reactor physics simulations.
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Chapter 3

Accelerated Resonance Elastic

Scattering Kernel Sampling

In this chapter' we present the derivation and investigation of a new Doppler broad-

ening rejection sampling approach for the exact treatment of free gas resonance elastic

scattering in Monte Carlo neutron transport codes. Implemented in OpenMC, this

method correctly accounts for the energy dependence of cross sections when treating

the thermal motion of target nuclei in elastic scattering events. The method is verified

against both stochastic and deterministic reference results in the literature for 238U

resonance scattering. Upscatter percentages and mean scattered energies calculated

with the method are shown to agree well with the reference scattering kernel results.

Additionally, pin cell and full core keff results calculated with this implementation of

the exact resonance scattering kernel are shown to be in close agreement with those

in the literature. The attractiveness of the method stems from its improvement upon

a computationally expensive rejection sampling procedure employed by an earlier

stochastic resonance scattering treatment. With no loss in accuracy, the acceler-

ated resonance elastic scattering kernel sampling algorithm is shown to reduce overall

runtime by 3-5% relative to the Doppler broadening rejection correction method for

both pin cell and full core thermal reactor benchmark problems. This translates to a

30-40% reduction of the runtime overhead.

'The work presented in this chapter is published as Reference [73].
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3.1 Introduction

At sufficiently high incident neutron energies, elastic scattering can be accurately

modeled with zero-velocity target nuclei. In the epithermal energy range, however, the

thermal motion of target nuclei can have a significant effect on differential scattering

kernels. These differences can, in turn, significantly affect macroscopic values such

as the effective multiplication factor of a system. Therefore, it is important to have

an accurate model for the kinematics of epithermal elastic scattering. Such a model

requires that target velocities be drawn from the exact bivariate distribution in both

speed and direction-of-flight [55].

Typically, stochastic treatments of epithermal elastic scattering make the assump-

tion that the distribution of target speeds takes on that of an isotropic Maxwell-

Boltzmann ideal gas. Historically, the procedure for sampling the target velocity

distribution has also relied on the simplifying assumption that, in any given elastic

scattering event, the cross section of the target nuclide is effectively constant over

the narrow range of probable relative neutron speeds [23]. This assumption leads

to inadequate results for elastic scattering from heavy resonant nuclides which can

exhibit rapid cross section variations over small energy intervals (i.e. resonances).

Alternate stochastic treatments of resonance elastic scattering have been shown to

correctly reproduce the exact theoretical scattering kernels. However, these methods

give rise to appreciable decreases in computational efficiency.

It is the aim of this work to develop a resonance elastic scattering treatment

that correctly reproduces exact free gas scattering kernels and that also reduces the

undesirable sampling inefficiencies of previously proposed methods. The accelerated

resonance elastic scattering kernel sampling method derived here is implemented in

the OpenMC Monte Carlo neutron transport code [58]. The method is then verified

through comparisons with reference literature results [64] [71] [75] [42]. Various results

computed for neutrons with incident energies near 238U resonance energies - where

resonance scattering effects are most pronounced - are presented. The results of

thermal reactor pin cell and full core eigenvalue calculations are also analyzed. Sample
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target velocity rejection rates and runtimes are examined in order to assess the relative

computational efficiency of the accelerated sampling scheme proposed in this work.

3.2 Elastic Scattering Models

Correct treatment of the elastic scattering process is vital to the accuracy of reactor

physics simulations. Multiple procedures, with varying degrees of physical fidelity,

have been developed and implemented in Monte Carlo codes.

3.2.1 Asymptotic Model

The simplest model for the target velocity in an elastic scattering event is to assume

that the target is at rest. Utilizing this zero-velocity target assumption is equivalent

to modeling elastic scattering with the well-known asymptotic kernel for isotropic

scattering in the center-of-mass system [35],

aE < E'< E
P(E -+ E') = , (3.1)

0 otherwise

with E being the incident neutron energy, E' being the scattered neutron energy, and

a = (A - 1)2 /(A + 1)2, where A is the ratio of target mass to neutron mass. While

this model is reasonable for scattering events with high incident neutron energies,

it does not accurately capture the effects of target motion on thermal scattering

kernels. Also, it has been shown that the asymptotic model, which does not permit

upscattering into resonances, can dramatically misrepresent epithermal scattering

kernels for resonant target nuclei [55]. The misrepresentation manifests itself as a

reduction in resonance absorption. This reduction has been shown to introduce biases

of a couple of hundred pcm in keff results for LWR configurations. Even greater errors

are observed in simulations of high-temperature reactor systems [47].
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3.2.2 Constant Cross Section Model

In order to eliminate the asymptotic model's assumption of a target at rest and take

into account the thermal motion of target nuclei when considering the kinematics

of elastic scattering, the velocity of the target must be determined. The ideal gas

model is widely used for the treatment of epithermal neutron scattering in Monte

Carlo codes [23]. In this model the motion of target nuclei is assumed to be isotropic,

with speeds characterized by the classical Maxwell-Boltzmann distribution [19]. This

distribution for target speed vt in an ideal gas at temperature T is given by

M(T, ot) = #3vje- ;

Am7 t(3.2)

2kT

Here, kB is the Boltzmann constant and m, is the mass of a neutron.

The convolution of the Maxwell-Boltzmann distribution with the product of the

relative speed between the neutron and target, Vrel, and the 0 K elastic scattering

cross section yields an expression for the effective, reaction rate-preserving, Doppler

broadened scattering cross section [32],

as(T, v,) =2 JJ VreiUs (0, Vrei)M(T, vt)dvtdy, (3.3)

in which v, is the neutron speed. The relative speed is given by

Vre = |V - V| = V2 + Vt - 2Pvnvt , (3.4)

with p being the cosine of the angle between the initial neutron and target direction

vectors.

The Doppler broadened cross section can be recast as a joint probability density

function (PDF),

P( It, -= Vreis(0, Vrei)M(T, Vt)
P\Vt,IpIVn) = vu(~~ (3.5)2Vneos(T,Vn)

for the correlated p and vt variables. The correlation of p and vt means that Eq.

62



(3.5) cannot be sampled directly by sampling the PDF's of pu and vt independently

[59].

After assuming that the 0 K scattering cross section of the target varies negligibly

over the range of practically attainable vre values, the integral over /- in Eq. (3.3)

can be evaluated analytically [23], enabling use of the sampling procedure outlined

below. With the assumption of a constant cross section, the PDF is described by

Pcxs (vt, p v ) Oc vrei M(T,vt). (3.6)

The constant cross section approximation (CXS) is central to the target veloc-

ity sampling algorithm detailed by Gelbard [41]. This algorithm, in slightly varying

forms, has long been the standard method for treating epithermal elastic scattering in

Monte Carlo codes such as MCNP [68], MC21 [66], and OpenMC [58]. The approxi-

mation has been justified with the reasoning that the scattering cross sections of light

nuclei are typically slowly varying in energy, and that heavy nuclei, whose scattering

cross sections can vary sharply in energy, contribute so little to neutron moderation

through elastic scattering that the effects of the approximation are negligible [68].

The sampling of Eq. (3.6) can be simplified with the inclusion of canceling v" + vt

terms which allow the distribution to be rewritten as

= Ccxs Vrel [vv e - 2  +v3e- _ 2v ;Pc x s( t, I-'I V ) = ~ sV n + V t [ n t 31( .7
23 ~ (3.7)Ccxs = Vn VIFF

Having no dependence on target velocity, Ccxs is simply a normalization constant.

Then, p can be sampled uniformly and vt can be obtained by sampling the distribution

given by the bracketed terms in Eq. (3.7). The sampled target velocity specified by

p and vt is then accepted with a probability equal to the ratio

Rcxs = Vrel (3.8)
Vn ~+ Vt
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3.2.3 Energy Dependent Cross Section Model

The CXS implementation of the ideal gas model addresses the inadequacy of the

asymptotic model insofar as it assigns, through the procedure outlined in the pre-

vious section, non-zero velocities to target nuclei. However, in the target velocity

sampling procedure, the energy dependence of cross sections is neglected. It was

shown analytically by Ouisloumen and Sanchez [55] that, in the epithermal region,

the strong energy dependence of resonant nuclei scattering cross sections can result

in scattering kernels that are highly distorted from those given by the asymptotic

model. The CXS ideal gas model cannot accurately calculate epithermal resonance

scattering kernels because it neglects the scattering cross section energy dependence

that is largely responsible for the distortion of resonant nuclei scattering kernels from

an asymptotic shape. There exist multiple methods for correctly incorporating the

effects of energy dependent scattering cross sections in epithermal scattering treat-

ments.

Scattering Law Tables

Typically, S(a, 3) scattering law tables are used to specify secondary energy and

angular distributions for neutron scattering in the thermal region, where chemical

binding effects may be significant. The capability to generate tables for nuclei with

energy dependent cross sections was introduced into the NJOY Nuclear Data Process-

ing System [50] by Rothenstein [60]. The use of S(a, /) tables in modeling scattering

from resonant nuclei, demonstrated by Dagan [33], forgoes the sampling of a target

velocity and, in doing so, avoids the problems encountered with the CXS model.

However, the scattering law method requires the generation of S(a, 0) tables for each

nuclide with cross section energy dependence that must be considered. In general,

tables must be generated on unique, fine energy grids in order to capture the reso-

nance cross section structure of individual nuclides [17]. This results in undesirable

increases in nuclear data memory requirements.
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Doppler Broadening Rejection Correction

An alternate, more general stochastic method for the exact treatment of resonance

scattering was suggested by Rothenstein [59]. The Doppler broadening rejection

correction (DBRC) corrects for the CXS approximation with a modification of the

PDF from Eq. (3.7). The energy dependent cross section term is reintroduced and

canceling o',3 terms are added so that

CDBRC Vrel) Vrel (o)o2 e-- 2v _3 -e ,
2 vVP(vt, ii1Vn) = C,.O 10K vi + Vt X (Vnutu +

s,max n 3OK(

CDBRC = -FuTv)
Tn o.O Kas (T ,vn)

The a' ,K terms represent the maximum 0 K scattering cross section on the interval of

practically attainable Vrel values. This interval is determined by Vn and the maximum

value of vt that has a non-negligible probability of being sampled from the Maxwell-

Boltzmann distribution. Typically, this interval is chosen to be [vn - 4/#, vn + 4/]

in agreement with the bounds of integration used to Doppler broaden cross sections

in the SIGMA1 algorithm [32].

The addition of the Oamax terms takes into account the effects of an energy de-

pendent cross section through an additional rejection criterion. Samples of P and

vt accepted through the standard CXS algorithm are subjected to this additional

criterion and accepted with a probability

_ s(0, Vrei)
PDBRC - a0 1K (3.10)

s,max

The DBRC was first demonstrated by Becker, et al. [18] and has since been im-

plemented and investigated in. several Monte Carlo codes including MCNP [68],

TRIPOLI [67], MC21 [66], and, in the course of this work, OpenMC [58].

Though the DBRC has been shown to correctly reproduce resonance elastic scat-

tering kernels, there are computational costs associated with the additional rejection

criterion. For incident neutron energies in close proximity to resonances, the rejection
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sampling of a 0 K cross section leads to an inordinate number of discarded samples.

Applied to reactor physics simulations, the DBRC has been observed to incur com-

putational performance penalties of 10-15% [64][71].

Weight Correction Method

The weight correction method (WCM) is another stochastic procedure for exactly

treating free gas resonance scattering [47][53]. In the WCM algorithm, / and vt

values are independently sampled, just as in the CXS algorithm. However, in order

to account for the sampled target velocity coming from the constant cross section

PDF in Eq. (3.7), rather than the exact, energy dependent PDF in Eq. (3.5), the

WCM applies a correction factor to the scattered neutron weight, w, such that the

updated weight becomes

Wnew- W-P (Vt, P IVn) _U,- (0, Vrel) F&)
Pcxs (vt, pv.) -. (T ,v,)

(#2V2 + 1) erf (#vt) + J /vt exp(_f3 2 V2) (3.11)
F 2# v 7r =F(/3t) - 02 2_____________

In practice, F(#vt) is approximated as unity in order to avoid expensive function

evaluations. The error introduced by this approximation is negligible [53].

