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In quantum spin liquid states, the fractionalized spinon excitations can carry fractional crystal symmetry
quantum numbers, and this symmetry fractionalization distinguishes different symmetry-enriched spin liquid
states with identical intrinsic topological order. In this work we propose a simple way to detect signatures of such
crystal symmetry fractionalizations from the crystal symmetry representations of the ground state wave function.
We demonstrate our method on projected Z2 spin liquid wave functions on the kagome lattice, and show that
it can be used to classify generic wave functions. Particularly our method can be used to distinguish several
proposed candidates of Z2 spin liquid states on the kagome lattice.
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It is well known that anyons in topologically ordered phases
can carry symmetry quantum numbers that are quantized
to fractional values. In the celebrated example of fractional
quantum Hall states, Laughlin quasiparticles carry fractional
charge—the quantum number of the U (1) symmetry [1]. In
recent years, great progress has been made in understanding
the interplay between symmetry and fractionalization in other
topologically ordered states. In particular, topological spin liq-
uids exhibit a more subtle kind of symmetry fractionalization,
associated with the crystal symmetry of the underlying lattice
instead of internal symmetries [2–4]. While some aspects
of it have been studied for quite a while, crystal symmetry
fractionalization has now received renewed attention, due to an
increased interest in the role of crystal symmetry in topological
phases of matter. This topic is also becoming timely in view of
strong numerical evidence for spin liquids on kagome lattice
found in the last few years [5–9]. In order to fully pin down the
topological nature of the numerically found spin liquid liquid,
the complete pattern of crystal symmetry fractionalization
needs to be determined.

In this work, we offer our perspective on crystal sym-
metry fractionalization in Z2 spin liquids. We find that the
nontrivial way that crystal symmetry acts on an individual
anyon is directly related to the symmetry representation of
the topologically ordered ground states, as labeled by the
crystal momentum and parity of many-body wave functions.
Given that states with different symmetry labels cannot be
adiabatically connected, our finding immediately makes it
clear that the classification of spin liquids is refined and
enriched by taking into account crystal symmetries [10]. Our
theoretical result also provides a straightforward method to
classify and detect different spin liquids in numerical studies.
As a concrete example, we demonstrate that our method can
be used to easily distinguish various Z2 spin liquids on the
kagome lattice [11–13].

We begin by briefly reviewing what is known about crystal
symmetry fractionalization in Z2 spin liquids, and setting
up the terminology for our work. A Z2 spin liquid [14,15]

supports three types of anyon excitations: bosonic spinons,
fermionic spinons, and visons. As a defining property of
topological excitations, anyons of each type can only be cre-
ated in pairs. This property makes symmetry fractionalization
possible. This can be understood by considering a many-body
excited state containing two identical anyons that are spatially
separated [3,16]. Intuitively speaking, the action of symmetry
on this excited state can then be factorized into a product
of two independent symmetry actions on the anyons. While
the action on a physical state is necessarily described by a
linear representation of the symmetry group denoted by G, the
action on a single anyon is now allowed to form a projective
representation G̃, such that the tensor product G̃ ⊗ G̃ is a linear
representation of G [17–20]. The projective representation G̃,
which has a different group algebra than G, can be regarded
as the “square root” of G. In this sense, symmetry action on
anyons can be called “fractionalized.” Throughout this Rapid
Communication, a tilde symbol (˜) placed over a symmetry
operation means that it acts on an anyon; otherwise it acts on
a physical wave function.

To sharpen the intuitive argument stated above and give a
precise definition of symmetry fractionalization is a nontrivial
task that requires great care. The main difficulty is that sym-
metry operations should in principle be performed on a single
anyon, and yet any physical wave function necessarily contains
an even number of them. (We note that crystal symmetry
fractionalization may have implications for excitation spectra
that can be detected [2,21,22].) To overcome this difficulty, we
take a different approach and give a precise and operational
definition of crystal symmetry fractionalization by relating it
to the linear symmetry representations of many-body wave
functions.

Crystal symmetries of a given lattice form a space group G

generated by translation, rotation, and reflection. Any allowed
projective representation of G, denoted by G̃, can be specified
by its modified group algebra as compared to G [2,4]. First, two
commuting operations X and Y in G, XY = YX, can become
anticommuting in G̃, X̃Ỹ = −Ỹ X̃. This will be referred to as
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commutation relation fractionalization. Second, an identity of
Xn = 1 in G can become X̃n = −1 in G̃. This will be referred
to as quantum number fractionalization.

