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High-dimensional quantum key distribution (HD-QKD) allows two parties to generate multiple secure bits of
information per detected photon. In this work, we show that decoy-state protocols can be practically implemented
for HD-QKD using only one or two decoy states. HD-QKD with two decoy states, under realistic experimental
constraints, can generate multiple secure bits per coincidence at distances over 200 km and at rates similar to
those achieved by a protocol with infinite decoy states. Furthermore, HD-QKD with only one decoy state is
practical at short distances, where it is almost as secure as a protocol with two decoy states. HD-QKD with only
one or two decoy states can therefore be implemented to optimize the rate of secure quantum communications.
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I. INTRODUCTION

High-dimensional quantum key distribution (HD-QKD),
using qudits of dimensions d > 2, enables its participants to
optimize the secret-key capacity of a bosonic channel under
technical constraints [1]. When the secret-key generation rate
is limited by the rate at which Alice generates photons or by
the rate at which Bob can detect photons due to the detector
dead time, the secret-key generation rate can be improved
by high-dimensional photon encoding where each photon can
encode as much as log2 d > 1 bits of information. Moreover,
HD-QKD protocols may tolerate more noise than two-level,
or qubit [2–4], QKD protocols [5].

Discrete HD-QKD protocols have been proven to be
secure against coherent attacks, in which Eve is allowed
to interact with all signals simultaneously [6,7]. Various
photonic degrees of freedom have been investigated for HD-
QKD, including position-momentum [1], time-energy [8–12],
transverse momentum [13], and orbital angular momentum
[14–17]. Among these, the time-energy basis is particularly
attractive because time-energy correlations are compatible
with wavelength-division multiplexing (WDM) systems and
are robust in both free-space and fiber-based transmissions.

Recently, HD-QKD protocols employing time-energy en-
tanglement have been proven to be secure against collective
attacks, in which Eve’s apparatus, which can include quantum
memory, is restricted to interact with each signal separately
[18,19]. (The bounds for unconditional security for both
coherent and collective attacks turn out to be identical for
most protocols [20].) The proofs in [18,19] use the time-
frequency covariance matrix (similar to the one used in
continuous-variable QKD protocols [21–23]) to derive a lower
bound on the secure-key rate under collective attacks. The
time-frequency covariance matrix can be measured using
dispersive optics [18,24] or Franson interferometers [19,25].
The time-energy entanglement of photon pairs produced by
spontaneous parametric down conversion (SPDC) has also
been harnessed in several HD-QKD experiments [8,11,26].

All these experiments assume single-pair emissions from
the SPDC source, whereas multipair emissions do occur. For
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a continuous-wave source, the signal and idler from each
signal-idler mode pair are individually in identical thermal
states with average photon numbers that are much smaller than
1. Therefore, when the HD-QKD frame time does not greatly
exceed the source’s correlation time, multipair emissions
occurring during a particular frame will tend to be correlated in
time, an effect known as photon bunching [27]. In such cases,
when any of these HD-QKD protocols is performed via a lossy
channel, it is vulnerable to the photon number splitting (PNS)
attack. On the other hand, when the frame time is much greater
than the correlation time, the number of photon pairs emitted in
a frame will be Poisson distributed, hence no photon bunching
is then expected. Nevertheless, a PNS attack can provide Eve
with some information about Alice and Bob’s measurements
when they reconcile their results via classical communication
that Eve can monitor.

In the PNS attack, Eve measures the photon number of each
transmission and selectively suppresses single-photon signals
[28–31]. She then splits multiphoton signals, keeping one
copy to herself and sending the other copy to Bob. Under the
collective attack scheme, Eve stores her photons in a quantum
memory and only measures them after Bob publishes his
measurement bases over a public channel. She takes advantage
of the timing correlations in the bunched photons to acquire
information about Alice and Bob’s key without being detected.

The decoy-state protocol is designed to detect the PNS
attack [32]. The central idea is to test the channel transmission
properties by varying the source intensity. Decoy-state QKD
has been discussed extensively in the context of Bennett-
Brassard 1984 (BB84) protocol [33–36]. In addition, several
experiments have demonstrated the generation of secure bits
over 144 km in free space [37] and over 107 km in optical
fiber [38]. Furthermore, it has been shown that decoy states
can also be generated passively by using a beam splitter or
by monitoring the idler of an SPDC source [39–45]. Recently,
decoy-state analysis was extended to HD-QKD protocols [19],
but for an infinite number of decoy states, which is practically
impossible.

Here, we analyze the security of HD-QKD protocols
employing a practical number of decoy states. Unlike the
BB84 decoy-state QKD protocol, we make use of the decrease
in measurement correlations instead of the quantum-bit error
rate (QBER) to estimate the amount of information gained
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by Eve. As a consequence, we find that the two-decoy-state
protocol with one vacuum decoy state, which provides the best
secure-key rate for BB84 [35], is not optimal for HD-QKD.

The analysis presented here answers a pressing question
for experimental implementations of HD-QKD: How many
decoy states are necessary for HD-QKD protocols to be robust
against the PNS attack? We show by numerical evaluations,
assuming realistic experimental parameters, that the security
of a protocol with two decoy states approaches that of a
protocol with an infinite number of decoy states. HD-QKD
with only two decoy states can therefore be used to maximize
the rate of high-speed secure quantum communications under
experimental constraints.

