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Dynamical pion collapse and the coherence of conventional neutrino beams

B. J. P. Jones*

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
(Received 2 January 2015; published 4 March 2015)

In this paper we consider the coherence properties of neutrinos produced by the decays of pions in
conventional neutrino beams. Using a multiparticle density matrix formalism we derive the oscillation
probability for neutrinos emitted by a decaying pion in an arbitrary quantum state. Then, using methods
from decoherence theory, we calculate the pion state which evolves through interaction with decay-pipe
gases in a typical accelerator neutrino experiment. These two ingredients are used to obtain the distance
scales for neutrino beam coherence loss. We find that for the known neutrino mass splittings, no
nonstandard oscillation effects are expected on terrestrial baselines. Heavy sterile neutrinos may experience
terrestrial loss of coherence, and we calculate both the distance over which this occurs and the energy
resolution required to observe the effect. By treating the pion-muon-neutrino-environment system quantum
mechanically, neutrino beam coherence properties are obtained without assuming arbitrary spatial or
temporal scales at the neutrino production vertex.

DOI: 10.1103/PhysRevD.91.053002 PACS numbers: 14.60.Pq

I. INTRODUCTION

The standard formula describing neutrino flavor oscil-
lation [1] has been widely experimentally verified [2].
However, it is known that its usual derivation, which
proceeds via Taylor expansion of the phases of neutrino
mass eigenstates in the plane-wave basis, contains several
theoretical inconsistencies and assumptions that are not
realized in any experiment. Attempts to fix these incon-
sistencies have involved the introduction of internal wave
packets [3–5], the replacement of internal wave packets
with external ones [6,7], field theoretical reformulations
[7–9], and discussions of the role of the entangled muon
in maintaining or suppressing coherence [8,10–14]. Many
of these approaches turn a poorly formulated quantum
mechanical problem into a theoretically robust calculation,
but often at the cost of introducing arbitrary spatial or
temporal scales. These scales have yet to be rigorously
connected to experiments. Since several of these
approaches predict observable coherence loss effects,
especially in experiments searching for hypothetical sterile
neutrinos, a robust quantum mechanical understanding of
this system without arbitrary scales is needed.
In this paper we present a derivation of the oscillation

probability for neutrinos produced in conventional neutrino
beams. In such beams, relativistic pions are injected into a
gas-filled decay pipe which is at atmospheric pressure,
where they undergo electromagnetic interactions with gas
molecules, eventually decaying to muons and neutrinos.
The muons continue to interact with the environment but
are undetected experimentally, and the neutrinos propagate
over some baseline L before being detected via a weak
interaction. The coherence properties of the resulting

neutrino beam are influenced by the initial pion state,
the interactions of the pion with the decay-pipe environ-
ment, the presence of the entangled muon, and the source/
detector configuration.
Our approach is to first derive the oscillation probability

for neutrinos emitted from pions in an arbitrary initial state,
consistently incorporating the constraints imposed by
entanglement with an unobserved lepton (Sec. II). Then,
using a representative pion density matrix, the classical
(diagonal) and quantum (off-diagonal) uncertainties on the
pion position are shown to lead naturally to two distinct
neutrino coherence conditions (Sec. III). The first mecha-
nism for coherence loss corresponds to a classical smearing
of oscillation over the neutrino production point, the second
to a distance-dependent suppression of oscillations via
wave-packet separation. If either condition is not satisfied,
neutrino oscillations will be suppressed, being replaced by
an incoherent mixture of flavors with no nontrivial L or
energy dependence.
With tools from decoherence theory we calculate the

pion density matrix which evolves through interactions
with the decay-pipe gas, and show how dynamical collapse
leads to pion states with a stable and predictable quantum
width in position space (Sec. IV). This width, in turn,
allows the determination of the distance over which
oscillations remain observable for a conventional neutrino
beam, without requiring the introduction of arbitrary
production or detection states (Sec. V).
We then discuss the implications of this result for the

oscillations of standard and sterile neutrinos in accelerator
neutrino experiments. We demonstrate that for standard
neutrinos, no coherence loss is expected on terrestrial
scales. Effects on terrestrial scales may be present for
heavy sterile neutrinos, and we calculate the detector
energy resolution required to observe such an effect.*bjpjones@mit.edu
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Finally, we discuss the similarities and differences in the
coherence properties of other neutrino emission systems
(Sec. VI), and present our conclusions (Sec. VII).

