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SUMMARY

The presence of zinc in glutamatergic synaptic vesi-
cles of excitatory neurons of mammalian cerebral
cortex suggests that zinc might regulate plasticity of
synapses formed by these neurons. Long-term
potentiation (LTP) is a form of synaptic plasticity
that may underlie learning and memory. We tested
the hypothesis that zinc within vesicles of mossy
fibers (mf) contributes to mf-LTP, a classical form of
presynaptic LTP. We synthesized an extracellular
zinc chelator with selectivity and kinetic properties
suitable for study of the large transient of zinc in the
synaptic cleft induced by mf stimulation. We found
that vesicular zinc is required for presynaptic mf-
LTP. Unexpectedly, vesicular zinc also inhibits a
form of postsynaptic mf-LTP. Because the mf-CA3
synapse provides a major source of excitatory input
to the hippocampus, regulating its efficacy by these
dual actions, vesicular zinc is critical to proper func-
tion of hippocampal circuitry in health and disease.
INTRODUCTION

The discovery of high levels of zinc in synaptic vesicles of

neurons within the mammalian cerebral cortex (Maske, 1955)

has intrigued and puzzled both neuroscientists and zinc biolo-

gists for over half a century (note: the term ‘‘zinc’’ will be used

to refer to free or loosely bound zinc). Its localization to synaptic

vesicles provided strong circumstantial evidence for its release,

yet the functional consequences of zinc release remain incom-

pletely understood. The curious localization of zinc to axons of

cortical glutamatergic neurons, in particular to neurons that

form connections within the same cerebral hemisphere, sug-
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gested that vesicular zinc regulates plasticity of synapses

formed by these excitatory neurons.

Long-termpotentiation (LTP) is a formof synapticplasticity that

provides a plausible cellular mechanism underlying learning and

memory (Bliss and Collingridge, 1993; Malinow and Malenka,

2002). Two major forms have been distinguished: (1) an NMDA

receptor-dependent form in which key events underlying both

expression and induction reside postsynaptically and (2) an

NMDA receptor-independent form, also known as mossy fiber

LTP (mf-LTP), in which mechanisms underlying expression are

located presynaptically, but for which the site of induction is

controversial (Henze et al., 2000; Nicoll and Schmitz, 2005).

Studies of the contribution of vesicular zinc to LTP have centered

onmf-LTPbecauseof thehighconcentrationsof zinc inmf axons,

where it is bothcolocalizedandcoreleasedwith glutamate (Haug,

1967; Frederickson et al., 2005; Qian and Noebels, 2005).

Despite extensive study, whether or not zinc contributes to mf-

LTP remains controversial. Application of different membrane-

permeable zinc chelators (see Figure S1 available online) led to

contradictory observations (Budde et al., 1997; Quinta-Ferreira

and Matias, 2004). Thus far, CaEDTA has been the main cell-

impermeable metal chelator employed to study zinc and mf-LTP.

Acute application of 2.5 mM CaEDTA promoted mf-evoked

NMDA receptor-mediated EPSCs yet failed to attenuate mf-LTP

(Vogt et al., 2000); however, higher concentrations of CaEDTA in-

hibited mf-LTP (Li et al., 2001; Huang et al., 2008). Importantly,

studies of a mutant mouse, mocha, which exhibits reduced

amounts of vesicular zinc in mf axons, revealed persistence of

mf-LTP, arguing against a role for zinc inmf-LTP (Vogt et al., 2000).

We reasoned that these contradictory results might be due in

part to shortcomings of existing zinc chelators. To block the

effects of synaptically released zinc efficiently, while minimizing

disruption of its pleiotropic intra- and extracellular functions, an

ideal zinc chelator should be water soluble and cell membrane

impermeable. Such a chelator should bind zinc selectively with

respect to other abundant metal ions, a property lacking in

CaEDTA, which has appreciable affinity for calcium and
.
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Figure 1. Synthesis and X-ray Structures of

ZX1 and Its Zinc Complex

(A) Using the intramolecular pyridinium salt 1 as

a synthetic precursor for installing the DPA unit,

ZX1 was prepared by reductive amination with

2-sulfonated aniline.

(B) X-ray structure of ZX1 (left), displaying the two

orientations of the disordered pyridine ring refined

at 50:50 occupancy. Hydrogen atoms, except

those on N2 and N3, are omitted for clarity; X-ray

structure of ZX1-Zn(II)(OAc) (right). Hydrogen

atoms are omitted for clarity.

See also Figure S2.
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magnesium aswell as zinc. Finally, given the short lifetime of high

concentrations of zinc within the synaptic cleft following its

release, the chelator must bind zinc rapidly. To address these

requirements, we designed the zinc chelator, ZX1 (Figure 1A).

Here, we report its preparation and characterization and

describe its use in studyingmf-LTP. The results reveal that vesic-

ular zinc is required for induction of presynaptic mf-LTP and,

unexpectedly, also masks induction of a novel form of postsyn-

aptic mf-LTP.

RESULTS

Design and Synthesis of ZX1
In pursuit of an extracellular chelator that would provide the

desired properties described above, we designed ZX1 (Figure 1).

The zinc binding subunit, a dipicolylamine (DPA), reprises the

high selectivity for zinc over calcium and magnesium previously

developed (Burdette et al., 2001; Chang and Lippard, 2006;

Zhang et al., 2007). We introduced the negatively charged sulfo-

nate group to render the compound membrane impermeable

and to facilitate rapid zinc binding by improving the electrostatic

interaction compared to DPA itself. The electron deficient aniline

moiety lowers the pKa of the adjacent nitrogen atom, which also

favors rapid zinc binding. A protonated nitrogen atom would

have to lose H+ prior to coordination, a process that slows

down metal chelate formation. Thus, ideally, the chelator would

not be protonated at physiological pH, a condition favored by

a pKa value below �7. The aniline nitrogen atom and the ortho

sulphonate group are both expected to participate in zinc

binding, but not to significantly affect zinc affinity, because

both are weak ligands.

