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SUMMARY

The mechanisms by which experience guides refine-
ment of converging afferent pathways are poorly
understood. We describe a vision-driven refinement
of corticocollicular inputs that determines the
consolidation of retinal and visual cortical (VC)
synapses on individual neurons in the superficial
superior colliculus (sSC). Highly refined corticocollic-
ular terminals form 1–2 days after eye-opening (EO),
accompanied by VC-dependent filopodia sprouting
on proximal dendrites, and PSD-95 and VC-depen-
dent quadrupling of functional synapses. Delayed
EO eliminates synapses, corticocollicular terminals,
and spines on VC-recipient dendrites. Awake record-
ings after EO show that VC and retina cooperate to
activate sSC neurons, and VC light responses
precede sSC responses within intervals promoting
potentiation. Eyelid closure is associated with more
protracted cortical visual responses, causing the
majority of VC spikes to follow those of the colliculus.
These data implicate spike-timing plasticity as
a mechanism for cortical input survival, and support
a cooperative strategy for retinal and cortical coin-
nervation of the sSC.

INTRODUCTION

Eye-opening (EO) in rodents, or birth in humans, marks the onset

of an eventful period in visual development. By the time of EO,

cortical response properties are newly prepared to process

high frequency pattern stimuli (Colonnese et al., 2010). After

this point, high quality visual experience is critical for the refine-

ment of receptive fields and response properties in visual areas,

and normal vision in the adult (Maffei et al., 2004; Maurer et al.,

2005; Ostrovsky et al., 2006; Smith and Trachtenberg, 2007;

White et al., 2001; Yu et al., 2010). In rodents the onset of visual
710 Neuron 71, 710–724, August 25, 2011 ª2011 Elsevier Inc.
experience at EO induces rapid (4–24 hr) physiological and

biochemical effects in the superficial visual layer of the superior

colliculus (sSC). These include delivery of the scaffold protein

PSD-95 to spines and synaptic fractions (Yoshii et al., 2003),

and transient increases in silent synapses containing the NR2B

N-methyl-D-aspartate (NMDA) receptor subunit, functional

synapse maturation, and input refinement (Lu and Constan-

tine-Paton, 2004).

EO-triggered changes occur during themajor period of synap-

togenesis in the rodent sSC (Bakkum et al., 1991; Lund and

Lund, 1971; Warton and McCart, 1989), where two primary

glutamatergic visual pathways converge. Retinal axons arrive

in the sSC embryonically and their terminal arbors are restricted

to topographically appropriate zones as early as P4, and refined

at least 1 day before EO (Dhande et al., 2011; Simon and

O’Leary, 1992). The refinement of the projection from visual

cortex (VC) is delayed. Visual cortical axons from layer 5 do

not arrive in mouse sSC until postnatal day (P) 4 (Inoue et al.,

1992; Thong and Dreher, 1986), and only by P12, just before

EO, do their arbors occupy roughly retinotopically appropriate

regions (Triplett et al., 2009).

Much recent work in rodents has documented the role of

activity in the emergence of mapped visual projections. Visuo-

topic axonmaps in theSCare initially roughly aligned using adhe-

sion, repulsion, and early waves of synchronized retinal activity

(Flanagan, 2006; Huberman et al., 2008a; Triplett et al., 2009).

However, this topographic axon targeting precedes the major

periods of synapse formation, functional maturation, and input

refinement that coincide with the onset of environmental drive

(Lu and Constantine-Paton, 2004). This ‘‘consolidation’’ phase

of refinement in the sSC is likely to involve both synaptic elabora-

tion and elimination as individual retinal and cortical axons sort

their terminals on postsynaptic cells. Little is known about this

process or its cellular mechanisms, which allow precise refine-

ment of converging projections. Simple Hebbian mechanisms

are predicted to suppress the later-arriving cortical inputs unless

their activity is closely synchronized with that of earlier synapses

(Constantine-Paton et al., 1990). This has led us to the hypothesis

that late arriving, broadly mapped, inputs such as those from VC

have specific adaptations to enable successful wiring.
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Here we control EO to precisely define the onset of pattern

vision, and combine this with in vivo anterograde labeling of

retinal and cortical afferents to sSC and anatomical reconstruc-

tion of cells expressing a genetically encoded eGFP in a popula-

tion of collicular neurons located at the interface of the two

projections. We follow changes in these neurons and the cortical

input in age-matched animals with opened or closed eyelids

using quantitative structural and whole-cell patch clamp anal-

yses. These approaches identify structural and functional

changes at synapses over the EO interval of identified sSC

neurons, and highlight those changes specifically controlled by

early visual experience. In vivo multiunit recording of sponta-

neous and visually evoked activity in sSC and VC layer 5 of intact

awake pups are used to reveal the relative latencies of vision-

driven activity in cortex and sSC. These data provide evidence

for a spike-timing dependent mechanism that underlies the

successful stabilization of cortical synapses on sSC neurons

with EO, and the net synaptic loss observed when the eyes

remain closed.

RESULTS

A Role for EO-Induced Redistribution of the
Postsynaptic Density Scaffold PSD-95 in Collicular
Synaptogenesis
In this study, we focus on a distinct population of sSC neurons

with vertically distributed and predominantly dorsal dendrites

(dorsally oriented vertical [DOV] neurons) lying within both retinal

and cortical terminal zones. These cells were labeled early in

eGFP mice and are also identifiable with IR-DIC optics using

laminar position, somatic shape, and dendritic orientation (Toku-

naga and Otani, 1976).

Based on earlier work (Lu and Constantine-Paton, 2004; Phil-

pot et al., 2001; Yoshii et al., 2003), and the finding that normal

levels of PSD-95 are required to produce NMDA receptor-

dependent long-term potentiation and depression (Béı̈que and

Andrade, 2003; Migaud et al., 1998), we hypothesized that

PSD-95 is crucial to rapid, EO-induced synaptic remodeling

through its stabilization of synapses sensitive to the new stimuli.

PSD-95 is highly expressed in DOV neurons and sSC synapses

(see Figure S1 available online). In order to understand the

mechanism bywhich cortex innervates the sSC, we first assayed

EO-dependent synaptic development in the mouse sSC and

then validated the PSD-95 hypothesis using DOV neurons from

PSD-95 mutant mice.