II. NEUTRINO OSCILLATIONS FROM DECAYS
OF ARBITRARILY PREPARED PIONS

In this paper we use the density matrix formalism of
quantum mechanics [15–17]. This is equivalent to the more
prevalent wave-function formalism, although it accommo-
dates more naturally both quantum and classical supder-
positions. This is particularly important in the presence of
environmental entanglement, which acts to suppress coher-
ence, effectively converting quantum uncertainties into
classical ones within the neutrino subsystem. Aspects of
neutrino oscillations have been analyzed using both wave-
function [11,18] and density matrix [13,14] approaches,
although no study to date has treated the full pion-lepton-
neutrino-environment system. We find the multiparticle
density matrix approach to be a powerful tool for this
purpose, allowing treatment of the neutrino beam as an
open quantum system and giving new insights into its
coherence properties.
We work in a one-dimensional model, beginning with a

general pion density matrix in the momentum basis ρπ . This
pion, with energy Eπ, may either interact hadronically in the
beam stop or decay with a 99.99% branching fraction via
π → μνμ in the decay pipe. In the case where the pion
decays, after a sufficiently long time t, the two-particle
density matrix for the resulting entangled muon/neutrino
state can be expressed in the basis of neutrino mass
eigenstates jmii as

ρðtÞ ¼ N2UμiU
†
μjΘijðtÞjmiihmjj: ð1Þ

In this equation, U is the unitary neutrino mixing matrix
and N is a normalization factor. The momentum degrees of
freedom are collected into matrix Θij, shown in (2). The
functions pi

μðpÞ and pi
νðpÞ represent the fixed momentum

of a muon or neutrino as determined by two-body kin-
ematics in the plane-wave basis. In each case, p is the
momentum of the pion and the decay products have masses
mμ and mi respectively.

ΘijðtÞ ¼
Z

dp1dp2ρπðp1; p2ÞeiðEπðp1Þ−Eπðp2ÞÞt

× ðjpi
νðp1Þihpj

νðp2ÞjÞνðjpi
μðp1Þihpj

μðp2ÞjÞμ: ð2Þ
To trace out the leptonic degrees of freedom from (2) we

express all of the leptonic states in terms of the basis states
pa
μðpÞ corresponding to some neutrino mass ma. These are

related by pa
μðpπÞ ¼ pi

μðpπ þ 2δiaμ Þ, where

δiaμ ¼ 1

2

dpi
μ

dm2
i
= dp

i
μ

dpπ
m2

ia ¼ −
Eπ

2M2
m2

ia; ð3aÞ

M2 ¼ m2
π −m2

μ; ð3bÞ

with m2
ia ¼ m2

i −m2
a. The second equality in (3a) follows

from momentum conservation, and (3b) assumes mi to be
much smaller than mπ and mμ. Expressed in this basis, the
muon degrees of freedom can now be traced out of (2),
leading to the reduced density matrix for the neutrino
subsystem:

Θν
ij ¼

Z
dpρπðp − δijμ ; pþ δijμ Þei

p

M2m
2
ijt

× jpi
νðp − δijμ Þihpj

νðpþ δijμ Þj: ð4Þ

This object can be used to obtain the results of any
measurement which can be performed on the neutrino
alone, and incorporates the effects of both the initial pion
state and the unmeasured entangled muon. An example of
such a measurement is a neutrino oscillation experiment. A
positive operator valued measure (POVM) is applied which
selects a particular neutrino flavor state at baseline L,
giving (5), the probability for neutrino detection in flavor α:

PðναÞ ¼ UαjU
†
αiUμiU

†
μj

Z
dq1dq2hq1jΘν

ijjq2ieiðq1−q2ÞL;
ð5Þ

where summation over i and j is implicit. Substituting (4)
into (5) leads to the final expression for the generalized
oscillation probability,

Pðνα; LÞ ¼ UαjU
†
αiUμiU

†
μj

Z
dpρπðp − δijμ ; pþ δijμ Þe−iϕij

ϕij ¼
m2

ijp

M2

�
E
p
L − t

�
: ð6Þ

We note that this expression does not depend on the
muon final state, or its subsequent interactions. A
general proof that this must be the case is presented in
Appendix A.

III. PION STATE COHERENCE CONDITIONS

Equation (6) allows us to calculate the neutrino oscil-
lation probability from any pion, prepared in a general state
of coherent or incoherent superposition. In order to explore
the coherence properties of such a system, we consider as
an example a pion density matrix in the position basis, with
Gaussian diagonal width σdiag, off-diagonal width σod, and
central momentum p0:

ρ ¼
Z

dx1dx2 exp

�
−
ðx1 − x2Þ2

2σ2od
−
ðx1 þ x2Þ2
2σ2diag

�
× e−ip0ðx1−x2Þjx1ihx2j: ð7Þ

The diagonal width corresponds to the classical uncertainty
on the pion position, whereas the off-diagonal width
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corresponds to a quantum mechanical, coherent uncertainty. Substituting (7) into (6), after a few lines of algebra we can
acquire the oscillation probability in the relativistic ðp0 ≫ mπÞ and nonrelativistic ðp0 ≪ mπÞ pion limits, as (8a)–(8b):