We shall focus our discussion on a specific HD-QKD
scheme: the dispersive optics QKD (DO-QKD) protocol
[18,46,47], which employs group velocity dispersion to trans-
form between mutually unbiased time and frequency bases.
Although we restrict our analysis to DO-QKD, the same
arguments are also applicable to other HD-QKD protocols
employing time-energy entanglement.

This work is organized as follows. Section II briefly reviews
the DO-QKD protocol. Section III outlines the general decoy-
state protocol. We discuss the relevant parameters that can be
measured by Alice and Bob during quantum communication.
In addition, we present a lower bound on the secure-key
capacity when an infinite number of decoy states is available
to Alice and Bob. Section IV derives a new lower bound
on the secure-key capacity when only two decoy states are
employed, and Sec. V considers the case of a single decoy
state. Section VI presents a lower bound on the secure-key
capacity when no decoy state is employed. The results of a
numerical evaluation with realistic experimental constraints
are presented in Sec. VII. We defer the calculation of mutual
information between Alice and Bob and the calculation of
Eve’s Holevo information to Appendixes A and B.

II. DISPERSIVE OPTICS QUANTUM KEY DISTRIBUTION

In the DO-QKD protocol, illustrated in Fig. 1, Alice weakly
pumps an SPDC source such that the time-energy entangled
output state when only one pair is emitted can be approximated
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FIG. 1. Schematic diagram of the DO-QKD setup. Alice and Bob
randomly choose to measure in either the arrival-time basis or the
frequency basis. In case 1, Alice measures in the frequency basis
by applying a normal dispersion (ND). Bob’s measurement is only
anticorrelated to Alice’s if he also measures in the frequency basis by
applying an anomalous dispersion (AD). In case 2, Alice measures
in the arrival-time basis, and Bob’s measurement is only correlated
to Alice’s if he also measures in the arrival-time basis.

to have a Gaussian envelope [26]

ψ(tA,tB) ∝ e−(tA−tB )2/4σ 2
core−(tA+tB )2/16σ 2

coh . (1)

Here, σcoh is the coherence time of the pump field and σcor

is the correlation time between the two photons generated
by the SPDC source. σcoh typically can be longer than a
microsecond for a diode laser, and σcor is typically on the order
of picoseconds for typical SPDC sources [48]. The number
of alphabet characters per photon pulse, d = σcoh/σcor (the
Schmidt number), therefore can be large [11,49].

Alice and Bob randomly choose to measure their photons
in the conjugate bases of photon arrival time and photon
frequency; the two bases are measured using a fast single-
photon detector or a dispersive optical element followed
by photodetection, respectively. We assume that Alice and
Bob have complete control of their own setups, precluding
tampering by any third party such as Eve. In a single
measurement frame, if both Alice and Bob measure their
photons in the arrival-time basis, their timing measurements
will be correlated. Similarly, if both parties measure in the
frequency basis, their measurements will be anticorrelated. On
the other hand, if one party measures in the frequency basis
while the other measures in the arrival-time basis, the timing
correlation between their photons is severely diminished.

After the measurement stage, Alice and Bob sift for frames
in which both of them registered at least one detection event.
For any frame with more than one coincidence, Alice and Bob
replace their detection events with a random variable whose
probability distribution matches that of photons originating
from single-pair emissions. Finally, they apply error correction
and privacy amplification to establish identical secret keys.

The DO-QKD protocol is not prone to the PNS attack
when it is performed using an on-demand single-photon
source. When such a photon source is used, the bound on
the secure-key capacity of a DO-QKD protocol, in terms of
bits per photon-pair coincidence (bpc), is [23,50]

�I � βI (A; B) − χUB
ξt ,ξω

(A; E), (2)

where β is the reconciliation efficiency and I (A; B) is the
mutual information between Alice and Bob. χUB

ξt ,ξω
(A; E) is an

upper bound on Eve’s Holevo information under collective
attacks, given the excess-noise factors ξt and ξω for the timing
and the frequency correlations, respectively.

Eve’s attack on Alice’s transmission degrades the cor-
relations of Alice and Bob’s measurements in a man-
ner parameterized by the excess-noise factors. Explicitly,
Var[T ′

A − T ′
B] = (1 + ξt ) Var[TA − TB] and Var[	′

A + 	′
B] =

(1 + ξω) Var[	A + 	B], where TA (TB) and 	A (	B) are
the random variables associated with Alice’s (Bob’s) time
and frequency measurements without Eve’s presence. The
corresponding primed variables are the random variables after
Eve’s intrusion. The sign difference is a consequence of Alice
and Bob’s timing measurements being directly correlated
while their frequency measurements are anticorrelated. These
excess-noise factors allow us to place an upper bound on Eve’s
Holevo information.
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III. GENERAL DECOY-STATE PROTOCOL

A. Postselection probability

We consider the practical case of interest for SPDC-based
HD-QKD systems, i.e., we assume a continuous-wave source
operating at low brightness (signal and idler beams have
average photon numbers per mode much less than 1) with
a frame time that greatly exceeds the correlation time. In this
case, the photon-pair statistics are approximately Poissonian
[51,52]. Suppose that Alice’s SPDC source emits an average of
λ pairs per measurement frame, the probability Prn of emitting
n-photon pairs in a single measurement frame is then

Prn = λn

n!
e−λ. (3)

Furthermore, the postselection probability, which is the prob-
ability of Alice and Bob registering at least one detection (due
to a photon or a dark count) in a single measurement frame,
can be written as

