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SUMMARY

Caspase-2 is an evolutionarily conserved caspase,
yet its biological function and cleavage targets are
poorly understood. Caspase-2 is activated by the
p53 target gene product PIDD (also known as LRDD)
in a complex called the Caspase-2-PIDDosome. We
show that PIDD expression promotes growth arrest
and chemotherapy resistance by a mechanism that
depends on Caspase-2 and wild-type p53. PIDD-
induced Caspase-2 directly cleaves the E3 ubiquitin
ligase Mdm2 at Asp 367, leading to loss of the
C-terminal RINGdomain responsible for p53 ubiquiti-
nation. As a consequence, N-terminally truncated
Mdm2 binds p53 and promotes its stability. Upon
DNA damage, p53 induction of the Caspase-2-PIDD-
osome creates a positive feedback loop that
inhibits Mdm2 and reinforces p53 stability and
activity, contributing to cell survival and drug resis-
tance. These data establish Mdm2 as a cleavage
target ofCaspase-2 andprovide insight into amecha-
nism of Mdm2 inhibition that impacts p53 dynamics
upon genotoxic stress.

INTRODUCTION

The tumor suppressor function of p53 is dysregulated in the vast

majority of human cancers via genomic loss, point mutation, or

alterations in signaling components upstream of p53, such as

ARF loss or Mdm2 amplification. As a transcription factor, p53

responds to cellular stress by inducing target genes that

promote cell-cycle arrest, DNA repair, apoptosis, or senescence

(Horn and Vousden, 2007; Menendez et al., 2009; Vousden,

2006). Because p53 plays a central role in determining cell-fate

decisions, elucidation of the signaling circuitry that governs

p53 function is critical for understanding tumorigenesis and

manipulating p53 for therapeutic purposes.
Many factors regulate the stability and activity of p53, such as

posttranslational modifications, protein-protein interactions, and

subcellular localization (Manfredi, 2010; Marine and Lozano,

2010). The E3 ubiquitin ligase mouse/human double minute 2

(Mdm2/Hdm2) is a master regulator of p53 (Kruse and Gu,

2009; Marine and Lozano, 2010). Mdm2 controls p53 levels

by targeting it for ubiquitin-mediated proteasomal degradation

(Haupt et al., 1997; Kubbutat et al., 1997) and can bind p53

and inhibit its transcriptional activity (Momand et al., 1992).

Mdm2 is also a target gene of p53, establishing a negative feed-

back loop that inhibits p53 activity after DNA damage (Juven

et al., 1993; Wu et al., 1993).

Both positive and negative feedback loops are prominent

features of the autoregulation of the p53 pathway (Harris and

Levine, 2005; Lu, 2010). Well-known examples are the negative

feedback loops induced by the p53 target gene products

Mdm2, Wip1, Pirh2, and Cop1 (Marine and Lozano, 2010).

However, p53 target genes that function in positive feedback

loops have also been identified. For example, the p53 target

protein Wig-1 (ZMAT3) has been shown to increase p53 levels

by enhancing p53 messenger RNA (mRNA) stability (Vilborg

et al., 2009), while 14-3-3 sigma inhibits Mdm2-mediated ubiqui-

tination of p53 (Yang et al., 2003). Studies in single cells and

mouse models have demonstrated that p53 activity is induced

in oscillations or pulses, both in response to high levels of

damage and during the cell cycle of normal unstressed cells

(Batchelor et al., 2009; Hamstra et al., 2006; Loewer et al.,

2010). Given the pulsatile dynamics of p53 signaling (Lahav

et al., 2004), it may be essential that p53 induces its own neg-

ative and positive regulators that control, or are controlled by,

the p53 response and ultimately define p53 activity.

The p53 target gene, leucine-rich repeats and death domain

containing (Lrdd), also known as p53-induced protein with

a death domain (Pidd), functions in apoptosis, NF-kB-mediated

survival signaling, cell-cycle arrest, DNA repair, and drug resis-

tance (Janssens et al., 2005; Lin et al., 2000; Logette et al.,

2011; Oliver et al., 2010; Tinel and Tschopp, 2004). PIDD is a

death domain protein that is autocatalytically cleaved into mul-

tiple fragments, generating PIDD-C and PIDD-CC (Tinel et al.,

2007). PIDD-C is a component of the so-called PIDDosome

complex with RIP1 and Nemo, which promotes cell survival via
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NF-kB activation (Janssens et al., 2005). PIDD-CC activates the

protease Caspase-2 in a cytoplasmic PIDDosome complex

assembled by the adaptor protein, RAIDD/CRADD (Bouchier-

Hayes et al., 2009; Park et al., 2007; Tinel and Tschopp, 2004).

We recently discovered that Pidd is induced in murine chemo-

resistant tumors in vivo and can promote cell cycle arrest and

drug resistance in human lung cancer cells (Oliver et al., 2010).

The mechanism by which PIDD promotes cell-cycle arrest and

drug resistance is unknown.

Caspase-2 is an evolutionarily conserved caspase with

features of both initiator and executioner caspases, yet very

few of its targets are known (Krumschnabel et al., 2009a,

2009b; Kumar, 2009; Vakifahmetoglu-Norberg and Zhivotovsky,

2010). For example, Caspase-2 cleaves Golgin-160, and this

cleavage has been implicated in Golgi disintegration and the

initiation of apoptosis (Mancini et al., 2000). Caspase-2-medi-

ated cleavage of Bid has been shown to promote cytochrome

c release at the mitochondria during apoptosis (Guo et al.,

2002; Upton et al., 2008). Additionally, Caspase-2 has been

proposed to cleave RIP1 leading to NF-kB inhibition (Guha

et al., 2010). Despite early evidence suggesting Caspase-2 plays

a role in apoptosis, its function in this process remains con-

troversial. Caspase-2 null mice are viable, fertile, and display

only mild defects in apoptosis (Bergeron et al., 1998). Cas-

pase-2 can also influence cell-cycle regulation and DNA repair

(Kumar, 2009). Recently, Caspase-2 has been implicated as

a tumor suppressor gene as caspase-2 null mouse embryonic

fibroblasts (MEFs) exhibit increased proliferation and enhanced

sensitivity to transformation (Ho et al., 2009). Tumor formation

was accelerated in caspase-2 null mice in an Em-myc model of

lymphoma (Ho et al., 2009). Identification of new Caspase-2

cleavage targets should shed light on its biological functions.

Here, we demonstrate that DNA damage and PIDD-induced

activation of Caspase-2 trigger cleavage of Mdm2, which rein-

forces p53 stability and activity in a positive feedback loop.