PRðνα; LÞ ¼ NUαjU
†
αiUμiU

†
μj

"
e
i
m2
ij

2p2
0

m2
π

m2−m2
μ
L
#"

e
−

ðm2
ij
Þ2ðp2

0
þm2

π Þ
8ðm2

π−m
2
μÞ2

σ2daig

#"
e
−
�

m2
ij

m2
π−m

2
μ

m2
π

2p2
0

�
2
�

L2

2σ2
od

�#
ð8aÞ

PNRðνα; LÞ ¼ NUαjU
†
αiUμiU

†
μj

�
e
i
m2
ij
mπ

m2
π−m

2
μ
ð1þp0

mπ
Þ−1L

��
e
− ðm2

ij
Þ2ðp2

0
þm2

π Þ
8ðm2

π−m
2
μÞ2

σ2daig
�"

e
−
�

m2
ij

m2
π−m

2
μ

�
2

ð1þp0
mπ

Þ−2ð L2

2σ2
od

Þ
#
: ð8bÞ

Describing the bracketed factors of (8a)–(8b) from left to
right, the left factor contains the standard oscillation phase,
reported here as a function of the central pionmomentump0.
The central factor describes incoherent smearing caused by
the production of neutrinos over a non-negligible spatial
region. This is significant if the neutrino production region
σdiag is larger than the neutrino oscillation length. Aswell as a
position-space interpretation, this effect also has an inter-
pretation in the momentum basis, as the requirement that
momentum wave packets for different mass states should
overlap in order for oscillations to occur. The rightmost factor
accounts for position-dependent wave-packet separation,
which is a function of the off-diagonal width σod and
becomes more severe with increasing L. Equation (8a), with
which we will be primarily concerned, reduces to the
standard formula for neutrino oscillations in the limits

σdiag ≪
�

E0
π

2
ffiffiffi
2

p ðm2
π −m2

μÞ
m2

ij

�−1
ð9aÞ

σod
L

≫
1

2
ffiffiffi
2

p
p2
0

m2
π

ðm2
π −m2

μÞ
m2

ij ð9bÞ

which can be considered as coherence conditions for
neutrino oscillations to be observable.
Condition (9a), representing classical smearing of the

oscillation, has been discussed at length as a source of
incoherence, for example [18,19]. However, since the
majority of experiments necessarily account for this
classical averaging in their Monte Carlo simulations, it
will not introduce unexpected effects for properly simu-
lated neutrino experiments, so we will not discuss it further.
Condition (9b), on the other hand, is a constraint on the

quantum mechanical width of the wave packet that dictates
the distances over which wave packets for different mass
eigenstates become separated spatially. This term canmodify
the standard neutrino transformation probability at large
distances, and does not have a classical interpretation.
Constraints similar to (9b) have been derived for the special
case of a pure coherent state with σ2od ¼ σ2diag ¼ 2σ2x [18,20].
However, the pion state which evolves in a typical neutrino
beam is neither a pure state nor a minimal-uncertainty one,
and the width σod has not been rigorously determined.

IV. EVOLUTION OF THE PION STATE
IN A CONVENTIONAL BEAM LINE

We now turn to the determination of the pion state at
neutrino production. In several prior studies of this system,
a Gaussian state was assumed with width related to a
physical scale in the problem, and the position and
momentum space widths related by the minimal-
uncertainty relation σxσp ¼ ℏ=2. Interactions with decay-
pipe gas are typically neglected. Following the method
developed in [21], we show that the decay-pipe gas
interactions are crucial to the coherence properties of the
neutrino beam system. This is because the bombardment of
a particle by environmental scatters leads to a highly
squeezed state with a predictable quantum width. This
“dynamical collapse” is experienced by the pion suffi-
ciently early in its lifetime that all neutrinos can be assumed
to be emitted from a pion with a stable equilibrium width.
Since we cannot track every air molecule in the decay

pipe, the evolving pion is treated as an open quantum
system. Air molecules undergoing local interactions with
the pion encode information about its position into the
environment, causing an effective collapse of its wave
function in the position basis. As demonstrated in Ref. [21],
the collapsing resolution of the environment is determined
by the scale of momentum transfers. The effect of a single
scatter with momentum transfer probability distribution
PðqÞ on the pion density matrix is

ρπðx1; x2Þ → ρπðx1; x2ÞfPqðx2 − x1Þ; ð10Þ

with ~Pqðx2 − x1Þ being the Fourier transform of PðqÞ. This
relationship was derived for nonrelativistic scatterers, but
remains valid for the relativistic pion. Competing with the
effective collapse caused by scattering is wave-packet
dispersion, which acts to broaden the wave packet in
position space between scatters. The competition between
these two processes leads to a stable coherent width, which
depends on the pion energy in two key ways. (1) the rate
of dispersion for more energetic pions is suppressed
by a Lorentz factor γ, and (2) the rate and momentum
distribution of environmental scatters depends upon the
pion energy.
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To obtain the probability distribution of momentum
transfers PðqÞ we use the PAI model [22]. This model
uses classical electromagnetism to determine the energy
losses in a continuous medium parametrized by a complex
index of refraction. The energy loss incorporates both
ionization and Cherenkov losses, which are the dominant
sources of momentum transfer for relativistic particles
traversing matter at these energies. The imaginary part
of the refractive index is related to the photoabsorption
cross section of the material in the vacuum ultraviolet
(VUV) range, and the real part is obtained via the Kramers
Konig relations. The continuous energy loss is then
reinterpreted semiclassically in terms of discrete photon
exchanges with electrons to give a distribution of momen-
tum transfers. This distribution has been used to predict the
fluctuations in dE=dx of ionizing particles in drift cham-
bers and good agreement with experimental data is
observed [22].
Since photoionization data for nitrogen are not available