The speed of a calculation performed with the WCM is virtually unchanged from

that of a calculation performed with the CXS method because all of the same target

velocities are accepted, with the only difference between the methods being the addi-

tional correction factor. The downside of the method is that the particle weights may

fluctuate dramatically, leading to increased variance in the scattered energy-angle dis-

tributions. Consequently, an increase in the variance of any tallies dependent on these

distributions (e.g. keff) will be observed. The WCM has been shown to be signifi-

cantly less computationally efficient than the DBRC method in figure of merit studies

conducted by Trumbull and Fieno [71] and is, therefore, not investigated further in

this work.
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3.3 Accelerated Resonance Elastic Scattering Ker-

nel Sampling

The motivation for the proposed method is improved computational efficiency of reso-

nance elastic scattering kernel sampling through avoidance of the inefficient rejection

sampling of 0 K scattering cross sections near resonance energies. Rather than sample

a target velocity relatively efficiently and then rejection sample a 0 K cross section, as

is done in the DBRC algorithm, the accelerated resonance elastic scattering (ARES)

kernel sampling method calls for directly sampling the 0 K cross section data distri-

bution and then rejection sampling a different function.

3.3.1 ARES Kernel Sampling Algorithm

The method is based on the principle that any PDF of the.form

P(Y) = Cf ()g() (3.12)

with a normalization constant, C, and a bounded g(Y) can be sampled by first drawing

a value from f(Y), and then rejection sampling g(Y), and vice versa [23]. In the former

case, the sample value, 4', drawn from f( ),is accepted with a probability equal to

the ratio

gX8)Racc = . (3.13)
max (g(())

Eq. (3.12) can be cast in terms of the target velocity sampling problem as

P(Vt, I vn) = CARES f(Vt, P IV)9(Vt, /IV) (3.14)

where

f(VtIA Vn) = Vreios(0, Vrei)Uspeed(Vt) (3.15)
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is the function to be sampled first,

g (vt, p Iv. ) = M (T, ,vt) Ua.,,ie( (3.16 )

is the function on which rejection sampling is applied,

1
CARES -

C n-s(T, Vn)Uspeed(Vt) (3.17)

is a normalization constant,

Uangie(p) = 1/2 -1 < p i 1 (3.18)
10 otherwise

is the uniform (i.e. isotropic) distribution of physically meaningful A values2, and

Uspeed (Vt) = 1/Vt,max 0 < Vt < Vt,ma (3.19)
0 otherwise

is a uniform distribution of target speeds over the range of values that have a non-

negligible probability of occurring. The value of vt,max is the maximum target speed

that does not have a negligible probability of being sampled from the Maxwell-

Boltzmann distribution. As in SIGMA1 and the DBRC method, Vt,max is taken to be

4/, which corresponds to a maximum target energy of 16kBT.

The ARES method proceeds by sampling a target velocity from f(vt, p vn). This is

accomplished in two steps. First, a Vrei value is sampled directly from the distribution

given by the Vrei-s(0, Vrei) term in Eq. (3.15) on the interval [Vn -4/3, Vn+4/ 3 ]. Using

the tabulated 0 K cross section data in ACE format, which is linearly interpolable

in energy, the direct sampling of this distribution is fairly straightforward. Because

Uspeed(Vt) is a constant, it has no bearing on the sampling of a Vrel value. Second,

2 This same distribution appears implicitly in the CXS and DBRC algorithms where A is sampled
isotropically. Here, we include it explicitly to highlight the rejection of unphysical p values that is
required in the ARES procedure.
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Uspeed(vt) is uniformly sampled on the interval [0, vt,ma,] to obtain a target speed.

With vre and vt now known, p can be directly calculated by rearranging Eq. (3.4) so

that

n t = (3.20)2v,,vt

With values of p and vt fixed, a sample target velocity has now been completely

specified.

Next, we must perform rejection sampling on g(vt, plvn). This amounts to accept-

ing the sampled target velocity with a probability

PARES - (,v) Unl A 3.21)max(M(T, Vt)) max(Uangie(P))

The rejection sampling is performed in two steps. First, we check for satisfaction of

the ratio
Uangie(A) (3.22)

max(Uangie())'

with 1 being a random number drawn uniformly from the unit interval. Because

Uangie(/-t) is constant on the physically meaningful range of values, [-1, 1], and zero

elsewhere, we may simply accept all values of p that are in the physical range and

reject all those that are not. Second, using the sampled vt, we check that

< M(T,vt) _ M(T,vt)
max(M(T, Vt)) M(T, 1/#)

is satisfied, with 1/3 being the most probable target speed, where the Maxwell-

Boltzmann distribution takes on its maximum value. If the inequalities in Eqs. (3.22)

and (3.23) both hold, the sampled target velocity, specified by the values of p and

Vt, is accepted. If either of the inequalities does not hold, the algorithm starts over

with sampling a new Vrel, and proceeds until Eqs. (3.22) and (3.23) are simultane-

ously satisfied. At this point, a target velocity has been accepted and the two-body

kinematic equations may be solved, just as in the CXS and DBRC algorithms.
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3.3.2 Additional Considerations

There are many possible variations to the presented algorithm that may marginally

affect computational efficiency and accuracy. To begin with, the ARES method need

not be applied over the entire range in which the treatment of resonance scattering

is desired. Instead, a combination of resonance scattering methods could be used,

with different methods being applied to different segments of the energy range. In

particular, intuition might lead one to suspect that the ARES method should really

only be applied in the vicinity of resonance energies, where the performance of DBRC

is worst, and where ARES avoids the costly 0 K cross section rejection sampling. In

between resonances, it might be advantageous to switch back to the DBRC method

because the cross section variation is much less severe, leading to improved rejection

sampling efficiencies. In contrast, for ARES, a Maxwell-Boltzmann distribution is

rejection sampled with a uniform bound whether the incident neutron energy is near

a resonance or not. Though the cost of this sampling procedure is relatively small, it

is still non-negligible and may not be justified away from resonances.

With regard to the sampling of a Vrel value from the distribution given in Eq.

(3.15), it should be noted that the direct sampling is not, strictly speaking, exact.

This is owing to the nonlinearity of the Vrei0s(0, Vrei) term in the energy variable.

The 0 K cross section data is, by itself, linearly interpolable in energy. However,

after multiplication by speed, which is proportional to the square root of energy,

exactly accurate linear interpolation is no longer possible. Still, because of the small

separation in energy between consecutive data points in regions of appreciable cross

section energy dependence, the distribution can, with a negligible effect on results, be

treated as piecewise-linear. This allows for the building of a cumulative distribution

function (CDF) through simple trapezoidal integration of the data points, as well as

linear interpolation between CDF points when performing the direct sampling. The

integration can be performed at the initialization of a simulation - in which case the

CDF points are stored on the same energy grid as the 0 K scattering cross section - or,

in the interest of memory reduction, as necessary throughout a simulation and only
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at energy points corresponding to the applicable domain of Vrel. If, for some nuclide,

the approximation of the distribution as piecewise-linear is found to be inaccurate,

a minor correction is required. In this case, the vre term can simply be removed

from the distribution that is to be directly sampled and incorporated into the second

distribution, on which rejection sampling is performed3 . So, instead of distributions

given by Eq. (3.15) and Eq. (3.16), we have

f(vt, Av ) = Us-(0, VreI)Uspeed(Vt) (3.24)

and

g(vt, Ivn) = vreiM(T,Vt)Uangie(Ip). (3.25)

This leads to an additional, relatively efficient rejection criterion, given by

< Vre _ , (3.26)
max (Vrei) Vn + Vtmax

that would have to be satisfied in order for the target velocity to be accepted. If

it is ever necessary, this rejection ratio can be tested first, before the calculation

of M(T, Vt) in Eq. (3.23), because it relies only on the sampled Vrel and not any

additional computations.

In implementing the ARES method in OpenMC, one minor, yet noteworthy, de-

parture is made from the algorithm, as presented. It can be helpful to think of the

algorithm as consisting of two sequential parts - direct sampling of Eq. (3.15), fol-

lowed by rejection sampling of Eq. (3.16). But, in practice, slight efficiency gains may

be realized by reordering certain operations. Namely, the uniform sampling of a vt

value can be performed first without affecting the rest of the algorithm. This allows

for checking the rejection criterion given by Eq. (3.23) as the very next step. An early

check of this criterion, which must be satisfied in any case, enables the bypassing of

all other computations in the event that the sampled vt is not accepted.

3 Alternatively, the energy grid can be made finer until any error incurred as a result of the
approximation of piece-wise linearity is reduced to an acceptable level.
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3.4 Verification, Results, and Analysis

The presented results serve two purposes. The first is to verify that the ARES method

does, in fact, correctly reproduce exact free gas scattering kernels, as the DBRC

method has been shown to do [64] [75] [71]. The second is to demonstrate that using

the ARES method in reactor physics simulations results in improved computational

performance relative to the DBRC method. In a tangential effort, the newly im-

plemented OpenMC DBRC capability is also verified so that it can be used with

confidence in additional verification studies of ARES for which no reference literature

results exist.

As part of the verification of the proposed method, we compare upscatter percent-

ages and mean scattered energies calculated with ARES to DBRC and deterministic

reference results from the literature. Asymptotic, CXS, DBRC, and ARES scatter-

ing kernels are also computed and compared. In order to assess the computational

performance of the new method, we calculate sample target velocity rejection rates

at various energies with both the DBRC and ARES methods. Additionally, thermal

reactor pin cell and full core benchmark simulations are performed with both meth-

ods to quantify efficiency gains that are realized by using ARES instead of DBRC in

calculations of practical interest. The benchmark calculations also serve to further

verify ARES against the DBRC method.

All calculations in this work are performed with ENDF/B-VII.0 nuclear data [25].

In eigenvalue calculations, the specified target velocity sampling method is applied

only to 238U over the range 5.0 - 210 eV. The CXS model is applied below this range

and the asymptotic model is applied above. The lower energy bound is chosen so

that the range includes the lowest-lying 238U s-wave resonance at 6.67 eV. Below the

selected bound, the error in the scattering kernel that results from invoking the CXS

approximation is negligible. The upper bound of the range is chosen to agree with

previous benchmark simulations performed with the DBRC method [64]. All other

nuclides are treated with the CXS model up to a threshold energy of 400kBT, at

which point the asymptotic model is applied.
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1 Reference [42] MCNP MC21 [ OpenMC

Energy [eV] Deterministic DBRC DBRC DBRC ARES CXS
6.52 84.45 83.64 (0.19) 84.31 (0.04) 84.29 (0.04) 84.35 (0.04) 30.33 (0.05)
7.20 28.20 28.03 (0.05) 28.13 (0.04) 28.17 (0.05) 28.36 (0.05) 29.37 (0.05)

36.25 55.41 53.69 (0.01) 55.34 (0.05) 55.26 (0.05) 55.82 (0.05) 12.72 (0.03)
37.20 7.27 7.72 (0.02) 7.18 (0.03) 7.19 (0.03) 7.21 (0.03) 12.47 (0.03)

Table 3.1: Code-to-Code Comparison of Computed Upscatter Percentages (1a-)

3.4.1 Upscatter Percentages

The first verification of ARES is a comparison of 238U upscatter percentages computed

at 1000 K for incident neutron energies just above and just below the 6.67 eV and

36.67 eV resonances. The percentages computed with ARES are compared with the

deterministic results of Ghrayeb, et al. [42], which, it should be noted, are obtained

under the assumption of isotropic center-of-mass scattering, in Table 3.1. DBRC

results computed with MCNP [64], MC21 [71], and OpenMC are also presented,

along with CXS results from OpenMC. The upscatter percentages computed with

ARES in OpenMC agree very well with both the deterministic and DBRC reference

results, especially when compared to the values obtained with the CXS method.

For further verification, upscatter percentages are computed with ARES at dif-

ferent temperatures for incident neutron energies just above and just below the first

three 23 8U s-wave resonances. In Table 3.2, these values are compared to determin-

istic literature results and DBRC results generated with OpenMC. Again, very good

agreement is observed between the deterministic, DBRC, and ARES results.