Pλ =
∞∑

n=0

PrnCn =
∞∑

n=0

λn

n!
e−λCn, (4)

where Cn is the conditional probability of measuring at least
one detection given n-photon pairs are emitted. Explicitly, in
Eve’s absence we have

Cn = [1 − (1 − ηA)n(1 − pd )]

× [1 − (1 − ηBηP )n(1 − pd )]. (5)

Here, ηA and ηB are Alice and Bob’s detector efficiencies, ηP

is the transmittance of the quantum channel linking Alice’s
source to Bob’s terminal, and pd is the probability of one
dark count in a single measurement frame. We are neglecting
the possibility of multiple dark counts occurring in a frame
because the product of the frame duration and the dark count
rate for a typical superconducting nanowire single-photon
detectors is much smaller than 1 [53]. Eve, in principle, has the
freedom to affect the Cn values. The goal of the decoy-state
protocol is to estimate the Cn values from the postselection
probabilities of different choices of λ.

B. Excess noise

Alice and Bob cannot directly measure their timing and fre-
quency correlations when there are multiphoton emissions and
dark counts. They can only measure the averaged correlations

Var[T ′
A − T ′

B]λ = Fλ Var[T ′
A − T ′

B] + (1 − Fλ) �σ 2
t ,

Var[	′
A + 	′

B]λ = Fλ Var[	′
A + 	′

B] + (1 − Fλ) �σ 2
ω,

(6)

where Fλ = λe−λC1/Pλ is the fraction of postselected events
that are due to single-photon emissions, and �σ 2

t (�σ 2
ω) is the

measured time (dispersed-time) correlations that are due to
measurements of multiphoton emissions and dark counts.

It is convenient to divide (6) by Var[TA − TB] or Var[	A +
	B] so that the excess-noise factors ξt and ξω are explicit

�t,ν = Fλ(1 + ξt ) + (1 − Fλ) ��t,

�ω,ν = Fλ(1 + ξω) + (1 − Fλ) ��ω.
(7)

The quantity �x,λ (for x = t or ω) is the averaged excess-noise
multiplier, which can be measured by Alice and Bob.

C. Infinite number of decoy states

Now suppose that Alice and Bob choose a signal state
with an expected photon-pair number μ and decoy states
with expected photon-pair numbers ν1,ν2, . . . ,νm. Alice
and Bob can then use the knowledge of the postselection
probabilities P = {Pμ,Pν1 , . . . ,Pνm

} and the multipliers K =
{�x,μ,�x,ν1 , . . . ,�x,νm

} (for x = t and ω) to estimate the
values of Cn and ξx .

If we assume that m → ∞, the key length is infinite, and
the values of Cn are linearly independent of each other, then
Alice and Bob can determine the Cn values to arbitrarily high
confidence by measuring the set P . Similarly, by measuring
the set K, they can determine ξx to arbitrarily high confidence.
Therefore, Alice and Bob can detect any attack by Eve that
affects the values of Cn and ξx [32–34].

The bound on the secure-key capacity with m → ∞ decoy
states is [19]

�I � βI (A; B) − χ ′, (8)

where χ ′ is the amount of information assumed to be lost to
Eve, defined as

χ ′ = (1 − Fμ) nR + Fμ χUB
ξt ,ξω

(A; E). (9)

Here, Fμ = μe−μC1/Pμ, and nR is the number of random
bits shared between Alice and Bob when they use an
error-correcting code employing an average of nECC syn-
drome bits, which are revealed over the public channel.
β = (nR − nECC)/I (A; B) is the reconciliation efficiency. We
have assumed that Alice and Bob can derive no security from
multiphoton emissions. Note that when the photon source is
an on-demand single-photon source (Fμ = 1), we recover (2).

IV. TWO DECOY STATES

When only a few decoy states are available, Alice and Bob
cannot determine (to arbitrarily high confidence) the amount
of information lost to Eve, χ ′. They can, however, provide a
reasonable upper bound to χ ′ by using the following methods:

1. Finding a lower bound on Fμ, which estimates how close
their photon source is to an ideal one and

2. Finding upper bounds on ξt and ξω, which estimate Eve’s
Holevo information χ (A; E).

We suppose that Alice and Bob choose fewer than three
weak decoy states with mean photon-pair numbers ν1 and ν2

that satisfy

0 � ν2 < ν1,

ν1 + ν2 < μ.
(10)

A. Lower bound on Fμ

The postselection probabilities of the two different states
are given by

Pν1 =
∞∑

n=0

Cn

νn
1

n!
e−ν1 , (11)

and

Pν2 =
∞∑

n=0

Cn

νn
2

n!
e−ν2 . (12)
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As shown in [35], we can find a lower bound on C1 from the
difference of the two postselection probabilities

C1 � μ

μν1 − μν2 − ν2
1 + ν2

2

[
Pν1e

ν1 − Pν2e
ν2

−ν2
1 − ν2

2

μ2
(Pμeμ − C0)

]
, (13)

where the inequality follows from the relation (ν1/μ)n −
(ν2/μ)n � (ν1/μ)2 − (ν2/μ)2 for n � 2 which is true given
(10). The above relation tells us that a lower bound on C0 is
needed to make use of (13). One such bound is