Zinc Binding and Selectivity Studies
ZX1 readily forms a 1:1 zinc complex in the solid state and in

solution upon addition of one equivalent of Zn(OAc)2, as revealed

by X-ray crystallography (Figure 1) and 1H-NMR spectroscopy,
Neuron 71, 1116–1126, Sep
details of which may be found in Supple-

mental Information and Figure S2, avail-

able online. Because the protonation

states of a metal-binding chelator can

affect the rate of metal chelate formation,

we determined these properties (Fig-

ure S3A). The electron-withdrawing effect
of the sulfonated aniline motif facilitates rapid binding of zinc to

ZX1 by lowering the pKa of the most basic tertiary nitrogen (Fig-

ure 1). The pH titration curve shifted significantly upon addition of

one equivalent of ZnCl2 to a solution of ZX1 (Figure 2A). For

comparison, little change occurred with a large excess (100

equiv.) of Ca(II) or Mg(II), reflecting the high selectivity of ZX1

for Zn(II) over these biologically relevant metal ions (Figure S3B).

This result is in agreement with the high Zn(II)-selectivity of DPA

as observed in Zinpyr zinc sensors. From the two titration curves

we derived a dissociation constant (Kd) of 1.0 nM (Table S2).

Having demonstrated the high affinity and selectivity of ZX1 for

zinc, we next investigated the metal binding kinetics of the

chelator. In these experiments, we took advantage of the fluores-

cent zinc sensor, ZP3 (Chang et al., 2004), which responds

rapidly to changes of zinc concentration in solution with well-

established kinetic parameters (Nolan et al., 2005). ZP3 alone is

weakly fluorescent, and its fluorescence increases upon forma-

tion of a 1:1 complex with zinc (Chang et al., 2004). When added

to a preformed ZP3-Zn(II) (1:1) solution, the zinc chelators

induced an instantaneous reduction of fluorescence intensity

due to the loss of the zinc via competitive binding. The rate of

the fluorescence decrease reflects the rate of the zinc binding

by chelators. The slope of the fluorescence decrease (Figure 2B)

reveals that ZX1binds zincmuchmore rapidly thanCaEDTA; ZX1

binds zinc even more rapidly than TPEN (see Figure S4B), the

most widely used intracellular zinc chelator.

These results led us to compare the effects of ZX1 and

CaEDTA on the high yet fleeting concentration of zinc in the

synaptic cleft induced by activation of the mf. Zinc is known to

inhibit the NMDA subtype of glutamate receptor by both a low-

and high-affinity mechanism (Paoletti et al., 1997; Traynelis

et al.,1998; Choi and Lipton, 1999). Because mf activation

evokes simultaneous release of both glutamate and zinc, chela-

tion of synaptically released zinc would be expected to increase

the amplitude of NMDA EPSC (INMDA). CaEDTA (2.5 mM) was

previously found to disinhibit the synaptically evoked low-affinity
tember 22, 2011 ª2011 Elsevier Inc. 1117



Figure 2. Zinc-Binding and Fluorescence Quench-

ing Properties of ZX1

(A) The experimental potentiometric equilibrium curves for

free ZX1 (blue) and ZX1/Zn(II) (1:1) complex (magenta) as

a function of added titrant (0.1 M NaOH). See also Fig-

ure S3.

(B) Fluorescence quenching of a 1.67 mM solution of ZP3-

Zn(II) (1:1) by zinc chelators in pH 7.0 buffer (50mMPIPES,

100 mM KCl). ZX1 (magenta) binds zinc more rapid than

CaEDTA (blue). See also Figure S4.

(C) ZX1 (100 mM), but not CaEDTA (7.5 mM), inhibits the

NMDA receptor mediated EPSC (INMDA) evoked in CA3

pyramids by mf stimulation (0.033 Hz). Pharmacologically

isolated synaptic INMDA were recorded in CA3 pyramids at

a holding potential of +30 mv. Representative traces from

ZX1 (left) and CaEDTA (right) reflect averages of re-

sponses to stimulations at 30 second intervals during

5 min epochs immediately before (1) and between 3 and

8 min after (2) application of each chelator to the bath

(denoted by horizontal line). ZX1 produced a 40% ± 13%

increase of INMDA (n = 6 cells, p = 0.02, paired t test)

whereas CaEDTA produced no significant increase (3% ±

17%, n = 5 cells, p > 0.05).

Neuron

Vesicular Zinc Required for LTP
but not the high-affinity INMDA; the inability of CaEDTA to disin-

hibit the high affinity synaptic INMDA was attributed to its slow

rate of chelating zinc (Vogt et al., 2000). We assessed pharmaco-

logically isolated INMDA responses of CA3 pyramidal cells to mf

stimulation in whole-cell recordings at a positive holding poten-

tial (+30 mV) (Figure 2C). Inclusion of CaEDTA (7.5 mM)

produced no significant change in the synaptically evoked INMDA

(Figure 2C), confirming and extending previous observations

(Vogt et al., 2000). By contrast, inclusion of ZX1 (100 mM)

enhanced the synaptically evoked INMDA by approximately

40% (Figure 2C), supporting the conclusion that ZX1 rapidly

chelates the high yet fleeting concentration of zinc within the

synaptic cleft induced by a single action potential invading the

mf. Together with its selectivity and membrane impermeability

(Figure S4C), the rapidity with which ZX1 chelates zinc renders

it a valuable tool with which to examine the functional conse-

quences of zinc released by HFS of the mf.

Effects of ZX1 on Plasticity of the Mossy Fiber-CA3
Pyramid Synapse
LTP was induced by HFS of the mf in acutely isolated mouse

hippocampal slices (Figure 3, top panels). The amplitude of the

mf-evoked field excitatory postsynaptic potential (fEPSP) was

recorded from the CA3 pyramidal cell population in the presence

of vehicle or bath-applied ZX1. With vehicle, HFS of the mf

induced LTP, as revealed by an increase of fEPSP magnitude

of 149% ± 9% when measured 50–60 min after compared to

the 10 min immediately preceding HFS (Figure 3, top left). The

effects of ZX1 were concentration dependent, with some inhibi-
1118 Neuron 71, 1116–1126, September 22, 2011 ª2011 Elsevier Inc.
tion detectable at 50 mM; similar effects were

obtained with 100 and 200 mM levels of ZX1,

the inhibition approximating 60% of maximum

(Figure 3, top right). Notably, ZX1 did not affect

baseline transmission of the mf-CA3 pyramid

synapse (Figure S6).
A hallmark of mf-LTP is that increased Pr of glutamate frommf

terminals underlies its expression (Zalutsky and Nicoll, 1990;

