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Abstract

This is a work in three parts, each of which addresses challenges to weak gravitational
lensing flexion measurements. Part one is a derivation and analysis of the aberration
shapes and patterns imparted onto images by misaligned telescopes. As telescope
aberrations will generally interfere with lensing measurements, it is important to be
able to quantify and ultimately minimize them. The conclusions of this first part
are (1) misaligned telescopes produce the same aberration shapes, but different field
patterns, as aligned telescopes, (2) these misalignment patterns are generic for on-
axis telescopes and can be modeled with relatively few parameters, and (3) with
well-placed wavefront sensors, telescopes can be kept near enough to alignment so
that any remaining aberrations are benign.

The second part of this work explores the effect of any un-removed telescope
aberrations on images of flexed galaxies. Telescope astigmatism, coma, and trefoil
distort stellar images in much the same way that gravitational shear and flexion
distort galaxy images. In this chapter, I derive simple models for lensed galaxies and
for aberrated PSFs, and convolve the two models to determine the analytic form for
the gravitationally lensed and optically distorted galaxy shapes that one might expect
to see in actual telescope images. Given this representation of the galaxy image, one
can analytically disentangle the gravitational signal from the other distortions.

The final chapter is an observational study of weak gravitational lensing flexion in
Abell 1689. Using the analytic models for images of lensed and aberrated galaxies that
I derived in the preceding section, I attempt to measure galaxy halo truncation from
galaxy-galaxy lensing flexion in Abell 1689. While I am able to successfully measure
flexed and distorted galaxy shapes and extract the de-aberrated flexion signal, the
measurement of galaxy-galaxy gravitational flexion is ultimately thwarted by inherent
shape noise in Abell 1689’s background source galaxy population. I characterize this
shape noise, concluding that it is much larger than previously reported. I further
analyze the other hindrances to the lensing flexion measurement and conclude with
a recipe for perhaps succeeding in the future.

Thesis Supervisor: Paul L. Schechter
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Introduction

“A few years ago the city council of Monza, Italy, barred pet owners

from keeping goldfish in curved bowls. The measure’s sponsor explained

the measure in part by saying that it is cruel to keep a fish in a bowl with

curved sides because, gazing out, the fish would have a distorted view of

reality. But how do we know we have the true, undistorted picture of

reality?” –Stephen Hawking & Leonard Mlodinow, The Grand Design,

2010

Images portray a distorted version of reality. I am not being allegorical. My-

opia, hyperopia, and astigmatism distort images created by the eye, at least for the

more unfortunate of us. Telescopes and cameras are subject to defocus, spherical

aberration, coma, astigmatism, curvature of field, trefoil, and more, all which lead to

distorted images. And light traveling through the cosmos must bend and deflect as it

encounters gravitational wells along its path, so that when it reaches its destination,

the image it creates is a displaced and disfigured version of the source that generated

it. This last distortion is known as gravitational lensing.

This thesis is a work in three parts, bound together by two overarching themes

(1) addressing challenges to weak gravitational lensing flexion measurements and (2)

extracting information from distorted images. Each section is written to be self-

contained, and has its own introduction, bibliography, and appendices. Chapters 1

and 2 have been published as individual works by PASP on July 2011 and December

2013 respectively. An shortened version of chapter 3 will also be published as an

individual work.

19



0.1 Synopsis of chapter 1: Generic misalignment

aberration patterns in wide field telescopes

Chapter 1 of this thesis is a derivation and analysis of the aberration shapes and

patterns imparted onto images by misaligned telescopes. Despite the subject being

telescopes, this section is motivated by the stringent constraints on image quality

demanded by gravitational lensing studies. Recently constructed experiments such as

the Dark Energy Survey (DES), ground based projects which are in various stages of

construction such as the Large Synoptic Survey Telescope (LSST) and the Kilo-Degree

Survey (KIDS), and space based experiments such as the Wide-Field InfraRed Survey

Telescope (WFIRST) and Euclid all propose to use weak lensing as a tool to constrain

cosmology and galaxy formation. However, in order to achieve these scientific goals,

these projects must understand and control their point spread functions (PSFs). As

an example of the stringent constraints weak lensing science goals place on image

quality for these experiments, the LSST weak lensing goals require PSF systematics

affecting astigmatism to be controlled to better than a few parts in a thousand.

