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ABSTRACT

We present an analysis and interpretation of the Kepler binary system KOI 1224. This is the fourth binary found
with Kepler that consists of a thermally bloated, hot white dwarf in a close orbit with a more or less normal
star of spectral class A or F. As we show, KOI 1224 contains a white dwarf with Teff = 14,700 ± 1000 K,
mass = 0.22 ± 0.02 M�, and radius = 0.103 ± 0.002 R�, and an F-star companion of mass 1.59 ± 0.06 M�
that is somewhat beyond its terminal-age main sequence. The orbital period is quite short at 2.69802 days. The
ingredients that are used in the analysis are the Kepler binary light curve, including the detection of the Doppler
boosting effect; the NUV and FUV fluxes from the GALEX images of this object; an estimate of the spectral type
of the F-star companion; and evolutionary models of the companion designed to match its effective temperature
and mean density. The light curve is modeled with a new code named Icarus which we describe in detail. Its
features include the full treatment of orbital phase-resolved spectroscopy, Doppler boosting, irradiation effects, and
transits/eclipses, which are particularly suited to irradiated eclipsing binaries. We interpret the KOI 1224 system
in terms of its likely evolutionary history. We infer that this type of system, containing a bloated hot white dwarf,
is the direct descendant of an Algol-type binary. In spite of this basic understanding of the origin of KOI 1224, we
discuss a number of problems associated with producing a system with an orbital period this short.

Key words: binaries: eclipsing – stars: evolution – stars: individual (KOI-1224]) – techniques: photometric – white
dwarfs
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1. INTRODUCTION

Close binary systems containing a single compact star (i.e.,
white dwarf, neutron star, or black hole) have the potential
to enhance our knowledge of stellar evolution, perhaps even
more so than for double degenerate systems whose evolution
is yet more complicated. In almost all cases, the compact star
originated from the remnant core of the original primary star in
the binary system. The primary’s envelope was lost via some
combination of Roche-lobe overflow mass transfer, stellar wind,
common envelope, and explosive process (e.g., a supernova).

In cases where the original secondary star is now transferring
mass back to the compact star, the systems may be highly
detectable via the release of gravitational potential energy in
the form of optical, UV, or X-ray radiation. However, systems
in which the compact star has not yet started to accrete may be
much more difficult to discover. This is especially true in the case
of white dwarfs in orbit with intrinsically much brighter stars
that outshine them (e.g., Regulus; Gies et al. 2008; Rappaport
et al. 2009). Even in the case where the observer is in a fortuitous
orientation to possibly see eclipses, such events may be of
very small amplitude, e.g., at the 10−3–10−4 level if the white
dwarf has cooled to near the temperature of the parent star.
Due to the extraordinary photometric precision of the Kepler
mission, however, eclipses and transits of this depth are readily
detectable.

Since the Kepler mission was launched, there have in fact been
a number of such binaries containing a white dwarf that have
been discovered (Rowe et al. 2010; van Kerkwijk et al. 2010;
Carter et al. 2011). In those systems the white dwarf is still
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sufficiently hot (i.e., ∼12,000–18,000 K) and thermally bloated
(i.e., up to ∼10 times their degenerate radii) that the eclipses
and transits are in the range of up to a couple of percent of the
system light. We report on the study of a fourth such system with
a number of similarities to the others: KOI 1224 (KIC 6606653;
Borucki et al. 2011; Prša et al. 2011); however, it has the shortest
among the orbital periods at 2.69802 days,5 and the primary
star in this system has the lowest effective temperature and
is the most evolved away from the main sequence of any of
the previously detected hot white dwarf systems. We identified
KOI 1224 as a candidate system containing a bloated hot white
dwarf via a visual search through the light curves in the Prša
et al. (2011) catalog. We searched for systems exhibiting double
eclipses with one being “flat-bottomed” and deeper than the
other, indicative of a fully eclipsed smaller secondary having a
higher effective temperature than the primary.

We report here an analysis of the Kepler Q1 and Q2 public
data for KOI 1224, as well as supplementary observations from
the GALEX satellite. We make use of stellar evolution models
to better estimate the mass and evolutionary state of the current
primary F star in the system.

We analyze the Kepler light curve using Icarus, a newly
developed state-of-the-art binary light curve synthesis code
which is aimed at the study of detached and semi-detached
binaries. This code has the advantage of handling spectroscopic
data as well as Doppler boosting, irradiation effects, and
transits/eclipses, hence making it particularly attractive for
irradiated binaries. An eclipsing binary such as KOI 1224

5 We note that a new binary system, 1SWASP J024743.37−251549.2,
recently discovered with the WASP survey (Maxted et al. 2011) contains a
bloated hot white dwarf in an even shorter period binary with
Porb = 0.668 days.
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represents an ideal testbed to benchmark the synthesis code
because its results can be easily compared with those of a semi-
analytic analysis. The synthesis code is described in some detail
in this work.

The organization of the paper is as follows. In Section 2, we
introduce the new binary light curve synthesis code. Some de-
tailed specific aspects of the code are given in the Appendix.
After presenting KOI 1224 and the available data in Section 3,
we proceed with the light curve modeling in Section 4, first
semi-analytically and then with our synthesis code. We discuss
the probable evolution of KOI 1224, its implications for un-
derstanding mass transfer, and its relation to Algol systems in
Section 5. We summarize our findings and draw some general
conclusions in Section 6.

2. BINARY LIGHT CURVE SYNTHESIS CODE

We have implemented our own light curve synthesis code
with the purpose of modeling the light curves and spectra of
detached and semi-detached binaries. Our code, called Icarus,6

is most similar to the ELC code by Orosz & Hauschildt (2000).
Essentially, the code constructs a finite-element surface grid for a
star having some pre-determined physical and binary properties
by solving the gravitational equipotential equation. Each surface
element is characterized by a set of physical properties (i.e.,
temperature and an effective gravity), and the observed flux is
obtained by integrating the specific intensity emerging from the
surface visible by an observer located in a given direction. In the
event that both stars contribute significantly to the total observed
light, we model the second star of the system by inverting the
mass ratio and adding half an orbital cycle shift.

The core implementation is made in Python and relies heavily
on the Scipy and Numpy libraries.7 In order to bolster the
execution speed, critical components are written in C and
included directly in the Python code with the Scipy Weave
module.8 The modular, object-oriented approach that we have
adopted should facilitate adding features to the code. Hence, the
code currently includes various effects such as eclipses/transits,
irradiation from a companion, ellipsoidal light variations, and
Doppler boosting. As opposed to other synthesis codes, such
as the Wilson–Devinney code (Wilson & Devinney 1971),
or its modern incarnation in PHOEBE (Prša & Zwitter 2005),
which bundle together the binary synthesis and the parameter
optimization in a single piece of software, ours resembles more
a suite of routines that can be glued together in order to perform
binary modeling.

The main module of our code is the physics engine, which is
responsible for synthesizing the star. A separate module deals
with the atmosphere model and provides utility functions that
return the intensity given a set of properties—typically the
temperature, surface gravity, emission angle, and, sometimes,
the velocity. This layer works independently of the binary light
curve physics and serves only as a front end to retrieve the
specific intensities from a synthetic atmosphere model lookup
table or an analytic model (e.g., blackbody). These atmosphere
models can be integrated over a passband or used with their full
spectral content. In the same spirit, the physics engine does not
tamper with the returned values and leaves it to the user layer
to alter them if necessary (e.g., to resample the spectrum or
apply reddening). The user layer exists to connect the physics

6 Icarus is freely available at http://github.com/bretonr/Icarus.
7 Freely available at http://scipy.org/
8 See http://www.scipy.org/Weave

engine, the atmosphere models module, and the experimental
data. It typically contains (1) a data reader function; (2) a utility
function that takes user input parameters, recasts them into the
physics engine input parameter format, and post-processes the
model data to match the observed ones; and (3) a function that
returns the fit residuals or goodness of fit. Finally, on top of
the user layer, a fitting layer can be added. The function that
returns the goodness of fit can be fed within the framework
of a minimization procedure, a brute-force search, a Bayesian
optimization, or any other algorithm suited to the needs of the
problem.