Weisskopf and Nicoll, 1995; Tong et al.,, 1996; Reid et al.,

2004). To examine the role of zinc in the induction of mf-LTP,

additional experiments were performed using whole-cell record-

ings of CA3 pyramids to analyze the effects of ZX1 while simul-

taneously assessing paired pulse facilitation (PPF). PPF is

a form of presynaptic plasticity consisting of the enhancement

of transmitter release in response to the second of two stimuli

delivered at a short interval (e.g., 20–100 ms; Regehr and Ste-

vens, 2001). PPF is normally inversely correlated with Pr, such

that synapses with low Pr show larger PPF than synapses with

higher Pr. PPF was measured by applying a pair of pulses of

stimulus intensity 30% that of maximum EPSC with a 60 ms

interstimulus interval, and was defined as the amplitude of the

EPSC evoked by pulse #2 divided by the amplitude of the

EPSC evoked by pulse #1 (Figure 3B, bottom left). HFS of

the mossy fibers in the presence of vehicle induced an increase

of the EPSC amplitude of 188% ± 16% (n = 8) (Figure 3, middle

left). A significant reduction of PPF was evident 10–20 min

following HFS (1.3 ± 0.1) compared to baseline levels prior to

HFS (2.8 ± 0.5, p = 0.001, paired t test), confirming previous find-

ings (reviewed in Nicoll and Schmitz, 2005; Figure 3, bottom left).

Inclusion of 100 mM ZX1 in the bath reduced the HFS-induced

increase of the EPSC (131% ± 21%, n = 9, p = 0.04 versus

vehicle; Figure 3, middle right). ZX1 also prevented the HFS-

induced reduction of PPF (before HFS 3.1 ± 0.5; after HFS

2.7 ± 0.7, t test p = 0.8; Figure 3, bottom right). Because PPF

is a surrogate measure of Pr, this result implies that zinc is



Figure 3. ZX1 Inhibits Induction of LTP at

the MF-CA3 Synapse

Top left: Field EPSPs (fEPSPs) were recorded from

hippocampal slices acutely isolated fromWTmice

(P28–P42) and the effects of ZX1 were examined

on LTP of mf-CA3 synapse. Representative traces

from vehicle (left) and 100 mM ZX1 (right) are

averages of responses collected during 10 min

prior to HFS (1) and between 50 and 60 minutes

following HFS (2). Arrow denotes the timing of

application of HFS and arrowheads denote the

baseline fEPSP (1) and fEPSP after HFS (2). Hori-

zontal line denotes timing of application of ZX1 to

bath. Top right: Reduction of LTP induced by HFS

is plotted as function of increasing concentrations

of ZX1. Plot is based upon the following results:

compared to baseline, vehicle 149 ± 9 (n = slices

from 10 mice); ZX1 50 mM 142% ± 3% (n = 4); ZX1

100 mM 124% ± 3% (n = 7); ZX1 200 mM 120% ±

5% (n = 8). Middle and bottom panels: whole-cell

recordings of CA3 pyramids were performed in

hippocampal slices acutely isolated fromWTmice

(P21–P29) and the effects of ZX1 (100 mM) were

examined on LTP and PPF of mf-CA3 synapse

following HFS of the mossy fibers. Percent

potentiation induced by HFS (middle left and

right): vehicle 188 ± 16 (n = 8); ZX1 100 mM131%±

21% (n = 9). PPF before and after HFS (bottom left and right): vehicle 2.8 ± 0.5 and 1.3 ± 0.1 respectively, (paired t test, p = 0.04); ZX1 3.1 ± 0.8 and 2.7 ± 0.7,

respectively, (paired t test, p = 0.2). Representative traces from Vehicle (left) and ZX1 (right) before and after HFS. Arrows denote administration of HFS. Horizontal

lines in right middle and bottom panels denote timing of application of ZX1 to bath. The representative traces are averages of responses collected at intervals of

30 seconds for the 10 minutes preceding HFS (before) and the last 10 minutes of the recording following HFS (after); the interval between the pair of stimulations

was 60 msec. Values represent mean ± standard error of the mean. See also Figure S5.
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required for induction of this plasticity of the presynaptic ter-

minal. The ZX1-mediated inhibition of mf-LTP and the decrease

of PPF following HFS were confirmed in additional experiments

performed with field potential recordings (Figure S5B).

Although ZX1 inhibits mf-LTP, the foregoing experiments do

not address whether ZX1 inhibits the induction and/or expres-

sion of LTP. Because ZX1 was added to the bath 10 min prior

to HFS and remained for the duration of the experiment, inhibi-

tion of LTP by ZX1 could bemediated either by preventing induc-

tion of LTP or simply by masking expression of LTP following its

induction. To distinguish between these possibilities, ZX1

(100 mM) was added to the bath 30 min following HFS and al-

lowed to remain there for an additional 30 min (Figure S5C).

The magnitudes of the fEPSP and PPF were determined for

a 10 min epoch immediately prior to addition of ZX1, and these

values were compared to fEPSP and PPF magnitudes during

the 10min epoch between 20 and 30min following ZX1 addition.

Following induction of LTP, bath application of ZX1 did not affect

fEPSP size or the PPF ratio (Figure S5C). Collectively, these

results demonstrate that ZX1 does not block the expression of

LTP of the mf-CA3 pyramid synapse (Figure S5C), implying

that ZX1 inhibits induction of mf-CA3 LTP (Figures 3A and 3B).

Plasticity of mf-CA3 Pyramid Synapse in ZnT3–/– Mice
The availability of ZnT3 null mutant mice (ZnT3�/�) provides an

additional approach to examine the role of vesicular zinc in plas-

ticity of the mf-CA3 synapse (Cole et al., 1999). ZnT3 is a trans-

porter required for packaging zinc into synaptic vesicles of the

mossy fibers (Cole et al., 1999). In contrast to mocha mice in
Neu
which vesicular zinc in the mf is reduced (Stoltenberg et al.,

2004), vesicular zinc is eliminated altogether from the mf in

ZnT3�/� mice (Cole et al., 1999). The findings with ZX1 led us

to test two predictions: (1) that mf- LTP will be impaired in slices

from ZnT3�/� compared to WT controls, and (2) that HFS of the

mf will induce a reduction of PPF in slices from WT but not

ZnT3�/� mice. We evaluated these predictions using whole cell

recordings of CA3 pyramids. Whole-cell recordings of CA3 pyra-

mids revealed no significant differences between WT and

ZnT3�/� mice with respect to resting membrane potential, input

resistance, capacitance, and time constant of decay (Table S3).