at the level of detail required, we use the photoionization
spectrum for argon gas as input, making the assumption
that the details of atomic shell structure will not cause large
differences in the shape of the momentum transfer dis-
tribution. Predictions of our PAI model implementation
were checked against those given in the original paper [22],
and total dE=dx as reported in the [2], with good agreement
observed in both cases. More information on our imple-
mentation of the PAI model and cross-checks is given in
Appendix B.
The required outputs of the PAImodel are (a) the complex

decoherence function ~Pqðx2 − x1Þ and (b) the scattering
rate, both functions of pion energy and shown in Fig. 1.
These are then used in a quantumMonte Carlo simulation of
the dynamical collapse of the pion state.
We perform this Monte Carlo on a gridded space of

dimension 2048 × 2048. The resolution of this space in the
momentum basis rp is related to its resolution in the position
basis by rp ¼ 2π=rxD, specified for each initial state such
that it is equally sized in the position andmomentum grids at
t ¼ 0. The center of the grid corresponds initially to xG ¼ 0
and pG ¼ p0, with these values updating as the grid moves
to track the center of the wave packet.
We construct an initial Gaussian pure state of width

σinitial and central momentum p0 in this space. The
following procedure is then applied:
(1) Sample the time-to-next-interaction, tevol from a

distribution PðtevolÞ¼ðΔtscatÞ−1e−tevol=Δtscatðp0Þ, where
Δtscatðp0Þ is the mean scattering time (Fig. 1,
bottom);

(2) In the momentum basis, unitarily evolve the state for
a time tevol;

(3) Fourier transform the density matrix into the posi-
tion basis;

(4) Apply the decoherence function ~Pðx2 − x1Þ, an
example of which is shown in Fig. 1, top.

(5) Fourier transform back to the momentum
basis;

(6) Continue until the density matrix overflows the grid
boundaries in one of the two spaces.

After each interaction we record the diagonal and off-
diagonal position- and momentum-space widths by
calculating the standard deviation of the density matrix
at its peak in the diagonal and off-diagonal directions.
The calculation is halted when any width reaches one
grid spacing, or when the amplitude of the wave packet
at any edge of the grid is more than 1% of its peak.
Further cross-checks of the simulation can be found in
Appendix C. An example of the evolution of the

FIG. 1 (color online). Predictions of the photoabsorpative
ionization (PAI) model. Top: the decoherence function for the
pion in interaction with decay-pipe gas for βγ ¼ 10. Bottom: pion
scattering rate and other related quantities for pions of different
momenta.
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coherent pion width for various initial states at βγ ¼ 100

is shown in Fig. 2, where the convergence to an
equilibrium width is clearly observed. A similar calcu-
lation can be performed for kaons, whose two-body
decays give a subdominant flux contribution to conven-
tional neutrino beams, by substitution mπ → mK . The
asymptotic widths for pions and kaons of different
energies are shown in Fig. 3.

V. COHERENCE OF PION BEAMS
AND OBSERVABILITY OF COHERENCE

LOSS EFFECTS

The asymptotic coherent pion and kaon widths shown in
Fig. 3 can be used with coherence condition (9b) to
determine the distance over which the pion- and kaon-
induced fluxes in conventional neutrino beams will become
incoherent due to wave-packet separation. This distance is
shown as a function of neutrino mass splitting in an
effective two neutrino system with m2

ij ¼ Δm2, for several
energy points in Fig. 4.
Existing and near-future accelerator neutrino experi-

ments have baselines of up to 1300 km and beam energies
from 102 to 105 MeV. Figure 5 shows the energy range and
baseline for several such experiments, as well as the
predicted coherence distance for several mass splittings,
calculated using the relativistic formula (8a). The lowest
energy point on this plot corresponds to a pion energy of
210 MeV, where nonrelativistic corrections may be
expected. To illustrate the scale of such corrections we
show the prediction of nonrelativistic expression (8b) at this
point. We observe that the discrepancy with the relativistic
prediction is small at these energies.
Over most of the energy range the coherence distance

scales with E. This can be understood as emerging from the
factor of p2

0 in Eq. (9b) combined with the characteristic
p−1
0 scaling of the convergent width, caused by Lorentz

suppression of the pion dispersion rate. At low energies
there are corrections both from the finite pion mass and
from the energy dependence of the mean scattering time
shown in Fig. 1.
It is clear from Fig. 5 that no loss of coherence is

expected for the standard neutrinos produced in

FIG. 2. The time-dependent coherent position-space width
of pions with βγ ¼ 100. Gaussian pure states of various
widths are used as initial states in a quantum Monte Carlo.
Each simulation is stopped when the wave packet no
longer fits on the simulation grid in the position or
momentum basis. Evolution towards a stable equilibrium
width is observed.