The main innovation of our light curve synthesis code is
that it can handle phase-resolved spectroscopic light curves and
hence it allows one to perform modeling without the need for
fitting radial velocities separately using a template and having
to introduce a correction factor for the displacement of the light
center with respect to the barycenter. This capability will be
demonstrated in a forthcoming paper. Thorough details about
our code are provided in the Appendix.

3. DATA AND DATA REDUCTION

We have obtained the KOI 1224 data from the Kepler public
archive.9 The original raw light curve, presented in Figure 1,
includes the first and second quarter (Q1 and Q2) data, which
were collected using a 30 minute integration time. We removed
the offset between the two quarters and corrected for three jumps
in the flux. Next, we cleaned the raw light curve from outliers
using the following method. We removed the systematic trend
using a seventh-degree polynomial and folded the light curve at
the orbital period. We calculated the running median and running
standard deviation statistics using a 20-point window in order to
identify outliers deviating by more than 1.5 standard deviations
of the data scatter around the median, which we flagged and
discarded for the rest of the analysis. This threshold was chosen
in order to remove the obvious visible outliers as some data
points were clearly beyond the regular data scatter. In total, the
outliers’ removal discarded 699 out of the 5723 data points.

3.1. Ultraviolet GALEX Data and Other Photometry

In order to constrain our modeling, we started with informa-
tion from the Kepler Input Catalog (Brown et al. 2011), which
lists optical griz and infrared JHK Two Micron All Sky Survey
(2MASS) photometry as well as estimates of the temperature
Teff = 6352 K and reddening EB−V = 0.120 (see Table 1). The
reddening is inferred using a simple exponential dust model,
which, for this source, is consistent with the total dust column
of EB−V = 0.114 expected along this line of sight from the
COBE/DIRBE and IRAS-based dust maps of Schlegel et al.
(1998). Comparing the griz and JHK colors (dereddened us-
ing the coefficients of Schlegel et al. 1998) to those inferred
from spectrophotometry of MK standards (Covey et al. 2007),
we infer a spectral type F6V, with an uncertainty of 1 subclass,
corresponding to a temperature of 6500 ± 200 K (Cox 2000).
This is consistent with that of the Kepler Input Catalog, within
the expected uncertainty of ∼200 K (Brown et al. 2011). From
a spectrum taken at the 1.6 m Observatoire du Mont-Megantic
(L. Nelson 2011, private communication) we infer a spectral
type F5-6 III-IV (more likely luminosity class IV), which im-
plies a temperature similar to that quoted above (Gray et al.
2001). Below, we will use Teff = 6350 ± 200 K.

9 http://archive.stsci.edu/kepler/publiclightcurves.html

2

http://github.com/bretonr/Icarus
http://scipy.org/
http://www.scipy.org/Weave
http://archive.stsci.edu/kepler/publiclightcurves.html


The Astrophysical Journal, 748:115 (13pp), 2012 April 1 Breton et al.

Figure 1. Raw light curve of KOI 1224 from Kepler (black dots) with a best-fit solution (solid line). The dashed line shows the seventh-degree polynomial and the
three pulsation harmonics used to remove the systematic trend (shifted upward for visibility reasons). The lower panel displays the fit residuals.

(A color version of this figure is available in the online journal.)

Table 1
Archival Photometry of KOI 1224

Filter Magnitudea Color Reddeningb Intrinsic

GALEX FUVc 18.98(2) 1.41 −0.09 1.50
GALEX NUVc 17.57(1) 3.55 0.61 2.94
KIC gd. . . . . . 14.015(20) 0.364 0.125 0.239
KIC rd. . . . . . 13.651(20) 0.062 0.080 −0.018
KIC id. . . . . . 13.589(20) 0.033 0.073 −0.040
KIC zd. . . . . . 13.556(20) 0.79 0.15 0.64
2MASS Je. . . 12.77(2) 0.21 0.01 0.20
2MASS He. . . 12.56(2) 0.04 0.01 0.03
2MASS Ke. . . 12.52(3)

Notes. The numbers in parentheses are the formal 1σ confidence uncertainties
and are applied to the last significant figures given.
a Magnitudes are in the AB system for GALEX and KIC, and Vega for 2MASS.
b Rey et al. (2007) for FUV and NUV, Schlegel et al. (1998) otherwise.
c GALEX archive (http://galex.stsci.edu/).
d Brown et al. (2011).
e Skrutskie et al. (2006).

We checked other archives for additional information and
found that KOI 1224 was detected by GALEX (see Table 1),
with ([FUV] − [NUV]) = 1.41 ± 0.02 and ([NUV] − g) =
3.55 ± 0.02. The estimated intrinsic ([NUV] − g)0 = 2.9 color
is bluer than expected for the primary (∼4.0; Bianchi et al.
2007; Vennes et al. 2011), but we cannot exclude that it could
significantly contribute to the NUV flux given the uncertainties
in the temperature, the reddening, and the extinction curve.
However, no contribution to the FUV flux from the primary is
expected, and indeed, with ([FUV]−[NUV])0 = 1.50 ± 0.03,10

the source is bluer in the UV than any of the brighter stellar
sources near it. Thus, the FUV emission is almost certainly
from the hot white dwarf secondary. We have also checked that
none of the eight GALEX exposures from which the photometry
is derived were obtained during either the primary or secondary
eclipse.

In order to estimate a temperature for the white dwarf, we
can use the fact that when the white dwarf is eclipsed, the
flux in the Kepler bandpass decreases by 1.4%. Here, the 1.4%
drop includes a 10% correction for a “third light” (e.g., a
fainter blended star within the Kepler postage stamp), and hence
it represents the white dwarf’s contribution to the system’s

10 For a standard extinction curve, A(FUV, NUV)/EB−V = (8.16, 8.90) (Rey
et al. 2007). Given the small difference, the intrinsic color is secure.

luminosity. From color terms of Brown et al. (2011), the r-
band flux should decrease about 10% less. We thus estimate
r � 18.4 ± 0.2 and infer ([FUV] − r) � 0.6 ± 0.2 and
([FUV] − r0) � 0.0 ± 0.3. We can compare this with predicted
GALEX and optical colors for white dwarfs from Vennes et al.
(2011). For their lowest mass, 0.4 M�, they list ([FUV] − r) =
3.29, 1.90, 0.86, 0.27,−0.03,−0.26, and − 0.46 for Teff =
10,000–16,000 K in steps of 1000 K, with the color depending
somewhat on gravity below 13,000 K (here, we converted the
V-band magnitudes of Vennes et al. 2011 to the r band using
V − r = 0.19, valid for temperatures in this range; Fukugita
et al. 1996). Thus, we infer a temperature of ∼14,000±1000 K.

For the above temperature, the models also predict ([FUV] −
[NUV])0 = 0.0 ± 0.1, which is much bluer than the observed
color. Apparently, therefore, either our estimate is inaccurate
and the true temperature is 10,500 ± 500 K, or the primary
contributes ∼75% of the NUV flux, i.e., is about a magnitude
brighter than expected (perhaps because of stellar activity
associated with rapid rotation). From the ratio of the transit
to eclipse depths (see Section 4.1), it seems clear that the
latter is the correct interpretation, and the white dwarf effective
temperature is ∼14,000 ± 1000 K. This is further confirmed by
our formal fits to the light curve (see Section 4.2).