HFS of the mf in slices from WT mice induced an increase of the

EPSC of 167% ± 14% compared to baseline (n = 17, p = 0.0002;

Figure 4, top left). A significant reduction of PPF was evident in

CA3 pyramids following HFS (before HFS 3.1 ± 0.3; after HFS

2.1 ± 0.2, p = 0.002; Figure 4, bottom left). Contrary to our predic-

tion, HFS of the mf in slices of ZnT3�/�mice induced an increase

of the EPSC of 180% ± 15% compared to baseline (n = 14, p =

0.0001, Figure 4, top left), an effect similar to that observed in

WT mice. Whereas the results with LTP were unexpected, the

effects of HFS on PPF in ZnT3�/� mice conformed to our predic-

tions. That is, HFS of the mf in slices from ZnT3�/� mice failed to

induce a significant reduction of PPF (before HFS 2.7 ± 0.3; after

HFS 2.6 ± 0.2, p = 0.49; Figure 4, bottom right). The HFS-medi-

ated induction of mf-LTP in the absence of reductions of PPF in

slices from ZnT3�/� mice was confirmed in additional experi-

ments utilizing field potential recordings (Figure S6).

The association of mf-LTP with reduced ppf in WT but not

ZnT3�/� mice supports a presynaptic locus of expression of
ron 71, 1116–1126, September 22, 2011 ª2011 Elsevier Inc. 1119



Figure 4. Divergent Effects of HFS on LTP and PPF

of mf-CA3 Synapse in Slices of WT and ZnT3–/–

Mice

Whole-cell recordings of CA3 pyramids were performed in

hippocampal slices acutely isolated from WT or ZnT3�/�

mice and the effects on LTP and PPF of mf-CA3 synapse

were examined following HFS of the mossy fibers. Percent

LTP induced by HFS: WT 167%± 14% (n = 17, p = 0.0001;

left top); ZnT3�/� 180% ± 15% (n = 14, p = 0.0001; right

top). PPF before and 10–30 min after HFS: WT 3.1 ± 0.3

and 2.1 ± 0.2 (paired t test, p = 0.0002); ZnT3�/� 2.7 ± 0.3

and 2.6 ± 0.2 (paired t test, p = 0.5). Arrows denote the time

of the application of HFS. The representative traces are

averages of responses collected at intervals of 30 s for

the 10 min preceding HFS (before) and the last 10 min

of the recording following HFS (after); the interval between

the pair of stimulations was 60 ms. Values represent

mean ± standard error of the mean. See also Figure S6.
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LTP in WT but not in ZnT3�/� mice. To obtain independent

evidence in support of this interpretation, additional experiments

examined spontaneous release of glutamate in the presence

of tetrodotoxin (TTX), which eliminates action potentials; the

action potential-independent release of glutamate detected as

mEPSCs measures random monoquantal release of glutamate.

The occurrence of increased frequency without change in ampli-

tude of mEPSCs accompanying mf-LTP provides additional

evidence of increased release of glutamate and a presynaptic

locus of expression of mf-LTP (Kamiya et al., 2002). mEPSCs

in CA3 pyramids (Jonas et al., 1993) were examined in whole-

cell recordings in the presence of tetrodotoxin (1 mM). After

recording synaptically evoked responses in the absence of

TTX, TTX was added to the perfusion solution and control data

were obtained after synaptically evoked responses were elimi-

nated. Following collection of control data, TTX was removed

from the perfusion solution; once synaptically evoked responses

were restored, HFS was applied, and soon thereafter TTX was

again added to the perfusion solution. HFS of the mf in slices

from WT mice induced an increase of mEPSC frequency (before

HFS 3.2 ± 0.5 Hz; after HFS 4.2 ± 0.6 Hz; n = 15; paired t test, p =

0.04) but no change in amplitude (amplitude before HFS, 35.4 ±

2.6 pA; after HFS 36 ± 2.4 pA; n = 15, paired t test, p = 0.44; Fig-

ure 5, left). By contrast, HFS of themf in slices from ZnT3�/�mice

induced a significant decrease of frequency (before HFS 5.3 ±

0.7 Hz; after HFS 3.0 ± 0.6 Hz; n = 6, paired t test, p = 0.05)

and a significant increase of amplitude (before HFS 28 ±

4.3 pA; after HFS 34.7 ± 4.9 pA; n = 6, paired t test, p = 0.02; Fig-

ure 5, right). Notably, significant differences in frequency (WT

3.2 ± 0.5 Hz; ZnT3�/� 5.3 ± 0.7 Hz, t test, p = 0.02) but not ampli-

tude (WT 35.4 ± 2.6 pA, n = 15; ZnT3�/� 28 ± 4.3 pA, n = 6, t test

p = 0.08) of mEPSCs were evident between WT and ZnT3�/�

mice prior to HFS. Importantly, differences of mEPSCs between

WT and ZnT3�/�mice prior to HFSwere not sufficient to account

for the different effects of HFS because subsets of WT and

ZnT3�/� mice with similar mEPSC amplitude and frequency at
1120 Neuron 71, 1116–1126, September 22, 2011 ª2011 Elsevier Inc.
baseline exhibited divergent responses to HFS

like that of the entire groups (not shown).

Together with the HFS-induced reduction of
PPF, the HFS-induced increased frequency of mEPSCs rein-

forces increased Pr as the mechanism underlying expression

of mf-LTP in WT mice. By contrast, together with the failure of

HFS to induce reductions of PPF, the HFS-induced decrease

in frequency and increase in amplitude of mEPSCs implicates

a postsynaptic locus underlying expression of mf-LTP in

ZnT3�/� animals.

Locus of Induction of mf-LTP Is Postsynaptic
in ZnT3–/– Mice
The evidence implicating presynaptic and postsynaptic loci

underlying expression of mf-LTP in WT and ZnT3�/� animals,

respectively, led us to ask whether the locus underlying induc-

tion of LTP also differed. In contrast to the unanimity that the

locus of expression of LTP of this synapse is presynaptic in

WT animals, controversy exists as to whether calcium-depen-

dent events intrinsic to CA3 pyramids (postsynaptic) or mf termi-

nals (presynaptic) mediate induction of mf-LTP (reviewed by Nic-

oll and Schmitz, 2005). To address this question, we examined

the effects of dialyzing the postsynaptic cell with the calcium

chelator BAPTA (50 mM) on induction of mf-LTP. In slices from

WT animals, dialyzing a CA3 pyramid with BAPTA did not inhibit

induction of LTP (Figure 6, top panel). In contrast, BAPTA in-

hibited induction ofmf-LTP in slices from ZnT3�/�mice (Figure 6,

middle panel). HFS of the mossy fibers in slices from ZnT3�/�

mice induced an increase in the EPSC of 166 ± 16% (n = 12,

paired t test, p = 0.001) in vehicle dialyzed CA3 pyramids, but

only 123% ± 11% (n = 6, paired t test, p = 0.19 versus before

HFS) in BAPTA dialyzed CA3 pyramids (Figure 6, middle). We

conclude that chelation of intracellular calcium within postsyn-

aptic CA3 pyramids inhibits induction of mf-LTP in slices from

ZnT3�/� but not WT mice.