As the main result of this work, we find that the symmetry
representation of ground states is a diagnosis of crystal
symmetry fractionalization in Z2 spin liquids. First, the
commutation relation between a translation operation T1

and another symmetry operation X, T̃1X̃ = ±X̃T̃1, can be
determined from the difference between eigenvalues of X

for ground states in different topological sectors on a torus
geometry with an odd number of unit cells in the direction
of T1. Second, for an order-two symmetry operation X2 = 1,
X̃2 = ±1 can be determined from the parity eigenvalue of
X acting on ground states on a torus with 4n + 2 sites. We
find it remarkable that the fractionalized symmetry property
of anyons is simply and directly encoded in the symmetry
of ground states. Some technical details of our derivation are
available in the Supplemental Material [23].

a. Fractionalized commutation relation. In the presence of
a fractionalization in the commutation relation between T1

and another symmetry operation X, ground states in different
topological sectors have different eigenvalues of X on a torus
with odd number of unit cells in the T1 direction [3]. To extract
the fractionalization of different anyons, we find it crucial to
choose a basis according to the anyon flux along the direction
of T1.

On a torus, a gapped Z2 spin liquid has a fourfold ground
state degeneracy, which is protected by its intrinsic topological
order. A basis of these four ground states can be chosen such
that each state carries a different anyon flux going through the
torus in the direction of T1, which can be diagnosed by a Wilson
loop operator in the direction of T2 [15]. There are four types
of such flux; each corresponds to one type of anyon excitation
in the toric code topological order. Therefore the four ground
states can be labeled as |Ga〉, where a denotes the type of
anyon. In this Rapid Communication we denote the four types
of anyon excitations in the Z2 spin liquid state as a = 1, b, f ,
and v, standing for the trivial particle, the bosonic spinon, the
fermionic spinon, and the vison, respectively.

Using this basis, the ratio between parity eigenvalues of
two ground states can be calculated by considering the Berry
phase picked up through the following operations acting on
|G1〉,

X−1(f a)−1Xf a|G1〉 = ei��|G1〉, (1)

where f a denotes the operation of moving one a anyon across
the torus in the direction of T1 and it maps |G1〉 to f a|G1〉 =
|Ga〉 [24]. This Berry phase �� can be obtained from the
ground state X-symmetry representations as the following,

|G1〉 f a

−→ |Ga〉 X−→ λa
X|Ga〉

(f a )−1

−−−→ λa
X|G1〉 X−1−−→ λa

X

(
λ1

X

)−1|G1〉,
(2)

where λa
X denotes the parity eigenvalue of X acting on |Ga〉:

X|Ga〉 = λa
X|Ga〉.

On the other hand, the same Berry phase can be obtained
using the projective crystal symmetry representation of the a

anyon. Starting from the ground state |G1〉, the operation f a

creates two anyons locally and moves one across the torus

along T1, which is equivalent to acting T1 on one of the two
anyons n1 times, so the end state can be expressed as a ⊗ T̃

n1
1 a,

where ⊗ denotes anyon fusion and n1 is the number of unit
cells in the direction of T1, which is an odd number according
to our setup. Then X acts on both anyons and maps the state
to X̃a ⊗ X̃T̃

n1
1 a. The rest of the actions can be calculated

similarly,

1 = a ⊗ a
f a

−→ a ⊗ T̃
n1

1 a
X−→ X̃a ⊗ X̃T̃

n1
1 a

(f a )−1

−−−→ X̃a ⊗ T̃
−n1

1 X̃T̃
n1

1 a
X−1−−→ a ⊗ X̃−1T̃

−n1
1 X̃T̃

n1
1 a.

Hence after the series of operations one anyon is changed into
X̃−1T̃

−n1
1 X̃T̃

n1
1 a = (τ a

X)n1a, where τ a
X = ±1 denotes the frac-

tionalization of the commutation relation, T̃1X̃a = τ a
XX̃T̃1a.

This can be simplified as τ a
X because n1 is odd and (τ a

X)2 = 1.
Comparing this result with Eq. (2) we obtain the following
relation between commutation relation fractionalization and
ground state parity eigenvalues,

τ a
X = λa

X

/
λ1

X. (3)

b. Fractionalized quantum number. The action of an order-
two crystal symmetry X on an anyon is fractionalized if acting
X̃ twice on a single anyon yields X̃2 = −1. To detect such
fractionalized quantum number, we act X once on an excited
state containing two anyons, whose positions are swapped by
X [25]. Specifically, X̃ maps an anyon at a site i to another
anyon at the image site X(i) and vice versa.