Though not all of the ARES upscatter percentages lie within two standard de-

viations of the reference results, examination of the tabulated values reveals that

the various DBRC results often lie several standard deviations away from the deter-

ministic values, and each other. The differences between the results obtained from

the deterministic, DBRC, and ARES scattering kernel implementations are negligible

compared to the systematic errors observed in the results computed with the CXS

algorithm. In light of the relatively minor and unbiased differences between the de-

terministic, DBRC, and ARES results, we proceed to the next step in the verification
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Reference [42] OpenMC

_Energy [eV] Temperature [K] Deterministic DBRC ARES
300 62.17 61.26 (0.05) 61.59 (0.05)

6.52 600 82.84 82.82 (0.04) 82.88 (0.04)
1000 84.45 84.29 (0.04) 84.35 (0.04)
300 16.58 16.23 (0.04) 16.63 (0.04)

7.20 600 23.59 23.47 (0.04) 23.83 (0.04)
1000 28.20 28.17 (0.05) 28.36 (0.05)
300 5.57 5.50 (0.02) 5.60 (0.02)

20.20 600 15.36 15.48 (0.04) 15.67 (0.04)
1000 30.41 30.65 (0.05) 31.15 (0.05)
300 6.61 6.44 (0.02) 6.59 (0.02)

21.50 600 11.46 11.42 (0.03) 11.63 (0.03)
1000 15.51 15.39 (0.04) 15.68 (0.04)
300 7.18 6.87 (0.03) 7.03 (0.03)

36.25 600 30.54 30.66 (0.05) 31.20 (0.05)
1000 55.41 55.26 (0.05) 55.82 (0.05)
300 3.62 3.51 (0.02) 3.61 (0.02)

37.20 600 6.12 6.04 (0.02) 6.17 (0.02)
1000 7.27 7.19 (0.03) 7.21 (0.03)

Table 3.2: Upscatter Percentages (1o) Computed with DBRC and ARES

of ARES.

3.4.2 Mean Scattered Energies

As in the analysis of upscatter percentages, mean scattered energies are computed

with ARES at different temperatures for incident neutron energies just above and just

below the first three 238U s-wave resonances. Again, the computed values are com-

pared to deterministic literature results and DBRC results generated with OpenMC.

In Table 3.3, very good agreement is seen between scattered energies calculated with

ARES and scattered energies calculated either deterministically or with the DBRC

method.

3.4.3 Scattering Kernels

As a third step in the verification of ARES, scattering kernels at two energies near the

36.67 eV 238U resonance are computed and plotted, along with the kernels computed
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Reference [42] OpenMC

Energy [eV] Temperature [K] Deterministic DBRC ARES
300 6.53 6.53 (0.0001) 6.53 (0.0001)

6.52 600 6.59 6.59 (0.0001) 6.59 (0.0001)
1000 6.61 6.61 (0.0001) 6.61 (0.0001)
300 7.14 7.14 (0.0001) 7.14 (0.0001)

7.20 600 7.14 7.14 (0.0001) 7.14 (0.0001)
1000 7.14 7.14 (0.0001) 7.14 (0.0001)
300 19.98 19.98 (0.0002) 19.98 (0.0002)

20.20 600 19.99 19.99 (0.0002) 19.99 (0.0002)
1000 20.04 20.04 (0.0003) 20.04 (0.0003)
300 21.31 21.31 (0.0001) 21.31 (0.0001)

21.50 600 21.31 21.30 (0.0002) 21.30 (0.0002)
1000 21.29 21.29 (0.0002) 21.29 (0.0002)
300 36.01 36.01 (0.0002) 36.01 (0.0002)

36.25 600 36.13 36.13 (0.0002) 36.13 (0.0002)
1000 36.26 36.26 (0.0002) 36.26 (0.0002)
300 36.87 36.86 (0.0002) 36.86 (0.0002)

37.20 600 36.83 36.82 (0.0003) 36.82 (0.0003)
1000 36.73 36.72 (0.0004) 36.72 (0.0004)

Table 3.3: Mean Scattered Energies (1-) [eV] Computed with DBRC and ARES

with the asymptotic model, and both the CXS and DBRC methods. Figures 3-1 and

3-2 illustrate scattering kernels computed for an incident neutron energy of 36.25 eV

at 300 K and 1000 K, respectively. The kernels depicted in Figures 3-3 and 3-4 are

computed for an incident energy of 37.2 eV at 300 K and 1000 K, respectively.

The expected deviations of the CXS, DBRC, and ARES kernels from the asymp-

totic kernel are clear in each plot. The discrepancy between the CXS kernel and the

exact DBRC and ARES kernels is also readily apparent. There is very good visual

agreement between the DBRC and ARES kernels in each of the four cases presented.

As anticipated, the differences between the exact scattering kernels and the kernels

predicted by the asymptotic model are amplified by increases in temperature. Fi-

nally, higher probabilities of upscatter are observed for incident energies just below

the resonance than are observed for incident energies just above the resonance. All of

these general trends are to be expected and have been demonstrated previously [55].

75



* DBRC
ARES
CxS

L - Asymptotic

35.5 36
E (eV)

3-

36.5 37

Figure 3-1: 36.25 eV Scattering Kernel at 300 K

3
* DBRC
* ARES

CxS
2.5 Asymptotic

2

1.5

1

0.5

0
35 35.5

I-

36 36.5 37
L (eV)

Figure 3-2: 36.25 eV Scattering Kernel at 1000 K

76

3

2.5

2-

1.5-

1

0.5-

35



* DBRC
0 ARES

cxs
Asymptotic

1.6-

1.4 -

1.2 -

1

0.8-

0.6-

0.4-

0.2

0
35.5 36 36.5

(I

E (eV)

I

37 37.5 38

Figure 3-3: 37.2 eV Scattering Kernel at 300 K

1.8
* DBRC
* ARES

CxS
-- Asymptotic

1.6 -

1.4-

1.2-

1

0.8

0.6

0.4

0.2

0
35 .5 36 36.5

E (eV)
37

b
9

9

.
37 .5 38

Figure 3-4: 37.2 eV Scattering Kernel at 1000 K

77

2

1.8

0



3.4.4 Rejection Rates

After a successful verification of ARES against both the deterministic and DBRC

reference results, demonstrated in the preceding comparisons of upscatter percent-

ages, mean scattered energies, and scattering kernel distributions, we transition to

an investigation of the computational efficiency of the method. With the principle

aim of ARES being to improve upon the rejection sampling scheme employed by the

DBRC method, the results presented in this section relate only to the ARES and

DBRC methods.

Because the efficiency of a resonance scattering method depends directly on the

number of rejected target velocity samples, the number of rejections per sampled tar-

get velocity acceptance is a quantity of particular interest. Moreover, both integral

and differential rejection rates can be considered, with the former giving a picture of

the overall efficiency of a method and the latter giving information about sampling

efficiencies at specific energies. A comparison between the methods' differential re-

jection rates is especially enlightening in that it provides some insight as to whether

one method performs better in a certain energy range relative to the other method.

Analysis of the methods' relative efficiencies in different energy intervals is necessary

if a successful hybrid scheme, which relies on different methods for treating different

energies, is to be constructed.

Examination of differential rejection rates also reveals the incident energies that

result in the greatest share of total rejections. In any effort to improve overall com-

putational efficiency, attention must be paid primarily to these energies. With this in

mind, we look to Figure 3-5, which shows the distribution over energy of the number

of sample target velocity rejections per incident neutron for a thermal pin cell bench-

mark problem that is described in the next section. Resonance scattering is treated

in the 5.0 - 210 eV energy range. For ease of interpretation, Figure 3-5 displays only

the portion of this range that spans the 20.87 eV resonance, as well as energies a few

eV above and below.

The dependence on energy of the number of observed rejections shown in Figure
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Figure 3-5: Distribution of Rejections in Energy (5.0 wt.% Enr. HFP Pin Cell)

3-5 is representative of behavior seen over the entire energy range in which resonance

scattering methods are applied. That is, the majority of rejections occur at energies

just above and just below resonances. Away from resonance energies, the number of

rejections is relatively minimal. It can also be seen that, in the vicinity of resonances,

where most of the rejections occur, the ARES method requires significantly fewer

rejections than does the DBRC method. This is demonstrated in Table 3.4, which

shows the average number of rejections per acceptance at energies near resonances for

both the DBRC and ARES methods. These particular energies are selected to be near

where the peak rejection rates occur, just above and below the first three 23 U s-wave

resonances. In contrast, farther away from resonance energies, the DBRC method

results in fewer rejections relative to the ARES method. This is highlighted by the

values in Table 3.5, which shows the average number of rejections per acceptance at

energies far from resonances. Taken together, these observations about the relative

efficiencies of the two methods lead to the concept of a hybrid method. Such a

method can make use of the ARES method near resonances and the DBRC method

away from resonances. However, because such a vast number of rejections occur near
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Energy [eV] DBRC ARES

6.35 589.6 (1.9) 384.5 (1.2)
7.00 71.1 (0.2) 53.3 (0.2)

20.25 24190.2 (80.6) 11053.1 (37.0)
21.55 360.8 (1.1) 160.1 (0.5)
35.75 5583.6 (18.6) 1440.0 (4.6)
37.55 332.4 (1.1) 195.1 (0.6)

Table 3.4: Rejections per Accepted Target Velocity (1a) Near Resonances (1000 K)

Energy [eV] DBRC ARES

5.00 1.05 (0.0002) 13.78 (0.0132)
14.00 1.03 (0.0002) 13.82 (0.0133)
29.00 1.06 (0.0003) 13.81 (0.0133)
50.00 1.03 (0.0002) 13.82 (0.0133)

Table 3.5: Rejections per Accepted Target Velocity (1-) Far from Resonances
(1000 K)

resonances, where ARES is much more efficient than DBRC, it is likely that this

type of hybrid method will lead to no appreciable efficiency gains compared to an

ARES-only approach.

3.4.5 Pin Cell Benchmark

A set of thermal pin cell benchmark problems was proposed by Mosteller [54] to assess

Doppler reactivity defect calculations. The benchmark specifications describe infinite

pin cell lattices with low-enriched uranium (LEU) fuel as well as reactor-recycle and

weapons-grade mixed-oxide (MOX) fuels. For each type of fuel, multiple compositions

are given. Because the benchmark was developed to assess the Doppler reactivity de-

fect, pin cell specifications are given at two different fuel temperatures. At the hot

zero-power (HZP) condition, all materials in the problem are at 600 K. At the hot full-

power condition (HFP), all materials are again at 600 K, except for the fuel, which

is at 900 K. Sunny, et al. [64] used the LEU benchmark problems to investigate

the effects of the correct treatment of free gas resonance scattering - via the DBRC

method - on Doppler reactivity defect calculations with MCNP. Zoia, et al. [75] and
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MCNP OpenMC
Enrichment (wt.%) DBRC DBRC ARES

0.711 -0.00006 (0.00025) -0.00044 (0.00006) -0.00031 (0.00007)
1.6 -0.00071 (0.00035) -0.00056 (0.00010) -0.00077 (0.00010)
2.4 -0.00038 (0.00038) -0.00068 (0.00012) -0.00062 (0.00012)

HZP 3.1 -0.00073 (0.00040) -0.00073 (0.00013) -0.00083 (0.00013)
Tfuei = 600 K 3.9 -0.00087 (0.00040) -0.00094 (0.00014) -0.00079 (0.00014)

4.5 -0.00048 (0.00041) -0.00078 (0.00015) -0.00086 (0.00015)
5.0 -0.00115 (0.00042) -0.00072 (0.00015) -0.00092 (0.00015)

0.711 -0.00057 (0.00027) -0.00111 (0.00008) -0.00109 (0.00008)
1.6 -0.00182 (0.00035) -0.00151 (0.00009) -0.00147 (0.00009)
2.4 -0.00164 (0.00037) -0.00186 (0.00012) -0.00166 (0.00011)

HFP 3.1 -0.00155 (0.00038) -0.00161 (0.00012) -0.00171 (0.00012)
Tfuel = 900 K 3.9 -0.00140 (0.00041) -0.00184 (0.00013) -0.00187 (0.00014)

4.5 -0.00194 (0.00040) -0.00183 (0.00015) -0.00177 (0.00014)
5.0 -0.00154 (0.00040) -0.00185 (0.00015) -0.00156 (0.00015)

Table 3.6: LEU Pin Cell keff Differences (1-) Relative to CXS Applied Below 400kBT

Trumbull and Fieno [71] extended these studies to the MOX fuel types with TRIPOLI

and MC21, respectively. Here, the effects of different resonance scattering treatments

on the eigenvalues and simulation runtimes of the LEU benchmark problems are

investigated. Differences in keff that result from using the OpenMC DBRC epither-

mal scattering model relative to CXS and the OpenMC ARES epithermal scattering

model relative to CXS, all for 2 3 8 U, are shown in Table 3.6. The differences between

the results produced by the MCNP DBRC and CXS implementations are also given.