Zinc Inhibits Postsynaptic LTP at the mf-CA3 Synapse
One explanation for a postsynaptic locale underlying induction

of mf-LTP in ZnT3�/� mice is that vesicular zinc inhibits



Figure 5. Analysis of mEPSCs Accompa-

nying mf-CA3 LTP

mEPSCs accompanying mf-CA3 LTP were

examined in slices of WT and ZnT3�/� mice. Top

panels present results from representative slices

before (basal) and approximately 15 min after

HFS. Traces reflect recordings of epochs of at

least 1 min as well as an average of the individual

mEPSCs within the epoch. Middle and bottom

panels present cumulative probability of event

frequency and amplitude, respectively, with insets

displaying mean ± SEM. In WT, HFS increased the

frequency without change of amplitude of

mEPSCs (left middle and bottom panels, respec-

tively) as evident in significant increase of event

frequency (mean ± SEM) from 3.2 ± 0.5 Hz re-

corded in 10 min epoch prior to HFS compared to

4.2 ± 0.6 Hz recorded 10–30 min after HFS (n = 15,

paired t test, p = 0.04). In ZnT3�/�, HFS decreased

the event frequency and increased the event

amplitude of mEPSCs (right middle and bottom

panels, respectively) as evident in a decrease of

frequency from 5.3 ± 0.7 Hz to 3.0 ± 0.6Hz (mean ±

SEM, n = 6, paired t test, p = 0.05); the amplitude

increased from 28 ± 4.3 pA to 34.7 ± 4.9 pA after

HFS (n = 6, paired t test, p = 0.02).
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postsynaptic mf-LTP inWTmice. If so, chelation of zinc with ZX1

would be expected to reveal a postsynaptic mf-LTP in WT mice.

To test this possibility,we examined the effects of dialyzing aCA3

pyramid with BAPTA on mf-LTP in the presence of ZX1 (100 mM)

in the bath. In the presence of ZX1, dialyzing a CA3 pyramid with

BAPTA abolished mf-LTP in slices from WT mice (Figure 6,

bottom). With ZX1 (100 mM) in the bath, HFS of mf induced an

increase in the EPSC of 134% ± 20% (n = 9) in vehicle dialyzed

CA3 pyramids, but a small decrease in the EPSC of 82% ± 7%

(n = 5) in BAPTA dialyzed CA3 pyramids (p = 0.04, t test, vehicle

versus BAPTA) (Figure 6, bottom). Notably, dialyzing CA3 pyra-

mids with BAPTA inhibits mf-LTP in the presence, but not the

absence, of ZX1 in the bath (Figure 6, bottom). Thus inclusion

of a chelator of extracellular zinc in the bath unmasked apostsyn-

aptic locus for induction of mf-LTP in slices from WT mice.

To further test whether zinc inhibits postsynaptic LTP of the

mf-CA3 synapse, we examined the effects of chelating extracel-

lular zinc with ZX1 on the induction of mf-LTP in slices isolated

from rim1a null mutant mice. The protein rim1a resides in the

active zone of the presynaptic terminal and binds the synaptic

vesicle protein, rab 3a; induction of mf-LTP is eliminated alto-

gether in rim1a null mutant mice (Castillo et al., 2002). Confirming

Castillo et al. (2002), with vehicle in the bath, we found that HFS

of the mf did not induce LTP in slices from rim1a null mutant

mice; a small nonsignificant decrease of fEPSP of 93% ± 11%,
Neuron 71, 1116–1126, Sep
n = 4 when measured after 50–60 min

compared to the 10 min immediately pre-

ceding HFS (Figure 7, top left). Remark-

ably, with ZX1 (100 mM) in the bath, HFS

of the mf induced LTP in slices from

rim1a null mutant mice. There was an in-

crease of fEPSP of 151% ± 14%, n = 4,
p = 0.016, vehicle versus ZX1 (Figure 7, top right). Notably, this

mf-LTP was not accompanied by a reduction of paired pulse

facilitation (Figure 7, bottom right). Thus, this extracellular zinc

chelator partially inhibits induction of mf-LTP in WT mice (Fig-

ure 3, top left and right), yet promotes induction of mf-LTP in

rim1a mutant mice (Figure 7, top left and right). That ZX1

promotes induction of mf-LTP in rim1a null mutant mice rein-

forces the conclusion that synaptically released zinc inhibits

induction of postsynaptic mf-LTP.

DISCUSSION

We tested the hypothesis that vesicular zinc is required for mf-

LTP. To evaluate this hypothesis, we synthesized an extracellular

zinc chelator with selectivity and kinetic properties suitable for

study of the large and rapid transient of zinc in the synaptic cleft

induced by HFS of the mossy fibers. The results reveal that zinc

is required for induction of presynaptic mf-LTP. Unexpectedly,

vesicular zinc also inhibits induction of a novel form of postsyn-

aptic mf-LTP. Because the mf-CA3 synapse conveys a powerful

excitatory input to hippocampus, the unique dual control of its

efficacy by zinc is critical to function of hippocampal circuitry

in health and disease.

The discovery of a novel zinc chelator, ZX1, provided a valu-

able tool with which to examine the contribution of zinc to
tember 22, 2011 ª2011 Elsevier Inc. 1121



Figure 6. Effects of Dialyzing CA3 Pyramids with

BAPTA on mf-CA3 LTP in ZnT3–/– and WT Mice

In WT in ACSF (top), the percent potentiation was similar

when CA3 pyramids were dialyzed with BAPTA 171% ±

17% (n = 7) compared to vehicle 180% ± 22% (n = 8)

(Student’s t test, p = 0.8). In ZnT3�/� in ACSF (middle), the

percent potentiation was reduced when CA3 pyramids

were dialyzed with BAPTA 123% ± 11% (n = 6) compared

to vehicle 166% ± 16% (n = 12; Student’s t test, p = 0.009).

