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ARTICLE

Genetic Basis of Autoantibody Positive and Negative
Rheumatoid Arthritis Risk in a Multi-ethnic Cohort
Derived from Electronic Health Records

Fina Kurreeman,1,2,3 Katherine Liao,1 Lori Chibnik,2,4 Brendan Hickey,1,2 Eli Stahl,1,2 Vivian Gainer,5

Gang Li,1 Lynn Bry,6 Scott Mahan,2 Kristin Ardlie,2 Brian Thomson,2 Peter Szolovits,7

Susanne Churchill,8 Shawn N. Murphy,5,8 Tianxi Cai,9 Soumya Raychaudhuri,1,2 Isaac Kohane,8,10,11

Elizabeth Karlson,1 and Robert M. Plenge1,2,*

Discovering and following up on genetic associations with complex phenotypes require large patient cohorts. This is particularly true for

patient cohorts of diverse ancestry and clinically relevant subsets of disease. The ability to mine the electronic health records (EHRs) of

patients followed as part of routine clinical care provides a potential opportunity to efficiently identify affected cases and unaffected

controls for appropriate-sized genetic studies. Here, we demonstrate proof-of-concept that it is possible to use EHR data linked with bio-

specimens to establish a multi-ethnic case-control cohort for genetic research of a complex disease, rheumatoid arthritis (RA). In 1,515

EHR-derived RA cases and 1,480 controls matched for both genetic ancestry and disease-specific autoantibodies (anti-citrullinated

protein antibodies [ACPA]), we demonstrate that the odds ratios and aggregate genetic risk score (GRS) of known RA risk alleles measured

in individuals of European ancestry within our EHR cohort are nearly identical to those derived from a genome-wide association study

(GWAS) of 5,539 autoantibody-positive RA cases and 20,169 controls. We extend this approach to other ethnic groups and identify

a large overlap in the GRS among individuals of European, African, East Asian, and Hispanic ancestry. We also demonstrate that the

distribution of a GRS based on 28 non-HLA risk alleles in ACPAþ cases partially overlaps with ACPA- subgroup of RA cases. Our study

demonstrates that the genetic basis of rheumatoid arthritis risk is similar among cases of diverse ancestry divided into subsets based on

ACPA status and emphasizes the utility of linking EHR clinical data with biospecimens for genetic studies.
Introduction

Genome-wide association studies (GWASs) have success-

fully identified hundreds of genetic risk factors predispos-

ing individuals to many complex diseases.1,2 Most

common DNA variants by themselves, however, confer

relatively small increments of risk. This poses a challenge

for genetic studies of individual risk alleles because

achieving sufficient statistical power in a genetic associa-

tion study requires thousands of case-control samples.

The problem is amplified in patients of diverse ancestry

and for clinically relevant phenotypes within a given

disease because creating subsets of patients further reduces

sample size.

Electronic health records (EHRs) represent a rich source

of clinical data and might make it possible to efficiently

identify large and diverse patient cohorts for translational

genetic research.3 Because EHR data have been collected as

part of routine clinical care over many years, EHRs could

make it possible to rapidly procure patient data across

a broad range of clinical phenotypes. Recent reports indi-

cate that in 2010 approximately 20% of physicians in the
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US use a basic EHR system4 (seeWeb Resources). EHR adop-

tion rates are expected to grow because the US government

has called for every American to have an EHR by 2014,

making this a growing opportunity for genetics research.5

Few studies have demonstrated that EHR clinical data

linked with biospecimens are suitable for genetic research.

Two genetic studies have used EHR data to conduct case-

control association studies,6,7 but they did not specifically

explore genetic associations of disease across different

ethnic groups or within clinically relevant subsets of cases.

Our group8 and others3 have defined clinical phenotypes

on the basis of EHR data but have not conducted genetic

research with EHR clinical data.

Rheumatoid arthritis (RA [MIM 180300]) is a complex

disease that provides an appropriate test case for the utility

of genetic studies using EHR clinical data. It is a relatively

rare disease, occurring in approximately 0.5% of the adult

population,9 making it difficult to collect large, multi-

ethnic patient cohorts. There is a clear genetic basis to

RA: approximately 60% of the disease variability is in-

herited.10,11 To date, more than 30 loci, which explain

approximately 20% of variance in disease risk, have been
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Table 1. Characteristics of Cases and Controls Included in the EHR
Study

Characteristic Cases (n ¼ 1552) Controls (n ¼ 1504)

Age, mean (SD) 60.1 (13.8) 63.5 (13.8)

Female, n (%) 1258 (81.1) 1207 (80.3)

ACPAþ, n (%) 1051 (67.7) NA

Methotrexate, n (%) 978 (63.0) 18 (1.20)

Anti-TNF, n (%) 589 (37.9) 10 (0.66)

Reported EHR Ethnicity

European (%) 1118 (72.0) 1139 (75.7)

African (%) 127 (8.2) 135 (9.0)

Asian (%) 30 (1.9) 25 (1.7)

Hispanic (%) 98 (6.3) 108 (7.2)

Other (%) 14 (0.9) 5 (0.3)

Unreported (%) 165 (11) 92 (6)

‘‘NA’’ indicates that ACPA (Anti-citrullinated protein antibodies) were not
identified.12–23 The vast majority of RA risk alleles have

been identified and validated in patients who are of

European ancestry and are seropositive for disease-specific

autoantibodies (either anti-citrullinated protein antibodies

[ACPAs] or rheumatoid factor [RF]). Accordingly, it is

largely unknown whether these alleles contribute to risk

in other ethnic groups or in seronegative disease (and

ACPA� disease in particular).