In the reference case, relative to which the displayed differences are computed, the

CXS model is applied up to an energy of 400kBT. In addition, Table 3.7 compares the

differences in keff calculated with DBRC and ARES in OpenMC with those calculated

by the TRIPOLI implementation of the DBRC method [75]. In the reference case

used for the computation of these differences, the CXS model is applied up to an en-

ergy of 210 eV in both codes. At both HZP and HFP conditions, agreement between

the results produced with the MCNP and OpenMC implementations of DBRC and

the results produced with ARES is very good, as evidenced by nearly all calculated

differences lying within one or two standard deviations of each other. Similar agree-

ment is observed for the alternate reference case in which TRIPOLI and OpenMC

DRBC results and ARES results are compared. As anticipated, increased tempera-

ture exacerbates the effects of incorrectly modeling epithermal resonance scattering
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I TRIPOLI OpenMC

Enrichment (wt.%) DBRC DBRC ARES
0.711 -0.00066 (0.00013) -0.00070 (0.00006) -0.00057 (0.00007)

1.6 -0.00113 (0.00014) -0.00081 (0.00011) -0.00102 (0.00011)
2.4 -0.00110 (0.00014) -0.00115 (0.00012) -0.00109 (0.00012)

HZP 3.1 -0.00115 (0.00016) -0.00103 (0.00014) -0.00113 (0.00014)
Tfuel = 600 K 3.9 -0.00102 (0.00016) -0.00140 (0.00013) -0.00125 (0.00013)

4.5 -0.00099 (0.00017) -0.00122 (0.00014) -0.00130 (0.00013)
5.0 -0.00115 (0.00017) -0.00111 (0.00014) -0.00131 (0.00014)

0.711 -0.00123 (0.00013) -0.00140 (0.00007) -0.00138 (0.00007)
1.6 -0.00163 (0.00014) -0.00189 (0.00009) -0.00185 (0.00010)
2.4 -0.00225 (0.00014) -0.00207 (0.00012) -0.00187 (0.00012)

HFP 3.1 -0.00203 (0.00016) -0.00213 (0.00013) -0.00223 (0.00013)
Tfuei = 900 K 3.9 -0.00219 (0.00016) -0.00231 (0.00013) -0.00234 (0.00014)

4.5 -0.00222 (0.00016) -0.00230 (0.00014) -0.00224 (0.00013)
5.0 -0.00224 (0.00017) -0.00266 (0.00014) -0.00237 (0.00014)

Table 3.7: LEU Pin Cell keff Differences (1-) Relative to CXS Applied Below 210 eV

with the CXS model leading to greater differences between CXS and either DBRC or

ARES eigenvalues.

As for a comparison of the computational efficiencies of the methods, Table 3.8

contains the runtime overhead percentages4 that are observed when the OpenMC

implementations of the CXS, DBRC, and ARES methods are applied over the 5.0 -

210 eV energy range. For each combination of enrichment, temperature, and reso-

nance scattering method, the percentage value is calculated using the median run-

time out of eight independent serial simulations. General trends in the results do not

change depending on whether the mean or median runtime values are used. With the

ARES method, we see runtime overhead of 7-8%. Depending on enrichment and tem-

perature, this amounts to a 30-40% reduction in the runtime overhead compared to

the DBRC method. The efficiency gains realized by applying ARES instead of DBRC

in the epithermal region are greater at HFP conditions than at HZP conditions. Also,

for a given temperature, the efficiency of ARES relative to DBRC improves slightly

with increasing enrichment. Only a small increase in runtime - approximately 1% -

is observed when switching from the CXS method to ARES.

4 Percentages are calculated relative to a standard reference case in which the CXS approximation

is applied below 400kBT. At HZP and HFP conditions, 400kBT corresponds to 20.68 eV and

31.02 eV, respectively. The asymptotic model is applied above the 400kBT cutoff.
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Enrichment (wt.%) CXS DBRC ARES Difference (DBRC-ARES)
0.711 6.4 10.6 7.4 3.2

1.6 6.3 10.7 7.6 3.1
2.4 6.8 10.9 7.7 3.2

HZP 3.1 6.9 11.2 7.9 3.3
Til= 600 K 3.9 6.7 11.5 7.8 3.6

4.5 7.1 11.6 8.0 3.6
5.0 6.9 11.6 7.9 3.7

0.711 6.6 12.3 8.0 4.3
1.6 6.8 12.6 8.0 4.6
2.4 6.9 12.9 8.0 4.9

HFP 3.1 7.0 12.8 7.9 4.8
Tfuel = 900 K 3.9 7.4 13.8 8.3 5.5

4.5 7.3 13.1 8.6 4.6
5.0 7.1 13.6 8.3 5.2

Table 3.8: LEU Pin Cell Runtime Overhead [%]

Extending the energy range over which the CXS method is applied from 400kBT up

to 210 eV results in runtime overheads of 6-7%. This, taken along with the observation

that the inaccuracies in computed eigenvalues that occur as a result of the application

of the CXS approximation actually increase as the energy range is extended, supports

a determination that there is no clear, practical advantage to using the CXS method in

an attempt to account for resonance scattering effects induced by the thermal motion

of target nuclei. Indeed, there are clear, practical disadvantages of increased runtime

and greater inaccuracy in calculated eigenvalues. Because the CXS method explicitly

neglects the root cause of resonance scattering effects (i.e. the dependence of cross

sections on energy), the ineffectiveness of applying the approximation to resonant

scatterers over a broader energy range is not unexpected.

3.4.6 Full Core Benchmark

In the interest of assessing the performance of the ARES method in full core thermal

reactor simulations, eigenvalue calculations are carried out with the three-dimensional

BEAVRS model [44]. Differences in keff and runtime overhead at both HZP and HFP

conditions are displayed in Tables 3.9 and 3.10, respectively. As in the analysis of pin

cell runtimes, overhead percentage values are calculated using the median runtime

out of eight independent serial simulations. All results are calculated relative to the
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CXS DBRC ARES

HZP 0.00025 (0.00005) -0.00050 (0.00005) 1 -0.00048 (0.00006)
HEP 0.00029 (0.00005) -0.00137 (0.00005) -0.00140 (0.00005)

Table 3.9: BEAVRS keff Differences (lo) Relative to CXS Applied Below 400 kBT

same reference case in which the CXS approximation is applied below 400kBT and

the asymptotic model is applied above the 400kBT cutoff for all nuclides. The results

found in Tables 3.9 and 3.10 are computed with the specified resonance scattering

model applied to 238 U in the 5.0 - 210 eV interval. All other nuclides are treated with

the CXS below 400kBT and the asymptotic model above.

The keff values calculated with DBRC and ARES are in very good agreement. The

gains in runtime efficiency realized when using ARES, rather than DBRC, in the full

core problem are somewhat lower than in the pin cell calculations presented earlier.

This is likely due to the dependence of runtinie on the performance of the code as a

whole and not simply on the resonance scattering treatment. The full core benchmark

requires tracking of particles across many more cells and materials than are present

in the pin cell benchmarks. This increases the relative fraction of runtime spent

performing operations unrelated to resonance scattering and, in doing so, reduces the

runtime overhead attributable to resonance scattering treatments. Even so, at HFP

conditions for the three-dimensional, full core BEAVRS model, a 2.7% reduction in

absolute runtime is achieved by utilizing the proposed ARES method instead of the

DBRC. This is a 31% reduction in runtime overhead. Both the pin cell and full

core investigations of the ARES method focus only on resonance scattering in 238U.

When several additional resonant nuclides are included in the resonance scattering

treatment, as in depletion calculations, the efficiency gains of ARES may be somewhat

amplified.
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CXS DBRC ARES Difference (DBRC-ARES)
HZP 4.0 4.6 4.0 0.6
HFP 4.9 8.7 6.0 2.7

Table 3.10: BEAVRS Runtime Overhead [%]

3.5 Conclusions

A new method for the exact treatment of epithermal free gas resonance scattering in

Monte Carlo neutron transport codes is presented. The proposed ARES method is

verified against reference upscatter probability and mean scattered energy results in

the literature. Differences in eigenvalues that result from applying the exact DBRC

and ARES resonance scattering methods, instead of the CXS approximation, are

shown to be in excellent agreement with reference literature results for the Mosteller

LEU pin cell benchmark problems. Differences in the eigenvalues for the three-

dimensional, full core BEAVRS model computed with the OpenMC implementations

of DBRC and ARES are also in excellent agreement with each other. Comparisons

between DBRC and ARES rejection rates show that ARES requires many fewer re-

jections near resonances than does DBRC. Further, the large reduction in the number

of rejections near resonances that is observed with the ARES method is shown to re-

duce overall runtimes by 3-5% relative to the DBRC method for problems of practical

interest. In both pin cell and full core thermal reactor benchmark simulations, this

corresponds to a 30-40% reduction in runtime overhead.
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Chapter 4

Optimizations of the Energy Grid

Search Algorithm

In this work we propose, implement, and test various extensions of optimizations

of the typical energy grid-cross section pair lookup algorithm in continuous-energy

Monte Carlo neutron transport codes. The key feature common to all of the opti-

mizations is a reduction in the length of the vector of energies that must be searched

over when locating the index of a particle's current energy. Ceteris paribus, a re-

duction in energy vector length yields a reduction in CPU time. The methods we

present here are physics-informed. That is, they are designed to utilize the embed-

ded physical information in a simulation in order to reduce the length of the vector

to be searched. More specifically, the optimizations take advantage of information

about scattering kinematics, neutron cross section structure and data representa-

tion, and also the expected characteristics of a system's spatial flux distribution and

energy spectrum. The techniques that we present are implemented in the OpenMC

Monte Carlo neutron transport code as part of this work. The gains in computational

efficiency - as measured by overall code speedup - associated with each of the opti-

mizations are demonstrated in OpenMC simulations of realistic systems. Depending

on the system, simulation parameters, and optimization method employed, overall

code speedup factors of 1.2 - 1.6 are routinely observed.
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4.1 Introduction

In the theories of neutron scattering and neutron reactions, the probability of a neu-

tron interacting with a nuclide in a particular way is characterized by a cross section

[37]. The values of these cross sections, which depend strongly on the energy of the

incident neutron, are different for every nuclide and for every type of interaction.

Monte Carlo codes utilize cross sections when simulating the behavior of neutrons

in a system. The neutron cross section data utilized in modern Monte Carlo codes

often come in ACE (A Compact ENDF1 ) Format data libraries that are generated

with the NJOY nuclear data processing code system [50]. These pre-processed li-

braries contain data in so-called point-wise, continuous-energy form which consists of

energy-cross section pairs that are piece-wise linearly interpolable in both energy and

cross section. So, for each nuclide in a simulation, there is a one-dimensional grid

of energies, and for each type of interaction associated with that nuclide, there is a

corresponding one-dimensional grid of cross section values.

In a Monte Carlo neutron transport simulation, due to the nuclide dependence of

cross section values, every time that a neutron enters a material with a composition

of nuclides different from the composition of the previous material, a new set of cross

section values is needed to describe interaction probabilities in the new material re-

gion. Similarly, due to the neutron energy dependence of cross section values, each

time that the laboratory system energy of a neutron changes - as in an interaction

with a nuclide - a new set of cross section values is needed to describe interaction

probabilities for the new neutron energy. As a result, every time that a neutron moves

into a new material or changes energy, total interaction cross sections must be com-

puted for the material at the current neutron energy so that the tracklength between

the neutron's current location and next collision site can be sampled. Additionally,

various cross section values are needed at collision sites and cell boundaries for the

sampling of reaction types and the accumulation of tallies [23].