This signaling pathway provides a mechanistic explanation for

how transiently increased PIDD expression can protect cells

from DNA damage.

RESULTS

PIDD Positively Regulates p53 Levels
The PIDD promoter contains a noncanonical p53 response

element and is induced upon DNA damage and p53 activation

(Jordan et al., 2008; Lin et al., 2000). We verified that PIDD is

increased upon DNA damage by treating human non-small cell

lung cancer (NSCLC) cell lines with a standard-of-care chemo-

therapy agent cisplatin. Consistent with published data, PIDD

was highly induced in p53 wild-type cells and much less so, or

not at all, in p53 null and mutant cells (Figure S1A available

online). We next took advantage of a unique mouse model

system that allows restoration of endogenous p53 to physiolog-

ical levels (Ventura et al., 2007). Homozygous p53-Lox-Stop-Lox

(LSL) mice (p53LSL/LSL) crossed to ROSA26CreERT2 mice are

functionally p53 null until addition of 4-hydroxytamoxifen

(4-OHT), which activates Cre recombinase. Cre excises the

Stop cassette and restores the p53 locus to its wild-type state.

Three independent mouse lung tumor cell lines driven by on-
58 Molecular Cell 43, 57–71, July 8, 2011 ª2011 Elsevier Inc.
cogenic KrasG12D (KrasLA/+;p53LSL/LSL;ROSA26CreERT2 [KPR])

were treated with vehicle or 4-OHT and analyzed at multiple

time points (Feldser et al., 2010). Restoration of p53 led to p21

induction and G1 cell-cycle arrest (Figures S1B and S1C). Pidd

expression was significantly induced from 5- to 15-fold as early

as 24 hr (Figure 1A). Thus, Pidd is induced both upon DNA

damage as previously described and upon physiologically rele-

vant p53 restoration in cancer cells.

To examine the consequences of PIDD expression, we over-

expressed Flag-tagged PIDD in human NSCLC cell lines that

harbored KRAS mutations and were p53 wild-type, null, or

carrying point mutant alleles of p53. PIDD expression was

confirmed in the nuclear and cytoplasmic fractions of nine

independent cell lines (Figure S1D and data not shown). Exoge-

nous PIDD expression led to a slower growth rate and G1 arrest

in p53 wild-type cells as we previously described (Oliver et al.,

2010). Surprisingly, PIDD did not induce growth arrest in p53

null or mutant cells (Figure 1B). We previously found that p53

wild-type PIDD-expressing cells showed significantly increased

cisplatin resistance compared to vector control cells (Oliver

et al., 2010). In contrast, p53 null or mutant PIDD-expressing

cells did not exhibit increased cisplatin resistance, as indicated

by a lack of change in the IC50 of PIDD-expressing versus control

cells (Figure 1C). Thus, drug response in PIDD-expressing cells

was significantly associated with p53 status. Of nine cell lines,

the one exception was the p53 wild-type line, A427, in which

PIDD overexpression did not induce cell cycle arrest or cisplatin

resistance (see explanation in Figure S1D). Taken together,

these data suggest that PIDD expression promotes cell-cycle

arrest and drug resistance in a p53-dependent manner.

To test the requirement of p53 for PIDD-induced cell-cycle

arrest, we compared cell growth rates in p53 wild-type

HCT116 colon cancer cells and isogenic p53 null derivatives.

Expression of PIDD significantly reduced cell growth rate in

p53 wild-type cells (p < 0.02) and had no effect in the absence

of p53 (p > 0.38) (Figure 1D), demonstrating that p53 is required

for PIDD-induced inhibition of the cell cycle.

To further investigate the relationship between PIDD and

p53, we analyzed p53 protein levels in control and PIDD-

expressing cells. In p53 wild-type cells, PIDD expression led to

increased nuclear p53 levels and an increase in nuclear p21,

a canonical p53 target (Figure 1E). Levels of p53 and p21

protein did not change in p53 null or mutant cells upon PIDD

expression (Figure S1E). In p53wild-type cells, p53mRNA levels

were unchanged upon PIDD expression, while p21 mRNA was

upregulated in a p53-dependent manner (Figure 1F), suggesting

that PIDD leads to increased p53 protein stability and activity.

Thus, PIDD, a target gene product of p53, can increase p53

protein levels in a positive feedback mode.

PIDD-Induced Growth Arrest and Cisplatin Resistance
Depend on Caspase-2
The Caspase-2-PIDDosome is a high-molecular-weight com-

plex composed of PIDD, the adaptor protein, RAIDD, and

Caspase-2 (Tinel and Tschopp, 2004). This complex is assem-

bled via death domain interactions between PIDD and RAIDD.

RAIDD recruits Caspase-2 via their mutual caspase recruit-

ment domains (CARDs) (Park et al., 2007). Formation of the



Figure 1. PIDD Positively Regulates p53 Levels

(A) Pidd levels analyzed by real time RT-PCR and normalized to actin; fold change of 4-OHT relative to vehicle control. n = 3.

(B) Cell number measured in triplicate of PIDD-expressing cells compared to control cells after 72 hr; n = 2, except for H1299, n = 1. Average percent cell number

for PIDD-expressing cells compared to control for p53 wild-type (66% ± 5%) versus p53 null/mutant (100% ± 5%).

(C) IC50 for PIDD versus control cells after 48 hr cisplatin. Average data from two independent sets of cells performed in triplicate. Cisplatin-resistant p53wild-type

lines (n = 4 of 5) versus p53 null/mutant lines (n = 0 of 4) (p < 0.01, Chi Square and p < 0.04, Fisher’s exact test).

(D) p53 WT or null HCT116 cells expressing PIDD or vector. Cells counted in quadruplicate every 24 hr, n = 2. For p53 WT cells, p < 0.02.

(E) Immunoblot of nuclear/cytoplasmic (n/c) fractions in control or PIDD-expressing cells. p65 and PARP serve as cytoplasmic and nuclear loading controls,

respectively.

(F) Fold change in p21 and p53mRNA levels in p53 wild-type (H460, SW1573, A549) and p53mutant cells (COR-L23, H1299) in PIDD-expressing versus control

cells. n = 3, normalized to ACTIN.