The purpose of our study was to investigate the rele-

vance of known RA risk alleles in a multi-ethnic case-

control cohort that leverages clinical data from the EHR

and biospecimens collected as part of routine clinical

care. We used RA cases identified from EHR data to obtain

a large cohort suitable for genetic studies of RA risk8 and

created subsets of patients on the basis of ACPA status

and ethnic group. In comparing the effect sizes of indi-

vidual risk alleles and aggregate genetic risk scores (GRS)

among these patient subgroups, we provide a deeper

understanding of the genetic basis of ACPAþ and ACPA�
RA risk in a multi-ethnic cohort.
measured in controls. Reported EHR Race: individuals who could not be classi-
fied under the four broad ethnic groups of European, African, East Asian, or
Hispanic ancestries were classified as ‘‘other.’’ Individuals for whom we had
no EHR-reported ethnicities were classified as ‘‘unreported.’’ Age and gender
were derived from the codified EHR; ACPA status was derived by direct
measurement; medications were obtained from the codified EHR data (when
the medication was prescribed by a treating physician).
Subjects and Methods

EHR Case-Control Cohort
We have previously described an algorithm that uses codified EHR

data and narrative EHR data to define RA cases with high

accuracy.8 This approach allows the user to select sensitivity and

specificity thresholds to maximize power and minimize misclassi-

fication bias depending upon the research question. For our

genetic study, we performed simulations that varied by sample

size, rates of case-control status, misclassification, and statistical

power to select a specificity threshold of 95% (Figure S1). At this

threshold, we defined a cohort of 4,575 potential RA cases who

had received medical care within our healthcare system. For

each case, we identified three potential controls (n ¼ 13,725)

matched for age, gender, self-reported ethnicity, and number

of observations of codified data entries in the EHR. Matching

by the number of observations (facts) gives a rough approximation

to hospital activity. To assess how well cases and controls were

matched, we compared ranking of concepts in cases and controls.

The top ten diagnoses (not related to original selection) consis-

tently give Spearman rank-order correlations of the two sets

>0.9. We excluded controls with any diagnostic code of the

following autoimmune diseases: 714.x RA and other inflammatory

polyarthropathies, 710.x diffuse diseases of connective tissue,

720.x ankylosing spondylitis and other inflammatory spondy-

loarthropathies, 711.2x arthropathy in Behcet syndrome,

135 sarcoidosis, 425.8 dilated cardiomyopathy 2/2 dermatomyo-

sitis, scleroderma, vasculitis, 446 polyarteritis nodosa, 447.6

arteritis unspecified, 725 polymyalgia rheumatica, 136.1 Behcet

syndrome, 286.5 antiphospholipid antibody syndrome, 446.21

Goodpasture syndrome, 446.4 Wegener granulomatosis, 446.5

giant cell aortitis/temporal arteritis, 446.7 Takayasu arteritis, and

696.0 psoriatic arthropathy.

Biospecimen Collection
To collect biospecimens on cases and controls, we submitted

cohorts of unique medical record numbers linked to the project-

specific subject ID to the Brigham and Women’s Hospital (BWH)
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Specimen Bank, which handles prospective collection of discarded

samples across five clinical laboratories within Partners Healthcare

in the Boston Metropolitan area (USA). The BWH Specimen Bank

operates under an approved Institutional Review Board (IRB)

protocol. It acts as an ‘‘Honest Broker’’ for the collection and

release of anonymous and de-identified samples to investigators

with IRB-approved protocol for the use of retrospective and/or

prospectively collected materials.

After receipt of the cohorts, Specimen Bank staff verified and

loaded the cohorts into the Crimson LIMS, which identified clin-

ical samples at their point of discard after completion of all clinical

diagnostic testing. Additional filters were added to the queries so

that discarded EDTA-anticoagulated whole blood from patients

who had not received blood or platelet transfusions in the past

5 days could be found. Over the course of approximately 1 year,

discarded samples from a total of 1552 RA cases and 1504matched

controls were collected in this manner (Table 1). Discarded blood

remained at room temperature for up to 12 hr until clinical

laboratory testing was complete, and it was then stored at 4�C
until the point of discard, which varied at supplying labs from

24–72 hr after its initial collection. Prior work conducted on dis-

carded samples showed no effects on the quality or amount of

genomic DNA obtained from 1– 5 days after collection (L. Bry,

personal communication).

Samples were centrifuged so that Buffy coat cells would be sepa-

rated from plasma. Aliquots consisting of 1 ml Buffy coat and

2 aliquots of up to 1 ml of plasma were created and stored at

�80�C. DNA was extracted from frozen blood with the Gentra

Puregene DNA extraction kit from QIAGEN. DNA concentration

was determined with the Quant-IT Picogreen dsDNA reagent kit

from Invitrogen. Of the 3090 blood samples processed, we were

able to retrieve genomic DNA at >50 ng/ml from 2626 samples.

Samples with <50 ng/ml of DNA (n ¼ 464) were whole-genome
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amplified with the REPLI-g kit from QIAGEN. In total, 98.9% of

the 3090 samples were of sufficient final concentration

(R50 ng/ml) for our genetic studies. Once the biospecimen was

selected for research purposes, all personal health information

was removed so that patient confidentiality was maintained.

The Institutional Review Board of Partners HealthCare approved

our protocol.
Genotyping
One hundred and ninety-two ancestry-informative markers

(AIMs)24,25 and 29 SNPs from 27 RA risk loci were genotyped at

the Broad Institute according to the BeadExpress manufacturer’s

protocol (www.illumina.com). Ninety-six-well plates were

prepared with DNA at a uniform concentration of 50 ng/ml.

BeadExpress raw data were processed with Illumina’s BeadStudio

software suite (genotyping module 3.3.7), producing report files

containing normalized intensity data and SNP genotypes. All

SNP genotypes were inferred via a genotyping cluster file automat-

ically generated by BeadStudio. This file normalizes the intensities

and identifies clusters. After genotyping, a manual review of clus-

ters ensured high-quality data. Quality-control filters for SNPs

included a missing-genotype rate of <10% and a minor-allele

frequency of>1%. At this stage in our analysis, we did not exclude

SNPs on the basis of deviation from Hardy-Weinberg equilibrium

because of the multi-ethnic component of the study. We

have, however, applied this quality control at a later time point

after assigning our ethnicities on the basis of genetic markers

(see population structure assessment). Out of the 221 SNPs geno-

typed, seven SNPs had >10% missing genotypes. We excluded

individuals (n ¼ 61) who were missing >10% of SNPs passing

quality control.
ACPA Measurement
We used the plasma collected to measure RA disease-specific auto-

antibodies against ACPAs by using the second-generation kit from

Inova Diagnostic. Positivity was defined according to the manu-

facturer’s protocol. The kappa statistic for subjects with ACPA

checked directly in our lab and ACPA checked in the hospital

was 0.76 (where kappa > 0.75 indicates excellent reproducibility).
Assessment of Population Structure
Of the 192 AIMs, 185 passed our quality-control filters (see above);