FIG. 3 (color online). Convergent widths for pions and kaons of
different initial energies.

FIG. 4 (color online). Coherence distance for neutrinos of
different energies produced in conventional neutrino beams.
Solid: Two-body π� decay. Dotted: Two-body K� decay. Larger
neutrino energies correspond to longer distances.
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conventional beams on terrestrial distance scales. However,
effects may be present for heavy sterile neutrinos. The
experimental observability of these effects is directly
related to the energy resolution of the far detector. At large
L andΔm2, the oscillation phaseΔm2L=E varies rapidly as
a function of energy. If this variation is more rapid than the
energy resolution of the detector, an incoherent signal and a
fast-oscillating one are indistinguishable.
Taylor expanding the oscillation phaseΔm2L=ðEþ ΔEÞ

in the limit of small ΔE=E gives the required energy
resolution ΔE for observability of oscillations:

ΔE <
2πE2

Δm2L
: ð11Þ

Comparison of (11) with (9b) gives the range ofΔm2L over
which loss of coherence both occurs and is experimentally
observable. For such a space to exist at all, the energy
resolution must satisfy

ΔE <
πffiffiffi

2
p

σodðEÞ
m2

π

m2
π −m2

μ
: ð12Þ

This condition is shown in Fig. 6. In the range of terrestrial
loss of coherence, a resolution < 0.1 MeV is required.
It may be possible to loosen this requirement with exotic

experimental configurations. For example, if the pion
traverses a decay volume with a higher density, the time
between scatters will be reduced and the convergent wave-
packet width will be narrowed, leading to enhanced
position-space loss of coherence at shorter baselines.

Consider a Gedankenexperiment where instead of air, a
relativistic pion decays while traversing a high-density
liquid. Producing such a beam in practice would introduce
myriad experimental problems due to rapid energy loss of
pions in the medium, but it provides an illustration of the
scale of effects which can in principle be probed by
changing the decay-pipe density. Using the PAI model
for liquid argon, which is 1200 times more dense than air,
we recalculate convergent wave-packet widths and the
required energy resolutions for the observability of coher-
ence loss, which are shown in Fig. 6. We see that although
the energy resolution condition is relaxed, it remains very
precise by existing neutrino detection standards.

VI. COHERENCE OF OTHER NEUTRINO
OSCILLATION SYSTEMS

This paper has focused on the coherence properties of
conventional meson-decay-in-flight neutrino beams.
However, this is only one subclass of neutrino oscillation
experiment, with others using different neutrino sources
with different coherence properties. In this section we give
a qualitative discussion of the similarities and differences
between some of these systems.
Three-body decay in flight of muons in conventional

neutrino beams requires a small modification of the
calculation we have presented. The coherent width of
the muon at the time of decay can be calculated using
our method, and since its mass is similar to that of the pion,
we expect to find similar coherent widths. The decay then
proceeds μ → eνν̄. To calculate the oscillation probability
for the neutrino, for example, both the electron and the
antineutrino must be traced out of the multiparticle density
matrix. The momenta of the unobserved subsystem can be

FIG. 5 (color online). The coherence distances for pion-induced
neutrinos at several values of Δm2 compared with the configu-
rations of existing and proposed accelerator neutrino experi-
ments. The lines use the relativistic expression (8a), whereas the
diamonds show the prediction of the nonrelativistic expression
(8b) at the lowest energies.

FIG. 6 (color online). The energy resolution required to observe
coherence loss without fast oscillation in some part of the Δm2L
parameter space as a function of neutrino energy.
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reparametrized in terms of a total momentum and an
invariant mass mμν̄, which implies that this system can
be treated in our formalism as a neutrino recoiling against a
variable-mass muon. Since each configuration of the
antineutrino-muon subsystem is distinct, the neutrinos
recoiling from different invariant masses will not interfere
coherently. Thus the final expression for the oscillation
probability will take the form of an integral of Eq. (6) over a
probability distribution of mμ ¼ mμν̄ values, with this
distribution calculated from three-body kinematics. The
coherence properties are likely to be quite similar to those
of the pion-decay system.
Muon storage rings, on the other hand, produce neu-

trinos through the decays of muons which are circulated in
an evacuated beam pipe to maintain a long storage time. In
this case, ionizing interactions with residual gases may no
longer be the dominant localizing influence, and our
method of calculating the convergent wave-packet
width using the PAI model is unlikely to be directly
applicable.
Atmospheric neutrinos are primarily produced in the

decays of charged pions and kaons in the upper atmos-
phere, with pions dominant at lower and kaons dominant at
higher energies. The quantum mechanical system is essen-
tially identical to that presented in this article, although the
atmospheric density at the altitude where air showers
develop is much less than that in accelerator neutrino
beam decay pipes. Our calculation could be applied by
simply adjusting the density of the decay-pipe gas to the
atmospheric density, giving wider wave packets and longer
coherence lengths. Because the expected effect is coherent
broadening, wave-packet separation effects are unlikely to
be experimentally observable for atmospheric neutrinos in
Earth-based experiments.
Pion decay-at-rest beams present a similar quantum