In an effort to shed further light on the nature of aberrations that will affect these

experiments and how they might be characterized and controlled, Paul Schechter and I

set out to examine the aberrations that affect modern, multiple mirror telescopes. Our

particular focus was on misalignment aberrations, those aberrations and patterns that

manifest when the optics of a telescope are laterally offset or tilted with respect to one

another. These misalignments and tilts must be corrected in the initial construction

and alignment of a telescope, and also during science observations as the mirrors are

subject to the varying gravitational stresses associated with different pointings, and

as the optical elements expand and contract with thermal conditions.

Empirical tests and ray-tracing had shown that misalignments in many types of

telescopes cause the same basic patterns of aberrations. McLeod (1996) even uses

the misalignment coma patterns to align Cassegrain telescopes. However, before

I undertook this present work, the only existing constructs with which to model

misalignment aberrations were designed primarily to ease the programming of ray-
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tracing software on (ancient) computers, and were therefore somewhat conceptually

cumbersome. In chapter 1, I expand on the work of Schroeder (1987) to develop a

more intuitive, fully generic, first principles framework to describe the magnitudes,

patterns, and shapes of misalignment aberrations. The equations derived herein are

based on simple geometric arguments, and might equally well have been derived a

century ago had there been a need for them. Only recently, with the proposal of

large, wide-field, multiple-mirror telescopes, has there been a need for a schema with

which to understand misalignment aberrations.

The idea to undertake this work was Paul Schechter’s and therefore he is first

author on the published paper in PASP, 07/2011. However, I take credit for deriving

the generic patterns and for much of the writing, which is why I include the work

here, with Schechter’s permission.

0.2 Synopsis of chapter 2: Analytic PSF correc-

tions for gravitational flexion measurements

For my prepared question in the third part of my general exam, Paul Schechter

‘suggested’ that I examine the similarities between telescope aberrations, and those

distortions caused by weak gravitational lensing. Result: they are the same. And

since they are the same, telescope aberrations can mimic gravitational lensing signals.

The second chapter of my thesis builds on this question and explores the effect of

atmospheric smearing and telescope aberrations on the images of galaxies which have

been weakly gravitationally lensed. The idea behind this work is very straightforward:

make a simple model for a lensed galaxy, make a simple model for an aberrated

PSF, and convolve the two to show the effects of atmospheric smearing and telescope

distortions on a lensed galaxy image. Since the analytic form for telescope distortions

(coma, astigmatism, and trefoil) are very similar to the analytic form for the highest

order effects of lensing on galaxies (F-flexion, shear, and G-flexion) one would expect

coma, astigmatism, and trefoil to imitate F-flexion, shear, and G-flexion respectively
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in telescope images.

What started as a short letter to show how telescope aberrations affect measure-

ments of flexion using the Analytic Image Method (henceforward, AIM), has since

turned into a 46 page treatise on minimal acceptable models for flexed galaxies, min-

imal models for an atmospherically aberrated and possibly asymmetric PSFs, and

the various distortions that mimic the gravitational flexion signal but are NOT grav-

itational flexion. These impostors include the telescope distortions we had initially

surmised, but also include mixing between galaxy elongation and flexion, and mix-

ing between telescope aberrations and the galaxy shape. This work establishes an

analytic form for gravitationally lensed, atmospherically smeared, and asymmetri-

cally aberrated galaxies, so that one can extract the gravitational contribution from

telescope images.

This work has been previously published in PASP, 12/2013. As I am the sole

author of this work, I include it here for completeness.

0.3 Synopsis of chapter 3: A failure to measure

galaxy-galaxy flexion in Abell 1689, and the

role of shape noise at z ∼ 1

The first two chapters of this work are theory based; they establish telescope aber-

rations as a hurdle in making a gravitational flexion measurement, and set down a

method by which one can extract gravitational flexion from data in spite of those

aberrations. In contrast, this third chapter is experimentally based; it is a detailed

account of the steps I took to measure gravitational galaxy-galaxy flexion in the

cluster Abell 1689.