4. MODELING THE LIGHT CURVE OF KOI 1224

4.1. Semi-analytic Modeling

We first performed a semi-analytical analysis of the KOI 1224
light curve in order to obtain rough estimates of the system
parameters. We fitted the raw data (see Figure 1) for three out-of-
eclipse orbital harmonics as well as a seventh-degree polynomial
and three “pulsations” (at 3.49, 1.75, and 1.17 days). The
polynomial function aims to remove the long-term instrumental
variations, while the pulsations were detected as significant
signals in a power spectrum. The 3.49 day pulsation is strongest
and might reflect the rotation period of the primary, as seemed
to be the case for KOI 74, where a possible pulsation period
of ∼0.6 days matched the rotation period inferred from its
rotational velocity. The observed period would imply the star
is rotating sub-synchronously as it is the case for 1SWASP
J024743.37−251549.2 (Maxted et al. 2011), perhaps because
the star is expanding during the course of its evolution. We then
removed the systematic trend from the data and folded them at
the orbital period.

3
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Figure 2. Light curve of KOI 1224 (black dots) along with a best-fit solution (solid line) folded at the orbital period of the system. The systematic trend and the
third light contribution have been removed from the data, and the flux range is adjusted to display the primary and the secondary eclipses in the right and left panels,
respectively. The lower panels show the fit residuals.

(A color version of this figure is available in the online journal.)

Figure 3. Light curve of KOI 1224 (black dots) along with a best-fit solution (solid line) folded at the orbital period of the system. The systematic trend and the third
light contribution have been removed from the data, and the flux range is adjusted to trim the eclipses in order to enhance the visibility of the ellipsoidal and Doppler
boosting components. The lower panel displays the fit residuals.

(A color version of this figure is available in the online journal.)

We measured various fiducial points on the white dwarf
eclipse profile using a detailed plot of the light curve (Figure 2)
in order to estimate the radius of the primary star in units of the
semi-major axis, i.e., R1/a. We found the phase of the first con-
tact, the start of the full eclipse, the end of the full eclipse,
and the last contact to be φ1 ∼ −0.0471, φ2 ∼ −0.0369,
φ3 ∼ 0.0365, and φ4 ∼ 0.0466, respectively. From these values,
measured in orbital cycles from the primary’s inferior con-
junction, we can infer R1/a = π (φ3 − φ1) = 0.263 and
R1/a = π (φ4 − φ2) = 0.262 (implicitly assuming i = 90◦,
since we have no other way to infer it from simple geometry).

The first three out-of-eclipse orbital harmonics capture
information about the system properties that can be de-
rived from ellipsoidal light variations, irradiation effects, and
Doppler boosting (see the folded out-of-eclipse light curve in
Figure 3). From our fit we found the fractional amplitudes
A1 = (2.542 ± 0.058) × 10−4, A2 = (37.675 ± 0.071) × 10−4,
and A3 = (3.085±0.074)×10−4 along with the corresponding
phases φ1 = (−6.25 ± 0.48) × 10−2, φ2 = (2.6 ± 1.1) × 10−4,
and φ3 = (1.5 ± 1.0) × 10−4. The phases are in orbital cycles
measured from the ascending node of the white dwarf for φ1,2
and from the white dwarf eclipse for φ3. Because the ingress
and egress timescales are comparable to that of the Kepler in-
tegration time, it would be futile to make any inference about
R2/a without a proper numerical treatment, as in Section 4.2.

In the simple, semi-analytic analysis that follows, we correct
amplitudes A1 and A2 up by a factor of ∼10% to account for

the third light in the system, and A1 up by an additional ∼6% to
account for the much smaller expected Doppler boosting effect
of the white dwarf which decreases the total amplitude of A1
(see, e.g., Carter et al. 2011, Equation (11)). We label these
“corrected” amplitudes A′

1 and A′
2.

The first out-of-eclipse orbital harmonic arises from Doppler
boosting (see Appendix A.7; van Kerkwijk et al. 2010; Loeb &
Gaudi 2003, for more details) and has an amplitude

A′
1 cos φ1 = fDB

v

c
. (1)

From the color information of KOI 1224 presented in
Section 3.1, we estimate fDB = 3.55 at 6350 K and log g = 4.
Using the above expression we find that the harmonic amplitude
A′

1 implies a projected velocity amplitude K1 � 23 ± 1 km s−1,
where the cited uncertainty includes 3% each from the amplitude
and fDB. From K1 we find the mass function:

M3
2 sin3 i

(M1 + M2)2 � 0.00344 ± 0.00040 (2)

The second orbital harmonic is due to the ellipsoidal light
variations and has an expected amplitude

A′
2 cos φ2 = fEV

M2

M1

(
R1

a

)3

sin2 i, (3)
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Table 2
KOI 1224 Parameters

Parameter Value

Orbital period, Porb (days) . . . . . . . . . . . . . . . . . . . . . 2.69802 (2)
Epoch of primary’s inferior conjunction, T0 (MJD)a 55030.038 (1)

Model Parameters

Mass ratio, q = M2/M1 . . . . . . . . . . . . . . . . . . . . . 0.135 (6)
Filling factor, f1 (fraction of xL1

b) . . . . . . . . . . . . 0.388 (2)
Filling factor, f2 (fraction of xL2

b) . . . . . . . . . . . . 0.0335 (5)
Temperature, T1 (K) . . . . . . . . . . . . . . . . . . . . . . . . 6300 (200)
Temperature ratio, T2/T1 . . . . . . . . . . . . . . . . . . 2.34 (9)
Temperature ratio, Tirr/T1 . . . . . . . . . . . . . . . . . . 0.167 (2)
Orbital inclination, i (deg.) . . . . . . . . . . . . . . . . . . 86.0 (3)
Third light, L3 (fraction of total light) . . . . . . . . . . . . 0.12 (4)
Extra noise, σextra (fraction of average flux errors) 2.06 (3)

Derived Parameters

Mass primary, M1 (M�) . . . . . . . . . . . . . . . . . . . . . 1.59 (6)
Mass secondary, M2 (M�) . . . . . . . . . . . . . . . . . . 0.22 (2)
Semi-major axis, a (R�) . . . . . . . . . . . . . . . . . . . . . 9.9 (2)
Projected velocity amplitude, K1 (km s−1) . . . . . . 22.2 (1.0)
Temperature, T2 (K) . . . . . . . . . . . . . . . . . . . . . . . . 14700 (1000)
Relative volume-averaged radius, 〈R1〉/a . . . . . . 0.267 (2)
Relative volume-averaged radius, 〈R2〉/a . . . . . . 0.0103 (2)
Volume-averaged radius, 〈R1〉 (R�) . . . . . . . . . . . . 2.66 (4)
Volume-averaged radius, 〈R2〉 (R�) . . . . . . . . . . . . 0.102 (3)
Luminosity, L1 (L�) . . . . . . . . . . . . . . . . . . . . . . . . 10 (1)
Luminosity, L2 (L�) . . . . . . . . . . . . . . . . . . . . . . . . 0.4 (1)
Volume-averaged density, 〈ρ1〉 (g cm−3) . . . . . . . . . 0.120 (2)
Volume-averaged density, 〈ρ2〉 (g cm−3) . . . . . . . . . 280 (10)
Polar surface gravity, log g1 (log10(cm s−2)) . . . . . . 3.80 (1)
Polar surface gravity, log g1 (log10(cm s−2)) . . . . . . 5.75 (2)

Notes. The numbers in parentheses are the formal 1σ confidence uncertainties
and are applied to the last significant figures given.
a MJD = HJD − 2,400,000.5, where HJD is the Heliocentric Julian Day.
b See Appendix A.2 for definition.

where fEV is a pre-factor of order unity that depends on the limb
and gravity darkening:

fEV = 45 + 3u

20(3 − u)
(τ + 1) (4)

(Morris 1985).11 Using the corrected amplitude, A′
2, and the

geometrically measured value of R1/a, and considering that
sin i ∼ 1, we find a mass ratio q = M2/M1 = (0.23±0.02)/fEV.
We also find that fEV � 1.59 if we take the linear limb
darkening u ∼ 0.56 for Kepler’s bandpass at 6350 K from
Sing (2010), and τ ∼ 0.66 by integrating Equation (10) from
Morris (1985) over the Kepler bandpass. Hence, we estimate
that q = 0.144 ± 0.020. One also sees that the ellipsoidal term
is phased as expected with the ascending node.