Miniature excitatory postsynaptic currents (mEPSCs) were

recorded from DOV neurons in acute sSC slices 1–2 days before

EO (BEO), 1–2 days after EO (AEO), in age-matched animals

whose eyes were never opened (EC), and after EO in PSD-95

mutant mice lacking this scaffold at the synapse (Figures

1A–1C and Figure S1). EO (or dark-rearing) in rodents has no

effect on presynaptic release probability in lateral geniculate

nucleus neurons or sSC (Chen and Regehr, 2000; Lu and Con-

stantine-Paton, 2004), thus mEPSC event frequency over this

interval was used to assay the relative abundance of release

sites. Changes in mEPSC frequency and amplitude were

measured using model-based analysis (Supplemental Experi-

mental Procedures), an approach designed to accurately take
into account the statistical distribution of synaptic current

parameters within individual cells when calculating differences

between groups. With this procedure significant differences

between groups at a = 0.05 are shown by the presence of non-

overlapping 95% confidence intervals. Histograms in Figures

1D and 1E show distributions of mean frequency and amplitude

of mEPSCs in each treatment group obtained after sampling

eachmodeled distribution with a parametric bootstrap 500 times

(samples).

To best assay functional synaptic development across the

neuronal arbor, and avoid bias associated with analyzing only

release sites likely to be located on thick dendrites or more prox-

imal to the soma (Magee and Cook, 2000; Smith et al., 2003), we

examined all suprathreshold events >11 pA without selecting

events based on rise-time. Few synaptic events were observed

BEO, but mean total mEPSC frequency in DOV cells increased

significantly, on average 4-fold, AEO (Figure 1D). In the first

1–2 days AEO there was also a small increase in strength

�20% from BEO (Figure 1E). The small (3 pA) increase in mean

amplitude observed could contribute to some of the new supra-

threshold events detected AEO, however, it is not sufficient to

account for these results. An average increase of 8 pA in the

amplitude of these events would have been required to cause

the 4-fold increase in frequency actually observed (Figure S1).

When eye closure was maintained (EC) past the normal EO

day, the overall frequency of mEPSCs was reduced below pre-

EO levels (Figure 1D), suggesting a net loss of synapses caused

by obscured vision. The remaining synapses were also weak-

ened, but were not significantly different from amplitudes before

EO (Figure 1E).

EO induces translocation of PSD-95 to sSC synapses in rats,

suggesting a role for this protein in synapse plasticity AEO. We

confirmed the absence of PSD-95 from sSC synapses and

DOV neurons in PSD-95 mutant mice (Figure S1). PSD-95

mutant animals with 1–2 days of visual experience AEO resem-

bled pre-EO animals in terms of mEPSC frequency, confirming

a role for this molecule in pattern vision induced synaptic

increases. (Figure 1D). However, mEPSC amplitudes of the re-

maining synapses were normal in these mice (Figure 1E). These

data suggest that PSD-95 is important for new synapse forma-

tion after EO, but in the absence of PSD-95, remaining synapses

are still able to add glutamate receptors and be potentiated.

Distribution of Retinal and Cortical Afferents on DOV
Neuronal Dendrites with Eye Opening
To identify the dendritic location of the EO-dependent synaptic

plasticity, we examined the pattern of retinal and cortical afferent

arborization on the dendrites of DOV neurons by anterograde

labeling of retinal and VC afferents in eGFP mice at P29-30

when the number of high expressing cellswas greatest (Figure 2A

and Figure S2). VC axons were most dense in the deeper

portion of the sSC, whereas contralateral retinal axons preferen-

tially occupied more superficial positions (Figures 2B–2D). All

eGFP-labeled DOV neurons were reproducibly located in the

transition zone between the two projections, and electrical stim-

ulation of retinal and cortical axons where they enter together in

the brachium of the sSC could evoke unitary postsynaptic

responses in these neurons (data not shown).
Neuron 71, 710–724, August 25, 2011 ª2011 Elsevier Inc. 711



Figure 1. Vision Initiates Synaptogenesis in

the Retino- and Cortico-Recipient sSC

Requiring PSD-95

(A) Timeline.

(B) Examples of EO and PSD-95 dependent

increases in frequency of mEPSCs in sSC dorsal-

oriented vertical (DOV) neurons. Data is from

before EO (BEO), after EO with normal levels of

PSD-95 in wild-type mice (WT AEO), after EO in

mutants lacking PSD-95 (PSD-95mut AEO), or

cells from age-matched wild-type mice with the

eyes kept closed (EC).

(C) Traces from (B) at expanded scale. Dots mark

selected events.

(D) Parametric bootstrap-derived histograms

show frequency for each experimental group

with associated 95% confidence interval (bar at

base of distribution). Mean frequency increased

approximately 4-fold AEO and requires PSD-95.

Prevention of EO reduces miniature currents

below pre EO levels. (BEO, n = 6; PSD-95�/� AEO,

n = 3; EC, n = 4, WT AEO, n = 6.)

(E) Amplitudes for remaining synapses in the PSD-

95 mutant are not significantly different from WT

cells AEO. Amplitudes for the BEO and EC animals

are reduced relative to the EO groups.
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We identified the potential locus of contact of retinal and

cortical axons onto these neurons, by analyzing the colocaliza-

tion of each afferent population and the eGFP-labeled dendritic

arbor (Figures 2E–2G). The degree of chance overlap was esti-

mated by rotation of the images containing the particular afferent

label 90� in the plane of section with respect to the images con-

taining the GFP label (Supplemental Experimental Procedures).

The mean size and number of overlapped pixel clusters in

rotated images was significantly smaller than control images.

This is demonstrated in Figure 2E (arrowhead), where a portion

of a labeled retinal axon is observed to course alongside a length

of eGFP dendrite.

DOV dendrites are highly branched with a variable dendritic

branching structure and did not conform to standard definitions

of secondary or tertiary branches used in traditional classifica-

tion schemes for pyramidal neurons. To examine the relationship

of these afferent projections to dendritic structure we subdivided

the arbor regions by caliber at each branch point with succes-

sively thinner segments ranked from 1 to 4. Three-dimensional
712 Neuron 71, 710–724, August 25, 2011 ª2011 Elsevier Inc.
neurolucida reconstructions of two neu-

rons, including the labeled neuron in Fig-

ure 2, illustrate the distribution of ranked

segments (Figure 2H) (see Supplemental

Experimental Procedures for classifica-

tion details).