Error bars in all panels represent the mean ± standard deviation (SD). See also Figure S1.
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PIDDosome activates Caspase-2 by proximity-induced dimer-

ization and subsequent autoprocessing of pro-Caspase-2

(Bouchier-Hayes et al., 2009). We found that cytoplasmic pro-

Caspase-2 was significantly reduced or absent in all cell lines
upon ectopic PIDD expression, regardless of p53 status (Fig-

ure 2A). Under different lysis conditions, the cleavage products

of Caspase-2 that are generated during activation are detectable

in total cell lysates as well (Figure S2). Transcriptional repression
Molecular Cell 43, 57–71, July 8, 2011 ª2011 Elsevier Inc. 59



Figure 2. PIDD-Induced Growth Arrest and Cisplatin Resistance Depend on Caspase-2
(A) Immunoblot for pro-Caspase-2 in p53 wild-type lines (top) with loading control in Figure 1E; p53 null/mutant lines (bottom) with Nemo as cytoplasmic loading

control.

(B) Caspase-2 levels analyzed by real time RT-PCR and normalized to actin, n = 3.

(C) Cell viability assays performed with MSCV-control, PIDD, or PIDD point mutants (S446A, F582A, and S446A/F582A) stably expressed in H460 cells, n = 3.

IC50 presented in table (mM, cisplatin).

(D) Immunoblot of n/c lysates from (C). Full-length (FL) and cleavage fragments of PIDD indicated by arrowheads.

(E) Growth rate of A549 cells stably expressing control (MLH) or Caspase-2 shRNAs (shC2) ± PIDD. Performed in triplicate; n = 2.

Error bars in all panels represent the mean ± SD. See also Figure S2.
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of CASP2 by p53 (Baptiste-Okoh et al., 2008) is not likely under

these conditions since the reduction of pro-Caspase-2 by

ectopic PIDD expression occurred independently of p53 status

(Figure 2A) and CASP2 mRNA was not dramatically affected

by PIDD expression (Figure 2B). Previous studies have demon-

strated that Caspase-2 cleavage is not required for its full activa-

tion (Baliga et al., 2004) and that cleavage does not necessarily

imply activation (Bouchier-Hayes et al., 2009). These results

are consistent, however, with previous studies demonstrating

PIDD’s ability to promote Caspase-2 activation. Importantly,

PIDD expression did not increase cleavage of PARP or Cas-
60 Molecular Cell 43, 57–71, July 8, 2011 ª2011 Elsevier Inc.
pase-3 (Figure 1E, Figure S1D, and data not shown), suggesting

that PIDD expression does not promote apoptosis under these

conditions.

Given that PIDD is autocatalytically cleaved into multiple frag-

ments that have been implicated in a variety of responses to

cellular stress, we sought to determine which fragment(s)

contribute to cell-cycle arrest and drug resistance. Point mutant

versions of PIDD were stably expressed in human lung cancer

cells that generate PIDD-C (F582A), PIDD-CC (S446A), or full-

length PIDD (S466A/F582A) as previously described (Tinel

et al., 2007). Expression of both PIDD-CC and full-length PIDD
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induced growth arrest and cisplatin resistance in p53 wild-type

cells similar to wild-type PIDD, but PIDD-C did not (Figures 2C

and 2D and data not shown). This suggests that PIDD-C,

involved in NF-kB-mediated survival signaling, is not required

for cell-cycle arrest and drug resistance. Expression of

PIDD-CC, which has been implicated in Caspase-2 activation,

was sufficient to promote cell-cycle arrest and drug resistance.

Moreover, growth arrest and drug resistance correlated with

the level of Caspase-2 cleavage (Figure 2D and data not shown),

suggesting that Caspase-2 activation may be an important

determinant of PIDD-induced cell-cycle arrest and drug resis-

tance. To test this directly, we infected cells with Caspase-2

short hairpin RNAs (shRNAs) or controls and subsequently

infected them with PIDD or controls. Caspase-2 knockdown

was incomplete, but enhanced cell growth rate compared to

control cells, similar to recent studies implicating Caspase-2 as

a tumor suppressor (Ho et al., 2009). Importantly, reducing

Caspase-2 levels partially rescued the growth rate of cells

expressing PIDD (Figure 2E), suggesting that Caspase-2 is

required for PIDD-induced cell-cycle arrest.

The Caspase-2-PIDDosome Promotes Mdm2 Cleavage
We hypothesized that the Caspase-2-PIDDosome may act to

increase p53 levels by inhibiting Mdm2, a key negative regulator

of p53. To address this, we analyzed Mdm2 expression in three

NSCLC lines with or without PIDD expression. Low levels of full-

length Mdm2 (�90 kDa) were present in all lines and did not

dramatically differ in control versus PIDD-expressing cells (Fig-

ure 3A). Strikingly, however, an�60 kDaMdm2 species (referred

to hereafter as p60) was highly enriched in PIDD-expressing cells

compared to controls in all lines examined (Figure 3A). The

Mdm2 p60 product could represent an alternative splice variant

or cleavage product of Mdm2. Mdm2 p60 was detected with an

N-terminal antibody, whereas two independent C-terminal

Mdm2 antibodies detected a 25–30 kDa fragment (Figure 3A

and data not shown) but did not detect p60. Thus, p60 appeared

to be an N-terminal fragment of Mdm2. Consistent with this,

relative levels of p60 and p25 fragments correlated well in all

cell lines examined. The N-terminal fragment of Mdm2 was

detected in the nucleus and cytoplasm of PIDD-expressing

cells, whereas the p25 C-terminal fragment was found exclu-

sively in the cytoplasm (Figure 3A). The N-terminal region of

Mdm2 contains a nuclear localization sequence and nuclear

export signal, whereas the C-terminal region does not (Coutts

et al., 2009), consistent with the hypothesis thatMdm2 is cleaved

in the cytoplasm and the p60 fragment enters the nucleus.

Mdm2 contains a well-conserved caspase cleavage site, Asp-

Val-Pro-Asp (DVPD), at which cleavage generates an �60 kDa

N-terminal product (Pochampally et al., 1998). This site is con-

served among human, mouse, and hamster (Chen et al., 1997;

Pochampally et al., 1998). Upon re-examination of Mdm2 ortho-

logs with recently annotated sequence data, we found that the

DVPD site is also conserved in zebrafish mdm2 (Figure 3B).