mechanical system to pion decay in flight, with the steps
leading to Eq. (6) remaining valid. A different calculation is
required for the initial pion width, since the momentum
transfers involved in localizing a stopped particle are
characteristically different to those produced by ionizing
interactions in the relativistic case. Stopped π− become
trapped in atomic orbitals and capture on nuclei, so do not
produce effective decay-at-rest beams. Stopped πþ do not
become trapped in atomic orbitals and become stopped
somewhere in the material lattice until they decay.
Electromagnetic and phonon interactions with the sur-
rounding material are the primary localizing influence. A
derivation of the coherence properties of decay-at-rest
beams would require a microscopic model of the momen-
tum transfers involved in these interactions with the pion to
determine its coherent width at decay.
Reactor and solar neutrinos are produced by nuclear β

decays of atoms in a hot, dense environment. The final state
contains a daughter nucleus and an electron. In the density
matrix formalism, the degrees of freedom of final state

which are not carried by the neutrino should be traced out to
obtain the neutrino reduced density matrix. Accounting for
all of the internal and external degrees of freedom of the
daughter nucleus may require fairly involved nuclear
physics. The localization of the initial state is also non-
trivial, having contributions from the atomic interactions in
the hot medium, photon exchange between the nucleus and
its electron cloud, and Fermi motion within the nucleus
itself. Although the latter certainly involves the largest
momentum transfers, it is not conceptually clear what role
is played by localization of the nucleon within the nuclear
medium versus localization of the decaying nucleus within
the bulk in determining the coherence properties of the
emitted neutrino. This is a system whose coherence
properties warrant further study, and where our calculation,
though giving some insight, cannot be trivially applied.

VII. CONCLUSION

Using a multiparticle density matrix formalism we
derived an expression for the oscillation probability of
neutrinos produced by the two-body decays of pions in
an arbitrary initial state. Assuming an example initial
state with specified diagonal and off-diagonal widths in
the position basis, we derived two coherence conditions
for the observability of neutrino oscillations which set an
upper limit on the classical width and a lower limit on the
quantum mechanical width respectively. Modeling the
dynamical collapse of a pion in a beam pipe using tools
from decoherence theory and the PAI model to obtain
realistic momentum transfer distributions, we calculated
the coherence distances for neutrinos produced in con-
ventional neutrino beams. To our knowledge, this is the
first calculation to consistently treat the full pion-muon-
neutrino-environment system. We find that no coherence
loss should be expected for standard neutrinos on
terrestrial scales in existing or proposed facilities.
Sterile neutrinos with large masses (> 10 eV2) at low
energies and long baselines may lose coherence through
wave-packet separation on terrestrial scales, although a
far detector with better energy resolution than is pres-
ently available is likely to be required in order to observe
this effect.
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APPENDIX A: THE EFFECTS OF
MUON-ENVIRONMENT INTERACTIONS

Here we give a proof that the environmental interactions
or detection state of the entangled lepton cannot affect the
oscillation phenomenology of a neutrino beam. While this
conclusion is not difficult to reach intuitively via causality
arguments, it is one which is either unclear or explicitly
violated by several treatments of the neutrino beam system
which can be found in the literature, so a formal derivation
is useful.
Consider the muon-neutrino-environment system after

the pion decay has taken place. This muon-neutrino
subsystem is in an entangled state represented by reduced
density matrix ρμν. We assume arbitrary entanglement at t0,
but make a Schmidt decomposition into the ϵ (environ-
ment) and entangled μν (muon and neutrino) subspaces
(choosing a basis for each subsystem such that the
entanglement is diagonal):

ρðt0Þ ¼ ρμνϵðt0Þ ¼
X
i

λiρ
i
μν ⊗ ρiϵ: ðA1Þ

This density matrix will evolve into another fully entangled
state as ρðt0Þ → ρðtÞ ¼ ρμνϵðtÞ. At any time we can obtain
the reduced neutrino density matrix from the full density
matrix by tracing out the other degrees of freedom:

ρνðtÞ ¼ Trϵμ½ρμνϵðtÞ�: ðA2Þ

Any measurement we make on the neutrino alone can be
represented by a POVM on the neutrino Hilbert space
fOi¼1…N

ν g, giving probability PðojÞ ¼ Trν½ρνOj
ν� of meas-

uring outcome oj, where
P

N
i¼1O

i
ν ¼ 1ν.