The symmetry action on an anyon is accompanied by
additional gauge transformations [2],

X̃ai = UiaX(i), X̃aX(i) = UX(i)ai. (4)

Therefore, acting X̃ twice on the anyon ai leaves anyon
at its original position but yields a factor X̃2a = UX(i)Uia.
Alternatively, if one perform the operation X once on a
physical wave function |�〉 that contains a pair of anyons at
i and X(i), the same phase factors Ui and UX(i) are collected
from each anyon, so that the pair of spinons acquires the
same total phase of UX(i)Ui . Importantly, if the anyon under
consideration is a fermion, there is an additional statistical
sign due to the exchange of two fermions under X. To
summarize, when a bosonic anyon carries a fractionalized
quantum number X̃2 = −1, the parity eigenvalue of an excited
state |�〉 containing a pair of such anyons is opposite to that
of the ground state, from which |�〉 is created. For fermionic
anyons, X̃2 = −1 implies that the parity eigenvalues of |�〉
and |G〉 are identical.

We now show that detecting X̃2 = ±1 for spinons can
be further simplified when the spin liquid is constructed
from parton methods (using either the Schwinger-boson or
Abrikosov-fermion approach), which put exactly one spinon
on every lattice site. Specifically, we choose a lattice geometry
with 4n + 2 sites, so that the ground state contains an odd
number of pairs of spinons. The parity eigenvalue of such a
ground state is then equal to the parity of a single pair of
spinons, which in turn detects X̃2 = −1 as described above.
Importantly, the contribution to the parity eigenvalue from the
fractional quantum number is independent of the topological
sector of the ground state, in contract to the previous case
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involving the commutation relation between X̃ and T̃1. This
will be demonstrated with concrete examples below.

c. Z2 spin liquids on kagome lattices. We now apply our
method of detecting crystal symmetry fractionalization to Z2

spin liquid states on the kagome lattice. Recent numerical
studies of the spin- 1

2 Heisenberg model on the kagome
lattice [5–9] have found strong evidence for a gapped spin
liquid state, likely with a Z2 topological order (see however,
Ref. [26]). On the other hand, various types of Z2 spin
liquids on the kagome lattice that differ in symmetry properties
have been theoretically constructed using parton methods in
early studies [11–13]. In what follows, we will connect the
numerical findings to theoretical constructions and show how
to determine which of the Z2 spin liquid states theoretically
proposed so far is consistent with the ground state of the
Heisenberg model on the kagome lattice.

To start, we quickly describe the parton construction of
various Z2 spin liquid states, paying particular attention to
the role of crystal symmetry. Parton constructions postulate
that the low-energy dynamics of the spin liquid phase is
described by gapped spinons (which carry Z2 gauge charge)
interacting with Z2 gauge fields. Depending on the Z2

background flux patterns, the spinon exhibits different crystal
symmetry fractionalizations, thus leading to distinct spin liquid
states. This is because in the presence of gauge flux, crystal
symmetries acting on a spinon involve additional Z2 gauge
transformations. For example, when there is a π flux within
a unit cell, translations of spinons correspond to the magnetic
translation group with the property T̃1T̃2 = −T̃2T̃1, resulting
in a fractionalized commutation relation.

In the parton construction, spin liquids with different Z2

background flux patterns are classified using the projective
symmetry group (PSG) analysis invented by Wen [2], from
which we can derive crystal symmetry fractionalization of
bosonic and fermionic spinons. Below we derive the crystal
symmetry fractionalization for Z2 spin liquids on the kagome
lattice that were constructed using the Schwinger-boson ap-
proach in previous works [11,12]. The PSG analysis by Wang
and Vishwanath [12] has found that there are four spin liquid
states with different Z2 flux patterns, which are adiabatically
connected to nearest-neighbor resonating-valence-bond states
and therefore have better variational energy than other states.
Hence we use them as examples to demonstrate our method of
detecting crystal symmetry fractionalization. These four states
are labeled by three Z2 variables (p1,p2,p3); for the sake of
completeness, this terminology from Ref. [12] is reviewed in
Sec. I of the Supplemental Material [23].