'Evaluated Nuclear Data File (ENDF) may refer to a file format, or an actual file of evaluated
nuclear data. ENDF-6 [69] is the internationally adopted format for the storage of the raw evaluated
nuclear data. ENDF may also refer to the libraries of evaluated nuclear data files distributed by the
USA (e.g. ENDF/B-VII.1 [24]).
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There are different methods by which Monte Carlo codes handle neutron energy

grid and cross section data. The methods have evolved to balance the competition

between memory and speed that is frequently encountered when dealing with the

management of data in Monte Carlo simulations. While a detailed accounting of

all the cross section treatment methods currently in use is beyond the aim of this

introduction, considering a few common procedures will be useful.

First, there is the option of separately storing each individual nuclide's energy grid

and cross sections. When it comes time in a simulation that a cross section value for

some nuclide is needed, that value is computed by linear-linear interpolation between

the cross section values corresponding to the energies on the energy grid which bound

the neutron's current energy so that the microscopic cross section a at neutron energy

E for some interaction x is given by

U- (E) = o(Ei) + E-ET (o-(Ei+1) - ax (Ei)) (4.1)
Ej+1 - E

where Ej and Ej+1 are the nearest lower and upper bounding energy grid points,

respectively, for the exact neutron energy. In order to carry out this interpolation,

a search of the nuclide's energy grid must be performed so that the index of one of

the bounding energy points can be determined. A binary search of the sorted energy

grid is employed for the task. This algorithm achieves O(log (Ngrid)) scaling whereas

a linear search displays scaling of O(Ngrid) where Ngrid is the length of the grid to

be searched [29]. Historically, this treatment of energy grid-cross section data has

been widely used. It is the default procedure in the MCNP6 Monte Carlo particle

transport code [43]. Its main advantage, which still resonates for obvious reasons, is

that it preserves, with complete accuracy, all of the physical information contained

in an ACE cross section file with the minimum allowable memory requirement. It's

chief shortcoming is that energy grid lookups and cross section computations must

be performed on-the-fly, whenever they are needed, for each nuclide required by the

simulation.

The unionized energy grid treatment [48] is one method which has been shown
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to significantly cut down simulation runtime relative to the individual nuclide energy

grid method just described. This algorithm, originally implemented in the Serpent

code [49], calls for the construction of a unionized grid containing all of the energy

points from the individual grid of every nuclide in the problem. Then, the individual

reaction cross sections for each nuclide are stored on this same grid. A single energy

grid for the entire problem can reduce the time spent in performing binary searches to

locate the appropriate energy grid index. In fact, a single binary search determines

the energy and cross section indices for each nuclide in the problem because they

all utilize the same grid structure. This means that a single interpolation factor (the

energy term in Eq. 4.1) can be used for all nuclides, further speeding any cross section

computations. In addition, the unionized grid provides a natural method for storing

material cross sections that are frequently accessed within a simulation such as those

for the total, elastic scattering, absorption, and fission interactions.

While this method has been shown to yield impressive speedups over treatments

with unique energy grids for each nuclide [48], the drawback of the unionized grid is

that it can dramatically increase the memory burden of cross section data storage.

Because each nuclide's cross section grids contain points corresponding to the energy

grid points from every other nuclide in the problem, there is storage of many unneeded

data points. This is an important consideration, especially with respect to current and

proposed high-performance computing (HPC) architectures. The on-node memory of

these systems can become limiting for large, practical Monte Carlo simulations [51].

For example, we can consider a full core depletion problem from the reactor physics

field. In a simulation of this type, it may be required that the inventories of hundreds

of nuclides be tracked. Each of these nuclides may have up to hundreds of thousands

of energy and cross section grid points; the unionized energy grid will have millions.

For each of these grid points, the cross section values for multiple reactions must be

stored. If we allow for the existence of the same nuclide at multiple temperatures, as

is encountered in fphysical reality, we may need to store cross section data on a fine

temperature grid. Intervals of 5-10 K have been suggested as a possible requirement

[70]. The cross section data burden associated with the problem described can exceed
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100 GB of memory 2 - a value that exceeds the on-node memory capacity of most

available HPC systems.

As a means of reducing the added memory burden introduced by the unionized

grid method, a companion double indexing scheme was developed [48]. With this

scheme, rather than storing each nuclide's cross section data on the dense unionized

grid for the entire problem, a code must only store one dense grid - that of the

unionized energies. Then, for each nuclide, a mapping is constructed from the indices

of the problem's unionized energy grid to the indices of that nuclide's individual

energy grid and cross sections. In this way, a single binary search on the unionized

grid is still sufficient to determine the indices on individual nuclide grids, and without

the added memory requirements of storing each nuclide's cross section data on the

dense grid. Depending on the problem, this double indexing of grid values can reduce

the memory burden of the repeated unionized grid method by roughly one half [48].

Recently, energy grid search algorithms making use of hashing functions have

received renewed attention [22]. In this type of algorithm, as applied to the problem

at hand, a function will take the neutron energy and map it directly to bounding

indices on an energy hash grid. These hash grid indices are then mapped to indices on

individual nuclide energy grids. By quickly mapping a neutron energy to a narrowed

range of energies from a full grid, and then performing a binary search in that subset

of energies 3, the time spent looking up an energy grid index can be reduced.

The search of an energy grid to determine the index corresponding to an energy

grid point adjacent to the current neutron energy, and - after the interpolation step

is complete - the cross section values at that energy, is computationally expensive

with respect to speed. This is true whether a unionized or individual nuclide energy

grid scheme is employed, though, as discussed, unionized schemes are typically faster.

Depending on the problem, approximately 30% of the total runtime of a simulation

performed with MCNP6 is spent looking up energy grid indices [22]. It has been

suggested that this value can reach 85% [62] in full core reactor simulations performed

2This value may approach 1 TB if a unionized grid is employed.
3If the narrowed energy range has few enough points, a linear search may be faster.
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with the OpenMC Monte Carlo neutron transport code' [58]. Development and

demonstration of techniques for reducing this expense are the aims of this work.

In Section 4.2 we detail the theory behind the proposed energy grid search opti-

mizations and briefly sketch out their implementation in OpenMC. Section 4.3 gives

an overview of the test cases that we use to measure the effectiveness of the new

optimization schemes as well as the numerical results of those tests. A concluding

discussion is offered in Section 4.4.

4.2 Energy Grid Search Optimizations

In this section we propose optimizations to the energy grid search algorithm in

continuous-energy Monte Carlo neutron transport codes. The theory behind each

of the optimizations is presented along with brief descriptions of how they are imple-

mented in the OpenMC code. Other considerations are addressed where appropriate.

Also, it is important to note that none of the presented optimizations alter the physics

of a simulation in any way. The optimizations do not change the energy grid indices

that are identified by the energy grid lookup algorithm. All that is changed is the

procedure by which those indices are determined.

4.2.1 Scattering Kinematics-Constrained Searches

The models used to treat neutron-nucleus scattering kinematics in Monte Carlo codes

make reasonable assumptions about collision physics as well as the behavior of the

modeled system, in general, in order to simplify calculations without appreciably im-

pacting the accuracy of the results. Often, these assumptions place restrictions on the

outcome of a particular interaction. We can take advantage of these constrained out-

comes in designing methods for accelerating energy grid lookups. Two such methods

are presented below.

4It should be noted that this increased value does not necessarily indicate an inherently slower
energy grid search algorithm. Since we are quoting percentages of overall simulation runtimes, the
differences in values between the two codes are almost certainly due to differences in the times spent
performing other operations.
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Stationary Target Nuclei

When the speed of an incident neutron is sufficiently high (i.e. much greater than

the speeds associated with the thermal motion of target nuclei), the kinematics of a

neutron-nucleus interaction can safely be treated as if the target nuclide is at rest in

the laboratory frame of reference with a velocity of zero [19]. When the target-at-

rest approximation is invoked, by conservation of energy and linear momentum, all

elastic scattering events result in a reduction of the neutron's kinetic energy in the

laboratory coordinate system. That is, upscattering is not possible.

Also, cases of threshold inelastic scattering,' which occur when the combined

kinetic energy of the neutron-nucleus system in the center-of-mass reference frame is

sufficient to reach the first excited level of the target nuclide and are characterized by

a final constellation with total kinetic energy less than that of the initial constellation,

should be considered. With a resting target, threshold inelastic scattering occurs at

incident neutron energies of a few MeV in light nuclides and at tens of keV in heavier

nuclides [37]. These energies are much greater than the energies of thermally agitated

nuclei that are encountered in practical systems which are typically a fraction of an

eV. Therefore, the kinematics of threshold inelastic scattering can be treated with

the target-at-rest approximation, and, by conservation of energy, upscattering cannot

occur.

So, we see that any scattering event in which the kinematics are treated with

the target-at-rest approximation will result in a loss of neutron kinetic energy in the

laboratory system. This fact can be exploited to construct an energy grid search

optimization. In Monte Carlo codes, when handling scattering kinematics, it is a

standard procedure to neglect the thermal motion of target nuclei when the incident

neutron energy is above some threshold. This threshold is often taken to be 400kBT

for all nuclides except 'H - to which no threshold is applied [68] - where kB is the

Boltzmann constant and T is the temperature of the material being traversed by the

5 This type of inelastic scattering event is to be distinguished from the low energy inelastic scat-
tering that arises as a result of the effects of chemical binding of target nuclei in molecules.
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neutron6 . When a neutron's incident energy is greater than this threshold, we know

that, after a scattering event, it's energy will be less than it was before the event.

This means that we do not have to search an entire nuclide or unionized energy grid

to determine a post-scatter energy grid index. We only have to search the section of

the energy grid corresponding to energies less than the pre-scatter neutron energy.

This is accomplished by first storing the index of the energy grid point - on a

unionized or individual nuclide grid - just above the current neutron energy, EMAX-

The current energy is the maximum energy that the neutron can possibly have after

its next scatter from a stationary nucleus and EMAX is its nearest upper bound on

the energy grid in question. Then, if the next event is a scatter, we simply have

to search a subset of the energy grid, {E1, E2 , ..., EMAX}, to find the post-collision

neutron energy grid index.

Thermal Motion of Target Nuclei

At incident neutron energies below the the 400kBT target-at-rest cutoff, the ther-

mal motion of target nuclei can no longer be ignored in the handling of scattering

kinematics with negligible consequences and the upscattering of neutrons to higher-

than-incident energies is now allowed. However, it is still possible to constrain the

portion of a nuclide or unionized energy grid that must- be searched to find the index

of a post-scatter energy.

In generating effective, temperature dependent (i.e. Doppler broadened) cross

section data for use in transport simulations, nuclear data processing codes typically

employ some variation of the SIGMA1 algorithm for numerical Doppler broadening

[32]. In the Doppler broadening algorithm, the target nuclei are assumed to behave as

a free gas with isotropic velocities described by the Maxwell-Boltzmann distribution.

It is further assumed that that the maximum energy of a target nuclide with which a

neutron can interact is 16kBT. This is because the probability of a particle existing

in a Maxwell-Boltzmann free gas at an energy greater than 16kBT is negligible. Con-

sistency requires that the same 16kBT maximum target energy is utilized by Monte

6 As a point of reference, 400kBT for a material at 900 K translates to an energy of 31.0 eV.
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Carlo codes when treating scattering kinematics.

With the maximum target nuclide energies, target nuclide masses, and range of

incident neutron energies (0-400kBT) all known, the kinematic equations can be used

to determine the maximum energy to which a neutron can be upscattered in a given

problem. This value, Eupscat, and the corresponding upper bound energy grid index,

can be determined for a single nuclide, single material, or entire problem at simulation

initialization. The energy grid search optimization based on this knowledge simply

restricts the post-scatter searchable energy grid to {E1 , E2 , ... , Eupscat } whenever the

incident neutron energy is less than 400kBT, or whatever thermal motion cutoff energy

is used in a particular simulation.

4.2.2 Material Energy Grid Unionization

The optimization presented in this section follows closely the unionized energy grid

method [48] used in Serpent with the distinguishing feature being that a unionized

energy grid and cross section values are constructed for each material, individually,

rather than globally for the entire problem.

At any moment in a Monte Carlo transport simulation, the most cross section

information that is needed is the total or reaction cross section for a single material,

summed over the nuclides in that material. Therefore, at the time the required cross

section is computed, the cross section data for all other materials are irrelevant. This

implies that we can, at least 7, neglect the nuclides which are not in the current

material when computing a cross section. The individual nuclide energy grid method

outlined earlier exploits this naturally but the global unionized grid scheme does not.