Combining the mass function found from the A′
1 amplitude

and the mass ratio from the A′
2 term, we find

M1 � 1.5 M�, M2 � 0.22 M� . (5)

Second-order terms from ellipsoidal light variations arise
because the nose of the star (i.e., near the L1 point) is darker than
its back side. This results in the third harmonic, with a relative
amplitude A3/A2 = 0.082 ± 0.002. This values differs slightly

11 Here we dropped the factor k from the original equation because it is
negligible.

from that of 0.06 calculated with the equations of Morris (1985),
assuming the same coefficient as above.

Lastly, there should also be a contribution to the fundamental
from the ellipsoidal light variation effect, with an amplitude
of 3A′

3/5 = (2.04 ± 0.05) × 10−4, with a maximum at the
white dwarf’s eclipse. Instead, the fundamental modulation is
a bit shifted toward the white dwarf transit, with amplitude
A′

1 sin(φ1) = (1.07±0.08)×10−4. This indicates that the shift of
the fundamental modulation is mainly due to irradiation, rather
than to second-order ellipsoidal light variations. Assuming the
second-order contribution due to the ellipsoidal light variation
is correct, we infer an irradiation term of firr ∼ (3.11 ± 0.09) ×
10−4. According to the harmonic decomposition of the reflection
effects in close binaries by Kopal (1959), we can write the
fractional amplitude of the first harmonic term due to reflection
as

firr � α1
L2

L

(
R1

a

)2 [
1

3
+

1

4

(
R1

a

)]
, (6)

where α is the primary’s albedo and L2/L is the ratio of the
secondary’s luminosity to the total luminosity. In this estimate,
we have ignored the leading-order (R2/a)2 term (due to the
irradiation of the secondary by the primary) because it is
nearly two orders of magnitude smaller than the L2/L(R1/a)2

term—as we find in Section 4.2 (see Table 2). From this we infer
L2/L ∼ 0.011α, which is quite consistent with the ∼1.4% drop
in the light curve during the white dwarf eclipse.

In the next section we discuss our numerical modeling from
which we obtain more accurate results for the system masses.
The main reason for this improved accuracy is that we utilize
measured properties of the primary star to directly determine
its mass. In that case, the use of A′

2 in determining the mass
ratio is less critical, and, more importantly, M2 then depends
principally on the cube root of the mass function and so is only
linearly dependent on A′

1 (rather than on its cube).

4.2. Numerical Modeling

The numerical modeling has been accomplished using our
new binary light curve synthesis code Icarus sketched in
Section 2 and described more completely in the Appendix.

In order to fully describe the light curves, our code includes
the following list of free parameters (with indices 1 and 2
referring to the F-star primary and the white dwarf secondary,
respectively), which are also summarized in Table 2: the mass
ratio, q = M2/M1; the filling factor,12 f1,2 = xnose (1,2)/xL1 (1.2);
the (polar) temperature ratio, T2/T1; the primary’s (polar)
temperature, T1; the irradiation temperature ratio, T1,irr/T1 (see
Appendix A.4 for the definition of T1, irr); the orbital inclination,
i; and a third light contribution, L3.

One more parameter is required in order to fully specify the
system dynamics and solve for the masses. This is required in
order to determine the projected velocity amplitude of the pri-
mary, K1, which, in turn, allows us to calculate the Doppler
boosting amplitude. Instead of introducing this quantity as an
additional free parameter to the fit, we use the primary mass,
M1, itself; this is possible because the mean stellar density of
the primary, 〈ρ1〉, and its effective temperature13 Teff determine
a nearly unique mass and age, provided that the star has not
evolved far up the giant branch. The average density of the
primary star, in turn, can be found using Kepler’s third law,

12 See Appendix A.2 for definition.
13 For this purpose, we approximated the effective temperature by T1, the
polar temperature.
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Figure 4. Evolution of the primary star in the 〈ρ1〉–T1, eff plane. The 10 curves
are for stars starting on the ZAMS for masses between 1.1 and 2.0 M� in steps of
0.1 M�. The colored region represents a nearly continuous mapping of primary
mass in the 〈ρ1〉–T1,eff plane. This map was generated from the evolution tracks
using an assumed two-dimensional Gaussian probability distribution with 1σ

uncertainties of 200 K in T1,eff and 10% in 〈ρ1〉. The black dot indicates
the position of KOI 1224 from our numerical modeling along with the 68%
confidence intervals on the temperature and density.

(A color version of this figure is available in the online journal.)

which depends only on known quantities such as the
volume-averaged stellar radius 〈R1〉/a14:

〈ρ1〉 = 3π

GP 2
orb(1 + q)

(
a

〈R1〉
)3

. (7)

We have used the newly developed MESA stellar evolution
code (Paxton et al. 2011) to evolve a sequence of stars between
1.1 and 2.0 M� in steps of 0.1 M�. These tracks are shown in
Figure 4 in the 〈ρ1〉–T1 plane. Given that there is an uncertainty
in both 〈ρ1〉 and T1, and the fact that the evolution tracks cross
each other near the terminal-age main sequence (TAMS), we
have converted this discrete set of tracks to a nearly continuous
mass distribution in the 〈ρ1〉–T1 plane (see Figure 4). To generate
this finely gridded (400 × 600) mass array, we generated a
probability weighting function associated with each point on the
evolution tracks from a two-dimensional Gaussian distribution
in 〈ρ1〉 and T1—as described in the caption to Figure 4. If
more than one probability was assigned to a given point in the
〈ρ1〉–T1 plane for any given track, we took the highest of the
probabilities. Finally, we used these probabilities to compute a
weighted “mean” mass at each location in the 〈ρ1〉–T1 plane.

In the Markov Chain Monte Carlo (MCMC) analysis of the
system parameters (see Section 4.2.1), we took the prior on
the primary mass to be based on its mean density and T1,
as well as the uncertainties in these quantities (i.e., from the
MESA stellar evolution tracks and their interpolations shown in
Figure 4). In turn, theMESA tracks were computed for an assumed

14 〈R1〉/a is found after solving for the equipotential surface, which does not
require knowing the masses in the system.

solar composition. We have also used the Yonsei–Yale stellar
evolution isochrones (Yi et al. 2001) to evaluate the additional
uncertainties in the mass due to the chemical composition alone
(i.e., if 〈ρ1〉 and T1 were known very accurately). We find
that for a uniform prior of ±0.5 dex on [Fe/H], the additional
uncertainty in the primary mass is ±0.06 M�. When added in
quadrature to the uncertainty in our derived mass for the primary
(of ±0.06 M�; see Table 2) this would only modestly increase
the uncertainty in the primary mass to ∼ ± 0.08 M�.

We fixed the orbital ephemerides at the values reported
in Table 2 and, because the rotational periods of the stars
are unknown, we have assumed that they are rotating co-
synchronously with the orbit for the calculation of the equipo-
tential surfaces. We also used a gravity-darkening coefficient
gdark = 0.175 for both stars based on empirical values from Che
et al. (2011).15 As we pointed out in Section 4.1, irradiation ef-
fects on the white dwarf due to the primary are negligible (∼2%
of the primary’s irradiation by the secondary) and hence can
be safely neglected. From exploratory fitting, we also realized
that the flux uncertainties were insufficient to account for the
root mean square of the fit residuals (i.e., the χ2 was large even
though the fits visually looked good). Hence, we introduced an
extra noise parameter, σextra, which was added in quadrature to
the flux uncertainties.