Previous studies demonstrated that activation of a tempera-

ture-sensitive p53 leads to Mdm2 cleavage at DVPD via a

Caspase-3-like activity (Pochampally et al., 1999). This sug-

gested to us that Caspase-2 might be the p53-induced caspase

responsible for Mdm2 cleavage.
To test whether Mdm2 is cleaved at the DVPD site by Cas-

pase-2, we mutated D367 to alanine (D367A) or glutamic acid

(D367E) with vectors containing full-length N-terminal Myc-

tagged human Mdm2 (Zhang et al., 2003). We also generated

a truncated Mdm2 p60 by introducing a STOP codon after the

DVPD site. Full-length Mdm2 (WT), D367A, D367E, p60, or

eGFP control vectors were transiently expressed in 293T cells,

and nuclear and cytoplasmic fractions were immunoblotted

with anti-Myc-tag antibodies. Expression of wild-type Mdm2

led to appearance of the full-length Mdm2 protein as well as

low levels of p60 products (Figure 3C). Expression of D367A

and D367E eliminated expression of the p60 products. Impor-

tantly, transiently expressed Mdm2 p60 migrated at the same

size as the cleavage products that were present upon wild-

type Mdm2 expression (Figure 3C). Since Mdm2 contains an

internal alternative start codon at amino acid 50, two full-length

and two cleavage products were present, migrating as a dou-

blet. Similar results were observed using A549 cells (data not

shown). These data suggest that Mdm2 is cleaved at D367,

generating a p60 protein doublet consistent with previous

studies (Pochampally et al., 1998).

To test whether PIDD expression can promote Mdm2

cleavage, we expressed PIDD in 293T cells in the presence or

absence of Myc-tagged Mdm2. PIDD expression caused

a decrease in full-length Mdm2 and an increase in cleaved

Mdm2, enhancing the ratio of cleaved to full-length Mdm2

(Figure 3D). Expression of PIDD and RAIDD are known to

promote formation of the PIDDosome and subsequent Cas-

pase-2 activation (Kitevska et al., 2009). If the Caspase-2-

PIDDosome was responsible for Mdm2 cleavage, then expres-

sion of RAIDD might also promote Mdm2 cleavage. Indeed,

expression of RAIDD was sufficient to promote cleavage of

wild-type, but not point mutant D367A Mdm2 (Figure 3E),

whereas Nemo did not promote Mdm2 cleavage (Figure S3).

We next tested whether activated Caspase-2 could promote

Mdm2 cleavage. Expression vectors for truncated constitu-

tively-active (C2) or catalytically dead (C320A) Caspase-2

(Guha et al., 2010) were cotransfected with wild-type or D367A

Mdm2. Expression of Caspase-2, but not C320A, led to a stri-

king disappearance of full-length Mdm2 and the generation of

cleaved Mdm2 p60 (Figure 3F). Mutation of D367 to alanine

completely abolished Mdm2 cleavage. Together, these data

are fully consistent with a model in which formation of the Cas-

pase-2-PIDDosome promotes Mdm2 cleavage.

Caspase-2 Cleaves Mdm2 In Vitro
Given that Caspase-2 could activate another caspase (such as

Caspase-3) responsible for Mdm2 cleavage, we tested directly

whether recombinant Caspase-2 could cleave Mdm2. Wild-

type or D367A Mdm2 were transiently expressed in 293T cells

followed by immunoprecipitation (IP) with anti-Myc-tag anti-

bodies. The Mdm2 IPs were incubated alone or with recombi-

nant Caspase-2 (C2) or Caspase-3 (C3) and were then sub-

jected to immunoblotting with Mdm2 N-terminal or C-terminal

antibodies. Full-length Mdm2 (�p90) was entirely absent in

the reactions with Caspase-2, and Mdm2 was partially cleaved

by Caspase-3 as previously described (Figure 4A). In the pres-

ence of both caspases, we detected increased p60 fragments
Molecular Cell 43, 57–71, July 8, 2011 ª2011 Elsevier Inc. 61



Figure 3. The Caspase-2-PIDDosome Promotes Mdm2 Cleavage

(A) Immunoblot of n/c lysates from control or PIDD-expressing NSCLC cell lines for Mdm2 expression.

(B) Sequence conservation of Mdm2 cleavage site, DVPD, among vertebrate species. Conserved residues are highlighted. Bottom plot shows consensus

residues and degree of conservation at aligned sites.

(C) 293T cells transfected with eGFP control, myc-tagged Mdm2 (WT), point mutant Mdm2 (D367A), (D367E) or truncated Mdm2 (p60).

(D) Immunoblot of n/c fractions from 293T cells transiently expressing control or MSCV-PIDD ± myc-tagged Mdm2.

(E) Immunoblot of n/c fractions from 293T cells expressing control or Flag-tagged RAIDD with wild-type (WT) or D367A Mdm2.

(F) Immunoblot of n/c fractions from 293T cells expressing truncated HA-tagged active or inactive (C320A) Caspase-2 with wild-type or D367A Mdm2.

See also Figure S3.
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using N-terminal antibodies and increased p30 fragments

using C-terminal antibodies (Figure 4A). Cleavage probably oc-

curred at the DVPD site, as the D367A mutant was not cleaved

by either caspase. Recombinant Caspase-2 and -3 were also

able to cleave recombinant Mdm2 (Figure 4B), demonstrating

that both Caspase-2 and -3 can cleave Mdm2 in vitro. Impor-

tantly, given that Caspase-3 activity is not detectable in cells
62 Molecular Cell 43, 57–71, July 8, 2011 ª2011 Elsevier Inc.
under the growth arrest conditions induced by PIDD in our

experimental conditions, these results suggest that activated

Caspase-2 directly cleaves Mdm2 after PIDDosome activation.

Low levels of exogenous Mdm2 p60 were present in 293T

cells without addition of exogenous Caspase-2 (see Figure 3C,

WT lane), so it was possible that basal Caspase-2 activity was

present in these cells. Thus, we cotransfected Mdm2 with



Figure 4. Caspase-2 Cleaves Mdm2 In Vitro

(A) IPs from 239T cells expressing control (none), wild-type (WT), or D367A Mdm2 incubated ± recombinant human Caspase-2 (C2) or Caspase-3 (C3).

Immunoblot for Mdm2 (N-terminal and C-terminal antibodies) with full-length (FL) and cleavage fragments indicated by arrows.

(B) Immunoblot for Mdm2 (C-terminal) from recombinant Mdm2 incubated ± 5-fold serial dilutions (black arrows) in the presence or absence (ctrl) of recombinant

Caspase-2 (C2) or Caspase-3 (C3).

(C) Immunoblot of n/c fractions from 293T cells transiently expressing myc-tagged Mdm2 ± MSCV-shCasp2. Mdm2 p60 fragments indicated by double

arrowheads.

(D) Immunoblot of n/c fractions from A549 cells stably expressing MSCV-shCasp2 or vector control. Parp/Nemo immunoblots for n/c loading controls,

respectively.

(E) Immunoblot of n/c lysates from A549 cells ± vector (MLH) or shC2, ± PIDD or vector control.