The kagome lattice has three independent symmetry op-
erations: T1,2, σ , and Rπ/3, which denote translation, mirror
reflection, and rotation, respectively, and their definition is
shown in Fig. 1. A straightforward translation of terminology
shows that (p1,p2,p3) in the PSG analysis directly yields
the crystal symmetry fractionalizations of the bosonic spinon
excitations (denoted by b), listed in the first row of Table I.
Here, τT2 = ±1 labels the fractionalization of the commutation
relation between T1 and T2, defined by T̃1T̃2 = τT1 T̃2T̃1. Like-
wise, τσ is defined by T̃1σ̃ = τσ T̃1σ̃ , and the fractionalization
of commutation relation between T1 and the twofold rotation
Rπ ≡ R3

π/3 takes the form of T̃1R̃π = τRπ
R̃π T̃ −1

1 . All three τ ’s

i j

T1

T2

σ
Rπ

3

FIG. 1. The definition of crystal symmetry operations. T1,2, σ , and
R π

3
label the symmetry operations of translation, mirror reflection,

and sixfold rotation, respectively.

are equal for the four spin liquid states we consider. In addition,
quantum number fractionalizations σ̃ 2 = ±1 and R̃6

π/3 = ±1
are listed in the last two columns of Table II.

A limitation of the previous PSG analysis is that it is tied
to the Schwinger-boson formalism and hence only gives the
crystal symmetry fractionalization of the bosonic spinons.
The vison excitation in all four states has the same crystal
symmetry fractionalization [4,27]: τT2 = τσ = τRπ

= −1 and
σ̃ 2 = R̃2

π = 1. This result can be simply obtained from the
charge-flux duality: in a spin liquid state with odd number of
spinons per unit cell as is the case for the kagome lattice, the
vison always sees a π flux per unit cell because a spinon is a π

flux to a vison. As a result, the vison always has the property
T̃1T̃2 = −T̃2T̃1.

We now use the method of flux attachment to derive the
crystal symmetry fractionalization for the fermonic spinon,
which is equivalent to a composite of a bosonic spinon and
a vision—the latter is a π flux to the former. Compared to
a bosonic spinon, the fermionic spinon always sees an extra
π flux per unit cell due to the vison attached to it; hence
τ b
T2

= −τ
f

T2
. Similarly, the difference in R̃2

π between bosonic
and fermionic spinons follows from the fact that the attachment
of a π flux changes the angular momentum between integer
and half-integer values [28]. These results can also be derived
using general methods described in Sec. I of the Supplemental
Material [23], and are summarized in the second row of
Table I [29].

As an independent check of the above results, we find
that the above four spin liquid states constructed from the
Schwinger-boson approach can be equivalently described
using the Abrikosov-fermion approach. To establish the
mapping between the two parton constructions, we match
the ground states of spin liquids in the nearest-neighbor

TABLE I. Crystal symmetry fractionalizations of different anyon
excitations. b, f , and v denote the bosonic spinon, the fermionic
spinon, and the vison, respectively.

Anyon τ a
T1

= τ a
σ = τ a

Rπ
σ̃ 2 R̃6

π
3

= R̃2
π

b (−1)p1 (−1)p2 (−1)p1+p3

f (−1)p1+1 (−1)p2+1 (−1)p1+p3+1

v −1 +1 +1
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TABLE II. Correspondence between Schwinger-boson and
Abrikosov-fermion constructions. pi labels the PSG solutions of
Schwinger-boson construction [12]. The Q1 = ±Q2 labels are used
by Sachdev [11], and the labels in the last column are used by Lu [13].

(p1,p2,p3) Label in Ref. [11] Label in Ref. [13]

(0,0,1) Q1 = −Q2 Z2[0,π ]α
(0,1,0) Q1 = Q2 Z2[0,π ]β
(1,0,1) Z2[0,0]B
(1,1,0) Z2[0,0]A

resonating-valence-bond limit, given by the Gutzwiller pro-
jection on the corresponding parton wave functions in the two
constructions:

|ψ〉 = PG exp

⎡
⎣∑

〈ij〉
ξij εαβb

†
iαb

†
jβ

⎤
⎦ |0〉, (5)

|ψ〉 = PG exp

⎡
⎣∑

〈ij〉
ζij εαβf

†
iαf

†
jβ

⎤
⎦ |0〉. (6)

Here ξij and ζij are antisymmetric and symmetric scalars on
the nearest-neighbor bonds 〈ij 〉 used in Schwinger-boson and
Abrikosov-fermion constructions, respectively. The values of
ξij or ζij on bonds of the kagome lattice are given by the
corresponding PSG analysis. By equating Eq. (5) and (6),
we find explicitly the mapping between ξij and ζij for each
of the four spin liquid states [30,31]. As a by-product, this
mapping establishes the correspondence between the notation
of the Schwinger-boson [11,12] formalism (p1,p2,p3) with
that of the Abrikosov-fermion [13] formalism, as shown in
Table II. From this mapping, we have confirmed the results
in Table I (see Sec. II of the Supplemental Material [23] for
details).