The process of calculating the goodness of fit of our nine-
parameter model works as follows. We evaluate the synthetic
light curve using a variable sampling scheme (i.e., more densely
sampled near the transit/eclipse and less densely in the smoother
ellipsoidal light variation region). This allows us to boost
the computing speed while still capturing the critical details.
The 30 minute integration time of Kepler produces a non-
negligible smearing that needs to be accounted for. Hence, we
resample the synthetic light curve at a higher resolution using
a second-order spline in order to perform a 30 minute boxcar
filtering. The synthetic light curve is then interpolated at the
phase of each observed data point. Next, the systematic trend in
the data is removed after fitting a seventh-order polynomial and
three sinusoidal pulsations having unknown phases, amplitudes,
and harmonically related periods Ppuls., Ppuls./2, and Ppuls./3,
where the fundamental is ∼3.49 days. Finally, the residuals are
calculated using the detrended light curve.

4.2.1. MCMC Algorithm

We performed the parameter optimization using an MCMC
algorithm since it is well suited to making parameter inferences
in high-dimensional problems. Parameter correlations are some-
times complicated and hence we used a Gibbs sampler in our
MCMC because it allows for an easier tuning of the proposal
distribution’s acceptance rate (see, e.g., Walsh 2004; Gregory
2005, for more information about MCMC and Gibbs sampling).

We sampled the orbital inclination using flat priors in cos i,
such that it eliminates projection effects. Based on the Kepler
Input Catalog estimation of the third light (see Section 3.1),
which is listed as ∼10%, we used a logistic prior for this
parameter:

[1 + exp ((L3 − 0.15)/0.01)]−1 . (8)

In such a way, the probability of the L3 values in the range
0–0.1 is close to unity before dropping to 50% at 0.15, and then

15 This is appropriate for the primary star of T1 = 6350 K, and the hotter white
dwarf is sufficiently small that its gravity darkening has a negligible effect.
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Figure 5. Results of the MCMC parameter estimation for the KOI 1224 light curve. The data from five independent chains were combined after applying a burn-in
of 30,000 steps and a thinning of 320 iterations. Note that K1, R1/a, R2/a, M1, and M2 are all inferred values from other model parameters (see Section 4 for more
details).

(A color version of this figure is available in the online journal.)

becomes negligible beyond 0.2. For the extra noise parameter,
we used modified Jeffrey’s priors [σextra + 0.1], which provide
equal weighting per decade. This choice is motivated by the
scaling nature of the extra noise parameter. The constant of 0.1
linearizes the prior when σextra becomes smaller than 10% of
the average flux measurement errors. In a Bayesian parameter
estimation framework, the extra noise parameter has an effect
similar to normalizing the reduced χ2 to unity in standard χ2

fitting. Since Kepler uses a single broadband filter and the
data contain no color information, we also made use of the
photometry constraints (see Section 3.1) to add a Gaussian prior
of 6350 ± 200 K on the primary’s temperature. Flat priors were
assumed for the remaining parameters.

We ran a total of five independent MCMC chains, each con-
sisting of 400,000 steps. A burn-in period of 30,000 steps was re-
moved from each chain and we kept only every 320 iterations—a
process called thinning—in order to reduce autocorrelation ef-
fects. We compared the summary statistics of each MCMC to
the others in order to ensure that convergence has been reached.
For all model parameters, the Gelman–Rubins convergence

diagnostic (Gelman & Rubin 1992) yielded
√

R̂ < 1.1, which
indicates that the chains have reached stationary distributions.
The final results presented in Table 2 and Figure 5 were obtained
by merging all the chains together (after burn-in and thinning),
while Figures 2 and 3 display an example of the best-fit light
curve.
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We find constituent masses of 1.59 ± 0.06 M� and 0.22 ±
0.02 M� for the primary and white dwarf, respectively. The
radius of the primary is 2.66 ± 0.04 R�, indicating that it has
evolved substantially off the zero-age main sequence, consistent
with its low mean density of 0.12 g cm−3. The white dwarf’s
radius, 0.102 ± 0.003 R�, is ∼5 times its degenerate radius and
indicates that it is still actively cooling (possibly punctuated
with episodic shell flashes). In turn, this indicates that its
cooling age is of order 120–600 Myr for masses in the range
of 0.20–0.22 M� (see, e.g., Driebe et al. 1999; Nelson et al.
2004). We discuss below what these properties may imply for
the formation of KOI 1224.

5. THE ORIGIN OF KOI 1224

We have presented results for a system found with the Kepler
mission that contains a thermally bloated hot white dwarf:
KOI 1224 (KIC 6606653). The system consists of a normal
F6 star that has evolved to near the TAMS in a 2.698 day binary
with a white dwarf of mass 0.2 M� and radius 0.1 R�. We
discuss in this section how such a binary may have evolved.

There are two plausible evolutionary paths to the formation of
the current KOI 1224 binary system. The transfer of mass from
the white dwarf progenitor to the primordial secondary was
either dynamically unstable, leading to a common envelope
phase, or it was stable, even if not completely conservative.
The former case leads to a dramatic shrinkage of the orbital
separation, while the latter results in only modest changes in
the orbit. We consider each of these, in turn, and in more detail.
For more discussion of the formation and evolution of these
systems, see Farmer & Agol (2003), Di Stefano (2011), van
Kerkwijk et al. (2010), and Carter et al. (2011).

5.1. Common-envelope Scenario

In the common-envelope scenario, the primary star develops
a degenerate He core of mass ∼0.2 M�, starts to transfer mass
to the secondary, and initiates a dynamically unstable process
leading to a common-envelope phase. The secondary spirals into
the common envelope of the primary, ejects the envelope, and
this results in a very close orbit of the secondary with the He
core of the primary (i.e., the current white dwarf of the system).
The final orbital separation can be related to the initial (pre-CE)
separation by

af � ai

McMs

MpMe

rL

2
λ αCE (9)

(see, e.g., de Kool 1990; Podsiadlowski et al. 2003), where
Mc, Me, and Mp are the core, envelope, and total mass of the
primordial primary star, respectively, Ms is the mass of the
secondary, rL is the Roche-lobe radius of the primary in units
of the orbital separation, and the product λαCE encapsulates the
energy ejection efficiency and binding energy of the common
envelope. The latter CE parameter is often taken to be ∼1, but
is more likely to be �0.1 for an evolved star (see, e.g., Dewi &
Tauris 2000; Tauris & Dewi 2001; Podsiadlowski et al. 2003).
In this latter case, the orbit must shrink by a factor of �100. For
a final orbital period of 2.7 days, the initial period would have to
have been �5 years. Such a wide initial orbit for the progenitor
binary would necessarily imply the development of a much more
massive He (or likely CO) white dwarf of �0.5 M�. Thus, given
the fact that the current white dwarf in KOI 1224 is much lower
in mass, this seems to essentially rule out a common-envelope
scenario. We note that a similar sequence of events could also
happen for a star having a non-degenerate core mass >0.6 M�.

In this case, however, the properties of such a system would not
match those of KOI 1224 given that the secondary is ∼0.2 M�.

5.2. Stable Mass-transfer Scenario

Stable, but not necessarily conservative, mass transfer from
the progenitor of the white dwarf to the secondary seems the
much more likely route to the production of KOI 1224, though,
as we discuss, this formation scenario is not without its own
difficulties. In this scenario, when the primary fills its Roche
lobe and commences mass transfer to the secondary, that mass
transfer will proceed on the thermal timescale of the envelope
of the donor star (see, e.g., Podsiadlowski et al. 2002; Lin et al.
2011) until well after the masses of the two stars have become
equal. Thermal timescale mass transfer results since the donor
star is more massive than the accretor and it is not too evolved.
The remainder of the mass transfer is driven by the nuclear
evolution of the primary and is generally much slower than the
thermal timescale transfer (Lin et al. 2011).

Depending on the relative masses of the primary and sec-
ondary at the time mass transfer commences, the outer envelope
of the accreting star may swell up to the point where further
accretion is inhibited and a substantial fraction of the trans-
ferred mass is ejected from the system (see, e.g., Kippenhahn
& Meyer-Hofmeister 1977; van Rensbergen et al. 2010, 2011).
If we define the mass retention fraction by the accretor to be β,
the value of β is likely to be low at the start of the mass transfer
process and higher toward the end.