Molecular Cell
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retroviral vectors carrying control or Caspase-2 shRNAs and

examined Mdm2 expression. Caspase-2 knockdown was in-

complete but significantly reduced the level of Mdm2 p60
(Figure 4C). To test whether Caspase-2 knockdown was suffi-

cient to reduce cleavage of endogenous Mdm2, we stably in-

fected A549 cells with retroviral vectors carrying Caspase-2
Molecular Cell 43, 57–71, July 8, 2011 ª2011 Elsevier Inc. 63
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shRNAs or controls. Again, Caspase-2 knockdown was not

complete, but reduction of Caspase-2 significantly inhibited

cleavage of endogenous Mdm2 (Figure 4D). Expression of

Caspase-2 shRNAs had no effect on pro-Caspase-3, -6, -8, or

-9 levels (Figures 4C and 4D and data not shown). These data

demonstrate that Caspase-2 cleaves Mdm2 in vitro and in

human cancer cells. Furthermore, knockdown of Caspase-2 in

PIDD-expressing cells reduced Mdm2 cleavage and nuclear

p53, suggesting that Caspase-2 is required for Mdm2 cleavage

and subsequent p53 accumulation (Figure 4E).

Cleaved Mdm2 Binds p53 and Promotes p53
Stabilization
The N terminus of Mdm2 harbors a well-characterized p53

binding domain (Chen et al., 1993). Upon cleavage at D367,

the p53-binding domain is dissociated from the C-terminal ubiq-

uitin-conjugating RING finger domain. Truncated forms ofMdm2

fail to target p53 for degradation and consequently lead to

elevated p53 levels (Honda and Yasuda, 2000; Kubbutat et al.,

1997; Pochampally et al., 1999). To determine whether Mdm2

p60 binds p53 in cells, we immunoprecipitated p53 from A549

cells expressing PIDD or vector control. As expected, PIDD-

expressing cells had increased levels of p53 andMdm2cleavage

compared to controls (Figure 5A, left). Western blotting of the

p53 IPs with antibodies to Mdm2 (N-terminal and C-terminal)

revealed that full-length and Mdm2 p60 were both bound to

p53 in the presence of PIDD and that p60 was bound at higher

levels than full-length Mdm2 (Figure 5A, right). Both antibodies

revealed that significantly less full-length Mdm2 was bound to

p53 in PIDD-expressing cells compared to control cells.

Because Mdm2 p60 lacks the RING domain, it should fail to

promote p53 modifications such as ubiquitination, sumoylation,

and neddylation. Loss of the RING finger domain may also

contribute to increased Mdm2 p60 stability due to decreased

autoubiquitination (Honda and Yasuda, 2000). To determine

the effects of Mdm2 p60 on p53, we expressed wild-type

(WT), noncleavable (D367A), RING finger domain mutant

(C464A), and truncated Mdm2 (p60) in 293T cells and analyzed

p53 levels. Wild-type and noncleavable Mdm2 caused a

dramatic increase in p53 modifications (Figure 5B), whereas

Mdm2 C464A (Figure S4A) and Mdm2 p60 (Figure 5B) did not.

We tested whether Mdm2 p60 could compete for interaction

with p53 and inhibit p53 modification by full-length Mdm2.

Each Mdm2 construct was expressed alone (WT, D367A, or

p60) or in combination with p60 in 293T cells. Coexpression of

Mdm2 p60 with either wild-type or D367A Mdm2 dramatically

reduced p53 modifications (Figure 5B). In p53 wild-type U2OS

cells, exogenous expression of wild-type and D367A Mdm2

led to slightly reduced p53 levels, whereas Mdm2 p60 expres-

sion caused a significant increase in p53 levels (Figure 5C).

Increased p53 levels in the presence of Mdm2 p60 were also

associated with a reduction in p53 modifications (Figure S4B).

Together, these data suggest that the Mdm2 p60 fragment

promotes the stabilization of p53 by reducing p53 modifications,

most likely ubiquitination and subsequent proteasomal-medi-

ated degradation.

To further examine whether Mdm2 cleavage inhibits p53

modifications, we coexpressed either constitutively active
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(Casp2) or catalytically dead (C320A) Caspase-2 along with

wild-type Mdm2 in 293T cells. Consistent with previous results,

p53 modifications were completely inhibited by expression of

active Caspase-2 but not by catalytically dead Caspase-2 (Fig-

ure 5D) or Nemo (see Figure S3). Similar results were obtained

in U2OS cells (data not shown). Expression of RAIDD, which

promotes Mdm2 cleavage (Figure 3E), also inhibited p53 modi-

fication in the presence of wild-type but not D367A Mdm2

(Figure S4C). These results suggest that activation of the Cas-

pase-2-PIDDosome leads to Mdm2 cleavage by Caspase-2,

thereby inhibiting Mdm2 and promoting p53 stability.

Caspase-2-PIDDosome Cleaves Mdm2 in Response
to DNA Damage
Given that p53 induces PIDD, which activates Caspase-2 and

promotes Mdm2 cleavage, we reasoned that p53 activation

should promote Mdm2 cleavage in response to DNA damage.

We treated U2OS osteosarcoma cells with increasing doses of

doxorubicin (dox) and analyzedMdm2 and p53 levels. Dox treat-

ment led to increased total Mdm2 levels with corresponding

increases in cleaved Mdm2 that were maximal at 0.5 mM and

diminished at higher doses. Levels of p53 also peaked at

0.5 mM (Figure S5A). To assess the role of Caspase-2 in Mdm2

cleavage, we infected p53 wild-type U2OS and A549 cells with

retroviral vectors carrying Caspase-2 or control shRNAs and

then damaged cells with dox. In both cell types, dox treatment

caused Mdm2 cleavage that increased with damage

(0–0.5 mM) (Figures 6A and 6B). Caspase-2 knockdown did not

affect pro-Caspase-3 levels but did significantly reduce cleaved

Mdm2 at the basal level and upon damage, suggesting that the

Mdm2 cleavage products are generated in a Caspase-2-depen-

dent manner (Figures 6A and 6B).

To determine whether the Caspase-2-PIDDosome was

required for Mdm2 cleavage, we tested whether inhibition of

PIDD or RAIDD impacted Mdm2 cleavage upon DNA damage.