Constructing unionized energy-cross section grids on a material-by-material basis

preserves the key advantage of the global unionization - that is, a single binary search

will identify the desired energy grid indices of multiple nuclides - while reducing the

size of the energy grid that must be searched. In addition to the potential speedup

associated with the search of a grid with a reduced length, this scheme can also
71f the cross sections for only a single nuclide are needed, as in sampling the type of reaction, all

other nuclides in the problem are extraneous.

95



reduce memory because, for each nuclide, we must only store values on the unionized

material grid instead of a global grid containing all energy points for all nuclides

in the problem. A unionized material grid may also be used in conjunction with

an appropriately-modified double indexing methodology which maps indices on the

unionized material grid to indices on the individual grids of the nuclides in the material

to further lessen memory demands.

There are a few caveats related to the use of unionized material grids worth noting

here. With a global unionized grid, when a neutron streams into a new material, the

grid indices for the nuclides in that material at the current energy are immediately

known. They were determined in the last binary search that occurred, regardless of

the material, because the global grid contains the energy points for all nuclides in the

problem. That is, the computational expense for this immediate knowledge of indices

is paid earlier in the simulation. With a unionized material grid, a binary search must

occur whenever the neutron enters a new material, because, in general, knowledge of

the previous material's energy indices is of no value in the current material.

Also, the benefits of a unionized material grid may be somewhat reduced in sim-

ulations where the same nuclide is contained in materials with different unionized

grids. This is because a nuclide's energy index in one material's unionized grid will

generally not be the same as its index in another material's unionized grid if the two

grids are not identical. However, this is not as much of a handicap as it may, at first,

appear to be. In the case of a depletion calculation, where there will be many differ-

ent fuel material compositions (in terms of nuclide densities), the unionized material

grid for those materials can actually be the same. When dealing in microscopic cross

sections, it does not matter how much of a nuclide is present, just whether or not it

is present, when deciding if storage of its cross sections is required. Additionally, in

the case of non-isothermal fuel conditions, with the same nuclide existing at different

temperatures, we are no worse off by using the unionized material grid than by using

the global grid. The nuclides' different energy grids for the different temperatures

must be stored in either case.
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4.2.3 Energy Hash Table Searches

The optimizations presented in this section rely on hashing functions that take the

neutron energy at which a cross section must be calculated and return the indices,

into either an individual nuclide or globally unionized energy grid, which correspond

to energies that bound the current energy. The following subsections discuss two

simple hashing schemes, as well as the problem of determining an optimal hashing

treatment.

Logarithmic Energy Spacing

This energy grid lookup optimization closely follows a recently reintroduced method

[22]. In it, the energy range for which cross section data exist is divided logarithmi-

cally. This can be done on either a nuclide-by-nuclide or global grid basis. That is, in

the individual nuclide case, the jth nuclide's energy range is divided into Nash equal

lethargy bins of lethargy width

- log (Ej (4.2)
htash -- (.2

Nhash

where E3 and Egr, are the minimum and maximum values on the nuclide's energy

grid, respectively. Then, as a pre-processing step, before the simulation begins, the

indices on the nuclide's original energy grid that correspond to a set of coarse hash

table energies {Ei1 , Ei,,..., E3,Njash, where
hNash+l

E3
E3Ni -i+1 _ Ngrid , fori=Niash, Ns -1 ,.-.,1,0, (4.3)

= 

hash 
exp (AUjhash) 

hare stored. Now, in a simulation, whenever a cross section must be computed, the

indices in the coarse hash table that bound the current neutron energy can be de-

termined directly from a rearranged form of Eq. 4.3. These hash indices are then

mapped to the corresponding indices on the original nuclide energy grid. Once the

subset of the original nuclide grid determined by these indices is isolated, a binary
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search is performed within the subset to find the exact index for the current energy.

This scheme increases the speed of energy grid lookups by reducing the length of the

searchable grid to the length of the grid subset bounded by the hash table energies.

As implemented in a beta release of MCNP6 [22], this method is applied to individual

nuclide energy grid lookups. In this work, we implement the method in OpenMC and

extend its use to global unionized grids.

Constant Energy Spacing

As will be discussed shortly, the choice of an effective hash table energy structure is

not entirely straightforward. To first order, the number of cross section computations,

and, thus, energy grid lookups, required by a simulation is proportional to the flux.

In many systems, neutron slowing down results in a flux that approaches a constant

value, in lethargy-space, over a wide range of energies. Without any information about

the spacing of energy grid points, this suggests that the choice of logarithmically-

spaced hash table energies is a good one. However, in order to capture the widely

varying cross section structure encountered in different energy regions, energy grid

points are generally not evenly spaced. This suggests that hash table structures

other than logarithmic may be effective. With this in mind, a simple constant energy

spacing hash table is also employed. The jth nuclide's energy range is divided into

N ah bins spaced equally in energy with energy bin widths of

Egrid - E

AEhlash Ni
Nhash

In a fashion similar to the case of constant lethargy spacing, we proceed by construct-

ing the coarse hash table energy grid {E, 1, Ei,..., E Ns+}, where

E =+1 i hash, for i = 0, 1, ... , Nash. (4.5)

The nuclide or unionized energy grid indices that correspond to the hash table energies

are stored. Just as before, for a given neutron energy, the bounding hash table energies
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can be directly calculated and mapped to the stored nuclide or unionized grid indices.

These indices are then used as the bounds for a binary search on a subset of the

original energy grid to arrive at the desired energy grid index and corresponding

cross sections.

Optimal Energy Spacing

In the general case, selection of an optimal energy hash table structure - that is,

the selection of an ensemble of hash table energy boundaries - is non-trivial. The

optimized structure of table boundaries will be a complicated function of the energy

spectrum of the neutron flux of the system as well as the density - in energy space -

of the individual or unionized energy grids on which cross sections are represented for

nuclides present in the system. To illustrate this point, we briefly outline the problem

that must be solved in order to determine this optimal spacing of hash energies.

We start with the goal of minimizing the time spent in energy grid searches. That

is, we wish to identify the sets of energy hash table boundaries in a problem with J

total nuclides {E3 /2, E3/2, ..., E *, E}, where E and E' are theN/ N/2 N3  -1/2 2+1/2
hash-1/2 hash+1/2

energies that bound the ith hash table bin of the jth nuclide, that minimize the value

of
SNhash

T({A Ej}) = L (AEj}) x 1i({A E}), (4.6)
j=1 i=1

the total time spent in a simulation performing energy grid lookups. Here, Li and

t stand, respectively, for the number of energy grid lookups that must be performed

in energy hash bin i of nuclide j and the mean time spent in each of these lookups.

Each of these quantities is dependent on the set of energy hash grid spacings {AE }.

With the O(log (Ngrid)) scaling of the binary search algorithm and an expression for

the number of required lookups given by

Lj({AEj}) oc dE' dE4(E)f(E -+E');

AE 0(47)

E' E [EH-1/2, E+
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we are left wanting to minimize

J ash

T({AEj}) c< dE' dEq(E)f(E -+ E') x log (Ngridi({AEi}));
j=1 i=10

E' E [E-_1,1E+12.

(4.8)

Solving this minimization problem is an exercise in non-linear optimization. In prac-

tice, it is not a problem we wish to solve as its solution depends in a complicated way

on the physics of the system at hand. In particular, the transfer function f(E -+ E')

varies with nuclide dependent, energy dependent cross section values and models of

reaction physics. The number of energy grid points in a hash bin Nridi will also

depend in a complicated fashion on energy boundaries as the energy spacing between

energy grid-cross section pairs can fluctuate dramatically due to the need to capture

resonance structure of cross sections with point-wise data. Finally, the energy depen-

dent neutron flux #(E) is likely the most problematic term in Eq. 4.8. It also is a

function with strong variations in energy. To further complicate the matter, we do

not have a solution for the flux, a priori, as we do, in theory, for the transfer function

and number of energy grid points in a given interval. This means that, to solve the

generalized energy hash spacing optimization problem so that we may speed up our

simulation, we must first run the simulation with an un-optimized spacing so that the

flux is determined8 . This is not practical or desirable and will not be given further

consideration here.

4.3 Results and Analysis

In this section we present the descriptions and results of simulations that are carried

out in order to determine the effectiveness of the proposed optimizations in achieving

their aim - overall code speedup. Speedup is defined here as the ratio of runtime for

8 There are, of course, simplifying assumptions that can be made about the energy dependence of

cross sections and flux that would facilitate a more tractable problem formulation. This is beyond

the scope of the present work.
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a simulation with no energy grid search optimizations employed to the runtime of the

same simulation in which an optimization scheme is applied. An attempt is made

to select test problems that exhibit physical phenomena relevant to practical reactor

physics and criticality applications. With this in mind, all of the models for the test

problems shown here are derived from the Benchmark for Evaluation and Analysis of

Reactor Simulations (BEAVRS) [44].

Continuous-energy point-wise cross section data from the endf7lx nuclear data

library [27] are utilized in all simulations. Thermal scattering from 'H nuclei bound

in light-water molecules is treated with the continuous S(a, #) data found in the

ENDF71SaB library [28]. These libraries consist of ENDF/B-VII.1 nuclear data [24]

processed with the NJOY code system [50].

All simulations are run with 20 batches, 10 of which are inactive. Each batch

consists of 1E4 particles. A spatially uniform fission source over fissionable material

is used to initiate each run. For the problems considered, these simulation parameters

are typically sufficient to converge on an effective multiplication factor eigenvalue, keff,

in the inactive cycles9 . For the hashing optimization runs, the presented results are

obtained with 1E4 bins10 . The only tallies present in these simulations are those for

keff. Verification that the introduction of each optimization does not alter the physics

of a simulation - as it shouldn't" - is carried out by simply confirming that, for every

batch, the batch eigenvalue, the batch Shannon entropy, the running mean eigenvalue,

and the running standard error of the mean eigenvalue are all unchanged from the

reference cases.

The reference results are obtained from release 0.6.0 of OpenMC [13]. Each of the

optimization methods is implemented in its own branch of that same release. These

9 This is not a primary concern, even if they are not. Because we are only monitoring code
speedup, and the reference and optimization cases are the exact same problems from a physical
standpoint, runtime results would still be relevant and of interest. Results from a simulation with
an unconverged eigenvalue would indicate the speedup to be expected in the period of the simulation
in which the eigenvalue is converging.

10Comparable results, and a reduction in the already-modest memory overhead, can be obtained
with a reduction to 1E3 bins.

"As we have discussed, the energy grid index found with each algorithm does not differ from the
reference case - only the method by which that index is identified does.
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branches are not modified in any way other than to implement one specific opti-

mization method apiece; no combined optimizations are tested. All code is compiled

with release 4.8.2 of the GNU Fortran (GFortran) compiler [4]. Every simulation is

performed in serial on an Intel Core i7-3740QM Processor [6].

4.3.1 Fresh Pin Cell

First, we extract a 3.1 wt.% enriched clean fuel pin cell at beginning-of-core, hot zero-

power conditions, with fuel and all other materials at 600 K, from the full BEAVRS

model. Reflective boundary conditions are applied on each of the six pin cell faces

resulting in an infinite two-dimensional array of this pin cell type. Overall code

speedup results for each of the optimizations relative to OpenMC 0.6.0 global and

nuclide grid reference cases are given in Table 4.1. Except for the material union grid

runs, in this and all other test problems, all optimization runs are performed with the

same energy grid unionization scheme - global or individual nuclide - as the reference

cases to which they are compared. The unionized material grid optimization runs are

performed with no other optimizations than the use of a material grid. Noticeable

speedup is observed for each of the optimizations. The hashing methods are somewhat

less effective in accelerating energy grid searches on the global grid. Relative to the

nuclide grid reference case, each optimization speeds up the code, on an overall basis,

by at least a factor of 1.1, with the material grid run seeing a speedup of more than

1.3.

Optimization Reference - Global Grid Reference - Nuclide Grids

Kinematics 1.08 1.12

Material Grid 1.19 1.31

Lethargy Hash 1.02 1.23

Energy Hash 1.02 1.14

Table 4.1: Overall Code Speedup for Fresh Pin Cell Simulations
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4.3.2 Depleted Pin Cell

Next, we examine the speedup from applying each of the optimizations to a simulation

of the same two-dimensional, infinite pin cell array as in the previous section, except

with 900 K fuel at a burnup of 20.0 MWd/kg. 2 In this case, the hashing optimizations

offer speedups of ~1.2, while the material union grid speeds the overall simulation

up by a factor greater than 1.6 relative to the nuclide energy grid reference case. All

results can be seen in Table 4.2.