To time-evolve the system we apply the relevant muon-
neutrino-environment Hamiltonian. We assume no inter-
actions between the neutrino and the environment, although
our conclusions remain valid even in the presence of
neutrino-environment interactions, so long as the degrees
of freedom coupling to the neutrino are different from those
coupling to the entangled lepton. The muon and neutrino
move apart from the origin and are assumed not to interact
with one another after production. The muon will in general
have an interaction with the environment. Finally all three
parts have free evolution Hamiltonians. Therefore, the total
Hamiltonian can be written:

H ¼ Hν þHμ þHϵ þHInt
μϵ ;

¼ Hν þHμϵ: ðA3Þ

In the second line we have separated the Hamiltonian
into a neutrino-only part and a muon-environment part.
These act on different Hilbert spaces so will always
commute, ½Hν; Hμϵ� ¼ 0. The time evolution operator for
the entire system is

Uðt− t0Þ¼T

�
exp

	
i
Z

dtðHνþHμϵÞ

�

;

¼T

�
exp

	
i
Z

dtHν


�
T

�
exp

	
i
Z

dtHμϵ


�
;

¼Uνðt− t0ÞUμϵðt− t0Þ; ðA4Þ

where the second equality is valid because of the commu-
tation properties already mentioned. Using this operator we
evolve the initial density matrix:

ρðtÞ ¼ U†ρðt0ÞU; ðA5Þ

dropping the arguments of the time evolution operators for
simplicity of notation. We substitute the initial state (A1),
and use the separability of the time evolution operator to
find

¼
X
i

λiU
†
μϵ½U†

νρiμνðt0ÞUν� ⊗ ρiϵðt0ÞUμϵ ðA6Þ

which leads to (A7), the general expression for measure-
ment probabilities for any neutrino observable at any time.

Pðoj; tÞ ¼ Trϵμ½Trν½ρOj
ν��

¼
X
i

λiTrϵμ½U†
μϵTrν½U†

νρiμνðt0ÞUνO
j
ν� ⊗ ρiϵðt0ÞUμϵ�:

ðA7Þ

We know that time evolution in quantum mechanics is
unitary. This does not necessarily imply unitary evolution
within a subsystem, however. The overall unitarity require-
ment gives

U†U ¼ 1νμϵ ðA8aÞ

¼ 1ν ⊗ 1μϵ ðA8bÞ

¼ UνUμϵU
†
μϵU†

ν: ðA8cÞ

We know that time evolution for the neutrino subsystem is
unitary, since it is identical to the free neutrino case.
Therefore the states Uνjνii make just as good orthonormal

basis states for taking a trace as jνii, and Trν½U†
νAμνϵUν� ¼

Trν½Aμνϵ�, where Aμνϵ is any general operator on the three
system Hilbert space. This tells us that the muon-environ-
ment time evolution must also be unitary in its own Hilbert

space UμϵU
†
μϵ ¼ 1μϵ, leading to the conclusion

Trμϵ½U†
μϵAμνϵUμϵ� ¼ Trμϵ½Aμνϵ�: ðA9Þ

We can use this to simplify the above expression (A7) for
neutrino measurement probabilities:
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PðojÞ ¼
X
i

λiTrϵμ½Trν½U†
νρiμνðt0ÞUνOν� ⊗ ρiϵðt0Þ�: ðA10Þ

The operator Uμϵ no longer features in this expression. We
conclude that any measurement made on the neutrino alone
cannot be influenced by the subsequent evolution or
environmental interactions of the entangled muon.
Correlated measurements on both subsystems would

involve a measurement operator Oμν. In this case, the
muon-environment interactions could, of course, affect
the oscillation probabilities of neutrinos detected in coinci-
dence with a particular subset of muons. This would
correspond to a selection effect, with measurements which
are made over all neutrinos, without reference to their
associated muons, still returning values which are indepen-
dent of the muon-environment interactions. Thus, by virtue
of quantummechanical unitarity, there is no spooky-action-
at-a-distance or faster-than-light communication, and the
interactions of muons with their environment cannot affect
the neutrino oscillation probability in any experiment.

APPENDIX B: CONSTRUCTION
OF THE PAI MODEL

There are two main sources of environmental interaction
for pions in a neutrino beam line. The first is interaction
with the magnetic fields of the focusing horn which steers
the pions into a forward beam. In the lab frame, this field is
purely magnetic, and so only transfers transverse momen-
tum, having no decohering effect in the longitudinal
direction important for neutrino beam coherence.
Furthermore, the pion is only in the region of strong horn
fields for a short time, spending most of its decay time
traveling forward in the low field region.
The second source of environmental interaction is

ionization losses and Cherenkov emission due to photon
exchange with the beam-pipe gas. The energy loss of a
relativistic particle passing through a gaseous environment
is understood as being the result of many low energy
scatters with nuclei and electrons. It is well known that the
majority of the energy loss occurs through scattering with
electrons rather than nuclei, the latter giving a contribution
on the order of Oð10−4Þ to dE=dx. In what follows we will
neglect the effects of scatters off nuclei completely,
although a more complete treatment might include this
small correction.
The distribution of momentum transfers for relativistic

particles in matter has been studied in several contexts,
including for the purpose of understanding ionization
fluctuations in drift chambers. Therefore much of the
existing data and modeling has focused on common drift
chamber gases such as argon and methane.
One example of such a model is the PAI model [22]. In

this model, classical electromagnetism is used to determine
the energy losses in a continuous medium parametrized
by a complex index of refraction n. This energy loss