The amount of potentiation in BAPTA dialyzed cells was

significantly greater in WT compared to ZnT3�/� animals (t

test, p = 0.04). In WT with ZX1 (100 mM) in the bath

(bottom), the percent potentiation was eliminated when

CA3 pyramids were dialyzedwith BAPTA 82%±7% (n = 5)

compared to vehicle 134% ± 20% (n = 9) (t test, p = 0.04);

note that data of vehicle dialyzed CA3 pyramids with ZX1

in bath are reprinted from experiment presented in Fig-

ure 3 (right middle). Arrows denote the time of application

of HFS and arrowheads denote the baseline EPSC (1) and

the EPSC after HFS (2) for BAPTA experiments. Values

represent mean ± standard error of the mean.
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mf-LTP. Dipicolylamine (DPA) was selected as the primary zinc-

binding unit, because it selectively coordinates zinc, as demon-

strated by a number of zinc fluorescence or MRI sensors (Chang

and Lippard, 2006; Burdette et al., 2001; Zhang et al., 2007). As

revealed by potentiometric titrations, the nitrogen-rich ligand

environment renders ZX1 selective for zinc over potassium,

calcium, and magnesium, major intra- and extracellular free

cations. Although ZX1 binds other endogenous transition metal

ions, such as copper, iron, and manganese, the levels of these

redox-active species as free ions in the cell are strictly regulated

to be quite low. Consistent with this idea, Timm’s stain for tran-

sition metal ions is eliminated in the hippocampus of ZnT3�/�

mice (Cole et al., 1999), implying that zinc is the only transitional

metal ion present in sufficiently high concentrations to be de-

tected. The rapidity of binding zinc together with its high affinity

for zinc (Kd z10�9 M) allowed us to estimate that ZX1 success-

fully chelated the majority of the bolus of free zinc that is present

in the synaptic cleft following its HFS-induced release from mf

terminals. Although technical limitations preclude direct

measures of zinc within the synaptic cleft itself, the peak zinc
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concentration is thought to approximate

100 mM, an estimate based upon zinc-mediated

inhibition of a synaptic INMDA in a CA3 pyramid

evoked by mf stimulation (Vogt et al., 2000).

Using kinetic and binding affinity data deter-

mined experimentally in the present work

(Figures 2 and S4), we compute that virtually

all of the 100 mMmaximum concentration levels

present transiently within the synaptic cleft

would be chelated by 100 mM ZX1 under the

experimental conditions employed in this study.

The fact that inhibition of mf-LTP by 100 mMand

200 mM ZX1 is nearly identical (Figure 3, top

right) is consistent with this prediction. ZX1

provides two major advantages over CaEDTA,

the most commonly used reagent to chelate

extracellular zinc, namely, selectivity and rate
of zinc binding. Although EDTA binds zinc with high affinity

(Kdz10�15 M), EDTA also tightly binds calcium andmagnesium.

The use of the monocalcium complex (CaEDTA), rather than

EDTA alone, is aimed at avoiding perturbation of extracellular

calcium homeostasis. Nevertheless, because the extracellular

concentrations of calcium and magnesium are approximately

2 mM, concentrations of CaEDTA used to study mf-LTP (2.5–

10mM) jeopardize the homeostasis of both extracellular calcium

andmagnesium. The excessive buffering of divalent cationsmay

contribute to unstable whole-cell recordings observed with

CaEDTA (Li et al., 2010). With respect to zinc itself, the affinities

of CaEDTA and ZX1 are similar (1.6 and 1 nM, respectively) yet

the rate of zinc chelation by ZX1 is about an order of magnitude

faster than that for CaEDTA (Table S2). The greater rapidity of

zinc chelation by ZX1 presumably underlies the successful disin-

hibition of the synaptically evoked high affinity INMDA of CA3

pyramid by ZX1 but not CaEDTA (Figure 2C). Collectively, the

slow kinetics of zinc chelation together with lack of ion selectivity

may explain the conflicting results reported with respect to the

use of CaEDTA to modulate mf-LTP (Vogt et al., 2000; Li et al.,



Figure 7. ZX1 Disinhibits mf-LTP in rim1a Null

Mutant Mice

In rim1a null mutant mice, HFS of the mf did not induce

LTP as detected in field potential recordings in presence of

ACSF (a small nonsignificant decrease of fEPSP of 93% ±

11%, n = 4 when measured 50–60 min after compared to

the 10 min immediately preceding HFS; left panel). By

contrast, with ZX1 (100 mM) in the bath, HFS of the mf

induced LTP in slices from rim1a null mutant mice (an

increase of fEPSP of 151%±14%, n = 4, p = 0.016, vehicle

versus ZX1; right panel); this mf-LTP was not accompa-

nied by a reduction of paired pulse facilitation (bottom

right). The representative traces are averages of re-

sponses collected at intervals of 30 s for the 10 min pre-

ceding HFS (before) and the last 10 min of the recording

following HFS (after); the interval between the pair of

stimulations was 60 ms. Values represent mean ± stan-

dard error of the mean.
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2001; Huang et al., 2008). By contrast, the rapid kinetics of zinc

chelation together with its ion selectivity render ZX1 a valuable

tool for study of the large and rapid transient of zinc within the

synaptic cleft induced by mf stimulation.

The application of ZX1 has revealed a critical role for zinc

induction of this classic form of presynaptic LTP in WT animals.

There is universal agreement that the expression of mf-LTP is

caused by an increase of glutamate release (reviewed by Henze

et al., 2000 and Nicoll and Schmitz, 2005). This assertion is

based upon findings that mf-LTP is accompanied by reductions

of PPF, increased frequency but not amplitude of mEPSCs, and

increased rate of use dependent block by MK-801 (Zalutsky and

Nicoll, 1990; Tong et al., 1996; Weisskopf and Nicoll, 1995). That

genetic deletion of each of two presynaptic proteins, rab3a and

rim1a, eliminates mf-LTP provides additional support for

a presynaptic locus (Castillo et al., 1997; Castillo et al., 2002).