Optimization Reference - Global Grid Reference - Nuclide Grids

Kinematics 1.06 1.09

Material Grid 1.39 1.63

Lethargy Hash 1.03 1.26

Energy Hash 1.01 1.18

Table 4.2: Overall Code Speedup for Depleted Pin Cell Simulations

4.3.3 Unmoderated Depleted Pin Cell

Here, we take the infinite depleted pin cell lattice from the previous section and

remove all of the moderator. Also, all materials are set to 300 K. Again, we see

the unionized material grid speed up the simulation more than the other methods.

However, all methods result in a speedup by a factor of at least 1.2 relative to the

individual nuclide grid reference case. Also, possibly owing to the harder spectrum

of this model and a resultant flux that does not exhibit as definite of a 1/E form as

a more moderated system, the constant energy hashing scheme slightly outperforms

that with the constant lethargy spacing.

12 Nuclide densities for the fuel in this simulation are obtained by running a depletion calculation
for the same model with the CASMO-5 lattice physics code [56].
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Optimization Reference - Global Grid Reference - Nuclide Grids

Kinematics 1.11 1.20

Material Grid 1.23 1.43

Lethargy Hash 1.01 1.25

Energy Hash 1.08 1.28

Table 4.3: Overall Code Speedup for Unmoderated, Depleted Pin Cell Simulations

4.3.4 Fresh Full Core

In order to see the effect of model complexity on the attainable speedup with each of

the optimizations, we now look at the three-dimensional, full core BEAVRS model.

The speedup factors are, in general, reduced relative to the pin cell case. This is

expected as simulations of greater complexity involve particle tracking across many

more geometric regions and materials, thus increasing the fraction of time spent by

a code performing operations other than energy grid lookups. This reduction in the

relative time spent searching on energy grids results in lower speedup factors. Still

though, all of the methods exhibit speedup of approximately 1.1.

Optimization Reference - Global Grid Reference - Nuclide Grids

Kinematics 1.04 1.06

Material Grid 1.13 1.23

Lethargy Hash 1.02 1.16

Energy Hash 1.01 1.09

Table 4.4: Overall Code Speedup for Fresh Full Core Simulations

4.3.5 Depleted Full Core

Finally, we take a look at the speedup attained with each of the individual optimiza-

tions applied to a three-dimensional, full core BEAVRS model that has been depleted
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out to 20.0 MWd/kg13 . For the first time, an overall code slowdown is observed with

an optimization scheme applied. However, the observed slowdowns - which only oc-

cur with the hashing schemes, and only when they are compared to the global union

grid reference case - are relatively minor. The material union grid optimization again

performs well, offering speedups of ~1.2 and -1.4 relative to the global and nuclide

grid reference cases, respectively.

Optimization Reference - Global Grid Reference - Nuclide Grids

Kinematics 1.00 1.06

Material Grid 1.22 1.43

Lethargy Hash 0.97 1.14

Energy Hash 0.95 1.07

Table 4.5: Overall Code Speedup for Depleted Full Core Simulations

4.4 Conclusions

The presented extensions of energy grid lookup algorithm optimizations are shown to

result in non-negligible overall speedup of the OpenMC Monte Carlo neutron trans-

port code in simulations of practical systems. If the additional memory requirement

is permissible, applying the unionized energy grid scheme on a material-by-material

basis is an attractive alternative to the use of individual nuclide grids. Addition-

ally, the material union grids offer performance that is superior to the global union

grid for all of the systems considered here. The kinematic constraint on energy grid

lookups offers non-negligible overall code speedup at the expense of only a few kB

for even the most demanding depletion calculations. This trivial modification should

be part of the default energy grid lookup algorithm in point-wise continuous-energy

Monte Carlo codes. The energy hash table methods also provide simple means of

speeding up simulations that can be relatively cheap from a memory perspective.

13As in the pin cell case, the nuclide densities for this model are obtained from a CASMO-5
depletion calculation.
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However, as the speedup with respect to the global unionized grid runs is typically

minimal, with slight code slowdowns observed in some cases, application of these

methods should likely be restricted to simulations in which individual energy grids

for each nuclide are used. With moderate levels of speedup observed with each of

the proposed optimizations, individually, investigation of applying these techniques

in concert with one another is warranted. Also, efforts to move away from point-wise

energy grid data, altogether, as through direct cross section value calculations using

the multipole resonance formalism [46], should receive attention.
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Chapter 5

Conclusions

In this thesis three computational challenges regarding the efficient management of

nuclear data in Monte Carlo neutron transport simulations are explored. At least

one method is proposed and analyzed for tackling each of the three challenges. In all

cases but that of the nuclear data server algorithm, the proposed methods are also

implemented in the OpenMC Monte Carlo code and demonstrated to achieve their

goal of improved efficiency with respect to either code speedup or reduced memory

requirements. This section provides brief summaries of the computational methods

that have been explored in this work. It concludes with a discussion of areas for

future computational methods research, focusing on the treatment of nuclear data in

Monte Carlo codes.

5.1 Nuclear Data Storage and Communication

The nuclear data memory requirements of large reactor physics simulations - mainly

in the form of neutron cross sections and secondary angular and energy distributions -

exceed the on-node memory available on most current and proposed high-performance

computing architectures. Profiling studies investigating the details of these memory

requirements are conducted in this work. Also, OpenMC is modified to record the

frequencies with which the nuclear data associated with these memory burdens are

accessed. The results of the profiling studies are in the form of a set of tallies that give
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the access frequencies of different blocks of nuclear data and the memory requirements

for each block.

To reduce on-node memory requirements, a conceptual data decomposition algo-

rithm which would make use of dedicated nuclear data server nodes is proposed and

analyzed. The algorithm relies on the infrequent access of many blocks of nuclear

data. The blocks that are accessed rarely within a simulation can be stored on server

nodes and communicated to compute nodes only as needed.

A communication model for the proposed data server algorithm is also derived.

Using the model, performance predictions relating on-node memory reduction to sim-

ulation runtime overhead are made. These predictions indicate that, in a variety of

practical scenarios, with quite tolerable runtime overhead penalties, on-node memory

requirements can be significantly reduced via the application of a nuclear data server

algorithm.

5.2 Resonance Elastic Scattering Models

In order to account for their thermal motion when calculating the kinematics of

an elastic scattering event, target nuclei are typically modeled as existing in a free

gas characterized by isotropic direction-of-flight vectors and speeds drawn from the

Maxwell-Boltzmann ideal gas distribution. The bivariate secondary energy-angle dis-

tribution for a neutron that undergoes an elastic scattering event depends on the

assumptions of the free gas model as well as the energy dependent 0 K elastic scat-

tering cross section of the scatterer.

To simplify the sampling of this distribution, the energy dependence of the scat-

tering cross section is often neglected. It is inappropriate to apply this simplification

to heavy resonant nuclides which exhibit fine cross section structure in the energy

variable. One of the end results of not accounting for the rapid cross section varia-

tions (i.e. resonances) that occur in narrow energy intervals is an underprediction of

upscatter rates at incident neutron energies just below resonance values. This effect is

exacerbated by increased temperature. Underprediction of upscatter rates just below
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resonance energies means underprediction of capture rates in those resonances. The

biased capture rates then show up as biases in important system design metrics such

as the fuel temperature coefficient.

The Doppler broadening rejection correction (DBRC), a recently adopted method

that avoids the approximation of the 0 K elastic scattering cross section as a constant

in energy, is computationally costly. It requires the rejection sampling of 0 K reso-

nances. This one inefficient sampling routine is observed to increase overall runtime

by ~15% in practical simulations of thermal reactor systems.

A new, accelerated resonance elastic scattering kernel rejection sampling technique

is derived, implemented, and verified in this work. The new scheme is shown to

reproduce the exact free gas resonance elastic scattering kernels. Additionally, for

thermal reactor pin cell and full core systems, it is demonstrated to reduce runtime

overhead by more than 30% relative to simulations performed with the DBRC.

5.3 Energy Grid Searches

Throughout the course of a simulation, nuclide cross section values are needed in

order to determine the probabilities of various neutron-nucleus interactions and also

compute tally results. This requires that energy grid searches be performed so that

the index of the energy nearest the current neutron energy is identified. The energy

grid lookup procedure is computationally intensive and occupies a significant fraction

of overall simulation runtime. To reduce the time spent in performing energy grid

searches, three methods have been proposed, implemented, and demonstrated.

First, a kinematic constraint on the searchable energy grid range is suggested to

reduce the number of energy points that must be searched. Next, the energy grid

unionization concept is extended to materials to reduce the number of extraneous grid

points from nuclides that are not present in the neutron's current material. Lastly,

hashing methods are investigated as a means for reducing the energy ranges that

are needed in a final binary search step. All three of the acceleration techniques are

shown to give non-negligible overall code speedup in simulations of practical, reactor
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physics-relevant systems.

5.4 Future Research

Many opportunities exist for the research and development of computational methods

for the treatment of nuclear data in Monte Carlo neutron transport simulations.

Improvements in the computational efficiency of large, high-fidelity simulations as

well as the physics models used in those simulations are both desirable. The following

subsections describe, at a high level, areas that are in need of attention.

5.4.1 Nuclear Data Decomposition

Continuation of the research into the nuclear data server algorithm presented in this

thesis is warranted. With the derived communication model predicting attractive

on-node memory requirement reductions with the incurrence of only modest run-

time overhead, the task of implementing the proposed algorithm in a Monte Carlo

code should be undertaken. The implementation of the algorithm with allow for the

verification of performance trends that are only predicted theoretically in this work.

5.4.2 Resonance Elastic Scattering Kernel Sampling

The development of the accelerated resonance elastic scattering kernel sampling scheme,

as presented, is complete1 . However, there are valuable sensitivity studies and fur-

ther analyses to be carried out. On a nuclide-by-nuclide basis, determination of the

energy range over which resonance elastic scattering effects are important will al-

low for narrowed application of the method, and, due to the resonance scattering

treatment methods' computational expense, a corresponding reduction in simulation

runtime. These energy ranges will depend on temperature. They will also depend

on the spectrum of the system being simulated. Finally, investigation of resonance

'Some work remains to make the procedure for directly sampling the 0 K elastic scattering cross
section compatible with continuous - rather than point-wise - cross section representations, such as
those allowed by the multipole formalism. A simple solution is to accept a slight memory increase
and generate only the 0 K cross section values on an energy grid.
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elastic scattering, and the methods for modeling it, in very hot, fast systems may

reveal a dramatic advantage in applying the new sampling routine, rather than the

DBRC.

5.4.3 Energy Grid Searches

Further investigation of the energy grid search optimizations described in this thesis

may be fruitful. A more explicit accounting of the memory requirements associated

with each of the methods should be performed. Scaling studies on shared-memory

and distributed-memory computing systems are also desirable. Additionally, the ap-

plication of fractional cascading algorithms [26] to energy grid lookups in Monte Carlo

neutron transport codes is an area worth exploring [38].

5.4.4 Unresolved Resonance Energy Region Nuclear Data

Methods

For incident neutron energies that are sufficiently high, but still below the fast energy

region, there is resonance structure in reaction cross sections that cannot be resolved

with current experimental capabilities. This provides a challenge for the simulation

of systems with an appreciable population of neutrons at these intermediate energies.

The problem is that, at any given energy in the unresolved region, cross section values

are not known within, roughly, an order of magnitude. However, the theoretical

statistical distributions describing cross section value probabilities are known.

It is common procedure in Monte Carlo codes to treat cross sections in the un-

resolved region through the use of the so-called probability table method which relies

on discrete distributions for the sampling of cross section values. The data required

by the method - cross section values and associated probabilities at discrete energies

- are pre-generated and loaded by the code at initialization.

An alternate approach is to generate unresolved resonance region cross section

values on-the-fly, within the Monte Carlo simulation, directly from the unresolved

resonance parameters and statistical distributions. This will reduce memory require-
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ments by eliminating the need for probability table storage, and also provide cross

section distributions that are continuous in both energy-space and cross section-space,

in contrast to the discrete probability tables. This on-the-fly treatment can also be

extended to investigate the effects of varying the frequency with which resonance

realizations are generated - per simulation, per cycle, per neutron, continuously, etc.