Dendrite caliber rank is a significant

factor affecting the distribution of poten-

tial contact points for both retinal

(F statistic = 11.58, n = 43, p < 0.05) and

cortical (F = 3.57, n = 37, p < 0.0001)

axons (Figure 2I, significance between

calibers assessed with Games-Howell
post hoc). Thus, although DOV neurons are apposed to both

retinal and visual cortical afferents, after EO retinal axons domi-

nate dendrites that are thin and generally distal (caliber 4), and

cortical afferents are most frequently apposed to dendrites of

medium thickness, generally proximal (caliber 3). This raised

questions about the relative positions of these two inputs just

before EO. The overall ‘‘opposing gradient’’ pattern of innerva-

tion was also observed before EO (Figures 3A–3G). Of the 124

Thy1 eGFP pups with both retina and cortical labeling surgeries

on P9, both inputs were successfully labeled on only one P11

DOV neuron with sufficient dendritic labeling to unambiguously

identify it as a DOV neuron. We found retinal axons in close

contact with the proximal dendrites and dorsal somata of this

neuron, whereas cortical axons were mostly restricted to the

ventral portion of the soma (Figures 3F and 3G). This apparent

difference in location of the cortical and retinal axons before

and after EO in young adults suggests that cortical inputs

move to dendrites and displace existing retinal terminals to

more distal dendritic sites during high quality pattern vision. In



Figure 2. Sorting of Cortical and Retinal Axons

on the Dendritic Arbor of DOV Neurons after EO

(P29–30)

(A) Diagram of dual color anterograde tract tracing in eGFP

mice.

(B) Representative eGFP-expressing DOV cell after

labeling of axons from retina and visual cortex. DOV

neurons (circled) are located in the deep portion of the

stratum griseum superficiale (dSGS) at the interface of

retinal and cortical afferents. Pial membrane fluorescence

is removed. SZ = stratum zonale, sSGS = superficial

stratum of SGS, zWFV = zone of wide-field vertical

neurons, SO = stratum opticum. Scale bar, 100 mm.

(C) Pixel intensity profiles along the solid white line in (B).

(D) Mean pixel intensity profiles for the contralateral retina

and ipsilateral cortex (n = 3 animals).

(E) Confocal projection showing overlapped pixels (white)

between retinal axons (blue) and eGFP (green). Scale bar,

20 mm. Adjacent are magnified comparisons of original

images and rotated controls to detect nonspecific overlap

of retinal axons (Supplemental Experimental Procedures).

Scale bar, 2 mm.

(F) Same as (E) for cortical axons.

(G) Distribution of the overlapped pixels, on the same

neuron from either the retinal (blue) or cortical (red)

projection. Scale bar, 10 mm.

(H) Neurolucida reconstructions of two DOV dendritic

arbors, including the cell in (E) (upper). Dendritic segments

were categorized according to their average thickness

between branch points (Supplemental Experimental

Procedures).

(I) Quantification of the distribution of overlapped retinal

or cortical pixels per mm of caliber-identified dendritic

segment, measured in confocal z series from three re-

constructed neurons. Equivalent overlap area in mi-

cronsmm per micronof dendritic length, on right axis.

*p < 0.05, **p < 0.01, Games-Howell post hoc.

Neuron
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support of such invasive ability, it is only after EO that corticocol-

licular inputs become the primary inhibitor of dorsally directed

sprouting of the ipsilateral retinal projection following an early
Neuron 71, 7
contralateral retinal lesion (Colonnese and Con-

stantine-Paton, 2001).

Synaptic Development in DOV Neurons
Involves a Transient Sprouting of
Filopodia over EO
GFP-labeled DOV neurons at P13, 1 day after

EO, have abundant dendritic protrusions and

appear ‘‘hairy’’ (Figures 4A–4D). Densities of

spines and filopodia were examined across

the dendritic arbor of developing DOV neu-

rons, with dendrites classed by caliber rank.

Filopodia (length > 3 width) have been charac-

terized as new or particularly dynamic protru-

sions, whereas spines (length % 3 width) are

more likely to contain matured, stronger, or

stabilized synapses (see Supplemental Experi-

mental Procedures). These criteria were used

to quantify structural changes indicative of syn-

aptogenesis on dually innervated DOV neurons
before (P11) and 24 hr after controlled EO (P13) as well as

4 days AEO (P16) and at least 20 days AEO (adult) (Figures 4E

and 4F).
10–724, August 25, 2011 ª2011 Elsevier Inc. 713



Figure 3. Retinal and Visual Cortical Inputs to sSC before EO

(A) Cortical label extent confirmed at sacrifice on P11.

(B) eGFP-expressing DOV neuron after dual labeling of axons from retina and VC.

(C) Pixel intensity profiles along the solid white line in (B) show opposing distributions of retinal and cortical label at increasing depth from pia at P11.

(D) Mean pixel intensity profiles for the contralateral retina and ipsilateral cortex (n = 5 animals).

(E) Confocal projection showing a DOV neuron at the interface of the contralateral retinal input (blue) and the ipsilateral cortex (red). Scale bar, 10 mm.

(F) Confocal optical slice showing overlapped pixels (white) between retinal axons (blue) and eGFP (green). Proximal dendritic sites overlap with retinal axons and

cortical axons are apposed to somatic sites. Scale bar, 10 mm.

(G) Rotated control images used to detect nonspecific overlap of retinal and cortical axons. Some overlap is still detected, but these clusters are few (circled), and

smaller in size.

Neuron
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Dendrites of all calibers had few filopodia at P11, but rapidly

developed a high density of filopodia by P13 that were eliminated

by P16 (Figure 4F). These changes reached significance on the

thinnest and most abundant dendrites, caliber 3 and caliber 4.

Significant changes in spine density were not observed with

age (one-way ANOVA, p > 0.05, calibers 2, 3, 4). Between the

youngest and oldest ages studied (P11 and ‘‘Adult’’), there

were detectable but small mean increases in both total dendritic

branch length and the complexity of arbors (Figure S3). Small

increases in apical dendritic complexity and length occurred

proximal, but not distal, to the soma, suggesting that maturing

cells added new synaptic space proximally.

Prevention of Eye Opening Eliminates Spines
on Cortex-Targeted Dendritic Segments
We tested whether the surge in filopodia at EO required visual

experience by comparing P13 littermates whose eyes were

opened (EO) or closed (EC) (Figure 5A). Prevention of EO allows

diffuse light to pass through eyelids but blocks high contrast

vision (Krug et al., 2001). EC did not prevent filopodial sprouting.

Instead it resulted in a specific reduction of spine density on the

caliber 3 dendrites normally dominated by VC after EO (Figures
714 Neuron 71, 710–724, August 25, 2011 ª2011 Elsevier Inc.
5B and 5C). Spines and filopodia on caliber 4 dendrites were

unaffected (n = 25, p > 0.50).

These results suggest a two-step process driving dendritic

development at EO: a pattern vision independent induction of

filopodia and a pattern-vision dependent spine retention on

VC-recipient dendrites.