Our findings that mf-LTP in vehicle-treated WT slices is associ-

ated with reduced PPF and an increased mEPSC frequency

without a change in amplitude is consistent with these previous

findings. The discovery that ZX1 not only inhibits mf-LTP but

also prevents the reduction of PPF in WT animals implicates

zinc as a critical factor responsible for induction of this presyn-

aptic plasticity. This conclusion was reinforced by studies of

ZnT3�/�mice lacking vesicular zinc inwhichmf-LTPwas induced

without an accompanying reduction of PPF. Further evidence of

a requirement for vesicular zinc for this presynaptic plasticity is

that mf-LTP in WT mice is associated with an increased

frequency of mEPSCs, but in ZnT3�/� mice with a reduced

frequency and increased amplitude of mEPSCs.

One unexpected and important outcome is that vesicular zinc

also inhibits induction of postsynapticmf-LTP. The assertion that

vesicular zinc masks postsynaptic mf-LTP is based on two find-

ings. One is that mf-LTP can be induced in ZnT3�/�mice without

reduction of PPF and with increased amplitude and decreased

frequency of mEPSCs; these results diverge sharply from mf-

LTP in WT animals. The second is that ZX1, a chelator of extra-
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cellular zinc, unmasks mf-LTP in rim1a null

mutant mice which lack presynaptic mf-LTP

(Castillo et al., 2002); that mf-LTP in ZX1 treated
slices of rim1a null mutant mice is not accompanied by a reduc-

tion of PPF is consistent with a postsynaptic locus of expression

of mf-LTP in this condition. The locus of induction of mf-LTP in

the absence of vesicular zinc also resides postsynaptically,

because the mf-LTP evident in ZnT3�/� mice was inhibited by

dialyzing CA3 pyramids with BAPTA. Similarly, the residual mf-

LTP detected in WT mice in the presence of ZX1 was inhibited

by dialyzing CA3 pyramids with BAPTA. These findings differ

from mf-LTP in WT animals induced in the presence of ACSF,

which was not inhibited by dialyzing CA3 pyramids with BAPTA.

Notably, the magnitude of the mf-LTP observed in the ZnT3�/�

and ZX1-treated rim1a�/� slices exceeded that evident in the

ZX1-treated slices from WT animals; the lifelong presence of

the mutations in the ZnT3�/� and the rim1a�/� may have

permitted emergence of homeostatic mechanisms not present

when ZX1 is acutely applied to a slice from a WT mouse. Finally,

inclusion of APV throughout these experiments implies that

induction and expression of this postsynaptic mf-LTP occurs

independently of NMDA receptors and thus differs from a post-

synaptic mf-LTP described by Kwon and Castillo (2008) and

Rebola et al. (2008). The mechanisms underlying induction and

expression of this novel form of postsynaptic mf-LTP remain to

be determined.

What is the locale at which vesicular zinc promotes the

increased glutamate Pr underlying mf-LTP in WT animals?

The finding that dialyzing CA3 pyramids with BAPTA inhibits

induction of mf-LTP in slices from WT mice in the presence

of ZX1 or in slices from ZnT3�/� mice points to a presynaptic

locus underlying induction of mf-LTP in WT animals in the

presence of ACSF. That is, the inhibition of mf-LTP by BAPTA

implies that sufficient concentrations of BAPTA are diffusing

through the dendritic tree of CA3 pyramids to chelate calcium

required for induction of mf-LTP under the conditions of these

experiments. The ineffectiveness of BAPTA in inhibiting mf-

LTP in WT slices in ACSF supports the conclusion that events

underlying induction reside presynaptically within mf terminals.
26, September 22, 2011 ª2011 Elsevier Inc. 1123



Figure 8. Model Proposing How Vesicular Zinc Promotes Increased

Glutamate Pr Underlying Presynaptic mf-CA3 LTP

Invasion of mossy terminal by a high frequency train of action potentials results

in calcium influx and fusion of synaptic vesicles with the terminal plasma

membrane (1), resulting in release of zinc into synaptic cleft. The synaptically

released zinc reenters the same or nearby presynaptic terminal through

a voltage-gated calcium channel (2). The local elevation of zinc concentration

within the terminal activates a src family kinase (3) which phosphorylates and

promotes activation of TrkB, one consequence of which is the phosphorylation

and activation of PLCg1 (4). PLCg1 in turn catalyzes cleavage of phosphatidyl

inositol bisphosphate (PIP2, leading to formation of diacyl glycerol (DAG) and

inositol 3,4,5 phosphate (IP3) (5). IP3 binds to and triggers release of calcium

from endoplasmic reticulum (6), resulting in activation of calcium-calmodulin

adenylate cyclase (Ca-CaM AC) (7), formation of cAMP, and activation of

protein kinase A (8). Subsequent steps include interaction of the synaptic

vesicle associated protein, rab3A, and its partner in the active zone, rim1a (9),

the net result being an increased glutamate Pr (10). This proposal is based in

part upon the finding that zinc is capable of activating TrkB and its downstream

signaling independently of brain-derived neurotrophic factor (BDNF) (Huang

et al., 2008; Huang and McNamara, 2010). Inhibition of TrkB kinase prevents

induction of mf-LTP (Huang et al., 2008) as well as the accompanying

reduction of PPF (unpublished data). Preventing TrkB activation of PLCg1

signaling inhibits induction of mf-CA3 LTP (He et al., 2010) and the accom-

panying reduction of PPF (unpublished data). Because activation of PLCgg1
results in formation of IP3 and release of calcium from the endoplasmic

reticulum, this model is consistent with the inhibition of mf-CA3 LTP by

presynaptic calcium chelation with EGTA (Tong et al., 1996) and by genetic or

pharmacological inhibition of a1E-containing calcium channels (Breustedt

et al., 2003; Dietrich et al., 2003). This model is also consistent with evidence

that TrkB activation promotes transmitter release from presynaptic terminals

(Jovanovic et al., 2000; Tyler et al., 2002; Lohof et al., 1993). The requirements

of the synaptic vesicle protein, rab3a, and its interacting partner, rim1a, for

induction of mf-CA3 LTP (Castillo et al., 1997; Castillo et al., 2002) suggest that