As we have shown, the age of the white dwarf in KOI 1224
is likely to be �600 Myr because it is still quite hot (see, e.g.,
Driebe et al. 1999; Nelson et al. 2004). The fact that the current
primary star in KOI 1224 has a mass of ∼1.6 M� and has evolved
to at least the TAMS (and probably somewhat beyond) implies
an age of �2.0 ± 0.3 Gyr for a single, isolated star of that mass.
These two facts taken together imply that the current primary
must have been already substantially evolved at the end of the
mass-transfer phase when the white dwarf was unveiled. From
all of this we can infer that the primordial secondary (now the
current primary) was not substantially less massive than the
primordial primary.

Therefore, while there likely was a brief phase of thermal
timescale mass transfer, the bulk of the mass transfer should
have been at a slower rate and therefore could have been mostly
conservative. For purposes of simplicity and for presenting
illustrative examples, we therefore parameterize the evolution
of KOI 1224 as having a constant mass retention fraction, β.
We further take the specific angular momentum of any ejected
material to be α in units of the binary system.

Figure 6 shows how the period of such a binary evolves as
mass is transferred from the primary, for a range of plausible
values of β. In all cases, the orbit shrinks as mass transfer gets
under way. However, for β � 0.7, the orbital period eventually
dramatically increases above the original orbital period, whereas
for smaller values of β (�0.5) the orbit either does not grow
or continues to shrink with mass transfer. Regardless of the
evolutionary path, the orbit cannot get close enough so that the
accreting secondary overflows its Roche lobe, otherwise the two
stars would be in danger of merging.

The range of possible progenitor masses is explored in
Figure 7. The shaded region indicates the most plausible pairs
of progenitor masses, Mp and Ms. The constraints leading to this
region are that (1) the ratio of nuclear and thermal timescales
of the primordial pair lies between 0.5 and 0.9, (2) the initial
orbital period was shorter than ∼10 days, and (3) the primary
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Figure 6. Evolution of the orbital period of KOI 1224 for different constant
values of the mass retention fraction, β. In these evolutionary tracks, we assumed
a single value of the angular momentum loss parameter, α = 1. For illustrative
purposes we chose the primordial masses to be 1.3 M� and 1.1 M�. For β ∼ 0.5,
the orbital period remains constant to within a factor of two over the entire
evolution. However, for β � 0.6, the orbital period dramatically increases
during the later portions of the binary evolution. Under the assumption that α

and β remain constant during the evolution, the mass transfer has to be relatively
non-conservative, with β probably no larger than ∼0.6, in order to account for
the short observed 2.7 day orbital period of KOI 1224.

(A color version of this figure is available in the online journal.)

expanded by at least 30% in radius by the time that Roche-
lobe overflow commenced. The red curves are contours of
constant orbital period at the start of mass transfer, while the
blue curves are contours of constant mass retention fraction, β.
We again assumed a single value for the angular momentum
loss parameter of α = 1.

The rationale for constraint (1) above is that the secondary
should have a nuclear evolution time that is not too much
longer than that of the primary in order for it to have evolved
off the main sequence only after the mass transfer was com-
pleted, but before the white dwarf had a chance to cool below
∼14,000 K. The requirement (2) for an initially short orbital pe-
riod (�10 days) is to avoid developing a white dwarf mass that
is too large (i.e., remaining below ∼0.23 M�, our upper limit
on Mwd) to allow its progenitor to fit within its orbit at the time
mass transfer commenced (see the discussion below). Finally,
constraint (3) allows room in the initial binary for the primary
star to develop an He core before thermal timescale mass trans-
fer reduces the primary’s mass below ∼1 M� and impedes its
further evolution.

Finally, with regard to the evolutionary history of KOI 1224,
we note that there is a theoretical relationship between the
mass of the white dwarf and the orbital period in systems
where the progenitor of the white dwarf was a low-mass
star (i.e., �2.2 M�; see, e.g., Rappaport et al. 1995; Lin
et al. 2011) and where the mass transfer was stable. This is
conveniently summarized in Figure 5 of Lin et al. (2011) and
their Equation (1). In their Figure 5 we can see that stars with
initial mass � 2.2 M� (the red and green points in that plot)
produce a steep functional relation between orbital period and
the final core mass in the evolution of binary systems involving
neutron star accretors. This same relation also somewhat holds
for donor stars of initial mass up to ∼4 M� that commence mass
transfer in the so-called late case A or case AB mass transfer, i.e.,
when the donor is near the end of its main-sequence phase. The
fact that the accretors in the current problem are main-sequence

Figure 7. Diagram showing the initial progenitor masses of a binary system that
could evolve to become KOI 1224. Plotted are the initial primary (progenitor of
the WD) mass, Mp, and the initial secondary (now the ∼1.6 M� primary) mass,
Ms. The red diagonal straight lines labeled 1–0.3 (with a large font) are contours
of the mass retention fraction, β (i.e., the fraction of the mass leaving the primary
that goes to the secondary and is not ejected from the system). The curved blue
contours with values ranging from 0.5 to 10 (smaller font) are contours of
constant initial orbital period (in days). The central shaded region provides the
boundaries in the Mp–Ms plane that would yield the observed masses set by
constraints on the ratio of thermal and nuclear timescales and the requirement
that the primordial primary underfills its initial Roche lobe by at least a factor
of 1.3 (to allow it to evolve before transferring mass). The evolutionary tracks
were calculated assuming that the specific angular momentum of the ejected
mass in units of the angular momentum of the binary per unit of the binary
reduced mass is α = 1.

(A color version of this figure is available in the online journal.)

stars does not alter the core-mass–radius relation on which this
effect is based.

If we use the expression relating orbital period to core mass,

Porb � 4.5 × 106 M9
c(

1 + 25M3.5
c + 29M6

c

)3/2 days (10)

(Lin et al. 2011), we can infer that a final orbital period of
2.7 days should correspond to a white dwarf mass of 0.206 M�
with a spread in the theoretical values of ∼± 0.015 M�. This is
highly consistent with the mass of the white dwarf we find for
KOI 1224. One caveat, however, is that the Porb–Mwd relation is
based on the core-mass–radius relation for giants (see, e.g., Han
et al. 1994; Rappaport et al. 1995). In order for the latter to hold,
the mass transfer must be affected in at least a semi-controlled
way (see Section 6).

6. CONCLUSION

In this paper, we presented KOI 1224 (KIC 6606653), a new
Kepler eclipsing system consisting of a bloated white dwarf
having a normal, slightly evolved companion star in a com-
pact 2.698 day orbit. Archival analysis of the optical and near-
infrared photometry, as well as inspection of a preliminary clas-
sification spectrum (L. Nelson 2011, private communication),
reveals that the primary is likely an F6 spectral class ∼6350 K
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star, while the GALEX UV flux allows us to infer a white dwarf
temperature of ∼14,000 K, a value that is comparable with that
found by our numerical modeling when using the primary’s
temperature as a prior.

We modeled the light curve of this binary with Icarus, a
new light curve synthesis code, which uses proper atmosphere
models and a physical description of the binary parameters that
allows us to reproduce various effects visible in the light curve
such as irradiation, ellipsoidal light variations, and Doppler
boosting. The derived binary parameters agree relatively well
with those inferred from a harmonic analysis of the Kepler data
using semi-analytic approximations of the above effects.