My initial goal was to measure galaxy halo truncation for galaxies in Abell 1689,

possibly verifying the prediction that galaxies nearer to the cluster center would have

more truncated halos than their counterparts at the edge of the cluster. I was not

able to make this measurement with my data, and so this last section of my thesis is
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an inquest of sorts: why did this measurement fail?

I am able to successfully measure flexed and distorted galaxy shapes in my images

using DoPHOT. I am also able to account for telescope aberrations and extract a

de-aberrated flexion signal using the methods outlined in chapter 2. What I did not

predict and could not control was the large inherent shape noise in the background

source galaxies behind Abell 1689. I perform a thorough analysis of this shape noise,

both at low and high redshift, and find that the shape noise at z ∼ 1 is much larger

than some of the values previously reported in the literature. I examine why these pre-

viously reported measurements of shape noise may be artificially low. I additionally

analyze the shortcomings in the depth of my images and in the selection and redshift

determination of source galaxies that hinders my flexion measurement. These obser-

vational and analysis shortcomings, combined with the inherent galaxy shape noise,

ultimately prohibit any possible measurement of halo-truncation or galaxy-galaxy

lensing flexion with my data. I conclude with a recipe for making a galaxy-galaxy

flexion measurement in the future with deeper, redder, and possibly space-based data.
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Chapter 1

Generic Misalignment Aberration

Patterns in Wide-Field Telescopes

Published 07/2011 by Publications of the Astronomical Society of the Pacific

Volume 123, issue 905, pp.812-832

http://www.jstor.org/stable/pdfplus/10.1086/661111.pdf?acceptTC=true

1.1 Abstract

Axially symmetric telescopes produce well known “Seidel” off-axis third-order aber-

ration patterns: coma, astigmatism, curvature of field and distortion. When axial

symmetry is broken by the small misalignments of optical elements, additional third-

order aberration patterns arise: one each for coma, astigmatism and curvature of

field and two for distortion. Each of these misalignment patterns is characterized by

an associated two-dimensional vector, each of which in turn is a linear combination

of the tilt and decenter vectors of the individual optical elements. For an N -mirror

telescope, 2(N − 1) patterns must be measured to keep the telescope aligned. Align-

ment of the focal plane may require two additional patterns. For N = 3, as in a

three mirror anastigmat, there is a two-dimensional “subspace of benign misalign-

ment” over which the misalignment patterns for third-order coma, astigmatism and

curvature of field are identically zero. One would need to measure at least one of

25



the two distortion patterns to keep the telescope aligned. Alternatively, one might

measure one of the fifth-order misalignment patterns, which are derived herein. But

the fifth-order patterns are rather insensitive to misalignments, even with moderately

wide fields, rendering them of relatively little use in telescope alignment. Another

alternative would be to use telescope pointing as part of the alignment solution.

1.2 Introduction

1.2.1 new telescopes, stringent constraints

The designs for several large telescopes that may get built in the next decade are

driven largely by the need for superb and stable image quality over wide fields [5,

14]. Perhaps the most demanding of the scientific programs that in turn drive these

requirements is that of cosmological weak lensing, using galaxy images to measure

gravitational shape distortions as small as as one part in ten thousand.

Of particular concern for ground-based telescopes are the rigid body motions

of the optical elements due to gravitational and thermal stresses on the telescope

structure.1 The positions of the optical elements can be controlled only to the extent

that they can be measured, putting a premium on the accurate characterization of

the aberrations generated by telescope misalignments.

On the assumption that at least some of these aberrations are best measured with

wavefront sensors, several questions immediately arise. How many aberrations must

be measured? Which ones? At how many field positions must the measurements be

made? Where?

One can always, as a last resort, attempt to answer these questions by simulation.

But we argue here that the answers to these questions hinge on the identification of

generic field aberration patterns that emerge in a wide variety of circumstances. A

relatively small number of such patterns suffices to efficiently diagnose and correct

misalignments. And only a small number of field points must be sampled to measure

1Such telescopes are also subject to deformations of the optical elements, but on longer timescales
than the rigid body motions.
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these patterns. Moreover two of the patterns may in some cases be determined directly

from science data.