TrkB-activated PLCg1 signaling somehow interacts with these molecular

components of the release apparatus to promote increased Pr and LTP. A

requirement for rab3a in the BDNF-mediated increase of mEPSC frequency in

hippocampal neurons supports this suggestion (Alder et al., 2005).
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Whether the locus of induction of mf-LTP is pre- or postsyn-

aptic has been controversial (reviewed by Henze et al., 2000

and Nicoll and Schmitz, 2005), but our conclusion is consis-

tent with evidence implicating a presynaptic locus (Tong

et al., 1996).
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Our interpretation that vesicular zinc acts presynaptically rai-

ses the question as to what molecular consequences are trig-

gered by the ion that culminate in the increased glutamate Pr

that underlies mf-LTP in WT animals. We propose that vesicular

zinc, released by HFS of the mf, reenters the mf terminals where

it triggers a chain of molecular events. One possibility is that

increased concentrations of zinc in the cytosol of the presynaptic

terminal transactivate the receptor tyrosine kinase, TrkB (Huang

et al., 2008; Figure 8). This model is consistent with evidence that

TrkB activation can promote transmitter release from presyn-

aptic terminals (Jovanovic et al., 2000; Tyler et al., 2002; Lohof

et al., 1993), that TrkB kinase activity is required for mf-LTP

(Huang et al., 2008), and that zinc can transactivate TrkB (Huang

et al., 2008). Rapid chelation of synaptically released zinc by ZX1

would inhibit such a process.

Our findings establish two important functions for zinc that is

localized to synaptic vesicles of the hippocampal mfs: zinc

promotes the increased Pr that underlies presynaptic mf-LTP

and it also masks induction of postsynaptic mf-LTP. Context-

dependent fear conditioning is one behavior potentially related

to presynaptic mf-LTP in particular because defects in this

behavior have been identified in young adult ZnT3 null mutant

mice and following injection of a zinc chelator locally in CA3 of

WT mice (Sindreu et al., 2011). Emergence of a postsynaptic

mf-LTP may help explain the absence of detectable deficits in

multiple behaviors examined in young adult ZnT3 null mutant

mice (Cole et al., 2001; Adlard et al., 2010). It seems plausible

that dual control of the mf-CA3 synapse by vesicular zinc

supports the physiological functions subserved by this synapse

while limiting pathologic hyperexcitability mediated by excessive

activation of CA3 pyramids. Future investigations will seek to

determine themolecularmechanismsunderlying thesedual func-

tions and whether vesicular zinc exerts similar actions in diverse

association cortical circuits in addition to the mf-CA3 synapse.

EXPERIMENTAL PROCEDURES

Preparation and Characterization of ZX1

Full details of the preparation, characterization, and physical properties of the

new chelator are provided in Supplemental Information. The compound can be

obtained from Strem Chemical Co.

Potentiometric Titrations

Potentiometric titrations were performed on a Mettler-Toledo T70 autotitrator,

operated by the LabX-light software. A pH glass electrode (DG111-SC),

applied for pH measurements was calibrated with standard buffers (pH 4, 7,

10) prior to use. All solutions were degassed to avoid CO2 contamination.

The titrant (0.1 M NaOH,) was calibrated with analytically pure, crystalline

potassium hydrogen phthalate (KHP). The titration experiments were run at

25�C controlled by a circulating thermostatted bath. The ionic strength was

fixed with 100 mM KCl. Data analysis and calculation of association constants

were performed with HYPERQUAD software.

Kinetic Studies

All kinetic measurements were performed in pH 7 buffered solutions contain-

ing 50 mM of PIPES and 100 mM KCl. Millipore purified water was used to

prepare all aqueous solutions. A glass electrode (Orion, Boston), calibrated

before each use, was employed to determine solution pH. The kinetics of fluo-

rescence quenching experiment was performed on a Photon Technology

International (Lawrenceville, NJ) Quanta Master 4 L-format scanning spectro-

fluorimeter equipped with an LPS-220B 75-W xenon lamp and power supply,
.
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an A-1010B lamp housing with integrated igniter, a switchable 814 photon-

counting/analog photomultiplier detection unit, and a MD-5020 motor driver.

Samples were held in 1 3 1 cm quartz cuvettes (3.5 ml volume, Starna, Atas-

cadero, CA). The kinetic traces were obtained by following fluorescence emis-

sion at 515 nm (lex = 494 nm); the fluorescence was recorded every one

second for a total of 600 s. Double-mixing stopped-flow kinetics studies

were performed with a Hi-Tech SF-61 DX2 apparatus equipped with fluores-

cence detection. Excitation was provided at 494 nm. A GG455 glass cutoff

filter (<455 nm) was placed over the exit to the photomultiplier tube, and emis-

sion wasmonitored from 455 to 700 nm. The observed rate constants obtained

from all sets of experiments were calculated by employing the Kinet-Assyst

software package (HiTech) to fit individual traces to single exponentials.

Mice

ZnT3 null mutant mice, obtained from Dr. Richard Palmiter, University of

Washington, were generated by crossing male and female heterozygotes

maintained on a C57BL/6 background (Cole et al., 1999). The genotype of

each animal was verified twice using PCR of genomic DNA isolated from tail

before and after experiments.

Hippocampal Slice Preparation and Electrophysiological Recording

Mice were anaesthetized with pentobarbital and decapitated, and hippo-

campal slices prepared for electrophysiological study. A bipolar tungsten-

stimulating electrode was placed near the junction of the granule cell layer

and hilus near the midpoint of the suprapyramidal blade of the dentate.

Synaptic events were evoked by a stimulus pulse; 0.2 ms monopolar square

pulses were delivered at 0.033 Hz with a Digitmer constant current stimulator

(DS3, Digitimer Ltd. UK). Data were collected from slices at room temperature

using a Multi 700A amplifier and pClamp 9.2 software (Molecular Devices,

Sunnyvale, CA). Details of field potential and whole-cell recordings for assess-

ment of mf-LTP are provided in Supplemental Experimental Procedures.

To be considered a mossy fiber excitatory postsynaptic event (fEPSP or

EPSC), the following criteria were applied: (1) the ratio for paired pulse facilita-

tion (PPF) at 60 ms interval wasR 1.75; (2) frequency facilitation at 20 Hz was

R2.0 as determined by the ratio of the amplitude of the response to the third

pulse compared to the first pulse (Toth et al., 2000); and (3) application of the

Group II metabotropic glutamate receptor (mGluR) II agonist 2-(2,3-dicarbox-

ycyclopropy) glycine (DCG-IV; 1 mM) at the end of the experiment reduced the

amplitude of the evoked fEPSP or EPSC by R70%.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

six figures, and three tables and can be found with this article online at

doi:10.1016/j.neuron.2011.07.019.
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