Pattern-Vision Dependent Refinement
of Corticocollicular Axon Terminals
The changes described above suggest a particular role for EO in

sprouting and synapse formation by VC afferents. To examine

this, we labeled small numbers of corticocollicular axons in

rat pups (their larger size compared to mice making specific

labeling of a smaller subset of cortical neurons possible). Single

strands of DiI-saturated Gelfoamwere inserted in themonocular,

medial region of ipsilateral VC (Figure 5D), a region that projects

to posterior-dorsal sSC and responds to the same visual field

locale as retinocollicular axons terminating in that region

(Khachab and Bruce, 1999). Maximal DiI spread from the center

of these topographic injections extended on average 9.2%of the

anterior-posterior (A-P) axis of the cortex, and never >12.5%.

Reconstructions of corticocollicular axons illustrate that at



Figure 4. A Transient Developmental Surge in Filopodia after EO

(A) Timeline. EO = P12–P13. DOV dendrites were analyzed before EO (P11–P12), 1 day after EO (P13), 4 days after EO (P16), or after P30 (Adult).

(B) Z series projection of an eGFP labeled DOV neuron at P13 with the typical ‘‘hairy’’ appearance observed after EO. Scale bar, 10 mm.

(C) Neurolucida reconstruction of the boxed region in (B). Dendritic segments are categorized according to their caliber rank as measured from original images.

(D) Enlargement of boxed region in (B). Protrusions were classified at high magnification as ‘‘filopodia’’ (f) or ‘‘spines’’ (s) as described in (E). Long protrusions

much longer than 6 times their width were not counted (x). Scale bar, 1 mm.

(E) Classification as ‘‘Spine’’ or ‘‘Filopodia’’ according to the length versus maximal width ratio at threshold shown. L = 3D length from base to tip. w = width at

widest point (neck or head). Protrusions < 0.6 mm long were not counted. Scale bar, 0.5 mm.

(F) Quantification of filopodia increases over EO on caliber 3 (6–13 cells at each age, **p < 0.01, Tukey HSD post hoc) and caliber 4 (*p < 0.05) that return to

baseline at P16 on caliber 3 (*p < 0.05), and by adulthood on caliber 4 (***p < 0.001). No significant increase in spines was detected over EO (p > 0.05, Tukey HSD

post hoc). Dendritic segments analyzed at each age are given in the spine plots. Caliber 2 branches were rare. No. of dendritic protrusionsmeasured: n = 343 P11;

n = 652 P13; n = 233 P16, n = 364 adult.

Neuron

Experience-Dependent Map Consolidation
P12-P13, just before EO in rat, individual corticocollicular axon

terminals extend ectopic side branches along their anterior-

posterior (A-P) length before terminating in the posterior third

of the sSC, where some tended to be more highly branched

(BEO; Figure 5E). The collateral branching pattern was reminis-

cent of the early retinocollicular projection (Simon and O’Leary,
1992). By P15-P16, however, 2–3 days AEO on P13, ectopic

side branches were reduced, whereas the terminal zone (TZ)

arbor became densely branched.

To examine the pattern-vision dependence of the VC axonal

sprouting/refinement, eyelids of littermates of the same animals

were sutured closed on P13, before EO. Two to three days of eye
Neuron 71, 710–724, August 25, 2011 ª2011 Elsevier Inc. 715



Figure 5. Eyelid Closure Eliminates Spines on VC-Recipient Dendrites and Strips Corticocollicular Axons of Their Terminal Zone Arbors

(A) Timeline. EO was on P12. DOV neurons in sSC were analyzed 1 day after EO (P13 EO) or in age-matched littermates with eyes closed over the same period

(P13 EC).

(B) Representative confocal projections of caliber 3 dendrites with eyes opened or closed.

(C) Filopodial densities were unaffected by EO or EC, but EO was required to maintain spine densities on caliber 3 dendrites (p < 0.05 Student’s t test with

Bonferroni correction).

(D) Timeline for VC DiI labeling and analysis of EO versus EC effects on corticocollicular axons in rat pups at equivalent ages.

(E) Neurolucida reconstructions of corticocollicular axons before EO (BEO) and after EO at P15–P16 (AEO), or in the age-matched eye closed condition (EC).

A = anterior; p = posterior. Scale bar, 250 mm.

(F) Quantification of age and EO-dependent changes in axon branching. (One-way ANOVA for effect of location p < 0.05; Tukey HSD post hoc test *p < 0.05,

***p < 0.001; two-tailed Student’s t test for effect of treatment #p < 0.05, ##p < 0.01, ###p < 0.001 with Bonferroni correction.)

Neuron

Experience-Dependent Map Consolidation

716 Neuron 71, 710–724, August 25, 2011 ª2011 Elsevier Inc.
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closure resulted in a dramatic change in corticocollicular termi-

nals. The TZ normally seen after EO was not present, and only

infrequent short collateral branches remained along the VC

axon (EC; Figure 5E). This suggests robust pruning of VC

synapses occurred in the visually deprived condition. To quantify

these EO dependent changes, 160 mm3 volumes of tissue were

sampled at regular intervals along the A-P length of the sSC. The

complexity of the VC arbors within these volumes wasmeasured

by counting branch points and end points on each segment of all

cortically labeled axons. After EO, axons in the posterior fifth of

the sSC had significantly more branch points and endpoints

compared to the anterior sSC (Figure 5F). Eye-closed animals

show no terminal complexity; all axons were significantly

reduced along their collicular length in the number of branch

and end points with respect to both after and before EO. These

results show a requirement for pattern vision in the local refine-

ment and maintenance of topographically appropriate cortico-

collicular arbors and probably also in the synapses they

establish.

Visual Cortex Is Required for EO-Dependent Formation
of Functional Contacts in sSC and an EO-Independent
Induction of Filopodia at Proximal Sites
To test the dependence of collicular synaptogenesis specifically

on the rapidly arborizing corticocollicular projection, we assayed

the effect of removing the VC input before EO on spontaneous

whole-cell mEPSCs and the locus of any changes in spine and

filopodia distribution on DOV neurons.

Lesions of ipsilateral VC were made in eGFP transgenic

mice between P9-P10 by microaspiration of the cellular layers

of VC (Figure S4 and Supplemental Experimental Procedures).

Animals received either a lesion that eliminated the collicular-

projecting Layer V pyramidal cells (VC removed) or surgery

with skull-flap incision but without cortical aspiration (sham)

(Figure 6A).

Consistent with a loss of cortical synapse formation after VC

lesion, removal of VC resulted in a significant reduction of

mEPSC frequency (Figures 6B and 6C) after EO compared to

sham-operated controls. The enhancement in mEPSC ampli-

tude, however, represents a significant potentiation of the re-

maining largely retinal synapses compared to EO sham animals

(Figure 6D). This increase in strength of remaining inputs after VC

removal suggests a competition between retinal and cortical

driven synapses during normal visual synaptogenesis.

No significant effect of VC removal was observed on filopodia

or spine density on caliber 4 dendrites (p > 0.70, n = 23 lesion, n =

24 sham), consistent with the hypothesis that these dendrites

contain primarily retinal inputs, whose strength (rather than

number) was adjusted after VC lesion.