C0 � ν1Pν2e
ν2 − ν2Pν1e

ν1

ν1 − ν2
, (14)

which follows from the assumption that ν1 > ν2.
Another lower bound on C0 can be found using the

assumption that Eve does not have access to both Alice and
Bob’s experimental setups. Since Alice owns the SPDC source,
Eve cannot tamper with Alice’s measurement of any output
state generated by the source. When the source emits no
photons, Alice’s detector can only register a dark count, which
occurs with probability pd . Eve is allowed to do whatever
she pleases with the vacuum state heading towards Bob, such
as injecting photons into the channel. However, whatever she
does cannot lower the probability of Bob registering a count
to any value below pd . Therefore, we conclude

C0 � p2
d . (15)

Combining (14) and (15) then gives

C0 � C
LB ,{ν1,ν2}
0 = max

{
ν1Pν2e

ν2 − ν2Pν1e
ν1

ν1 − ν2
,p2

d

}
. (16)

By using (13) and (16), we find

Fμ = C1
μe−μ

Pμ

� μ2

μν1 − μν2 − ν2
1 + ν2

2

[
Pν1

Pμ

eν1−μ − Pν2

Pμ

eν2−μ

−ν2
1 − ν2

2

μ2

(
1 − C

LB ,{ν1,ν2}
0 e−μ

Pμ

)]
. (17)

Another way of obtaining a lower bound on Fμ is imme-
diately evident from the postselection probability of a single
decoy state. Let λ = ν1 or ν2 if ν2 �= 0, and λ = ν1 if ν2 = 0.
It then follows that

Pλe
λ = C0 + C1λ +

∞∑
n=2

λn

n!
Cn

< C0 + C1λ + λ2

μ2

∞∑
n=2

μn

n!
Cn

= C0 + C1λ + λ2

μ2
(Pμeμ − C0 − C1μ), (18)

because λ/μ � 1. Solving for C1 we obtain

C1 >
μ

μλ − λ2

[
Pλe

λ − λ2

μ2
Pμeμ − μ2 − λ2

μ2
C0

]
, (19)

which is similar to what is found in [35] using another
method.

Now, we need to upper bound C0 to find the lower
bound of C1. We again assume that Eve cannot intrude into
Alice and Bob’s experimental setups. This implies that, when
Alice’s source emits no photons, Alice and Bob’s conditional
coincidence probability C0 cannot exceed the dark count
probability of Alice’s detectors

C0 � C
UB ,{ν1,ν2}
0 = pd. (20)

Therefore,

Fμ = C1
μe−μ

Pμ

>
μ2

μλ−λ2

[
Pλ

Pμ

eλ−μ− λ2

μ2
− μ2−λ2

μ2

C
UB ,{ν1,ν2}
0 e−μ

Pμ

]
,

(21)

where λ = ν1 or ν2 if ν2 �= 0, and λ = ν1 if ν2 = 0.
Combining (17) and (21), we get

Fμ � F LB ,{ν1,ν2}
μ

= max

{
μ2

μν1 − μν2 − ν2
1 + ν2

2

[
Pν1

Pμ

eν1−μ − Pν2

Pμ

eν2−μ

− ν2
1 − ν2

2

μ2

(
1 − C

LB ,{ν1,ν2}
0 e−μ

Pμ

)]
,

μ2

μλ − λ2

[
Pλ

Pμ

eλ−μ − λ2

μ2

− μ2 − λ2

μ2

C
UB ,{ν1,ν2}
0 e−μ

Pμ

]}
, (22)

where λ = ν1 or ν2 if ν2 �= 0, and λ = ν1 if ν2 = 0.

B. Upper bounds on ξt and ξω

Let (λ1,λ2) ∈ L = {(μ,ν1),(μ,ν2),(ν1,ν2)}. Each member
of L is an ordered pair of two mean photon-pair numbers. The
averaged excess-noise multipliers for the ordered pair (λ1,λ2)
are

�x,λ1 = Fλ1 (1 + ξx) + ��x(1 − Fλ1 ),

�x,λ2 = Fλ2 (1 + ξx) + ��x(1 − Fλ2 ).
(23)

Multiplying the above two equations by Pλ1e
λ1 and Pλ2e

λ2 ,
respectively, we obtain

�x,λ1Pλ1e
λ1 = λ1C1(1 + ξx) + ��x

(
Pλ1e

λ1 − λ1C1
)
,

(24)
�x,λ2Pλ2e

λ2 = λ2C1(1 + ξx) + ��x

(
Pλ2e

λ2 − λ2C1
)
.

To find upper bounds on ξt and ξω, we take the difference
between these two equations

�x,λ1Pλ1e
λ1 − �x,λ2Pλ2e

λ2

= (λ1 − λ2)C1(1 + ξx)

+��x

(
Pλ1e

λ1 − Pλ2e
λ2 − (λ1 − λ2)C1

)
� (λ1 − λ2)C1(1 + ξx), (25)
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where the inequality comes from

Pλ1e
λ1 − Pλ2e

λ2 =
∞∑

n=0

λn
1 − λn

2

n!
Cn

� (λ1 − λ2)C1, (26)

since λ1 > λ2 for any ordered pair (λ1,λ2) ∈ L. Thus,

(1 + ξx) � 1

(λ1 − λ2)C1

(
�x,λ1Pλ1e

λ1 − �x,λ2Pλ2e
λ2

)

� μe−μ

(λ1 − λ2)F LB ,{ν1,ν2}
μ

×
(

�x,λ1

Pλ1

Pμ

eλ1 − �x,λ2

Pλ2

Pμ

eλ2

)
, (27)

for x = t and ω.
Another way to place upper bounds on ξt and ξω is

immediately evident from (7)