Such an investigation may expose important issues regarding unresolved resonance

region cross section uncertainties and more fundamental statistical concerns.

5.4.5 Fast Energy Region Nuclear Data Methods

Secondary angular and energy distribution data comprise a significant portion of the

nuclear data memory requirements in the types of large reactor physics simulations

that are dealt with in this thesis. Many of these data are for threshold reactions which

occur in the fast neutron energy range. Because current theoretical nuclear reaction

models lack the general predictive capabilities to produce nuclear data that can be

used with confidence in real simulations, tabulated data based on semi-empirical

nuclear reaction systematics models are commonly used. Work towards improved

nuclear reaction models, and computational methods for handling the data produced

by those models, gives rise to a wealth of exciting research opportunities.
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Appendix A

Fuel Nuclide Densities

A.1 End-of-Core Hot Full-Power BEAVRS

A.1.1 1.6 wt% Enriched U0 2 Fuel at 20.0 MWd/kg
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Nuclide Density [ ]

0-16 4.58964E+22

0-17 1.11800E+20

U-234 2.09669E+18

U-235 9.55151E+19

U-236 4.31429E+19

U-237 1.58907E+17

U-238 2.17719E+22

U-239 1.92551E+16

U-240 6.30245E+ 12

Np-235 3.22225E+10

Np-236 8.15227E+12

Np-237 3.92605E+18

Np-238 1.77895E+16

Np-239 2.77510E+18



Pu-237 8.54449E+10

Pu-238 1.02917E+18

Pu-239 9.28323E+19

Pu-240 4.20613E+19

Pu-241 2.06315E+19

Pu-242 7.85072E+18

Pu-243 2.63035E+15

Pu-244 2.10043E+14

Am-241 2.92505E+17

Am-242 1.43887E+15

Am-243 9.87148E+17

Am-244 1.36265E+15

Am-242m 4.97654E+15

Cm-242 1.25214E+17

Cm-243 2.23803E+15

Cm-244 2.24374E+17

Cm-245 7.80786E+15

Cm-246 6.08964E+14

Cm-247 4.00312E+12

Cm-248 1.49986E+11

Se-79 1.83406E+17

Kr-83 1.53791E+18

Kr-85 8.95529E+17

Sr-89 1.84778E+18

Sr-90 1.80753E+19

Y-91 2.88033E+18

Zr-93 2.35348E+ 19

Zr-94 2.49976E+19
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Zr-95 4.64665E+18

Zr-96 2.63278E+19

Mo-95 1.83277E+19

Mo-98 2.70451E+19

Mo-99 2.33572E+17

Mo-100 3.02836E+19

Tc-99 2.62706E+19

Ru-101 2.54787E+19

Ru-102 2.66365E+19

Ru-103 3.08954E+18

Ru-105 1.11197E+16

Ru-106 7.90993E+18

Rh-103 1.50707E+19

Rh-105 7.62794E+16

Ag-109 1.56804E+18

Ag-111 2.47894E+16

Ag-110m 1.48487E+16

Sn-126 5.22810E+17

Sb-125 2.52888E+17

Sb-126 7.92986E+14

Te-127m 2.63231E+16

Te-129m 6.06336E+16

1-127 1.13821E+18

1-129 3.73121E+18

1-131 3.74950E+17

1-135 2.47010E+16

Xe-131 1.14898E+19

Xe-133 4.94736E+17
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Xe-134 3.64341E+19

Xe-135 4.91410E+15

Xe-136 5.85199E+19

Cs-133 2.81113E+19

Cs-134 2.36267E+18

Cs-135 4.50444E+18

Cs-136 1.71142E+16

Cs-137 2.92161E+19

Ba-138 2.98876E+19

Ba-140 9.94713E+17

La-139 2.78794E+19

La-140 1.34238E+17

Ce-141 2.38567E+18

Ce-142 2.54747E+19

Ce-143 9.21818E+16

Ce-144 1.25505E+19

Pr-143 9.00879E+17

Nd-143 1.69535E+19

Nd-144 1.54557E+19

Nd-145 1.50613E+19

Nd-147 3.16164E+17

Nd-148 8.22980E+18

Pm-147 5.15217E+18

Pm-148 4.42691E+16

Pm-149 5.46007E+16

Pm-148m 3.43115E+16

Sm-147 9.21923E+17

Sm-148 1.89646E+18
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A.1.2 2.4 wt% Enriched U0 2 Fuel at 20.0 MWd/kg

~uck~e atomsNuclide Density [ ]

0-16 4.58296E+22

0-17 1.11637E+20

U-234 3.52418E+18

U-235 2.01044E+20

U-236 5.73278E+19

U-237 1.69800E+17

U-238 2.16206E+22

U-239 1.65013E+16

U-240 4.65979E+12

Np-235 2.94504E+10

Np-236 9.03969E+12

Np-237 4.16232E+18

Np-238 1.58087E+16
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Sm-149 4.73395E+16

Sm-150 6.29298E+ 18

Sm-151 2.36623E+17

Sm-152 2.82301E+18

Eu-153 2.39299E+18

Eu-154 4.07335E+17

Eu-155 1.66421E+17

Eu-156 1.34770E+17

Gd-155 5.26308E+14

Gd-157 1.64545E+15



Np-239 2.37935E+18

Pu-237 8.33658E+10

Pu-238 8.92180E+17

Pu-239 9.82269E+19

Pu-240 3.55892E+19

Pu-241 1.81491E+19

Pu-242 4.92279E+18

Pu-243 1.48568E+15

Pu-244 8.79904E+13

Am-241 2.68947E+17

Am-242 1.07415E+15

Am-243 5.30807E+17

Am-244 6.41887E+14

Am-242m 4.62340E+15

Cm-242 8.68812E+16

Cm-243 1.31288E+15

Cm-244 9.88503E+16

Cm-245 3.18958E+ 15

Cm-246 1.76770E+14

Cm-247 9.96658E+ 11

Cm-248 3.01112E+10

Se-79 1.91576E+17

Kr-83 1.76301E+18

Kr-85 9.96533E+17

Sr-89 2.19280E+18

Sr-90 2.03674E+19

Y-91 3.32757E+18

Zr-93 2.52929E+19
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Zr-94 2.65605E+19

Zr-95 4.95423E+18

Zr-96 2.74375E+19

Mo-95 1.92436E+19

Mo-98 2.73467E+19

Mo-99 2.36434E+17

Mo-100 3.03639E+19

Tc-99 2.68168E+19

Ru-101 2.53246E+19

Ru-102 2.56213E+ 19

Ru-103 2.81959E+18

Ru-105 9.45306E+15

Ru-106 6.31152E+18

Rh-103 1.43835E+19

Rh-105 6.68801E+16

Ag-109 1.17823E+18

Ag-111 1.96990E+16

Ag-110m 9.40221E+15

Sn-126 4.62352E+17

Sb-125 2.25927E+17

Sb-126 7.15743E+14

Te-127m 2.82857E+16

Te-129m 5.91542E+16

1-127 1.02926E+18

1-129 3.44974E+18

1-131 3.68814E+17

1-135 2.48102E+16

Xe-131 1.17161E+19
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Xe-133 4.99416E+17

Xe-134 3.68360E+19

Xe-135 6.25434E+15

Xe-136 5.67809E+19

Cs-133 2.87277E+19

Cs-134 2.08419E+18

Cs-135 5.78300E+18

Cs-136 1.61285E+16

Cs-137 2.92790E+19

Ba-138 3.05276E+19

Ba-140 1.02708E+18

La-139 2.86084E+19

La-140 1.37902E+17

Ce-141 2.46741E+18

Ce-142 2.62094E+19

Ce-143 9.75925E+16

Ce-144 1.32843E+19

Pr-143 9.55616E+17

Nd-143 1.91234E+19

Nd-144 1.47614E+19

Nd-145 1.59001E+19

Nd-147 3.25277E+17

Nd-148 8.21943E+18

Pm-147 5.66653E+18

Pm-148 4.16685E+16

Pm-149 5.22581E+16

Pm-148m 3.99122E+16

Sm-147 1.01256E+18
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A.1.3 3.1 wt% Enriched U0 2 Fuel at 20.0 MWd/kg

121

Sm-148 1.76822E+18

Sm-149 6.00326E+16

Sm-150 6.15902E+18

Sm-151 2.75155E+17

Sm-152 2.72770E+18

Eu-153 2.16582E+18

Eu-154 3.59051E+17

Eu-155 1.41821E+17

Eu-156 9.73768E+16

Gd-155 5.87823E+14

Gd-157 1.64226E+15

Nuclideatoms]
Nuclide Density [CM

0-16 4.58519E+22

0-17 1.11691E+20

U-234 4.87192E+18

U-235 3.16393E+20

U-236 6.68074E+19

U-237 1.71766E+17

U-238 2.15066E+22

U-239 1.46586E+16

U-240 3.68601E+12

Np-235 2.73239E+10

Np-236 9.61000E+12

Np-237 4.24131E+18



Np-238 1.39912E+16

Np-239 2.11437E+18

Pu-237 8.18476E+10

Pu-238 7.88298E+17

Pu-239 1.02317E+20

Pu-240 3.09401E+19

Pu-241 1.61670E+19

Pu-242 3.40500E+18

Pu-243 9.42683E+14

Pu-244 4.54600E+13

Am-241 2.46518E+17

Am-242 8.31673E+14

Am-243 3.29947E+17

Am-244 3.59501E+14

Am-242m 4.25465E+15

Cm-242 6.45228E+16

Cm-243 8.63327E+14

Cm-244 5.37227E+16

Cm-245 1.64070E+15

Cm-246 7.01905E+13

Cm-247 3.58275E+11

Se-79 1.96494E+17

Kr-83 1.90655E+18

Kr-85 1.05639E+18

Sr-89 2.41663E+18

Sr-90 2.17226E+19

Y-91 3.61536E+18

Zr-93 2.63422E+19
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Zr-94 2.74943E+19

Zr-95 5.14957E+18

Zr-96 2.81132E+19

Mo-95 1.97899E+19

Mo-98 2.75491E+19

Mo-99 2.38284E+17

Mo-100 3.04447E+19

Tc-99 2.71827E+19

Ru-101 2.52720E+19

Ru-102 2.50630E+19

Ru-103 2.64067E+18

Ru-105 8.32689E+15

Ru-106 5.37361E+18

Rh-103 1.40111E+19

Rh-105 6.01513E+16

Ag-109 9.58190E+17

Ag-111 1.63744E+16

Ag-110m 6.81165E+15

Sn-126 4.26924E+17

Sb-125 2.09970E+17

Sb-126 6.69448E+14

Te-127m 2.98000E+16

Te-129m 5.78318E+16

1-127 9.65942E+17

1-129 3.28472E+18

1-131 3.64274E+17

1-135 2.48843E+16

Xe-131 1.18806E+19
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Xe-133 5.02400E+17

Xe-134 3.71181E+19

Xe-135 7.61404E+15

Xe-136 5.53552E+19

Cs-133 2.91450E+19

Cs-134 1.89785E+18

Cs-135 7.01775E+18

Cs-136 1.54866E+16

Cs-137 2.93526E+19

Ba-138 3.09425E+19

Ba-140 1.04902E+18

La-139 2.90760E+19

La-140 1.40376E+17

Ce-141 2.52089E+18

Ce-142 2.66661E+19

Ce-143 1.01249E+17

Ce-144 1.37367E+19

Pr-143 9.92598E+17

Nd-143 2.05618E+19

Nd-144 1.42160E+19

Nd-145 1.64286E+19

Nd-147 3.31560E+17

Nd-148 8.22443E+18

Pm-147 6.01916E+18

Pm-148 3.91804E+16

Pm-149 5.03738E+16

Pm-148m 4.46165E+16

Sm-147 1.07339E+18
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Sm-148 1.67353E+18

Sm-149 7.34659E+ 16

Sm-150 6.05843E+18

Sm-151 3.17155E+17

Sm-152 2.66374E+18

Eu-153 2.01692E+18

Eu-154 3.26138E+17

Eu-155 1.25523E+17

Eu-156 7.57529E+16

Gd-155 6.57225E+14

Gd-157 1.69660E+15
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