VC removal prevented the normal appearance of filopodia on

caliber 3 dendrites but had no significant effect on spine density

(p > 0.90, n = 9 lesion, n = 9 sham) (Figures 6E and 6F), suggest-

ing that filopodia are the sites of new cortical synapse formation.

Caliber 3 dendrites are predominantly localized in mid-stratum

griseum superficiale (SGS) levels where cortical and retinal

terminals overlap, and are the most likely to be contacted by

cortical axons. Thus the presence of cortical afferents/growth

cones in the neuropil appears necessary for the development
of new functional contacts, and also triggers the formation of

filopodia on caliber 3 dendrites, on which many of these new

contacts form.

Visual Cortical Activity Facilitates Collicular Responses
In Vivo 1–2 Days after EO
Hebbian theory suggests that the synaptic elaboration of the

late-arriving visual cortical inputs should be at a significant

competitive disadvantage compared to the previously estab-

lished mapped retinal synapses. Nevertheless, cortex success-

fully establishes a synaptic foothold at proximal sites, in a

vision-dependent manner. Such rapid expansion is an apparent

violation of Hebb’s postulate, unless the cortical activity does

in fact precede and contribute to driving collicular responses.

We examined this possibility by measuring visual responses

in vivo simultaneously from the sSC projecting layer of VC (lower

layer 5a) and the ipsilateral sSC of the same animals 1–2 days

after EO. This is during the period of EO dependent plasticity in

the rat sSC (Lu and Constantine-Paton, 2004) (Figure 7A).

Because anesthesia at any level has significant effects on activity

at this age (Colonnese et al., 2010), we used an awake, unanes-

thetized preparation.

Multiunit ON responses to whole-field light flash under

ambient illumination in the VC layer 5a precede visual responses

throughout the depth of the ipsilateral SC (Figure 7B and Supple-

mental Experimental Procedures). This was surprising, because

retinal ganglion cells project directly to the sSC, compared to at

least three synaptic delays in the retino-thalamo-cortical output

pathway. Lower detection thresholds did not reveal any

responses in the superficial SGS that preceded the cortical

visual response, suggesting that we have not undersampled

small superficial retino-recipient cells in our analysis (Figure S5).

Latency of the ON response in layer 5a relative to the deep SGS

(where DOV neurons are located) was approximately10 ms, and

was specific for the ON response (Figure 7C). By contrast, OFF

collicular responses were coincident with the cortex, perhaps

a result of a strong input from an OFF ganglion cell class that

projects specifically to the deep SGS (Huberman et al., 2008b).

The short latency of collicular ON responses following cortical

output suggests that after EO cortical activity is a strong driver

of the deep SGS cells where DOV neurons are located. To test

the contribution of cortex to this response, we suppressed

cortical contributions to the visual response by induction of

cortical spreading depression. We found that cortical suppres-

sion delayed and diminished collicular ON responses (Fig-

ure 7D). Visual responses in sSC were not entirely eliminated,

however, suggesting that the remaining, sluggish response is

retina driven. Thus, as early as 1–2 days after EO cortical input

activity precedes the sSC response, and cooperates with retinal

synapses to fire collicular neurons in deep SGS.

Network State Changes Linked to Eye Closure Delay
Light Responses in VC Layer 5a
To identify the mechanism by which eye closure depresses syn-

aptogenesis in the sSC, we directly measured the effect of eyelid

closure on visual cortical activity in the young, awake pups (Fig-

ure 8A). As early as 1 day after normal EO, animals with closed

eyelids displayed a change in activity state characterized by
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Figure 6. VC Axons Induce Filopodia Development and Are Required for Vision-Dependent Synaptic Increases in sSC

(A) Timeline. VC was removed by aspiration on P9–P10. Sham incision of skull without lesion served as control (sham). Lesion was confirmed at P13 (Figure S3).

(B) Representative mEPSCs from sham-operated or VC removed animals at P13. Magnified intervals are shown on the right. Dots = supratheshold events.

(C) Model-based analysis (see Figure 1) shows removal of VC inputs before EO causes a 2-fold reduction in the frequency of mEPSCs after EO, compared to

sham-operated controls.

(D) Mean amplitude of remaining mEPSCs is larger after cortical removal.

(E) Representative confocal projection through caliber 3 or 4 dendrites after VC lesion or sham surgery.

(F) Quantification of spine and filopodia density 24 hr AEO indicate that VC axons are required for the post-EO filopodia surge on caliber 3 dendrites where cortical

inputs dominate (n = 15, *p < 0.05, Student’s t test).
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increased firing in all layers including L5a (mean increased multi-

unit spike: 230%, standard deviation [SD] 59%, one-sample t

test p = 0.008) and periods of sustained oscillations in the field

potential of V1 superficial layers at b-g frequencies (Figures 8B

and 8C). This was surprising, but a similar effect (suppression

of rapid oscillations by visual stimuli) has been observed in the
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cat VC (Kruse and Eckhorn, 1996). The SC did not demonstrate

a similar change in network state when the eyes were closed

(mean increased multiunit spike rate = 106%, SD 35%, one-

sample t test p = 0.7).

To directly test the role of the EC-induced activity state change

on visual processing without artifacts from changes in light



Figure 7. Cortical Visual Responses Precede and

Drive Colliculus after EO

(A) Experimental set-up. Simultaneous recording of visual

responses 1–2 days after EO in the SC and VC (V1; lower

L5a) 1–2 days after EO. Multiunit and field responses to

whole field light flash under ambient illumination were

collected from awake, unanesthetized rat pups.

(B) Spike rate histograms of mean multiunit spike rate in V1

and throughout the depth of the sSC (n = 100 trials from

each of 5 pups). Responses were aligned to the V1 ‘‘ON’’

response in each animal, averaged, and normalized to the

maximal spike rate. Visual stimulus timing for each pup is

shown above as separate colored line.

(C) Average light-induced spike rates for V1 (L5a) and SC

neurons (deep SGS; 200–400 um depth). Graphs show

relative differences in timing between L5a and sSC spike

rates for ON and OFF responses. Spike rate in each

structure was normalized to its maximal rate. Dotted line =

SD. Onset of V1 response to light (time = 0) is defined as

40% of the layer 5a peak evoked spike rate. Vertical line =

peak response.