�x,λ = Fλ (1 + ξx) + (1 − Fλ) ��x

� Fλ(1 + ξx)

= λPμ

μPλ

eμ−λFμ (1 + ξx)

� λPμ

μPλ

eμ−λF LB ,{ν1,ν2}
μ (1 + ξx), (28)

for λ ∈ {μ, ν1, ν2}. The inequality above implies that

(1 + ξx) � min
λ∈{μ,ν1,ν2}

{
eλ−μ μPλ

λPμ

�x,λ

F
LB ,{ν1,ν2}
μ

}
. (29)

Combining (27) and (29) gives us

ξx � ξUB ,{ν1,ν2}
x

= min

{
min

(λ1,λ2)∈L

{
μe−μ

(λ1 − λ2)F LB ,{ν1,ν2}
μ

×
(

�x,λ1

Pλ1

Pμ

eλ1 − �x,λ2

Pλ2

Pμ

eλ2

)}
,

min
λ∈{μ,ν1,ν2}

{
eλ−μ μPλ

λPμ

�x,λ

F
LB ,{ν1,ν2}
μ

}}
− 1. (30)

Using (17) and (30), we obtain a bound on the secure-key
capacity of HD-QKD using only two decoy states

�I � βI (A; B)μ − (
1 − F LB ,{ν1,ν2}

μ

)
nR

−F LB ,{ν1,ν2}
μ χUB

ξ
UB ,{ν1 ,ν2}
t ,ξ

UB ,{ν1 ,ν2}
ω

(A; E), (31)

where the subscript μ on I (A; B) indicates that Alice and
Bob’s mutual information is calculated using the signal state.

V. ONE DECOY STATE

When Alice only uses one decoy state, whose mean photon-
pair number ν is smaller than that of the signal state μ, we can
find a lower bound on Fμ by using (21) with λ = ν. The
argument used to upper bound C0 still applies because it only
depends on the assumption that Eve cannot intrude into Alice

and Bob’s experimental setups. Therefore,

Fμ � F LB ,{ν}
μ

= μ2

μν − ν2

[
Pν

Pμ

eν−μ − ν2

μ2
− μ2 − ν2

μ2

C
UB ,{ν}
0 e−μ

Pμ

]
,

(32)

with C0 � C
UB ,{ν}
0 = pd .

Similarly, upper bounds on ξt and ξω can be found by using
(30) with (λ1,λ2) = (μ,ν) and λ ∈ {μ,ν}

ξx � ξUB ,{ν}
x

= min

{
μ

(μ − ν)F LB ,{ν}
μ

(
�x,μ − Pν

Pμ

�x,νe
ν−μ

)
,

min
λ∈{μ,ν}

{
eλ−μ μPλ

λPμ

�x,λ

F
LB ,{ν}
μ

}}
− 1, (33)

for x = t and ω.

VI. NO DECOY STATES

When decoy states are not employed, Alice and Bob must
use a fraction of their signal frames to estimate the transmission
parameters. To find a lower bound on Fμ, consider

Pμeμ = C0 + C1μ +
∞∑

n=2

μn

n!
Cn

� C
UB ,∅
0 + C1μ +

∞∑
n=2

μn

n!
CUB ,∅

n , (34)

where

Cn � CUB ,∅
n = 1 − (1 − ηA)n(1 − pd ), (35)

is a consequence of Eve’s inability to affect Alice’s detection
probability.

Using the relations above, we have

C1 � C
LB ,∅
1 = 1

μ

[
Pμeμ − C

UB ,∅
0 −

∞∑
n=2

μn

n!
CUB ,∅

n

]
, (36)

and hence

Fμ � F LB ,∅
μ

= C
LB ,∅
1

μe−μ

Pμ

= 1 − C
UB ,∅
0 e−μ

Pμ

−
∞∑

n=2

μn

n!

CUB ,∅
n e−μ

Pμ

. (37)

Because �x,μ is the only available excess-noise multiplier, the
upper bounds on ξt and ξω are found by using (29) with λ = μ

ξx � ξUB ,∅
x = �x,μ

F
LB ,∅
μ

− 1, (38)

for x = t and ω.
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FIG. 2. (Color online) Lower bounds on the secure-key capacity (in bits per coincidence) of decoy-state HD-QKD as a function of
transmission distance. Top panels show the case d = 8 and bottom panels show the case d = 32. Solid lines with crosses (black) correspond
to HD-QKD with infinite decoy states; solid lines (red) correspond to HD-QKD with two weak decoy states of ν1 = μ/2 and an optimized
ν2; dashed lines (blue) correspond to HD-QKD with only one decoy state of ν = μ/2; and dotted lines (green) show the performance of
HD-QKD without decoy states. For μ = 0.01 and 0.10 (d = 8 and 32), lines for the infinite-decoy-state and the two-decoy-state protocols are
indistinguishable at the plots’ scales.

VII. NUMERICAL RESULTS AND DISCUSSION

Figure 2 plots the secure-key capacity of decoy-state HD-
QKD with an SPDC source of mean photon-pair numbers
per frame μ = 0.01,0.10, and 0.25. The top panels show the
case in which the Schmidt number d = 8 while the bottom
panels show the case in which d = 32. Three different decoy
state protocols are plotted in each panel: the one-decoy-state
protocol, the two-decoy-state protocol, and the infinite-decoy-
state protocol. For comparison, we also plot the security of
HD-QKD protocol without decoy states.