1.2.2 literature

The practical astronomical literature on the alignment of wide field telescopes is very

limited. McLeod’s [1996] paper describing the use of coma and astigmatism pat-

terns to align the Whipple Observatory 1.2-m telescope anchors the recent literature.

Wilson & Delabre [27] discuss the alignment of the ESO NTT. Gitton & Noethe [1]

describe the alignment of the ESO VLTs, and Noethe & Guisard [12] give a more

general description of the astigmatism patterns expected from two-mirror telescopes.

Lee et al. [4] give a general treatment of third-order misalignment distortions and then

discuss coma and astigmatism and curvature of field in their case studies. Palunas

et al. [13] describe the alignment of the Magellan Nasmyth telescopes using coma,

astigmatism and curvature of field.

Maréchal [8] derives the third-order misalignment aberration patterns for coma,

astigmatism, curvature of field and distortion.

Thompson and collaborators [20, 24, 25] develop a formalism for analyzing tele-

scope misalignments using a vector notation that is elegant and relatively transpar-

ent. It isolates generic misalignment patterns associated with third-order aberrations

– coma, astigmatism, curvature of field and distortion – and beyond that, generic

misalignment patterns associated with fifth-order aberrations.

In an unpublished M.S. thesis, Tessieres [22] used ray tracing software to deter-

mine amplitudes for Thompson’s misalignment patterns, which at that time had only

appeared in Thompson’s Ph.D. thesis [1980]. Hvisc & Burge [3] build on Tessieres’

work in modeling a four mirror corrector for the Hobby-Ebberly Telescope. They

identify the linear combinations of orthogonal aberration patterns (integrated over

the field) that are most sensitive to the tilts and decenters of the mirrors.
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1.2.3 outline

In the following sections we rederive these same misalignment aberration patterns,

using the Thompson et al. vector notation but following instead the development

of Schroeder [18]. The present paper is quite similar in spirit to Tessieres’: identify

those aberration patterns of potential interest and ascertain which are of greatest

value in aligning a telescope. However our approach differs in that, in the interest

of efficiency, we ignore patterns that are non-linear in the tilts and decenters of the

mirrors. This simplification is appropriate for small misalignments of an otherwise

rotationally symmetric telescope. We also give greater consideration to the role of

distortion, curvature of field and spherical aberration than did Tessieres.

In §1.3 we discuss the misalignment patterns produced by two-mirror telescopes,

proceeding from the better known generic coma and astigmatism misalignment pat-

terns, through the almost trivial curvature of field misalignment pattern, to the two

distortion misalignment patterns. We then retrace our steps using a more general ap-

proach that shows how the misalignment patterns produced by an optic derive from

the surface of that optic. In §1.4 we discuss the alignment of three-mirror telescopes.

In §1.5 we use the same methods used in §1.3 to deduce the misalignment patterns

associated with fifth-order aberrations. In the course of this we attempt to systematize

the somewhat ragged nomenclature associated with the fifth-order aberrations. We

additionally examine the relative magnitudes of the fifth-order aberrations, which cast

some doubt on their practical utility for telescope alignment. In §1.6 we discuss the

number and placement of wavefront sensors needed to align a three mirror telescope.

In §1.7 we address a variety of complicating factors: mirror deformations, transmitting

correctors, central obscurations and focal plane tilts. In §1.8 we discuss several ways

in which the misalignment aberration patterns might be used, and why one might

ultimately choose to forego their use.
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1.3 Generic patterns and two-mirror telescopes

1.3.1 coma

McLeod’s [1996] paper shows how an astigmatic misalignment pattern can be used

in conjunction with coma to align a telescope. McLeod’s first step is to center the

secondary so as to zero the coma. He does not explicitly refer to a coma “pattern,”

but it is widely appreciated that decentering the secondary of a Ritchey-Chretien

telescope produces coma that is to first order constant across the field. For the

present purposes we take this to be a pattern, albeit a boring one. McLeod does

identify an astigmatism pattern, which he then renders symmetric by rotating the

secondary about its coma-free pivot.