From our light curve fitting, we found masses of 1.59 ± 0.06
and 0.22 ± 0.02 M� for the F-star primary and the white dwarf
secondary, respectively, in a 2.698 day orbit. These values pose a
modest challenge in terms of binary evolution. Indeed, the low
mass of the white dwarf likely excludes a common-envelope
scenario, which would require a more evolved progenitor—and
therefore a more massive white dwarf—in order to produce a
compact system with the observed parameters. At the same time,
the orbital separation of a system like KOI 1224 is expected to
increase significantly in a stable Roche-lobe overflow evolution
unless the fraction of mass accreted by the current primary
remains relatively low, β � 0.5. In any case, it appears that
the system had to start its mass transfer evolution at an orbital
period that is not longer than ∼10 days (as discussed above).

KOI 1224 is the fourth such system found with Kepler. The
orbital periods are 2.7 days (KOI 1224), 3.3 days (KHWD3),
5.2 days (KOI 74), and 24 days (KOI 81) (this work; Carter
et al. 2011; van Kerkwijk et al. 2010). The corresponding white
dwarf masses are ∼0.21, 0.26, 0.21, and 0.3 M�, respectively,
with 10%–20% uncertainties. Unfortunately, the theoretical
relationship between orbital period and white dwarf mass
(discussed above) is too steep, i.e., Porb ∝ Mn

wd, where n > 7,
to test effectively on such a relatively narrow range of Porb
and Mwd.

Preferably, one would like to find more such systems in
wider orbital periods in the Kepler data where (1) the white
dwarf masses are expected to deviate more substantially from
∼0.2 M� and (2) the Porb–Mwd relation should work more
robustly because of the higher likelihood of purely stable mass
transfer. In this regard, we note that Maxted et al. (2011) have
recently discovered a possibly related system with an orbital
period of only 0.688 days, and a highly bloated white dwarf
of 0.29 ± 0.005 M�, as well as several other similar very
short period systems (P. Maxted 2011, private communication).
The Porb–Mwd relation is difficult to quantify theoretically at
these very short periods (of �1 day) because it is not yet
clear whether these systems result from stable mass transfer,
a common-envelope scenario, or some less catastrophic form
of unstable mass transfer. The Porb–Mwd relation works only
when mass is removed from the progenitor of the white dwarf
in a reasonably controlled way such that the core-mass–radius
relation, on which it is based, remains valid.
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developing the Icarus code as well as France Allard for support
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APPENDIX

ICARUS: BINARY LIGHT CURVE SYNTHESIS CODE

A.1. Stellar Surface Grid

The underlying stellar surface grid is constructed using the
triangular tessellation of a unit sphere that was inspired by
the GDDSYN synthesis code (Hendry & Mochnacki 1992). The
base vertices are initially generated from the primitives of an
icosahedron. Each triangular surface is then sub-divided into
four triangles by creating a new vertex at the midpoint of
each edge. The new vertices are finally projected back onto
the unit sphere by re-normalizing them to unity. This sub-
division process can be repeated iteratively in order to obtain
the desired number of surface elements. At a sub-division
level n (where n = 0 is the base icosahedron, and n = 1 is
one sub-division further), the number of surface elements is
nfaces = 20 (4n), while the number of independent vertices
is nvertices = 2 + 10 (4n). The coordinates of each face are
calculated as the centroid of the triangle.

There are several advantages of using the algorithm above.
First, a triangular tessellation does not suffer from the uneven
surface sampling problem common to simple meshes derived
from an equally spaced grid in spherical coordinates. To cir-
cumvent this problem, other synthesis codes, like PHOEBE, use a
variable sampling strategy with fewer points near the poles. The
sub-division algorithm of a triangular tessellation is relatively
easy to implement and, using an icosahedron as the primitive,
yields triangular faces that are organized on a regular tile of
hexagons and pentagons, and that have fairly equal areas. Tri-
angular faces are by definition convex and hence are simpler to
work with when it comes to dealing with transits and eclipses.
For reasons that will become obvious later we also keep track of
the associativities: each surface is associated with three vertices,
and each vertex is associated with either five or six faces.

A.2. Equipotential Surface

As in the ELC code, our stellar surface is defined by
the gravitational equipotential equation from Avni & Bahcall
(1975), which takes into account the effects of stellar rotation:

ψ = GM1

a

[
1

r1
+

q

r2
− qx +

q + 1

2
Ω2

(
r2

1 − z2
)]

, (A1)

where r1 and r2 are the distances of a point measured from the
barycenter of the star that is being modeled (labeled 1) and from
the barycenter of its companion (labeled 2) in units of orbital
separation, q = M2/M1 is the mass ratio, and Ω = ωstar/ωorbit is
the corotation factor expressed as the ratio of the stellar to orbital
frequency. We work in a coordinate system having its origin at
the barycenter of star 1 in which the x-axis points toward star 2’s
barycenter, the z-axis is along the orbital angular momentum,
and the y-axis is along the orbital plane orthogonal to the x- and
z-axes. Our code is currently limited to circular orbits but could
easily be extended to elliptical orbits as in PHOEBE, for example.

Initially, the position of the L1 point, xL1, along the x-axis
is found by identifying the saddle-point of the above equation
between stars 1 and 2. Then, as explained in Orosz & Hauschildt
(2000), the potential corresponding to the “nose” of the star (the
inner point toward star 2) is defined by specifying a filling
factor f = xnose/xL1, which is expressed as a fraction of the
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L1 distance. From there, the radius of star 1 can be evaluated in
the direction of every vertex and face of the tessellated surface.

The effective surface gravity is also calculated for each face
using the equation g = ‖�∇ψ‖ as well as the components of the
normal to the local surface.

A.3. Surface Temperature and Gravity Darkening

We assign a fiducial temperature to each face that takes into
account the gravity darkening according to the equation

T (x, y, z)

Tpole
=

[
g(x, y, z)

gpole

]β

, (A2)

where β typically varies between 0.08 and 0.25 depending on
whether the star has a convective or a radiative envelope, respec-
tively (Lucy 1967; von Zeipel 1924; for empirical constraints,
see Che et al. 2011).

A.4. Irradiation from a Companion

We treat the effect of irradiation from a companion as a
source of energy that increases the temperature of the star while
preserving thermal equilibrium (i.e., no thermal inversion that
gives rises to emission lines). In this case, irradiation changes
the temperature distribution of the star as follows:

T ′(x, y, z) =
[
T (x, y, z)4 + T 4

irr
cos χ

r2
2

]1/4

, (A3)

(Beech 1985) where cos χ is the angle between the surface nor-
mal and the direction to the companion (i.e., star 2), and Tirr
is the irradiation temperature which describes the temperature
increase. Note that working with Tirr is more convenient than
using an irradiation luminosity and a bolometric albedo since
empirically one effectively measures the back and front tem-
peratures of a star using multi-band light curves. If needed, one
can convert the irradiation temperature into an irradiation lu-
minosity after the fact using Lirr = 4πσa2T 4

irr, where σ is the
Stefan–Boltzmann constant and a is the orbital separation. Then,
it is possible to work out the stellar albedo of the modeled stars
if its companion’s luminosity is known such that α = Lirr/L2.
If one prefers, it is also possible to fix an albedo and perform
the calculation the other way around in order to provide an
irradiation temperature to the code.

Our treatment of irradiation is different than that of PHOEBE
and GDDSYN, which calculate the reflection effect of each surface
element due to the other star in an iterative way. While their
technique is certainly more accurate, it comes at the cost of
a substantially larger computational burden and only becomes
more relevant in the case of contact binaries, where one needs
to account for shadowing effects due to the bridge of matter in
order to be self-consistent. Moreover, the fact that heat might be
partly redistributed over the surface in a way that is non-trivial
to calculate from first principles helps justify our use of this
approximation.

A.5. Surface Area

We pre-calculate the area of each surface triangle on the unit
sphere. Once the equipotential equation has been solved, we
rescale each pre-calculated value by its proper radius in order to
obtain the effective area of the surface elements. By this means,
the integrated flux simply corresponds to a discrete summation
over the visible surface.