onewas in high LDwith another SNP (r2R 0.80) andwas excluded

from the analysis. Using these 184 SNPs, we calculated principal

components (PCs) by using EIGENSTRAT without outlier

removal.26 Of the 184 AIMs, 144 AIMs overlapped with SNPs

genotyped in 11 Phase 3 HapMap populations. We used two

methods to correct for population stratification in our multi-

ethnic cohort. First, we developed a naive Bayes classifier to assign

genetic ancestries. Second, we used PCs to correct for residual strat-

ification within each broad category of ancestry. For our naive

Bayes approach, we performed the following analysis. We grouped

11 HapMap populations consisting of CEU (Utah residents with

ancestry fromnorthern andwestern Europe), TSI (Tuscans in Italy),

YRI (Yorubans in Ibadan, Nigeria), CHB (Han Chinese in Beijing,

China), JPT (Japanese in Tokyo, Japan), CHD (Chinese in Denver,

CO, USA), MKK (Maasai in Kinyawa, Kenya), LWK (Luhya in We-

buye, Kenya), ASW (African Americans from Southwestern USA),

GIH (Gujarati Indians in Houston, TX, USA), and MEX (Mexicans

in Los Angeles, CA, USA) into four broad categories of African, East

Asian, European, and other ancestries. We estimated the allele
The A
frequency of the 144 AIMs in our four aggregated populations.

For each individual, we computed the probability of generating

those genotypes across 144 SNPs on the condition of their having

been sampled from each of our populations. Normalizing these

values yielded the probability that those genotypes were drawn

from a particular population. For each individual, we report the

classification corresponding to themost likely population of origin

(Figure 1). Individuals clustering with CEU/TSI populations along

the top two principal components (orange filled circles) were clas-

sified as being of European origin on the basis of AIMs; individuals

clustering with CHB/JPT/CHD were classified as having East Asian

ancestry (purple filled circles); and individuals clustering with YRI/

ASW/MKK/LWK were classified as having African ancestry (green

filled circles). The remaining individuals were classified as

Hispanics (gray filled circles) and correlated predominantly with

EHR-reported Hispanic ethnicity (Table S1A). We also analyzed

the correlation between self-reported ancestry and ancestries we

classified with high confidence (probability of assigned ancestry

> 0.9999) (Table S1B). We performed structured analyses within

each broad category of classified ancestries separately.
Single-SNP Analysis
We performed single SNP analysis for 29 SNPs that have previously

been reported to exceedgenome-wide significance (p<5310�8) in

at least one GWAS or in a recent meta-analysis of GWA studies.22

Some SNPs in our study were proxies of previously reported associ-

ations. SNP rs6679677 at the PTPN22 (MIM600716) locus has an r2

of 1 with rs2476601;22 rs1160542 at the AFF3 (MIM 601464) locus

has an r2 of 0.97 with rs10865035;22 rs13277113 at the BLK (MIM

191305) locus has an r2 of 0.88 with rs2736340;22 rs10118357 at

the TRAF1-C5 (TRAF1 [MIM 601711], C5 [MIM 120900]) locus

has an r2 of 0.97 with rs376184716 and an r2 of 1.0 with

rs10818488;17 and rs10040327 at ANKRD55 (MIM not available)

locus has an r2 of 0.33 with rs6850219.22

We performed single-SNP analysis on 1515 RA cases and 1480

controls that passed quality-control genotyping filters. We per-

formedSNPassociationswithRAriskwitha logistic regressionmodel

as implemented in thePLINKv. 1.06 softwarepackage.27Eachmodel

consisted of one SNP as an independent variable and included the

top five PCs as covariates. All reported p values are two tailed.

We compared the odds ratios from our EHR cohort to odds

ratios derived from a recent meta-analysis of 5539 autoantibody-

positive RA cases and 20,169 controls, all of European descent.22

To formally test this comparison, we performed a heterogeneity

test across the 29 SNPs. For each SNP, we calculated the difference

between the natural log of the ORs (bdiff), the SEdiff (square root of

the sum of the two variances), and a Z score (bdiff/SEdiff). We then

summed the squared Z scores across the 29 SNPs and determined

an overall p value from a chi-square distribution with 29 degrees of

freedom.

For the individuals of non-European ancestry, we observed

differences in population allele frequency in healthy controls

(Table S2). The statistical power to detect a significant association

of SNPs with RA was calculated on the basis of the following:

the ORs for association with RA in the European population; the

sample size of the current population under study; and the allele

frequencies in the population (Table S2).
Aggregate Genetic-Risk Score
We calculated a cumulative aggregate genetic-risk score,21 which is

the sum of the weighted risk-allele counts for (i) all previously
merican Journal of Human Genetics 88, 57–69, January 7, 2011 59
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Figure 1. Assessment of Population Structure and Assignment of EHR Subjects into Four Ancestry Groups of European, African, East
Asian, and Hispanic Descent
Population structure of the EHR (A) cases and (B) controls are plotted on PCs 1 and 2 (filled circles). These subjects were projected onto
reference populations from Phase 3 of the HapMap Project via 144 ancestry-informative markers (dotted lines). The centroids indicate
the outer bounds of the three major HapMap continental populations, and the darker filled circles indicate the center of each centroid.
Individuals who were not assigned to these major continental populations were classified as ‘‘other’’ and were predominantly of EHR-
reported Hispanic origin (gray circles).
known RA risk alleles, including one HLA and 28 non-HLA SNPs

and (ii) 28 non-HLA risk alleles in all datasets, including the EHR

cohorts stratified by classified ancestries (see assessment of popula-

tion structure) and the GWAS-meta-analysis dataset. As a result

of a different analytical procedure (i.e., PCA correction and no

case-control matching), the GWAS dataset in the current study

consisted of slightly different sample numbers than our published

GWAS.22 The weights for each SNP were derived from the recently

published GWAS meta-analysis22 and were calculated as the

natural log of the odds ratio for each allele (Table 2). These same

weights were used in our comparison of GRS in the GWAS meta-

analysis and ACPAþ versus ACPA� disease. Any individual with

missing genotypes for a particular SNP was assigned the

expected value of twice the risk-allele frequency for that SNP

(missing genotypes were inferred for cases and controls sepa-

rately). We calculated GRS across n SNPs according to the

following formula:

GRS ¼
Xn

i¼1

wiXi;

where n is the number of SNPs, i is the SNP, wi is the weight for SNP

i, and Xi is the number of risk alleles (0, 1, or 2).

We plotted the distribution of the GRS separately for cases with

RA and controls. Using a regressionmodel, we determined the rela-

tionship between case-control status and GRS and adjusted for the

top five PCs. Using PC correction in the current analysis of the

GWAS meta-analysis sample set as compared to outlier removal

and PC case-control matching in the previously published study

resulted in a modest difference in sample numbers (Table 3).