In particular, we consider the case ν = μ/2 for the one-
decoy-state protocol. For the two-decoy-state protocol, we
similarly assume ν1 = μ/2, but we optimize ν2 such that,
for any particular transmission distance, the lower bound on
the secure-key capacity �I is maximized. Figure 3 plots the
optimal values of ν2 as a function of transmission distance at
10-km increments.

For the cases of μ = 0.10 and 0.25, (21) gives a better lower
bound on Fμ at short distances. The sharp drop in the optimal
values of ν2 (at ∼50 km for μ = 0.10 and at ∼100 km for
μ = 0.25) indicates where (17) starts to provide a better lower
bound on Fμ than (21). On the other hand, for the cases of μ =
0.01, (17) provides a better lower bound on Fμ at all distances.
Moreover, the optimal values of ν2 are small compared to μ,
but nonzero. This result is in contrast to the two-decoy-state

BB84 protocol whose lower bound on secure-key capacity is
always maximized when ν2 → 0 [35].

We take σcor = 30 ps for both d values and σcoh = dσcor.
The frame duration Tf is chosen to be Tf = 2

√
2 ln 2 σcoh.

Distance (km)

ν
2
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FIG. 3. (Color online) Optimal values of ν2 at different trans-
mission distances for two-decoy-state protocols with μ =
{0.01,0.10,0.25} and ν1 = μ/2.
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Experimentally, when a larger d is wanted, it is easier
to increase the coherence time σcoh than to decrease the
correlation time σcor. This is because the σcoh can be increased
by modulating the pulse duration of the laser pump field.
On the other hand, σcor is determined by the phase-matching
bandwidth of the SPDC source and is characteristic to the
parametric down-conversion process.

We assume the following experimental parameters: prop-
agation loss α = 0.2 dB/km; detector timing jitter σJ = 20
ps; dark count rate rD = 1000 s−1; reconciliation efficiency β

= 0.9; nR = log2 d. The transmittance ηP = 10−αL/10, where
L is the length of the quantum channel in km. We also
assume that Alice and Bob have the same detector efficiencies:
ηA = ηB = 0.93 [53].

For simplicity, we assume equal excess-noise factors for
both the arrival-time and the frequency measurements, ξt =
ξω = ξ . The change in correlation time due to Eve’s interaction
is assumed to be σ� = (

√
1 + ξ − 1) × σcor = 10 ps. When

Alice and Bob do not use an infinite number of decoy states,
they can only measure �μ. For the calculations, we assume that
�� = 1 + ξ . Details on calculating Alice and Bob’s mutual
information, as well as Eve’s Holevo information, are outlined
in Appendixes A and B.

Using decoy states improves the security of the HD-QKD
protocol. For example, while the case of μ = 0.25 and d = 32
is insecure beyond 25 km without decoy states, the one-decoy-
state protocol is able to generate 0.45 secure bpc at a distance
of 100 km. Furthermore, when two weak decoy states are used,
the protocol can generate more than 0.52 secure bpc up to a
distance of 200 km.

Even though the probability of multiphoton emissions is
low for μ = 0.01, we only obtain secure bits up to a distance
of ∼100 km without decoy states. However, the presence of
one decoy state allows us to obtain 1.22 secure bpc for d = 8
and 2.57 secure bpc for d = 32 at the 100-km distance. The
two-decoy-state protocols generate more than 1.26 secure bpc
for d = 8 and more than 2.83 secure bpc for d = 32 up to a
distance of 200 km.

In Fig. 2, we also see that protocols with two decoy states
perform almost as well as protocols with infinite decoy states.
Intuitively, a protocol with an infinite number of decoy states
should perform the best because an infinite number of decoy
states allows us to estimate the values of all Cn precisely.
Nevertheless, the two-decoy-state protocols asymptotes to
the infinite-decoy-state protocols, performing only slightly
worse in the generation of secure-bit capacities at similar
transmission distances. When two decoy states are employed,
Alice and Bob can find useful lower bounds on C1 and C0 (and
hence Fμ). High-dimensional QKD protocols with two decoy
states therefore appear practical as they offer multiple secure
bits per coincidence at distances and at rates similar to those
achieved by a protocol with infinite decoy states.

The two-decoy-state protocol can reach a longer secure
distance than the one-decoy-state protocol. To see why,
consider (4) and (5). Notice that at short distances, where the
transmittance ηP ∼ 1, the postselection probability is domi-
nated by Cn with small values of n. However, at large distances,
where the transmittance ηP � 1, the postselection probability
is dominated by Cn with large values of n. Therefore, referring
to (32), the lower bound on Fμ in the one-decoy-state protocol,

calculated by taking the difference between Pνe
ν and C0,

decreases quickly as the channel transmittance ηP decreases.
On the other hand, the lower bound of Fμ in (17) for the
two-decoy-state protocol is calculated by taking the difference
between Pν1e

ν1 and Pν2e
ν2 , which are of comparable values at

both short and long distances. The one-decoy-state protocol is
nevertheless easy to implement. Moreover, the one-decoy-state
protocol offers boosts to the lower bound on secure-key
capacity, increasing the secure distance and the generation
rate, of a protocol without decoy states.