A.6. Atmosphere Models

Once the stellar grid has been constructed, and the effective
temperature and surface gravity determined for all the faces, we
can evaluate the flux perceived by an observer located at a given
orbital inclination and orbital phase. The back end of the code
that returns the flux for each face can be swapped between a
blackbody and an atmosphere grid.

For the purpose of this paper, we have worked with the
BTSettl atmosphere models of Allard et al. (2003, 2007, 2010)
which are available online on the Phoenix Web simulator.16 We
used these atmosphere models to cover a grid over the range
1000–15,000 K in temperature and 3.0–4.5 in log g. Since only
integrated spectra were available, we used the empirical limb-
darkening relationship of Neckel (2005).

Prior to performing the modeling of the KOI 1224 data, we
integrated the spectral grid over the Kepler passband. Such
integration can be performed for any photometric filter that one
wishes to use to model the light curves. However, our code can
also handle working with a full set of spectral data, in which case
it is possible to model full orbital-resolved spectroscopic data.
When this is the case, the spectrum of each face is Doppler
shifted at the appropriate velocity and hence the rotational
broadening, orbital Doppler shift, and displacement of the light
center away from the barycenter due to irradiation naturally arise
from our model spectra. In principle, the Rossiter–McLaughlin
effect (Rossiter 1924; McLaughlin 1924; as well as its Doppler
boosting analog van Kerkwijk et al. 2010; Shporer et al. 2011)
would also appear from spectra modeled in combination with
the transit calculation described below.

A.7. Doppler Boosting

Doppler boosting is another feature implemented in our code.
For most cases, the amplitude of the effect is negligible, and
hence it is turned off to speed up the light curve calculation.
For the KOI 1224 data, however, Doppler boosting is clearly
detected and hence it was included in the following way.

As described in van Kerkwijk et al. (2010), Doppler boosting
can be written as a modulation of the observed flux:

f = 1 − fDB sin φ v/c, (A4)

where φ is the orbital phase measured at the inferior conjunction
of the star, v is the orbital velocity, c is the speed of light, and
fDB is a factor that depends on the spectrum of the source and
the observing passband. Based on our analytical estimate of the
primary’s temperature and surface gravity (see Section 3.1), we
evaluated the coefficient fDB at temperatures of 6200 and 6500 K
for log g of 3.5 and 4.0. The coefficient is a rather smooth
function of the temperature of surface gravity, and hence we
simply performed a bilinear interpolation to fetch the coefficient
to apply to each face of the stellar grid before the total flux was
integrated. In the future, we are planning to include the exact
calculation at each temperature and log g value.

A.8. Eclipse and Transit Calculation

Eclipse and transit calculation is also included in our synthesis
code. Each time the stellar surface grid is recomputed with new
input parameters, we perform several tests to evaluate whether
partial or total occultations are possible as well as the orbital
phase range within which they can occur. This allows for our
code to revert to algorithms optimized for each situation.

16 Available at http://phoenix.ens-lyon.fr/simulator/
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Figure 8. Diagram illustrating an occultation of the primary (larger star) by the
secondary (smaller, blue star). The primary’s tessellated surface is displayed
with the following details: the triangle symbols mark the center of the triangular
surfaces, the black dots are the vertices of the triangular surfaces, and the red
dots are the vertices of nested triangular surface sub-divisions. To evaluate the
visibility of the surface elements, the outline of the secondary is found and
a lookup table r2(θ ) created, where θ and r2 are the polar coordinates of the
limb in the sky plane, using the secondary’s barycenter as origin. The projected
distance of each vertex from the secondary’s barycenter is then calculated.
Surface elements having all their vertices lying within the light blue region are
not visible. For those near the boundary, a weighting is applying. For the surface
element highlighted in gray, one of its primary vertices is occulted and so is
one of its sub-vertices. Hence, 2/6 vertices are hidden which implies that this
surface element only contributes 33% its normal flux.

(A color version of this figure is available in the online journal.)

At an orbital phase φ and an inclination i, the projected
distance between the barycenter of the stars is given by (δa)2 =
a2(cos2 i cos2 φ + sin2 i), where φ = 0 at the inferior conjunc-
tion of the primary.

First, we test whether any kind of occultation can occur.
We consider the maximum dimension of each star in order to
obtain a conservative estimate. Hence, for any orbital range
where δa < r1, max + r2, max, one star might be occulted by the
other. If this is the case, a second test aims to check if a full
occultation occurs, and, if so, what orbital range does it cover.
If r1, max < r2, min, star 1 will definitely get fully eclipsed in the
orbital range that meets the requirement δa + r1, max < r2, min.
The same test is also performed with the indices reversed.

With these criteria identified, the flux calculation can be
classified into three categories: (1) no occultation, (2) partial
occultation, and (3) full occultation. Case 3 is the simplest as the
star does not contribute to the total observed flux and hence no
calculation is required. Case 1 is also relatively simple as every
face that is not beyond the stellar limb will contribute; a standard
flux integration over the visible surface of each star is performed.
Case 2 is more complex and we explain our algorithm below.

A.8.1. Partial Visibility

Evaluating the partial visibility of a stellar surface occultated
by another is a computationally intensive task that can be tackled
in several ways. Our algorithm is meant to provide a balance
between accuracy, execution speed, and ease of implementation.

In short summary, our algorithm aims to calculate the fraction
of a surface element that is visible to an observer (see Figure 8).
The first step consists in the determination of the outline of the
star located in front (here we choose star 2 for the explanation).

We make the approximation that the orbital range within which
the occultation of star 1 occurs is small enough that the outline
at the onset of the occultation is the same as at conjunction. This
simplifies the calculation considerably since, when the orbital
inclination is sufficiently close to edge-on,17 the limb of star 2
corresponds to its outline in the y–z plane at x = 0, which is
easy to compute. In this fashion, we obtain a lookup table of
r2(θ ) values, where θ and r2 are the polar coordinates of the
limb of star 2 in the sky plane calculated using its barycenter as
the origin.

In the second phase, we compute the projected position of
star 1’s vertices, θ1 and r1, with respect to star 2’s barycenter.
If a vertex of star 1 lies within the limb of star 2—that is
r1 < r2(θ1)—then it is hidden. To calculate the partial visibility
of a surface element, we make the approximation that the visible
fraction of the surface is equal to the fraction of its vertices
that are not hidden. Since each individual vertex is associated
with either five or six faces, we can use the vertex-to-face
associativity to assign the partial visibility weighting factor to
all the faces without having to perform redundant calculations.

Our partial visibility algorithm relies on a simple projected
distance determination for all the vertices of the visible face.
When such a vertex is occulted, an extra weighting factor is
added to five or six array elements corresponding to the asso-
ciated surface elements. The computational cost of this tech-
nique remains small compared to a more accurate calculation
such as that performed by GDDSYN. Moreover, it can easily be
parallelized.

The main caveat of our algorithm lies in the limited spatial
resolution of the grid faces; the partial visibility goes in 1/3
increments. Hence, the light curve can display important jitter if
the chosen grid resolution is too coarse. A notable symptomatic
case is that of stars having very unequal relative sizes and for
which the projected area of the smaller star becomes comparable
to the area of a surface element of the larger star. The obvious
solution relies on using a higher resolution for the larger star,
though this comes at the expense of an increased computational
burden.

To work around these problems, we have designed a method
that takes advantage of the sub-division tessellation algorithm.
Since the sub-division to a finer level adds vertices at the mid-
points of the surface sides, it is easy to keep track of the
associations of these vertices with the parent surface elements
at the lower resolution. Using such a nested sub-division yields
partial visibilities that can be computed to a much better
precision than the original 1/3 step size, increasing to 1/6
for one extra sub-division and 1/15 for two. This algorithm
comes with a relatively small computing footprint: since the
surface properties (temperature and gravity) vary smoothly, it is
sufficient to obtain an accurate partial visibility weighting for a
low-resolution grid using the sub-division. In other words, there
is little if no gain in calculating the emergent intensity for all
the surface elements at the higher resolution.
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