Using the adjusted predicted values from the regression model,
60 The American Journal of Human Genetics 88, 57–69, January 7, 20
we calculated the area under the receiver operating characteristic

(ROC) curves by plotting the sensitivity of the GRS against 1 spec-

ificitybyusing the library (pROC) in the statisticalpackageR2.10.28
Results

Multi-ethnic Case-Control Cohort

The clinical characteristics of the case-control samples used

in our genetic study are shown in Table 1. The characteris-

tics of our RA cases were similar to those observed in tradi-

tional patient registries.8 Here, however, cases andmatched

controls were of diverse ancestries, reflecting the demo-

graphics of the patient population served by hospitals in

the Boston metropolitan area. Approximately 75% of the

cases and controlswere of self-described European ancestry,

and the remainder were of African, East Asian, Hispanic, or

other ancestry. Approximately 10% of cases did not have

ancestry information reported in the EHR.

Population stratification due to genetic ancestry is

known to bias genetic association studies.29 Because self-

reported ancestry can differ from genetic ancestry, and

because ancestry was not reported in 11.3% of cases and

6.4% of controls in our EHR cohort, we determined genetic

ancestry in our EHR cohort by using a panel of 192 AIMs,

which we selected to differentiate continental ancestry

and European ancestry.24,25 Using a naive Bayes classifier,

we assigned genetic ancestry to each case-control subject

from our EHR cohort (see Subjects and Methods).
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As shown in Figure 1, the ancestries assigned by this

approach were consistent with genetic ancestry observed

via a principal-components method26 among four broad

HapMap groups and were as follows: European ancestry,

African ancestry (including admixed African Americans),

East Asian ancestry, and Hispanic ancestry (individuals

who were not classified according to the three groups

mentioned above but who clustered with Hispanic individ-

uals from HapMap).

We compared our genetically assigned ancestries to the

EHR-reported ancestries (Table S1A). We observed 98%

and 94% concordance between genetic and EHR-reported

ancestry for individuals of European and African ancestry;

concordance was 78% and 52% for East Asian and

Hispanic ancestry, respectively. In individuals with highly

confident predictions of genetic ancestry, concordance

rates were close to 100% in individuals of European, East

Asian, and African ancestry (Table S1B). On the basis of

these data, we used AIMs to assign genetic ancestries to

all individuals, rather than relying solely on ancestries re-

ported in the EHR. In our subsequent analyses, we con-

ducted structured statistical tests of association with risk

of RA within these genetically defined ancestry subgroups,

and we also used principal components to correct for

residual population stratification within each subgroup

by using 184 AIMs.

Single-SNP Analysis in ACPAþ Cases of Diverse

Ancestries

Even though the clinical characteristics of the RA cases in

our EHR cohort are similar to those of traditional RA

cohorts,8 we sought to empirically validate previous associ-

ations to demonstrate the feasibility of human genetic

studies in our newly collected case-control cohort. We

reasoned that if our case-control definitions are precise,

then the odds ratios of RA risk alleles measured in our

cohort should be similar to those derived from other

cohorts. To test this specifically, we conducted a case-

control association study in a subset of cases that were

ACPAþ and of European genetic ancestry. We chose this

subgroup in order to compare odds ratios to a recent

GWAS meta-analysis of 5539 autoantibody-positive RA

cases and 20,169 controls, all of European ancestry.22

Of the 29 SNPs tested in 871 ACPAþ RA cases and 1212

controls of European ancestry, 16 achieved p < 0.05 in

our EHR cohort, and the most significant SNPs demon-

strated p ¼ 4.4 3 10�25 (HLA-DRB1*04 [MIM 142857]

tag SNP, rs6457620, OR ¼ 2.03) and p ¼ 7.19 3 10�12

(PTPN22, rs6679677, OR ¼ 2.06) (Table 2). As shown in

Figure 2, the direction and magnitude of point estimates

of the odds ratios for 26 of 29 SNPs were consistent

between our EHR cohort and the GWAS meta-analysis;

the remaining three SNPs (STAT4 [MIM 600558],

rs7574865; IL2/21 (IL2 [MIM 147680] and IL21 [MIM

605384]), rs6822844; and IL2RB [MIM 146710],

rs3218253) have point estimates close to 1. Considering

the odds-ratio distribution of all 29 SNPs, there was no
The A
statistical difference between those observed in our EHR

cohort and those observed in the GWAS meta-analysis

(overall heterogeneity p ¼ 0.18).

As a first step to determine whether these 29 SNPs also

contribute to risk of ACPAþ RA in cases of non-European

ancestry, we analyzed single SNPs for association within

case-control samples of African, East Asian, and ‘‘other’’

(predominantly Hispanic) genetic ancestries (Table 2).

Our multi-ethnic subgroups consisted of 100 ACPAþ cases

and 150 controls of African ancestry, 23 ACPAþ cases and

21 controls of East Asian ancestry, and 57 ACPAþ cases and

74 controls of predominantly Hispanic ancestry. Despite

the small sample size, we observed significant association

at the HLA-DRB1*04 tag SNP (rs6679677, OR 1.89, 95%

confidence interval [CI] 1.29–2.76, p¼ 0.0011) in the indi-

viduals of African ancestry. Individuals of East Asian and

Hispanic ancestry had a similar trend of association at

this HLA-DRB1*04 SNP (OR 1.98 and p ¼ 0.23; and OR

1.92 and p ¼ 0.04, respectively).

Aggregate Genetic-Risk Score in ACPAþ Cases across

Diverse Ancestries

Although single-SNP analyses are required for confirma-

tion of the contribution of individual risk alleles, aggregate

SNP analyses provide a useful summary of risk across all

alleles. This approach has the added benefit of a single

statistical test (which reduces the multiple-hypothesis

testing burden such that a p < 0.05 can be considered

significant) that is useful for comparing genetic-risk

profiles across multi-ethnic groups of small sample sizes.