Having derived the crystal symmetry fractionalization of
anyons for all four spin liquids on the kagome lattice, we can
now determine the symmetry representations of the ground
states for each spin liquid, by using the general relation
between the two as described in the first part of this work.
First, based on Eq. (3) and the results of commutation
relation fractionalizations summarized in Table I, the ratios
between symmetry eigenvalues of different ground states are
determined and the results are summarized in Table III.

Second, if all other aspects of the symmetry fractional-
ization are the same, a difference in the quantum number
fractionalization results in a uniform parity change in the
symmetry representation of ground states in all topological

TABLE III. Ratios between X-symmetry parity eigenvalues of
|Ga〉 and |G1〉. The results depend on the commutation relation
fractionalization τ b

T2
= −τ

f

T2
= (−1)p1 , and the ratios are the same

for X = T2, τ , and Rπ .

p1 λb
X/λ1

X λv
X/λ1

X λ
f

X/λ1
X

0 +1 −1 −1
1 −1 −1 +1

TABLE IV. Crystal symmetry representations of ground states
in different topological sectors on a torus with odd-by-(4n + 2) unit
cells. |Ga〉 denotes the ground state with an anyon flux a in the
direction of T1, where a = 1, b, v, and f denote the trivial anyon,
bosonic spinon, the vison, and the fermionic spinon, respectively.

X |G1〉 |Gb〉 |Gv〉 |Gf 〉
T2 1 (−1)p1 −1 (−1)p1+1

σ (−1)p2 (−1)p1+p2 (−1)p2+1 (−1)p1+p2+1

Rπ (−1)p3 (−1)p1+p3 (−1)p3+1 (−1)p1+p3+1

sectors. This relation can be obtained by explicitly calculating
the parity eigenvalues of the model wave functions in Eq. (5)
and Eq. (6). The results are summarized in Table III and the
details of the derivation is given in Sec. III of the Supplemental
Material [23]. These results are determined from projected
mean field wave functions but they also apply to general wave
functions in the same topologically ordered phase, because the
crystal symmetry representations are invariant when the state
is smoothly deformed without breaking crystal symmetries.

Summarizing the above results, we see that the PSG
parameters p2 and p3 determine the parity eigenvalues of the
ground state |G1〉, and then using p1 the parity eigenvalues
of the other sectors are also determined. Hence we can obtain
from (p1,p2,p3) the crystal symmetry representations of all
topological sectors on a torus with odd-by-(4n + 2) unit cells,
as summarized in Table IV.

d. Conclusions. In this work we propose a method to
detect crystal symmetry fractionalizations from the crystal
symmetry representations of the ground states. On a torus with
4n + 2 sites, the ratio between symmetry parity eigenvalues
of ground states in different topological sectors detects the
fractionalization of commutation relation with a translation
symmetry, and a uniform sign change in all sectors detects the
quantum number fractionalization.

Our method can be applied to study the nature of the
topological order of the Z2 spin liquid states obtained in
numerical studies. Particularly using the infinite-size density
matrix renormalization group (DMRG) method [32] or an
infinite projected entangled pair states (PEPS) ansatz [33] the
ground states in different topological orders can be obtained
on an infinite cylinder and labeled with the anyon type by
calculating the modular matrices [32,34,35]. To study both
commutation relation fractionalization and quantum number
fractionalization, we suggest using a cylinder (4n + 2) unit
cells wide. Then the crystal symmetry fractionalization studied
in this work can be determined by putting the system on a torus
with a length of an odd number of unit cells and examining the
crystal symmetry representation of topologically degenerate
ground states. For the Z2 spin liquid states discussed above,
the results are shown in Table IV.

In this work we explicitly derived the crystal symmetry
quantum number of ground states and the fractional symmetry
quantum number of anyons for four Z2 spin liquid states on
the kagome lattice [12]. Our method can be used straightfor-
wardly to study additional spin liquid states that have been
theoretically proposed [4,12,13].

Note added. Recently we were informed of a related
work [36].
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