(D) Average light-induced spike rates in deep SGS neurons

before (Control) or after suppression of V1 cortical activity

by spreading depression. No effect on the SC OFF

response was detected (not shown). Dotted lines = SD,

n = 25 trials from each of 3 pups.
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intensity caused by eye-lid manipulation, we identified condi-

tions of visual stimulation that increased the occurrence of this

activity state in the eye open condition, namely viewing a nonpat-

terned stimulus background in low-light conditions. By present-

ing a light flash while the animal viewed a gray screen stimulus

(Figure 8D), we were able to compare the latency between the
Neuron 71, 7
cortical layer 5a response and the deep SGS

response to a whole field light flash of identical

intensity when the stimulus was given during

an ‘‘eye open’’ or ‘‘eye closed’’ activity state. In

eye open trials, the latency of the peak cortical

response remained shorter than the peak collic-

ular response by an average delay of �10 ms

(Figure 8E). When stimulation was given in the

eye closed state, however, the peak layer 5a

response followed, rather than led, the peak

collicular response by approximately10 ms (Fig-

ure 8F). This shift in relative timing was primarily

due to shifts in the cortical layer 5a response,

because collicular response latency was not

obviously affected, even though the response

was diminished by �40%.

Close examination of the field potential and

spiking in individual trials revealed that light

evokes a strong, but brief, burst of cortical

spikes during the eye open state in both layer

4, and, a short time later, in layer 5a (Figure 8G).

In the eye closed state, light induces a shorter

initial burst of layer 5a spikes, followed by

a second, stronger burst �10–15 ms later (Fig-

ure 8H). Together, the field and spike data

suggest that vision through closed eyelids
modifies the visual cortical response from a singular visual

evoked potential with a single associated peak in firing rate, to

a biphasic response resulting from the induction (or phase-reset-

ting) of two phases of ongoing b-g oscillations. The first phase

causes a burst of spikes with similar latency as the normal ON

response (though greatly reduced in magnitude). The second,
10–724, August 25, 2011 ª2011 Elsevier Inc. 719



Figure 8. Eye-Closure Induced Changes in Cortical Activity Shift Timing of Peak Corticocollicular Visual Responses

(A) Experimental set-up. To test the effect of eye closure on cortical activity, multielectrode recordings were made throughout the depth of V1 from awake,

unanesthetized rats 1–2 days after EO. Both eyelids of each rat were open or manually kept closed during the experiment.

(B) Field potential traces from layer 4 and 5a show prominent rapid oscillations when eyes are closed by the experimenter; these are infrequent when eyes are

open.

(C) Frequency power analysis of the layer 4 field potential between the eye open and closed conditions (n = 5 pups). Eye closure was associated with an increase

in power in the b-g range.

(D) Experimental set-up for (E–H). Simultaneous recording from deep SGS and lower L5a 1–2 days after EO in awake rat pups. Visual responses were evoked by

whole field light flash while the eyes were open, under conditions where pattern vision was eliminated by a gray screen to increase occurrence of the eye closed

activity state. Trials were sorted by the absence or presence of b-g oscillations indicative of the eye open or eye closed state.

(E) Averagemultiunit spiking response to ON stimuli in L5a and sSC during the eye open state. Visual cortical output responses precede peak collicular responses

by 10 ms. Responses in each structure were normalized to the peak spike rate, and the time-scale is as in Figure 6C.

(F) Average multiunit responses to light onset during the eye closed state. Trials from the eye closed state are associated with a change in the timing of peak L5a

responses relative to sSC, causing themajority of light-evoked cortical spikes to follow collicular responses. Responses were normalized to each structure’s peak

spike rate in the eye open condition (E).

(G) Example of cortical activity during an eye open state. Local field potential (black) with spike locations (red hatchmarks) from layers 4 and 5a. Red and blue lines

show location of average peak responses in each state. Bottom line shows timing of visual stimulus (flash). Shaded box is time window plotted in (E).

(H) Same animal as in (G) in the eye closed state.
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stronger response is observed only in the eye closed state, and

yields an abnormally delayed response to light. We propose

that this delayed peak response relative to the sSC peak

response predisposes corticocollicular inputs to depression,

and ultimately a loss of synapses and terminals in the sSC, by

a spike-timing mechanism (Kobayashi and Poo, 2004).

DISCUSSION

The initial formation of topographic maps in the sSC occurs

before visual experience, relying instead on a combination of

chemotrophic cues including Ephrins and Eph kinase gradients,

and spontaneous retinal waves. Together these factors align

the retinocollicular (Flanagan, 2006; Huberman et al., 2008a)

and corticocollicular axon maps (Triplett et al., 2009). This rough

corticocollicular topography, however, undergoes extensive

refinement and elaboration to form the functional circuit. A

number of laboratories, including our own, have found consider-

able evidence supporting a role for EO and pattern vision in the

maturation of visual inputs (Jiang et al., 2010; Lu and Constan-

tine-Paton, 2004; Prusky et al., 2008; Rochefort et al., 2009;

Smith and Trachtenberg, 2007; Yoshii et al., 2003). However,

few studies have focused on single cell anatomy and function

during this initial period when vision starts driving the largely

overlapped corticocollicular and retinocollicular visual path-

ways. Because visuomotor control depends on effective point-

to-point convergence of these pathways (Schiller, 2011), we

identified and studied an sSC cell type in the deep SGS, DOV

neurons, where cortical and retinal axons converge as early as

P11. We show in these cells that after the initial alignment

of retinal and cortical axons in the sSC, significant synaptic elab-

oration and refinement of axon terminals is driven by, and

critically dependent on, EO. In this subsequent stage, which

we call ‘‘consolidation,’’ the cortical map becomes functionally

integrated with the preestablished retinal map at the level of

individual neurons. Our combined electrophysiological and

anatomical analysis of collicular and corticocollicular network

development 1–2 days after EO suggests that during initial visual

experience retinal and cortical axons at visuotopically matched

loci cooperate to fire collicular neurons, providing a potential

cellular mechanism for cooperation by convergent afferents

during initial visual experience (Smith and Trachtenberg, 2007).

These data also suggest corticocollicular inputs use a spike-

timingmechanism to coinnervate the sSC and probably displace

some retinally driven synapses, only when the eyes are open.

Consolidation of the Corticocollicular Input: Role
for PSD-95 and Experience
We show, by assaying synaptic density with miniature EPSC

recordings from individual DOV neurons, that functional

synapses increase rapidly in number and strength after EO. In

PSD-95mutantmice this increase is absent (Figure 1) supporting

a requirement for PSD-95, mature NMDARs, and AMPARs in

synapse, spine, and probably branch stabilization (Niell et al.,

2004; Vickers et al., 2006), as suggested by several studies

(reviewed in Xu, 2011).