PIDD and RAIDD knockdown in U2OS cells did not affect

Caspase-3 levels (Figures 6C and 6D). Cells were then damaged

with 0.5 mM of dox, a concentration that induces PIDD expres-

sion and Mdm2 cleavage (Figures S5A and S5B), and Mdm2

levels were assessed in cytoplasmic fractions by western

blotting. Importantly, inhibition of PIDD or RAIDD had no effect

on pro-Caspase-3, but resulted in a striking reduction in Mdm2

cleavage compared to control small interfering RNAs (siRNAs)

(Figure 6E). Finally, we compared Mdm2 cleavage in the pres-

ence or absence of siRNAs to Caspase-2 or -3. Knockdown of

Caspase-2, but not Caspase-3, significantly reduced Mdm2

p60 products (Figure 6F). Treatment with the double-strand

break-inducing agent, neocarzinostatin, also caused Mdm2

cleavage, which was abolished by Caspase-2-PIDDosome inhi-

bition (Figure S5C). These data demonstrate that DNA damage

activates the Caspase-2-PIDDosome, leading to Caspase-2-

mediated cleavage and inhibition of Mdm2.

The Caspase-2-PIDDosome Impacts p53 Dynamics
during the DNA Damage Response
Inhibition of Mdm2 cleavage would be predicted to result in

increased total Mdm2 and decreased p53 levels. To test this,

we knocked down Caspase-2 or PIDD and damaged cells with



Figure 5. Cleaved Mdm2 Binds p53 and Promotes p53 Stabilization

(A) Left: Immunoblot of total extracts from control or PIDD-expressing A549 cells. Right: Control or p53 IPs blotted for Mdm2 (C-terminal and N-terminal) or p53.

Asterisk (*) indicates nonspecific band.

(B) Immunoblot of n/c fractions from 293T cells transiently expressing control, wild-type (WT), point mutant (D367A), truncated Mdm2 (p60), or indicated

combinations. Bracket indicates p53 modifications.

(C) Same as in (B), except in U2OS cells.

(D) Immunoblot of n/c fractions from 293T cells transiently expressing truncated active (Casp2) or catalytically dead (C320A) Caspase-2 ± Mdm2.

See also Figure S4.
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dox. As predicted, p53 levels were slightly reduced at the basal

level upon Caspase-2 and PIDD knockdown (Figures 7A

and 7B). Upon DNA damage, p53 levels recovered, and subse-

quently peaked earlier than control cells (e.g., 20 hr), followed

by a dramatic decline in levels at 26 hr. This suggests that

Mdm2 cleavage is not required for the initial accumulation of

p53, but appears to impact the maintenance of p53 levels after

DNA damage.
To assess the impact of the Caspase-2-PIDDosome on the

recovery of cells after DNA damage, we treated cells with dox

for 8 hr, washed and allowed them to recover. In control cells,

p53 levels peaked by 24 hr. In cells with Caspase-2 or PIDD

knockdown, p53 levels were induced to a similar extent, but

peaked earlier and declined prematurely after 32 hr (Figures

7A–7C and Figure S6A and S6B). Similar results were obtained

in cells synchronized with hydroxyurea (data not shown).
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Figure 6. Caspase-2-PIDDosome Cleaves

Mdm2 in Response to DNA Damage

(A) Immunoblot with cytoplasmic fractions from

A549 cells treated with vehicle, 0.1, or 0.5 mM

doxorubicin (Dox) ± MSCV-shCasp2 (shC2).

(B) Same as in (A), except in U2OS cells.

(C and D) Real time RT-PCR for human PIDD (C) or

RAIDD (D) normalized to ACTIN, and relative

to siRNA controls. Error bars represent the

mean ± SD.

(E) Immunoblot of cytoplasmic lysates from U2OS

cells treated ± 500 nM Dox for 24 hr. Nemo and

pro-Casp3 immunoblot (controls).

(F) Same as in (E) with total cell lysates, with

siRNAs to control (ctrl), Caspase-2 (siC2), or two

different siRNAs to Caspase-3 (siC3, siC30 ).
See also Figure S5.
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Together, this suggests that the Caspase-2-PIDDosome is an

important factor in maintaining p53 levels and regulating p53

dynamics after DNA damage.

Because PIDD expression promoted resistance to DNA

damage in p53 wild-type cells (Figure 1C), we sought to deter-

mine whether inhibition of PIDD would sensitize to DNA damage.

We treated cells with control or PIDD siRNAs and measured

apoptosis by flow cytometry after dox treatment. PIDD inhibition

resulted in a significant increase in the percentage of apoptotic

and dead cells compared to controls (Figure 7D). Together, these

data suggest that Mdm2 cleavage by the Caspase-2-PIDDo-

some establishes a positive feedback loop induced by p53 that

reinforcesp53stability andactivity afterDNAdamage (Figure 7E).

DISCUSSION

Here, we show that activation of the Caspase-2-PIDDosome

promotes cleavage of Mdm2. Caspase-2 directly cleaves
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Mdm2 at a conserved DVPD367 site,

leading to separation of the p53 binding

domain and the RING finger responsible

for p53 ubiquitination. As a result, Mdm2

cleavage inhibits its E3 ubiquitin ligase

activity, leading to increased p53 levels

and activity. We show that Mdm2 cleav-

age in human lung cancer cells promotes

p53-dependent cell-cycle arrest and sub-

sequent drug resistance. Furthermore,

Mdm2 cleavage by the Caspase-2-PIDD-

osome occurs in response to DNA

damage and contributes to the mainte-

nance of p53 levels. Together, p53

activation of the Caspase-2-PIDDosome

establishes a positive feedback loop

that promotes p53 stability and activity

after DNA damage (Figure 7E).

Previous studies showed that Mdm2

is cleaved by a Caspase-3-like activity

under apoptotic and nonapoptoptic,

growth arrest conditions (Chen et al.,
1997; Erhardt et al., 1997; Pochampally et al., 1998, 1999). The

caspase responsible for Mdm2 cleavage was p53 inducible

(Pochampally et al., 1999) and distinct from Caspases-1, -3, -6,

-7, and -8 (Erhardt et al., 1997; Pochampally et al., 1998, 1999).

Thus, the identity of the caspase that directly cleaved Mdm2

and its mechanism of induction by p53 remained unknown.

Our studies resolve these issues by demonstrating that (1)

Caspase-2 directly cleaves Mdm2 and (2) the mechanism of

Caspase-2 activation is due to p53-mediated induction of PIDD.