incorporates contributions from both ionization and
Cherenkov emission, which although both included, are
not easily separable. The refractive index is determined
from the photoabsorption spectrum of the material in the
VUV range, which has been measured for argon and is
shown in Fig. 7, reproduced from [22]. The continuous
energy loss is reexpressed semiclassically in terms of
discrete photon exchanges with electrons to give a dis-
tribution of momentum transfers.
The main result we need from the PAI model is Eq. (B1),

giving the energy transfer cross section in terms of the
photoabsorption cross section of the medium. In this
formula, β is the ionizing particle velocity, E is the energy
transfer by a single photon exchange, and σγðEÞ is the
photoionization cross section of the material in the VUV
range. ϵ1 and ϵ2 are the real and imaginary parts of the
material index of refraction, which can be expressed in
terms of the photoabsorption cross section via the definition
of the absorption length, and then the Kramers Konig
relation, as in Eqs. (B2a)–(B2b). The function Θ is defined
in terms of the particle velocity and the index of refraction
as in Eq. (B2c).

FIG. 7. Elements of the PAI model. The two panels of interest
to us are the top panel, showing the photoabsorption cross section
of argon gas, and the second panel, showing the calculated dE=dx
from this model for β ¼ 1. This figure is reproduced from [22].
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dσ
dE

¼ α

β2π

σγðEÞ
EZ

ln ½ð1 − β2ϵ1Þ2 þ β4ϵ22�−1=2

þ α

β2π

1

Nℏc

�
β2 −

ϵ1
jϵj2

�
Θþ α

β2π

σγðEÞ
EZ

ln

�
2mc2β2

E

�
þ α

β2π

1

E2

Z
E

0

σγðE0Þ
Z

dE0 ðB1Þ

ϵ2 ¼
Nc
ωZ

σγðEÞ ðB2aÞ

ϵ1 ¼
2

π

Nc
Z

P
Z

∞

0

σγðxÞdx
x2 − ω2

ðB2bÞ

Θ ¼ argð1 − ϵ1β
2 þ iϵ2β2Þ: ðB2cÞ

The momentum transfer probability distribution and the
number of scatters per centimeter are given by

PðqÞ ¼ 1

σ

dσ
dp

dNscat

dx
¼ 1

hEi
dE
dx

ðB3Þ

and the normalized probability distribution for each dis-
crete momentum transfer at several βγ values is shown in
Fig. 9, top.
We cross-check our implementation of this model in two

ways. First, Fig. 9, bottom, shows our calculated momen-
tum transfer distribution for β ¼ 1 as compared to that
given in [22]. There is good agreement everywhere except
at the lowest momentum transfers, where it appears the
Allison and Cobb calculation displays a small tail which is
not present in our model. We suspect this could be the result
of the choice of regularization in the Fourier transform.
Since these are scatters with very small momentum transfer
and so little decohering resolution, we do not expect this
feature to be important for this calculation. Second, we
calculate the total dE=dx predicted by this model as a

function of pion energy, and compare to the PDG. This is
shown in Fig. 8, and again, good agreement is observed.

APPENDIX C: TESTS OF NUMERICAL DENSITY
MATRIX EVOLUTION

Here we present some cross-checks of the density matrix
evolution calculation which test that the convergent width
depends only on the physics of the problem, and not the
details of our simulation.
Rather than using the Monte Carlo technique with

random scattering times, for these tests we model a
“smoothed” evolution, using a constant time per scatter
equal to the mean expected at the given pion energy, shown
in Fig. 1. This generates deterministic rather than random

FIG. 8 (color online). dEdx calculated using PAI model
(diamonds) overlaid on the prediction from [2].

FIG. 9 (color online). Top: The momentum transfer distribution
predicted by the PAI model for various values of βγ. Above βγ ¼
1 the distributions are very similar. Bottom: The energy transfer
distribution calculated in our PAI model implementation, com-
pared with that given in [22].
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curves, which demonstrate more clearly the average behav-
ior. The baseline model with smoothed evolution for βγ ¼
100 is shown in Fig. 10, top left. Comparison with Fig. 2
demonstrates that the smoothed evolution gives a similar
approach to convergence and convergent width to the
Monte Carlo evolution, but with the advantage that it
can be used to test for systematics of the method inde-
pendently of random fluctuations.
Using the smoothed model for βγ ¼ 100we checked that

our results are not affected by the following purely calcula-
tional adjustments.We change the point in each cycle where
the width is measured from directly after each scattering
interaction to directly after each unitary evolution. The

resulting evolution is shown in Fig. 10, top right. We check
that our result is not affected by the grid size, changing from
a grid dimension of 2048 to 1024, shown in Fig. 10, bottom
left. In the lowest energy cases for βγ ≤ 3, to stabilize the
calculation the Monte Carlo evolution was run using
0.1 scatters per evolution. That is, unitary evolution
for 0.1 × tevol and application of a decoherence functionfPqðx2 − x1Þ0.1. We check that this approximation, a weaker
version of the continuum approximation used to describe
systems by master equations, gives the same convergent
width as the default evolution. This is shown in Fig. 10,
bottom right. In all cases, a consistent convergent width and
a similar approach to convergence is observed.
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