To compare the RA genetic-risk profiles of our EHR cases

to those of controls, we used a weighted genetic-risk score

(GRS), which considers each individual’s aggregate

number of risk alleles weighted by the effect size of the

allele21 (see Subjects and Methods). The larger the GRS

number, the greater the number of risk alleles. As shown

in Figure 3A, the distribution of the GRS in European

ACPAþ cases significantly differs from that in controls

(pEU ¼ 5.63 10�46). As expected from our single-SNP anal-

ysis, the GRS in our EHR cohort was nearly identical to the

GRS derived from the same 29 SNPs in a recent GWAS

meta-analysis. We observed a mean (5SD) GRS of 5.1

(50.8) in the GWAS cases (n ¼ 5500) and 4.9 (50.8) in

the EHR cases of European ancestry (n ¼ 871). In controls,

the mean GRS was 4.4 (50.8) in the GWAS dataset (n ¼
22,619) and 4.4 (50.8) in the EHR dataset (n ¼ 1229).

Despite small sample sizes, the distribution of an aggre-

gate GRS for individuals of African (100 cases, 150

controls) and Hispanic (57 cases, 74 controls) descent

was also significantly different between ACPAþ cases and

controls in our EHR cohort (pAF ¼ 0.003, pHIS ¼ 0.026;

Table 3 and Figure 3). We observed a similar nonsignificant

trend in individuals of East Asian ancestry (23 cases, 21

controls; pAS ¼ 0.075). In the admixed African American

group, similar results were obtained when our analysis

was limited to those with the highest probability of being

of African origin (individuals who clustered most strongly
merican Journal of Human Genetics 88, 57–69, January 7, 2011 61



Table 2. Association at Known RA Loci in Four Major Continental Populations of European, African, East Asian, and Hispanic Descent in ACPAþ Cases versus Controls

Previous (European
Ancestry)

EHR EU (871 Cases,
1212 Controls) EHR AF (100 Cases, 150 Controls) EHR AS (23 Cases, 21 Controls) EHR HIS (57 Cases, 74 Controls)

SNP Alleles
Allele
Frequency

Allele
Frequency

Allele F
requency

Allele
Frequency

SNP ID Locus Gene (s) A1/A2 Risk
OR
(95% CI) Cases

Con-
trols

OR
(95% CI) P Cases

Con-
trols

OR
(95% CI) P Cases

Con-
trols

OR
(95% CI) P Cases

Con-
trols

OR
(95% CI) P

rs6679677 1p13 PTPN22 C/A A 1.94
(1.81,2.08)

0.15 0.07 2.06
(1.68,2.53)

7.19 3
10�12

0.01 0.01 1.03
(0.22, 4.77)

0.97 0.00 0.00 NA NA 0.03 0.04 0.54
(0.11, 2.74)

0.46

rs11586238 1p13 CD2,
CD58

C/G G 1.13
(1.07,1.19)

0.24 0.20 1.20
(1.04,1.40)

0.02 0.10 0.12 0.89
(0.50,1.58)

0.69 0.04 0.05 0.16
(0.01,3.17)

0.23 0.21 0.21 1.12
(0.62, 2.02)

0.71

rs13031237 2p16 REL G/T T 1.13
(1.07,1.18)

0.37 0.35 1.10
(0.97,1.25)

0.15 0.13 0.09 1.61
(0.88,2.96)

0.12 0.04 0.10 0.13
(0.01,1.51)

0.10 0.18 0.23 0.62
(0.33, 1.17)

0.14

rs934734 2p14 SPRED2 A/G G 1.13
(1.08,1.18)

0.53 0.52 1.05
(0.93,1.19)

0.43 0.51 0.47 1.09
(0.77,1.52)

0.64 0.25 0.24 1.71
(0.39,7.47)

0.48 0.44 0.40 1.25
(0.76,2.07)

0.38

rs1160542 2q11 AFF3 A/G G 1.12
(1.07,1.17)

0.49 0.47 1.11
(0.98,1.26)

0.10 0.79 0.79 0.89
(0.57,1.40)

0.62 0.43 0.33 3.25
(0.77,13.7)

0.11 0.60 0.61 1.05
(0.59,1.86)*

0.88

rs7574865 2q32 STAT4 G/T T 1.16
(1.10,1.23)

0.23 0.25 0.93
(0.80,1.08)

0.33 0.14 0.12 1.24
(0.71,2.15)

0.45 0.35 0.50 0.62
(0.19,2.02)

0.43 0.48 0.22 2.81
(1.53,5.18)

1.00E-
03

rs1980422 2q33 CD28 T/C C 1.12
(1.06,1.18)

0.27 0.24 1.18
(1.02,1.36)

0.02 0.25 0.25 1.00
(0.67,1.50)

0.99 0.15 0.10 1.45
(0.26,8.08)

0.67 0.27 0.20 1.68
(0.86,3.28)

0.13

rs3087243 2q33 CTLA4 G/A G 1.15
(1.10,1.20)

0.60 0.53 1.28
(1.13,1.45)

1.19E-04 0.80 0.76 1.19
(0.76,1.85)

0.46 0.78 0.69 1.01
(0.28,3.62)

0.98 0.60 0.64 0.83
(0.48,1.45)

0.52

rs13315591 3p14 PXK T/C C 1.29
(1.17,1.43)

0.09 0.07 1.39
(1.11,1.75)

4.79E-03 0.31 0.30 1.08
(0.73,1.60)

0.71 0.00 0.00 NA NA 0.09 0.10 1.18
(0.46,3.02)*

0.73

rs874040 4p15 RBPJ G/C C 1.14
(1.09,1.20)

0.33 0.29 1.21
(1.06,1.38)

0.01 0.32 0.37 0.73
(0.49,1.09)

0.13 0.00 0.00 NA NA 0.27 0.22 1.80
(0.92,3.51)

0.09

rs6822844 4q27 IL2,IL21 G/T G 1.11
(1.05,1.19)

0.85 0.86 0.97
(0.81,1.15)

0.70 0.96 0.99 0.29
(0.08,1.03)

0.06 1.00 1.00 NA NA 0.92 0.95 0.67
(0.24,1.88)

0.44

rs10040327 5q11 ANKRD55,
IL6ST

C/A C 1.33
(1.23,1.47)

0.90 0.88 1.28
(1.05,1.57)

0.02 0.90 0.89 1.07
(0.59,1.93)

0.82 1.00 1.00 NA NA 0.92 0.92 1.16
(0.42,3.18)

0.78

rs26232 5q21 C5orf13 C/T C 1.14
(1.09,1.19)

0.69 0.69 1.04
(0.90,1.19)

0.62 0.72 0.72 0.98
(0.66,1.45)

0.92 0.74 0.88 0.50
(0.10,2.45)

0.39 0.81 0.76 1.38
(0.69,2.74)