Very few Caspase-2 cleavage targets are known, making its

biological role elusive. Interestingly, the Caspase-2 cleavage

site identified here in Mdm2 (DVPD) is highly conserved among

vertebrates and similar to the known Caspase-2 cleavage site,

ESPD, of Golgin-160 (Mancini et al., 2000). Although studied

here in the context of DNA damage and p53 activation, we spec-

ulate that this pathway may be important for p53 regulation more

broadly. Recent studies by Ho et al. (2009) have implicated Cas-

pase-2 as a tumor suppressor, and the authors noted that p53



Figure 7. The Caspase-2-PIDDosome Regulates p53 Dynamics in Response to DNA Damage

(A) Immunoblot with total lysates from U2OS cells transfected with siControl (siCON) versus siCaspase-2 (left) or siPidd (right) treated with 0.5 mM Dox and

harvested after the indicated hours.

(B) Same as in (A), except cells were washed after 8 hr damage and analyzed at later time points.

(C) Quantitation of p53 levels relative to ACTIN in (B).

(D) Apoptotic/dead cells measured by flow cytometry for Annexin-V in U2OS cells expressing siCON or siPidd cells treated ± Dox. Error bars represent the

mean ± SD.

(E) Model of p53-induced positive feedback loop. Activation of p53 (here, via DNA damage) induces expression of the p53 target gene, PIDD. Increased PIDD

expression promotes Caspase-2-PIDDosome formation, leading to activation of Caspase-2 as previously shown. Full-length Mdm2, an E3 ubiquitin ligase, can

promote ubiquitination and degradation of p53 (unstable p53, light blue). Activated Caspase-2 cleaves Mdm2 at amino acids DVPD, separating the N-terminal

p53-binding domain from the RING domain. Cleaved Mdm2 can bind p53 but cannot promote its degradation (stabilized p53, dark blue)—ultimately reinforcing

p53 levels in a positive feedback loop.

See also Figure S6.
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activity is reduced in caspase-2 null MEFs. This phenotype is

consistent with ourmodel in which Caspase-2 depletion reduces

Mdm2 cleavage, thus permitting increased expression of full-

length Mdm2 and enhanced degradation of p53. Consistent

with Ho et al. (2009), we observe that Caspase-2 knockdown

accelerates cell growth and results in reduced p53 and p21

levels (data not shown).

In contrast to our findings, previous studies implicated Cas-

pase-2 in heat shock-induced apoptosis and failed to detect

Caspase-2 activation upon other types of genotoxic stress (Tu

et al., 2006). Because these studies were performed in T cells

and splenocytes, it remains possible that cell type-specific

differences explain this discrepancy. We initially tested the

effects of PIDD in response to cisplatin in lung cancer cells,

but began to use U2OS cells for their ease of manipulation for

siRNA and complementary DNA transfections. We tested doxo-

rubicin on U2OS cells, as it is a common therapeutic agent for

osteosarcoma and subsequently confirmed that doxorubicin

and neocarzinostatin, a double-strand break inducer, also affect

Mdm2 cleavage in lung cancer cells (Figure 6A and Figure S5C).

Mdm2 contains other potential caspase cleavage sites

located N-terminal to the DVPD site. Because Caspase-3 can

cleave Mdm2 at high levels, it is possible that Caspase-2 initially

cleavesMdm2 under low levels of DNA damage, while excessive

damage activates Caspase-3, leading to complete degradation

of Mdm2 via additional cleavage sites. Recent studies have

identified a mechanism of Mdm2 degradation involving phos-

phorylation by casein kinase 1 and subsequent b-TRCP-medi-

ated destruction (Inuzuka et al., 2010). The levels of DNA

damage used in our experiments promote growth arrest and

did not lead to complete degradation of Mdm2. However,

upon higher levels of damage, we observed a reduction in full-

length and cleaved Mdm2 (Figure S5A). Therefore, we hypothe-

size that the mode of Mdm2 regulation identified here is particu-

larly important under reparable levels of DNA damage.

Mdm2 interaction with p53 has been shown to inhibit p53-

transcriptional activity in vitro, but genetically engineered mouse

models have led to uncertainty about the in vivo relevance of

these findings (Itahana et al., 2007). Itahana et al. demonstrated

that Mdm2 C462A mutant mice, in which Mdm2 lacks ubiquitin-

conjugation function but retains p53-binding capacity, are

embryonic lethal, similar to Mdm2 null mice. Embryonic lethality

of Mdm2 C462A mice is rescued by p53 loss indicating that

Mdm2 binding to p53 is not sufficient to inhibit p53 in vivo

(Itahana et al., 2007). Therefore, it may not be surprising that in

the presence of Mdm2 p60 we find stabilized p53 that appears

to be transcriptionally active and capable of inducing p21 and

other p53 target genes (data not shown). How Mdm2 cleavage

ultimately impacts the transcriptional program induced by p53

is an interesting avenue of further investigation.

Mdm2 cleavage in human lung cancer cells led to p21 induc-

tion and cell cycle arrest. We hypothesize that this mechanism of

transient Mdm2 inhibition could serve to protect p53 wild-type

tumors treated with chemotherapy, if enhanced p53 preferen-

tially induces cell-cycle arrest and/or DNA damage repair.

Consistent with this hypothesis, we recently observed that

Pidd is more highly induced in cisplatin-resistant tumors

compared to naive tumors in response to chemotherapy
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in vivo (Oliver et al., 2010), suggesting that p53 may promote

arrest or repair in this context. Given that context-specific

posttranslational modifications of p53 may also regulate its

activity, it remains possible that p53 stability may promote func-

tions other than growth arrest such as apoptosis, senescence,

or autophagy under different cellular conditions.

Mdm2 can bind a number of important proteins via its

N-terminal and central acidic domains, such as Rb and ARF,

and can regulate the activity of other proteins by ubiquitination

(Coutts et al., 2009). Therefore, Mdm2 cleavage by Caspase-2

may have important consequences for the regulation of a variety

of p53-dependent and -independent processes. Importantly,

Mdm2 and the Mdm2 homolog, MdmX, bind through their

C-terminal RING domains (Tanimura et al., 1999). Thus, Mdm2

cleavage is predicted to abolish interaction with MdmX. The

DVPD cleavage site in Mdm2 is also conserved in MdmX

(Pochampally et al., 1998), but we do not detect MdmX cleavage

under these conditions (Figure S5D). MdmX is detected largely

in the nucleus of human lung cancer cell lines, which may

preclude efficient interaction with Caspase-2 in the cytoplasm

(Figure S5D). In either case, cleavage of MdmX and/or Mdm2

at DVPD would be expected to abolish Mdm2/MdmX hetero-

dimer formation (Wade et al., 2010) and preventMdm2-mediated

ubiquitination of p53. While our studies did not preclude that

Mdm2 cleavage also inhibits the sumoylation and neddylation

ofp53,ubiquitinationofp53 is known tocontrol its levels,whereas

sumoylation and neddylation have not been implicated in p53

stability (Dai and Gu, 2010). Mdm2 has been shown to degrade

MdmX upon DNA damage (de Graaf et al., 2003; Pan and Chen,

2003), suggesting that cleaved Mdm2 p60 could enhance

MdmX levels and counter p53 activity. Inhibition of the Cas-

pase-2-PIDDosome upon DNA damage did not appear to

enhance MdmX degradation in the assays used here (data not

shown).