Removal of ipsilateral VC reduces mEPSC frequency, even

when EO occurs on its normal schedule, indicating that the
cortical input is normally responsible for increasing synapse

number in these cells after EO (Figure 6C). Visual experience

guides this process because EO induces a rapid local branching

of cortical axon arbors in sSC whereas prevention of EO strips

corticocollicular arbors of all but the smallest axon collaterals

(Figures 5E and 5F). Eyelid closure is also damaging to existing

synapses, causing mEPSC frequency, and spines on cortico-

recipient dendrites, to fall to below pre-EO levels (Figures 1D

and 5C), a situation reminiscent of the damage to orientation

selectivity seen in VC by post-EO lid suture (White et al., 2001).

Strategies for Successful Synaptogenesis Despite Late
Arrival of the Corticocollicular Input
Weasked how cortical afferents that innervate the colliculus later

than retinal afferents can maintain synapses in the sSC, where

NMDA-dependent Hebb-like plasticity normally removes low

density inputs (Colonnese and Constantine-Paton, 2006; Simon

et al., 1992). That they innervate the sSC at all is perplexing,

because by virtue of their greater synaptic distance from the

retina, cortical action potentials should arrive in sSC long after

the direct retinal input has reached the colliculus. Such assump-

tions suggest a reduced ability of cortical inputs to fire sSC cells,

which should lead to depression of corticocollicular inputs.

The present data suggest several ways that the brain solves

this problem. First, even before EO, cortical axons target regions

of DOV cell bodies proximal to the spike initiating zone (Figure 3)

and later concentrate on proximal dendrites where they are

located in adulthood (Figure 2). This is expected to maximize

their depolarization of DOV neurons, which have axons origi-

nating ventrally from the soma (Bekkers and Stevens, 1996;

Spruston, 2008). Indeed, we found cortex to be an effective

driver of collicular neuronal spiking as early as 1 day after

EO in the deep SGS where DOV neurons are located. Targeting

of proximal locations may be a strategy that is widely used in

the developing CNS to aid synaptogenesis (Hashimoto et al.,

2009).

How proximal regions are targeted is uncertain. Some data

suggest a laminar selectivity by genetically specified retinal

ganglion cell axons within the sSC (Huberman et al., 2008b;

Siegert et al., 2009), and DOV neurons sit at the level of cortical

axon ingrowth, but this does not prove that the laminar ingrowth

or target neurons are prespecified. Because VC axons initially

support fewer synapses compared to the preestablished retinal

projection, this could render themmore powerful competitors for

the previously retina occupied dendritic sites (Figure 3). Support

for such a mechanism has been obtained during elimination of

competingmotor neuron axons on youngmuscle fibers (Kasthuri

and Lichtman, 2003).

Our data suggests a second reason why later arising VC

synapses can form stable sSC contacts. Specifically, during

pattern vision after EO, we find a rapid flow of excitation through

the thalamocortical pathway. Despite a direct retinal input to

sSC, peak cortical spiking in L5a precedes the collicular

response (Figures 7 and 8). Thus, the ability of cortical neurons

to drive collicular neurons with a short (<10 ms) latency could

facilitate cortical synapse stabilization through a spike timing

dependent mechanism (Froemke et al., 2005; Kobayashi and

Poo, 2004; Zhang et al., 1998).
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The decreased and sluggish drive of SC units we observed

after cortical suppression is somewhat at oddswith recent single

unit observations in anesthetized adult rodents (Wang et al.,

2010). Differences in age and anesthesia will surely contribute

to the observed differences, particularly in light of the delayed

development of inhibition in the SC (Shi et al., 1997). We do

know that anesthesia can significantly modify both spontaneous

and visually evoked activity in the rat (Colonnese and Khazipov,

2010; Colonnese et al., 2010), and it is reasonable to assume

that age, anesthesia, and/or the fact that responses in Wang

et al. (2010) included both superficial and deep SGS could

account for this.

That the cortical timing advantage after eye opening is

reversed during eye closure by the changes in the activity

state of VC is interesting given the pruning of corticocollicular

terminals and loss of collicular inputs with prolonged EC. This

timing reversal involves induction of rapid oscillations in the

superficial cortical layers and increased spiking in all layers,

which was not observed in sSC. This modulation of cortical

state can potentially explain the regressive effects of eye closure

on corticocollicular axons by two mechanisms. First, the

increased firing of corticocollicular neurons in the eye closed

state without a concomitant increase in firing of their collicular

partners will result in persistent presynaptic activity without

correlated postsynaptic firing, leading to long-term depression

(Hata et al., 1999). Second, the eye closed cortical state

change modulates the timing of light-induced corticocollicular

activity, causing the majority of cortical spikes to follow collicu-

lar light responses by approximately 10 ms, within the spike

timing window for depression. The initial early response does

not disappear, but is greatly reduced compared to the delayed

response (Figure 8F). One must conclude that some potentiation

of corticocollicular synapses could continue to occur during eye

closure, but that the balance is tipped in favor of depression.

Further experiments will be necessary to determine the genera-

tive mechanism of these immature oscillations and which of

these strategies is the more relevant to the experience-depen-

dent consolidation of cortical and retinal inputs in the developing

animal.

Conclusions
Taking advantage of the thy-1 eGFP-S mouse that, early in

development, fills DOV neurons in the cortico- and retino-recip-

ient sSC with GFP, we show that the ability of the late-arriving

cortical input to successfully coinnervate this one common

sSC neuron type depends on vision and the activity state of

the cortical network, and is probably aided by targeting to

powerful proximal dendritic and somatic domains. When pattern

vision is prevented the consolidation of these inputs is elimi-

nated; corticocollicular axon arbors and many spines on cor-

tico-recipient dendrites essentially disappear. Our data indicate

elimination of V1 connections to its targets could result from dark

rearing, eye closure, or other disruptions of early pattern vision,

and suggest a powerful role for modulation of cortical network

activity in experience-dependent plasticity. These data also

provide a rodentmodel for investigations into recovery from early

sensory deprivation that may have specific implications for the

potential recovery of human vision after late cataract removal
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or trauma to the early visual pathway. The rapid experience-

dependent interaction between two mapped afferents that we

describe may contribute to the process that rapidly restores

some sensory capabilities such as cross-modal mapping after

successful cataract removal (Held et al., 2011).

EXPERIMENTAL PROCEDURES

Animals

Procedures followed MIT IACUC-approved protocols. Mice were wild-type

C57BL/6 background (Jackson Laboratories), homozygous PSD-95 mutants

(Migaud et al., 1998) gifted by M. Wilson with consent of S.G. Grant, or

Thy-1 eGFP-S transgenics gifted by E. Nedivi with consent of G. Feng (Feng

et al., 2000). Dams were checked twice a day for litters and the day of birth

was ‘‘P0.’’ Natural EO in this strain began as early as P11, and was complete

by P14. EO was controlled in mice using a thin layer of glue (Vetbond, 3M),

and in Sprague-Dawley rats (Taconic) with sutures (Ethicon) and glue. Fixation

and histology were as described (Colonnese et al., 2005) (Supplemental

Experimental Procedures).