0.36

rs6457620 6p21 HLA*04
tag

G/C C 2.35
(2.25,2.46)

0.68 0.52 2.03
(1.77,2.32)

4.44E-25 0.63 0.49 1.89
(1.29,2.76)

1.09E-03 0.72 0.52 1.98
(0.65,6.07)

0.23 0.75 0.61 1.92
(1.03,3.57)

0.04

rs548234 6q21 PRDM1 T/C C 1.10
(1.05,1.16)

0.33 0.30 1.08
(0.94,1.24)

0.27 0.12 0.11 1.23
(0.69,2.20)

0.48 0.39 0.29 2.08
(0.61,7.07)

0.24 0.19 0.22 0.80
(0.42,1.52)

0.49

rs10499194 6q23 TNFAIP3 C/T C 1.10
(1.04,1.15)

0.74 0.68 1.33
(1.16,1.54)

5.88E-05 0.85 0.79 1.38
(0.86,2.22)

0.18 0.96 0.98 0.37
(0.02,8.11)

0.53 0.71 0.72 1.02
(0.56,1.88)*

0.95

rs6920220 6q23 TNFAIP3 G/A A 1.22
(1.16,1.29)

0.23 0.19 1.25
(1.08,1.46)

3.55E-03 0.11 0.12 0.92
(0.50,1.68)

0.79 0.00 0.00 NA NA 0.11 0.12 1.00
(0.42,2.38)*

1.00
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Table 2. Continued

Previous (European
Ancestry)

EHR EU (871 Cases,
1212 Controls) EHR AF (100 Cases, 150 Controls) EHR AS (23 Cases, 21 Controls) EHR HIS (57 Cases, 74 Controls)

SNP Alleles
Allele
Frequency

Allele
Frequency

Allele F
requency

Allele
Frequency

SNP ID Locus Gene (s) A1/A2 Risk
OR
(95% CI) Cases

Con-
trols

OR
(95% CI) P Cases

Con-
trols

OR
(95% CI) P Cases

Con-
trols

OR
(95% CI) P Cases

Con-
trols

OR
(95% CI) P

rs394581 6q25 TAGAP T/C T 1.10
(1.04,1.15)

0.71 0.67 1.16
(1.01,1.33)

0.04 0.49 0.57 0.74
(0.51,1.08)

0.12 0.95 0.88 7.24
(0.43,123)

0.17 0.78 0.80 0.66
(0.34,1.30)

0.23

rs3093023 6q27 CCR6 G/A A 1.13
(1.08,1.19)

0.46 0.42 1.16
(1.02,1.31)

0.02 0.22 0.16 1.47
(0.93,2.33)

0.10 0.54 0.40 2.12
(0.66,6.77)

0.21 0.38 0.30 1.74
(0.97,3.11)

0.06

rs10488631 7q32 IRF5 T/C C 1.19
(1.11,1.28)

0.13 0.11 1.28
(1.06,1.55)

0.01 0.05 0.03 1.76
(0.70,4.44)

0.23 0.00 0.00 NA NA 0.15 0.16 0.91
(0.44,1.87)

0.79

rs13277113 8p23 BLK G/A A 1.12
(1.07,1.18)

0.26 0.23 1.15
(1.00,1.33)

0.05 0.14 0.12 1.21
(0.71,2.08)

0.49 0.76 0.69 1.08
(0.36,3.28)

0.89 0.60 0.43 1.78
(1.01,3.14)

0.05

rs2812378 9p13 CCL21 A/G G 1.10
(1.05,1.16)

0.35 0.33 1.08
(0.95,1.23)

0.24 0.38 0.39 0.99
(0.68,1.45)

0.95 0.11 0.07 10.5
(0.57,192)

0.11 0.39 0.32 1.57
(0.89,2.76)

0.12

rs951005 9p13 CCL21 A/G A 1.19
(1.11,1.27)

0.83 0.80 1.18
(1.00,1.38)

0.05 0.68 0.69 0.92
(0.62,1.36)

0.66 0.96 0.90 2.47
(0.22,27.2)

0.46 0.81 0.83 0.82
(0.42,1.60)

0.56

rs10118357 9q33 TRAF1,
C5

A/G G 1.13
(1.08,1.18)

0.44 0.39 1.19
(1.05,1.34)

0.01 0.85 0.87 0.75
(0.45,1.24)

0.26 0.57 0.60 0.85
(0.29,2.53)

0.77 0.29 0.47 0.41
(0.23,0.76)

4.00E-
03

rs706778 10p15 IL2RA C/T T 1.14
(1.08,1.19)

0.43 0.40 1.10
(0.97,1.25)

0.14 0.53 0.47 1.26
(0.87,1.82)

0.22 0.57 0.62 0.77
(0.26,2.30)

0.64 0.52 0.51 0.78
(0.45,1.37)*

0.39

rs4750316 10p15 PRKCQ G/C G 1.15
(1.09,1.22)

0.82 0.81 1.08
(0.92,1.27)

0.32 0.66 0.60 1.34
(0.92,1.96)

0.13 0.87 0.86 0.91
(0.16,5.18)*

0.92 0.89 0.82 1.55
(0.72,3.33)

0.26

rs1678542 12q13 KIF5A,
PIP4K2C

C/G C 1.10
(1.04,1.15)

0.63 0.63 1.05
(0.92,1.19)

0.46 0.52 0.58 0.77
(0.53,1.12)

0.17 0.30 0.19 2.96
(0.73,12.0)

0.13 0.56 0.57 1.09
(0.64,1.85)*

0.75

rs4810485 20q13 CD40 G/T G 1.18
(1.11,1.25)

0.76 0.72 1.23
(1.06,1.43)

0.01 0.95 0.94 1.13
(0.48,2.61)

0.78 0.72 0.55 3.99
(0.92,17.4)

0.07 0.82 0.81 0.97
(0.51,1.87)*

0.94

rs3218253 22q12 IL2RB G/A A 1.09
(1.03,1.15)

0.26 0.27 0.92
(0.80,1.06)

0.26 0.14 0.14 1.00
(0.58,1.74)

1.00 0.09 0.10 1.80
(0.26,12.6)*

0.56 0.15 0.22 0.77
(0.41,1.44)