It is also interesting that, independent of the number of
decoy states employed, the photon efficiency of HD-QKD (in
bpc) decreases rapidly with increasing μ. The case of μ = 0.25
and d = 8 is insecure at only 50 km, even when infinite decoy
states are used. This implies that the μ value employed in
HD-QKD should be chosen to ensure that the probability of
multiphoton emissions is low.

VIII. CONCLUSION

We have analyzed the practicality of HD-QKD protocols
with decoy states. In particular, we considered the case of
HD-QKD with two decoy states and with one decoy state. For
completeness, we have also studied how the HD-QKD would
perform without decoy states.

Through simple numerical examples, we have shown that
HD-QKD with two decoy states is practical: It can achieve
multiple secure bits per coincidence at distances over 200 km
and at rates similar to those achieved by a protocol with infinite
decoy states. The HD-QKD protocol with only one decoy state
is also practical at short distances, in which case it is almost
as secure as the two-decoy-state protocol at short distances.

While we have only considered the DO-QKD protocol, the
arguments presented in this work can be generalized to other
HD-QKD protocols [12,19]. Decoy-state HD-QKD protocols
that are robust against collective PNS attacks can therefore
be used to maximize the rate of high-speed secure quantum
communications.
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APPENDIX A: EVE’S HOLEVO INFORMATION

The output state from an SPDC source in the low-flux limit
is Gaussian, and Gaussian attacks are optimal for a given
covariance matrix [22,23]. Alice and Bob’s time-frequency
covariance matrix is therefore crucial in estimating Eve’s
Holevo information [54]. Before any interaction with Eve,
it is

� =
(

γAA γAB

γBA γBB

)
, (A1)
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where the submatrices γJK for J,K = A,B are given by

γAA =
(

u+v
16 − u+v

8k

− u+v
8k

(u+v)(4k2+uv)
4k2uv

)
,

γAB = γ T
BA =

(
u−v
16

u−v
8k

− u−v
8k

− (u−v)(4k2+uv)
4k2uv

)
, (A2)

γBB =
(

u+v
16

u+v
8k

u+v
8k

(u+v)(4k2+uv)
4k2uv

)
,

with u = 16σ 2
coh and v = 4σ 2

cor [18]. Note that every entry in
the covariance matrix is measured in units of time. After Eve’s
interaction, the new covariance matrix is

�′ =
(

γ ′
AA γ ′

AB

γ ′
BA γ ′

BB

)
, (A3)

where the new submatrices are

γ ′
AA = γAA,

γ ′
AB = (γ ′

BA)T =
(

1 − ηt 0
0 1 − ηω

)
γAB, (A4)

γ ′
BB =

(
1 − εt 0

0 1 − εω

)
γBB.

Here, ηt and ηω represent the decrease in correlations, while εt

and εω represent the excess noise, all due to Eve’s interactions.
Once Alice and Bob have estimated the covariance matrix

�′, we can then assume that Alice, Bob, and Eve share a pure
Gaussian state ρABE in evaluating Eve’s Holevo information.
If Alice and Bob only generate secure bits from their arrival-
time measurements, Eve’s Holevo information can then be
calculated from

χξt ,ξω
(A; E) = S(ρAB) − S(ρB|TA

), (A5)

where S(ρ) = − Tr[ρ log2 ρ] is the von Neumann entropy
of the quantum state ρ. S(ρAB) can then be evaluated from
S(ρAB) = f (d+) + f (d−) where

f (x) = (
x + 1

2

)
log2

(
x + 1

2

) − (
x − 1

2

)
log2

(
x − 1

2

)
,

(A6)

and

d± = 1√
2

√
I1 ±

√
I 2

1 − 4I2,

I1 = det[γ ′
AA] + det[γ ′

BB] + 2 det[γ ′
AB], (A7)

I2 = det �′.

Furthermore, S(ρB|TA
) can be computed from

S(ρB|TA
) = f

(√
det

[
γ ′

B|TA

])
, (A8)

where

γ ′
B|TA

= γ ′
BB − γ ′

BA

(
Xtγ

′
AAXt

)−1
γ ′

AB, (A9)

Here, Xt = (1 0
0 0), and the inverse is done carried out using

the Moore-Penrose pseudoinverse.

As done in [18], we shall assume that the excess-noise
factors in the arrival-time and frequency measurements to be
equal, i.e., ξt = ξω = ξ . With this assumption, we can make
the simplification ηt = ηω = η and εt = εω = ε. Thus, we can
write Alice and Bob’s covariance matrix after Eve’s interaction
as

�′ =
(

γAA (1 − η)γAB

(1 − η)γBA (1 + ε)γBB

)
. (A10)

The relationship between the three noise parameters η, ε,
and ξ is

ε = −2η(d2 − 1/4) + ξ

d2 + 1/4
, (A11)

where d = σcoh/σcor is the Schmidt number. After Alice and
Bob estimate the value of ξ from their data, they should then
choose the values of η and ε that maximize Eve’s Holevo
information. The range of possible η and ε satisfy not only
the relationship given above but also the following additional
constraints:

(a) Eve cannot increase Alice and Bob’s mutual informa-
tion by interacting with only Bob’s photons due to the data
processing inequality;

(b) the symplectic eigenvalues of the covariance matrix are
greater than 1/2; and

(c) Eve can only degrade Alice and Bob’s arrival-time
correlations, i.e., Var[T ′

A − T ′
B] � Var [TA − TB].