Confocal Microscopy

Serial sections from each Thy1-eGFP animal were scanned under epifluores-

cence (Nikon 203/0.75 NA objective) for well-labeled DOV neurons. In eGFP

mice axons could be observed originating from the basal portion of the

soma and followed ventrally directly toward the deeper layers of SC. These

cells are most consistent with the ‘‘cylindrical neurons with dorsoventrally

oriented dendrites’’ within category Type 5b as described (Tokunaga and

Otani (1976). Each cell with a majority (>80%–90%) of its dendritic arbor well

labeled and present in a single slice was selected for further analysis. Begin-

ning at the soma, confocal z series of portions of the dendritic arbor were

collected at high magnification with a 603/1.4 NA oil-immersion objective

and 23 digital zoom at 0.5 mm intervals in the z axis on a Nikon PCM2000

(MVI) with a pinhole size of 23 mm using SimplePCI acquisition software

(Compix), for a final pixel resolution of 0.1 mm 3 0.1 mm (xy) and �0.03 mm2

out of plane. The acquisition gain was determined independently for each

cell to be below the maximum threshold that caused saturation of pixels in

spines. Finally, lower-magnification image(s) of each cell (603/1.4 NA,

0.2 mm 3 0.2 mm xy at 2 mm intervals) were collected for later reconstruction

of the location of each dendrite on the cell’s arbor. In some figures, confocal

projections were contrast enhanced and a median Gaussian filter (1–2 pixels)

applied. Z series were exported to Softworx for SGI (DeltaVision) for spine and

filopodia analysis (Supplemental Experimental Procedures).

Anterograde Afferent Labeling

Retinal and cortical afferents to the SGS were labeled by injection of 0.5%

Alexa 488-, 555-, or 647-conjugated Cholera Toxin B subunits (Invitrogen) in

2% DMSO/sterile PBS pH 7.4 using a glass micropipette (CellTram Vario,

Eppendorf). Retinal injection was intravitreal. To label cortex, 1–3 ml of dye

solution was injected through a small burr hole in medio-posterior cortex

(Using Paxinos’ coordinates from l: 3 mm in adult mice, scaled for other

ages). After 1–3 days, animals were perfused, and successful injections

confirmed by fluorescent stereomicroscopy.

Axodendritic Proximity Assay

Confocal image stacks were examined for colocalization between eGFP-

labeled neurons and anterogradely labeled retinal and cortical axons using

ImageJ (NIH). Only pixels exceeding a fixed intensity threshold were used to

identify colocalization. This threshold was empirically determined by evalua-

tion of the threshold required to discriminate in-focus from out-of-focus

fluorescence, and was set at 5.5 SD above the mean pixel intensity. Confocal

z series encompassing the neuron were batch processed for colocalized

pixels using an automated ImageJ algorithm. The density and localization of

the overlapped pixels on dendritic branches of individual neurons was

measured in Softworx, using the original neuronal image stack overlapped

with a binary image stack of the colocalized pixels (Supplemental Experi-

mental Procedures).
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Cortical Axon Analysis

Small Gelfoam threads (Pharmacia) were soaked in saturated DiIC18 (Molec-

ular Probes, Invitrogen) in dimethylformamide (DMF) and dried overnight. Indi-

vidual strands were inserted in V1 under the pia. Two to three days later,

confocal images were collected throughout the depth of each parasagittal

section and the A-P axis with a 403/1.30 NA oil-immersion objective (Nikon)

or a 203/0.75 NA air lens (1.5 mm z step). Blind, 3D single-arbor reconstruc-

tions of the portion of the axon contained in each section was done in

Neurolucida (MicroBrightField) by creating a high resolution montage of the

entire A-P axis. Discrete cortical axons were traced caudally from the

brachium of the sSC. Branches that exited the sliceweremarked and terminals

with major branches leaving the section were discarded. For quantitative anal-

ysis, a 40 mm 340 mm grid overlay was placed over 100 mm-deep image

stacks, yielding 160 mm3 volumes of tissue for analysis of labeled processes

in every fourth volume along the A-P axis using Neurolucida.

Whole Cell Electrophysiology

Whole-cell recordings were from the deep SGS of C57BL/6mouse SC in acute

parasagittal slices as described (Lu and Constantine-Paton, 2004) following

Hestrin (1992) (see Supplemental Experimental Procedures for details).

Recorded neurons were selected under IR-DIC based on their position in the

intermediate portion of the SGS, with vertically oriented or pear-shaped somas

and dorsally oriented, vertical proximal dendrites. These criteria correctly

identified DOV neurons as confirmed by inclusion of Alexa 488 hydrazide

(Invitrogen) in the intracellular solution. Cortical lesion experiments were

conducted on a different electrophysiology set-up than other experiments.

To avoid bias, sham experiments were conducted on littermates using the

same equipment, and the lesion group was statistically compared only to

sham-operated animals. Event data was exported to MATLAB for model-

based analysis (Supplemental Experimental Procedures).

In Vivo Electrophysiology

Procedures for recording were previously described (Colonnese et al., 2010)

(see Supplemental Experimental Procedures for details). Experiments were

conducted in accordance with the Animal Care and Use Committee guidelines

(INSERM, France). Eyes were kept closed by applying clear tape to a thin layer

of glue. EO was verified by eye. Waking state was verified by tonic EMG

activity. Visual stimulation details are provided in the text and Supplemental

Experimental Procedures. Simultaneous VC and sSC recordings used pulled

glass microelectrodes (1–2 MU) coupled to a direct-current amplifier (Axon

Instruments) and multisite linear array silicon Michigan Probes (Neuronexus

Tech) coupled to a custom built AC amplifier (10003, bandpass 1 Hz–5

kHz). V1 recordings were localized at 3.0–3.2 mm lateral to midline, and

0.0–0.5 rostral to l, and sSC recordings to 0.5–0.8 lateral, 1 mm rostral.

Cortical layer identification was accomplished via multiple criteria. Anatomical

sections show layer 4 to be located 400–500 mmbelow the pial surface. Layer 4

was identified by the peak visual response (Colonnese et al., 2010). The collic-

ular projecting layer (lower 5a) was defined as 200 mmbelow L4 and containing

large, spontaneously active units (Le Bon-Jego and Yuste, 2007). Multiunit

firing was identified by high-pass filtering above 300 Hz and simple threshold

discrimination (more than 4.3 times SD of baseline noise). Good discrimination

was verified for each channel.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and five figures and can be found with this article online at doi:10.1016/

j.neuron.2011.06.023.
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