0.41

Previously known SNPs associated with rheumatoid arthritis risk among European populations are shown above. Listed are SNP ID, chromosome, position, and candidate gene(s) in the region. A1 refers to the major allele, and
A2 refers to the minor allele based on the frequency in the controls in the GWASmeta-analysis. The risk allele refers to the allele that has previously been associated with risk of RA.22 Abbreviations are as follows: EU, Individuals
of European ancestry; AF, individuals of African ancestry (including admixed African Americans); AS, individuals of East Asian ancestry; and HIS, individuals of Hispanic origin. An asterisk indicates the SNPs for which an inverse
direction of association was obtained after PC correction (none of those SNPs were significant prior to or after PC correction).
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Table 3. Aggregate Genetic-Risk Scores, Effect Sizes, and AUC for ACPAþ Cases in the EHR Cohort and GWAS Meta-analysis Datasets

Sample Set Aggregate Genetic-Risk Score Derived from 29 RA Risk Alleles

Controls ACPAþ Cases Effect Size and AUC in Cases versus Controlsa

Mean SD Mean SD OR (95% CI) p AUC (95% CI)

EU (871 cases, 1229 controls) 4.37 0.81 4.93 0.77 2.43 (2.29,2.59) 5.55 3 10�46 0.71 (0.68–0.73)

AF (100 cases, 153 controls) 4.35 0.72 4.62 0.73 1.74 (1.44,1.85) 0.003 0.63 (0.56–0.70)

AS (23 cases, 21 controls) 4.22 0.72 4.68 0.58 3.12 (1.65,3.31) 0.075 0.74 (0.59–0.89)

HIS (57 cases, 77 controls) 4.62 0.75 4.96 0.65 1.91 (1.43,2.03) 0.026 0.66 (0.56–0.76)

GWAS (5500 cases, 22,619 controls) 4.42 0.79 5.07 0.76 1.87 (1.85,1.99) <10�300 0.73 (0.72–0.73)

We calculated a GRS score derived from 29 known RA risk alleles for each individual in the EHR cohort and the GWAS meta-analysis dataset. Shown are the unad-
justed mean and standard deviation (SD) of the GRS scores in controls and ACPAþ cases across all ethnic groups. Abbreviations are as follows: EU, individuals of
European ancestry; AF, individuals of African ancestry (including admixed African Americans); AS, individuals of East Asian ancestry; HIS, individuals of Hispanic
origin; GWAS, GWAS meta-analysis study.
a A logistic-regression model adjusting for the top five PCs was used for calculating odds ratios (ORs) for each unit increase in GRS and corresponding p values.
AUC (95% CI) represents the area under the receiver operating curve with a 95% CI interval.
with YRI samples from HapMap; data not shown), indi-

cating that the result in African Americans is not driven

by European admixture.

As a complementary method to compare the GRS across

all ancestry groups, we calculated the ORs for each unit

increase in GRS and AUC. Although the latter is most often
Figure 2. Overlap of Odds Ratio and 95%Confidence Intervals betw
Subset from EHR Cohort
Asterisks indicate TNFAIP3 SNP rs6920220 andCCL21 SNP rs951005.
GWAS represents samples from the previously published GWAS met
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used to discriminate cases from controls, we used it as

a measure of the contribution of the GRS in each of the

ethnic subgroups. All genetic ancestry subgroups displayed

similar effect sizes (Table 3). We note that the OR and AUC

in cases of African ancestry are less than in cases of non-

African ancestry.
een Previous GWASMeta-Analysis Dataset and ACPAþ European

EU indicates individuals of European descent from our EHR cohort.
a-analysis.22
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Figure 3. Distribution of the Aggregate Genetic-Risk Score from 29 RA Risk Alleles in ACPAþ Cases versus Controls
Samples represented in the respective panels are (A) controls and ACPAþ cases in our EHR study and controls (orange lines) and sero-
positive (ACPAþ and or RFþ) and healthy individuals from the GWAS meta-analysis, all of European descent (EU) (blue lines); (B)
controls and ACPAþ cases of African descent (AF) (green lines), (C) controls and ACPAþ cases of East Asian descent (AS) (purple lines),
and (D) controls and ACPAþ cases of Hispanic descent (HIS) (gray lines).
Taken together, these data indicate that, despite some

individual locus heterogeneity, common SNPs derived

from association testing in ACPAþ Europeans also

contribute to risk in ACPAþ cases of non-European

ancestry.

Aggregate Risk Score in ACPA� Cases of European

Ancestry

It is unknown whether the majority of risk alleles discov-

ered in ACPAþ disease also contribute to risk in ACPA�
disease. One exception is the HLA region, in which distinct

alleles are associated with risk in ACPAþ but not ACPA�
disease.30,31 We evaluated the genetic basis of ACPAþ
versus ACPA� disease among patients of European

ancestry in two ways: by using weights derived from

a previous meta-analysis in autoantibody positive RA to

compare the GRS derived from 28 non-HLA risk alleles in

ACPA� individuals to that from controls; and by

comparing the GRS derived from 28 non-HLA risk alleles

in ACPA� individuals to that in ACPAþ individuals in
The A
our EHR cohort. (There were too few ACPA� cases in the

non-European individuals to permit a meaningful compar-

ison; an exploratory single-SNP analysis can be found in

Table S3).

Among ACPA� cases of European ancestry (n ¼ 378), we

found a significant difference in the distribution of the

GRS derived from 28 non-HLA risk alleles in ACPA� RA

cases compared to controls (p ¼ 8.42 3 10�4, mean

GRS ¼ 3.59, AUC ¼ 0.55). The effect was driven by SNPs

in aggregate rather than individual SNPs; only 1 out of

29 SNPs had a p < 0.05, but 20 out of 29 had an OR in

the same direction as that for the previous GWAS meta-

analysis of autoantibody-positive disease (Table S3,

Figure 4). Because the weights for the GRS were derived

from studies investigating autoantibody-positive RA, these

results demonstrate that there is some overlap between the

genetic basis of ACPAþ and ACPA� disease.

To investigate risk alleles in ACPAþ and ACPA� cases

more directly, we compared the GRS derived from 28

non-HLA risk alleles of the two subsets in cases of European
merican Journal of Human Genetics 88, 57–69, January 7, 2011 65



Figure 4. Overlap of Odds Ratio and 95% Confidence Intervals between European ACPAþ and ACPA� Subsets from the EHR Cohort
Asterisks indicate TNFAIP3 SNP rs6920220 andCCL21 SNP rs951005. EU indicates individuals of European descent from our EHR cohort.
ancestry from our EHR cohort. The effect sizes of these

individual risk alleles and the distribution of the GRS

were lower ACPA� disease than in ACPAþ disease (p ¼
7.29 3 10�7, Table S4, Figure 5). This result is consistent

with the lower AUC in ACPA� versus ACPAþ individuals

when compared to controls (AUC ¼ 0.55 versus 0.66,

respectively).