Many p53 autoregulatory loops impinge on Mdm2 (Harris

and Levine, 2005; Lu, 2010) and regulate Mdm2 by a variety of

mechanisms, including interaction with MdmX, autoubiquitina-

tion, phosphorylation, and, here, cleavage (Wade et al., 2010).

We observe that inhibition of the Caspase-2-PIDDosome does

not prevent p53 induction upon DNA damage, but impacts the

dynamics of p53 levels over time. During the past decade, it

has become appreciated that p53 exhibits pulsatile dynamics

in response to DNA damage (Batchelor et al., 2008; Lahav

et al., 2004; Loewer et al., 2010). We speculate that the p53-Cas-

pase-2-PIDDosome-Mdm2 pathway identified here may con-

tribute to p53 pulses during DNA damage, by shutting down

Mdm2 activity and re-establishing p53 activity. This positive

feedback loop initiated by p53-induction of PIDDmay thus serve

as an important counterbalance to p53 induction of Mdm2.

Together, these findings highlight the complexity of the feedback

loops dictating p53 response and undoubtedly contribute to the

cell’s ability to control p53 with exquisite sensitivity.
EXPERIMENTAL PROCEDURES

Cell Lines, Antibodies, Constructs, and Reagents

Human NSCLC lines were kindly provided by Jeffrey Settleman or obtained

from ATCC. A427, A549, SW1573, H23, H1944, and H2009 cell lines were
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maintained in DMEM. H460, COR-L23, and Calu-1 were cultured in RPMI.

293T, U2OS, HCT116 p53+/+ and p53�/�, and KrasLA/+; p53LSL/LSL;

ROSA26CreERT2 cells (provided by D. Feldser) were maintained in DMEM. For

p53 restoration, KPR cells were treated with 250 nM hydroxytamoxifen

(4-OHT, Sigma) or vehicle control (ethanol). Transient transfections were per-

formed using Mirus with 2–10 mg DNA per 10 cm dish. For generation of viral

supernatants, 293T cells were transfected with MSCV vectors, Gag/pol, and

Env plasmids, and supernatants were harvested after 48–72 hr. Human cell

lines were infected twice with retroviral supernatant at 1:1 (media: supernatant)

with 1000X polybrene (8 mg/ml) and then selected for 2–3 days in puromycin.

Antibodies, constructs and reagents are provided in the Supplemental

Experimental Procedures.

siRNA

siRNAs were obtained from QIAGEN: AllStars negative siCONTROL

(#1027286), human CRADD/RAIDD #2 (SI00056035), LRDD/PIDD as pub-

lished in (Tinel and Tschopp, 2004), Caspase-2 #10 (SI00299551) and #11

(SI02625546), and Caspase-3 #2 (SI00062937) and #9 (SI03100041). U2OS

cells were transfected with siRNAs (20 nM) in Opti-MEM with Mirus TransIT-

TKO transfection reagent according to manufacturer’s instructions. After

24 hr, cells were damaged with doxorubicin and harvested after various

time points for western blot as described. For knockdown validation, cells

were harvested 30 hr after transfection. RNA was isolated and subjected

to real time RT-PCR as described in the Supplemental Experimental

Procedures.

Western Blotting

For nuclear and cytoplasmic fractionations, lysates were prepared as previ-

ously described (Oliver et al., 2010). Protein samples were separated via

SDS-PAGE and blotted to a PVDF membrane. Membranes were blocked for

1 hr, followed by overnight incubation with primary antibodies at 4�C.
Membranes were washed 6 3 5 min at room temperature. HRP-conjugated

secondary antibodies (Jackson ImmunoResearch, 1:10,000) were incubated

for 1 hr at room temperature. For detection, membranes were exposed to

Western-Lightning ECL (Perkin-Elmer) and detected on Kodak film. Blots

were stripped and reprobed for PARP and/or NEMO for nuclear and cyto-

plasmic controls, respectively.

Immunoprecipitations

Cells were lysed on ice for 10 min in a buffer containing 0.1% NP-40, 5 mM

EDTA, 50 mM Tris (pH 8.0), and 150 mM NaCl, followed by three cycles of

freezing and thawing. After centrifugation (4�C, 10min, 16,000 g), the superna-

tants were precleared at 4�C on a rotating wheel for 45 min in the presence of

20 ml sepharose 6B (Sigma). After centrifugation (4�C, 1 min, 1900 g), a small

fraction of supernatant was frozen for later analysis (cell extract), and the re-

maining fraction was incubated at 4�C on a rotating wheel, overnight, in the

presence of 10 ml sepharose 6B, 10 ml protein G sepharose (GE Healthcare),

and 0.5 mg of desired antibody. The IPs bound to protein G were washed three

times in lysis buffer, prior to boiling in sample buffer containing DTT for analysis

by western blot.

For the Mdm2 cleavage assay, the washed Mdm2 IPs bound to protein G

were incubated with 0.5 units of recombinant Caspase-2 or Caspase-3

(Enzo Life Sciences, units specified by manufacturer) in a buffer containing

0.1% CHAPS, 20 mM HEPES (pH 7.2), 50 mM NaCl, 10 mM EDTA, 5%

glycerol, and 10 mM DTT. After 45 min incubation at 37�C, samples were

boiled in sample buffer containing DTT for analysis by western blot.

In Vitro Caspase Assay

For each reaction, 10 ng recombinant Mdm2 (Calbiochem, catalog number

444146) was added to buffer containing 0.1% CHAPS, 20 mM HEPES (pH

7.2), 50 mM NaCl, 10 mM EDTA, 5% glycerol, and 10 mM DTT. Mdm2 was

incubated alone or in the presence of increasing amounts of recombinant

Caspase-2 or Caspase-3 (0.02, 0.1, or 0.5 units, according to manufacturer’s

instructions). The samples were incubated for 45 min at 37�C and then

terminated by boiling in sample buffer containing DTT. Samples were then

loaded on gels for analysis by western blot.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and six figures and can be found with this article online at doi:10.1016/j.

molcel.2011.06.012.
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