APPENDIX B: ALICE AND BOB’S MUTUAL
INFORMATION

We assume that Alice and Bob only generate secure bits
from their arrival-time measurements. During the reconcili-
ation stage, Alice and Bob postselect frames in which each
of them has at least one coincidence, either due to dark
count or due to an actual photon. The probability for their
postselecting a frame is given by (4). In some of these
postselected frames, either Alice or Bob may have registered
more than one coincidence. To prevent Eve from exploiting
multiple-coincidence frames, Alice and Bob replace such data
with single coincidences chosen randomly from a Gaussian
distribution whose variance equals the corresponding entry
in the covariance matrix �′ plus the timing-jitter variance.
Alice and Bob’s arrival-time measurements therefore will
derive from five different probability distributions [19] as
follows.

1. Bivariate Gaussian probability distribution with covari-
ance matrix

� =
(

σ 2
A Cov[T ′

A,T ′
B]

Cov[T ′
A,T ′

B] σ 2
B

)
, (B1)

where Cov[T ′
A,T ′

B] means the covariance between T ′
A and T ′

B ,
i.e., the top-left entry of the submatrix γ ′

AB , σ 2
A = Var[T ′

A] +
σ 2

J , and σ 2
B = Var[T ′

B] + σ 2
J . This case is a postselected frame

in which Alice’s source emitted one photon-pair and neither
party had a dark count.
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2. Independent Gaussian probability distributions with
variances σ 2

A and σ 2
B . This case is a postselected frame in

which one of two situations occurred:
(a) Alice’s source emitted multiple photon-pairs, and Alice

and Bob registered at least one coincidence; or
(b) Alice’s source emitted one photon-pair, and Alice and

Bob registered a single coincidence with at least one of
them also having a dark count. (There could be some
correlations between Alice and Bob’s measurements, but,
being conservative, we are neglecting this possibility.)

3. Alice’s arrival time is a Gaussian random variable with
variance σ 2

A, and Bob’s arrival time is uniformly distributed
over the measurement frame. This case is a postselected frame
in which Alice detected at least one photon and Bob had a dark
count without detecting photons.

4. Bob’s arrival time is a Gaussian random variable with
variance σ 2

B , and Alice’s arrival time is uniformly distributed
over the measurement frame. This case is a postselected frame
in which Bob detected at least one photon and Alice had a dark
count without detecting photons.

5. Both Alice and Bob’s arrival times are uniformly
distributed over the measurement frame. This is a postselected
frame in which both Alice and Bob measured dark counts
without detecting photons.

The probability density functions for each of the above
cases are

pTA,TB |1( tA,tB | 1) = pBG(tA,tB ; �), (B2a)

pTA,TB |2(tA,tB |2) = pG

(
tA; σ 2

A

)
pG

(
tB ; σ 2

B

)
, (B2b)

pTA,TB |3(tA,tB |3) = pG

(
tA; σ 2

A

)
pU (tB ; Tf ), (B2c)

pTA,TB |4(tA,tB |4) = pU (tA; Tf )pG

(
tB ; σ 2

B

)
, (B2d)

pTA,TB |5(tA,tB |5) = pU (tA; Tf )pU (tB ; Tf ), (B2e)

where pBG(tA,tB ; �) is a bivariate Gaussian probability
density function with zero means and covariance matrix �;
pG(t ; σ 2) is a Gaussian probability density function with zero
mean and variance σ 2; and pU (t ; Tf ) is a uniform probability
density function over the interval [−Tf /2,Tf /2].

Moreover, the probabilities for each of the cases dis-
cussed above, given that a particular frame has been

postselected, are

π1 = μe−μηAηBηP (1 − pd )2/Pμ, (B3a)

π2 =
∞∑

n=2

μne−μ

n!Pμ

[1 − (1 − ηA)n][1 − (1 − ηBηP )n]

+ μe−μ

Pμ

ηAηBηP pd (2 − pd ), (B3b)

π3 =
∞∑

n=1

μne−μ

n!Pμ

[1 − (1 − ηA)n][pd (1 − ηBηP )n], (B3c)

π4 =
∞∑

n=1

μne−μ

n!Pμ

[pd (1 − ηA)n][1 − (1 − ηBηP )n], (B3d)

π5 =
∞∑

n=0

μne−μ

n!Pμ

p2
d (1 − ηA)n(1 − ηBηP )n, (B3e)

where ηA, ηB , ηP , and pd have been defined in Sec. III A.
The conditional probability density functions defined

above, as well as their occurrence probabilities, allow us to
define the arrival-time joint probability density function

pTA,TB
(tA,tB) =

5∑
i=1

πi pTA,TB |i(tA,tB |i). (B4)

Using this joint probability density function, we can calculate
Alice and Bob’s mutual information via

I (A; B)μ =
∫

dtAdtB pTA,TB
(tA,tB)

× log2

(
pTA,TB

(tA,tB)

pTA
(tA)pTB

(tB)

)
, (B5)

where pTA
(tA) = ∫

dtB pTA,TB
(tA,tB) and pTB

(tB) =∫
dtA pTA,TB

(tA,tB) are the marginal probability density
functions.

It is important to note that when the detector timing jitter
σJ exceeds the correlation time σcor, Alice and Bob’s mutual
information I (A; B) cannot approach its limit of log2 d. In this
case, the WDM [55] that makes σcor in each WDM channel
comparable to σJ should be applied, and secure-key must be
obtained from both arrival-time and frequency measurements.
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