On the basis of these results, we conclude that although

there is overlap between the genetic basis of ACPAþ and

ACPA� disease, the overlap is only partial.
Discussion

Our study utilizes a valuable resource by linking EHR data

with biospecimens to conduct discovery genetic research.

For a complex autoimmune disease, RA, we have demon-

strated empirically that the effect sizes of individual RA

risk alleles and aggregate genetic-risk scores are similar in

our EHR cohort and traditional cohorts. What is notable

about our study, however, is that we used EHR-derived

data and a genetic-risk score to demonstrate that (a) risk

alleles derived from cases of European ancestry also

contribute to risk among cases of East Asian, African, and

Hispanic ancestries and (b) ACPAþ risk alleles also confer
66 The American Journal of Human Genetics 88, 57–69, January 7, 20
risk in ACPA� disease (although the genetic overlap is

partial and incomplete).

To demonstrate that our case-control collection is valid

for genetic discovery research, we compared the effect sizes

of 29 validated RA risk alleles in our EHR case-control

cohort to those of a recently published GWAS meta-anal-

ysis involving 5,539 autoantibody-positive RA cases and

20,169 controls and using subjects enrolled in traditional

cohorts.22 If there were substantial misclassification of

case-control status in our EHR cohort, then the OR in our

EHR study would be consistently less than the OR from

traditional registries. In contrast, we found that the effect

sizes were quite similar. This was true not just at the

single-SNP level, but also for analysis of all SNPs in aggre-

gate (weighted GRS). Our study demonstrates a direct

comparison of genetic findings from an EHR-derived

cohort, as opposed to traditional collections.

With few exceptions,12–14,16,23 most non-HLA validated

RA risk alleles have emerged from GWAS of seropostive

RA cases of European ancestry. This raises the important

issue of whether these alleles contribute to risk in cases

of non-European ancestry. Although our sample size in

non-Europeans was small, we show that an aggregate

GRS significantly predicted risk in ACPAþ cases of African

and Hispanic ancestry (pAF ¼ 0.003, pHIS ¼ 0.026), and
11



Figure 5. Distribution of the Aggregate Genetic-Risk Score from 28 non-HLA RA Risk Alleles in Controls, ACPAþ Cases, and ACPA�
Cases in Individuals of European Ancestry
there was a similar trend in those with East Asian ancestry

(pAS ¼ 0.075; Table 3 and Figure 3). We note that the mean

GRS and AUC values were lower among individuals of non-

European ancestry, especially those of African ancestry,

than among those of European ancestry. Although it is

possible that the significant GRSs were driven solely by

the presence of European admixture, this seems unlikely

because the mean GRS among the case-control samples

that clustered most strongly with the YRI samples from

HapMap was higher in cases than in controls. The lower

GRS and AUCs could instead reflect differences in patterns

of linkage disequilibrium at these loci between the

common tag SNP and the underlying causal allele (which

is unknown) across the different ethnic populations. The

lower GRS and AUCs might also indicate that some of

the underlying causal alleles at these loci are absent among

cases of non-European ancestry, as is the case for the

PTPN22 risk allele among cases of African and East Asian

ancestry.32

An important consequence of shared genetic risk across

diverse ancestries is that it supports the hypothesis that the

underlying causal alleles are common, rather than rare and

specific to only one ethnic group. If the underlying causal

alleles were rare, we would not expect tag SNPs in Euro-

peans to predict risk in other genetic ancestries. Our results

support the utility of fine-mapping of RA risk loci across

diverse ancestries to localize the causal allele.

Outside of the HLA region,30,31 it is largely unknown

whether the genetic basis of ACPA� RA is distinct from
The A
or overlaps with the genetic basis of ACPAþ RA. A major

reason for this uncertainty is that no study has yet system-

atically investigated the contribution of all known RA risk

alleles in a collection of both ACPA� and ACPAþ cases. In

general, ACPAþ cases have more severe disease than

ACPA� cases; ACPA� cases are thought to represent

a more heterogeneous group of cases.33,34 Despite this clin-

ical heterogeneity, a small study of twins indicated that the

heritability in ACPAþ disease was similar to that of ACPA�
disease.11 Our EHR-based study, which ascertained 378

ACPA� cases of European ancestry, provides evidence

that there is overlap between the two subsets, as a distribu-

tion of the GRS derived from SNPs associated with autoan-

tibody-positive disease is significantly higher in ACPA�
cases than in controls (Figure 3). However, our study also

demonstrates that the overall GRS distribution for these

susceptibility SNPs is lower in ACPA� disease than in

ACPAþ disease (Figure 5). Whether this difference is due

to the effect size of individual risk alleles, the subset of

alleles that contribute to risk in both diseases, or both

needs to be explored further.

In our EHR study, we used discarded blood to target

specific patient populations (RA cases and matched

controls) as one approach to acquiring large sample sizes

at an affordable cost. Using discarded blood samples meant

that no direct patient consent was obtained. We did,

however, undergo a thorough IRB-review of our research

protocol, and we ensured that all clinical data linked to

a discarded biospecimen was completely anonymous to
merican Journal of Human Genetics 88, 57–69, January 7, 2011 67



protect patient confidentiality (see Subjects and Methods).

In approximately one year, we were able to acquire DNA

and plasma for over 3,000 case-control samples. There

are also other options for linking EHR data to biospeci-

mens,35 including large biobanks at academic health

centers36 and in the United Kingdom.37 Regardless of the

method of procuring biospecimens, the approach outlined

here demonstrates that EHRs are a reliable resource for

discovery research. Such an approach should be particu-

larly attractive within large health care centers such as

the Veteran’s Administration (VA) hospital system or

within multiple health care systems that can integrate

data derived from EHR for a common research question.

Currently, approximately 20% of physicians in the

United States use EHRs.38 It is inevitable that this number

will increase substantially in the very near future. As the

informatics tools to mine EHRs improve, as biobanks

grow, and as genomic information is systematically gath-

ered, secondary use of EHR data will serve as a mainstay

for genomic research. Our study demonstrates that EHR

clinical data linked with biospecimens represent a valuable

resource for genetics research in rheumatoid arthritis.
Supplemental Data

Supplemental data include one figure and four tables.
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