Schroeder [18] calculates the coma patterns that arise in a two mirror telescope,

allowing for tilting and decentering the secondary. The comatic wavefront Gcoma is a

function of position on the pupil ρ⃗, with polar coordinates ρ and φ, and field angle

σ⃗, with polar coordinates σ and θ:

Gcoma = Gcoma
Seidelσρ

3 cos(φ− θ)+Gcoma
decenterℓρ

3 cos(φ−φℓ)+Gcoma
tilt αρ3 cos(φ−φα) (1.1)

where ℓ⃗ is the decenter of the secondary which projects to angle φℓ on the pupil, and

α⃗ is the vector tilt of the secondary which projects to angle φα on the pupil. The first

term on the right hand side gives the symmetric “Seidel” coma typical of an aligned

two mirror telescope. The next two terms give the constant coma pattern typical of

a decentering or tilt of the secondary. The coefficients Gcoma
Seidel, G

coma
decenter, and Gcoma

tilt

depend upon the radii of curvature, Ri, and conic constants, Ki, of the two mirrors,

the indices of refraction of the material (air) preceding the mirrors, ni, the positions,

si, and magnifications, mi of the object for each mirror, and the distance from the

primary mirror to the secondary, W . In a Ritchey-Chretien telescope the Gcoma
Seidel term

is identically zero, giving no coma when aligned. The notation here is different from

that of Schroeder; the conversion from Schroeder’s to the present notation is given in
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appendix A.

Figure 1-1 Comatic field patterns. (a) Seidel coma field pattern typical of an aligned
telescope. (b) Constant coma indicating a tilt and (or) decentering of the secondary
along the x axis.

The Seidel term varies linearly as field angle σ and as ρ3 cosφ and (or) ρ3 sinφ on

the pupil. The tilt and decenter terms are constant over the field, but have the same

functional dependence on pupil coordinates as the first term. We shall somewhat

loosely refer to any aberration that has the same dependence upon pupil coordinates

as “coma,” even when it does not have the Seidel coma dependence on field angle σ.

Figure 1-1a shows the point spread function at various points in the field for the first

term in equation (1.1). Figure 1-1b shows the point spread function pattern typical

of either of the last two terms in equation (1.1).

In practice, the constant coma pattern shown in Figure 1-1b will be superimposed

on the Seidel pattern if one is present. We here plot the two patterns separately as the

patterns have different physical motivations and thus provide different information

about the telescope. The Seidel pattern is a result of the telescope design, and fitting

for that pattern provides no information about tilts or decenterings of the mirrors.

In contrast, the magnitude and orientation of the constant coma pattern will provide

information about a telescope’s alignment.
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1.3.2 astigmatism

Following Schroeder’s (1987) example for coma, McLeod [10] calculated the corre-

sponding astigmatism pattern for the case of a nulled field constant coma pattern.

He finds an astigmatic wavefront, Gastig, given by:

Gastig = Gastig
sym σ2ρ2 cos 2(φ−θ)+Gastig

decenterσℓρ
2 cos(2φ−θ−φℓ)+Gastig

tilt σαρ2 cos(2φ−θ−φα)

(1.2)

The first term on the right gives the symmetric astigmatism typical of an aligned

two mirror telescope. The next two terms give the astigmatism pattern typical of a

decentering or tilt of the secondary. The coefficients Gastig
sym , Gastig

decenter and Gastig
tilt again

depend upon the radii of curvature, Ri and conic constants, Ki of the two mirrors,

the indices of refraction of the air preceding the mirrors, ni, the positions, si and

magnifications, mi of the object for each mirror, and the distance from the primary

mirror to the secondary, W . The details of the conversion from McLeod’s notation

to the above are given in appendix B.

Figure 1-2 Astigmatic field patterns. (a) Seidel astigmatism field pattern typical of
an aligned telescope. A constant defocus has been added to show the orientation of
the astigmatism. (b) Astigmatic field pattern indicating a tilt and (or) decentering
of the secondary along the x axis.
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The symmetric term varies as the square of the field radius σ and varies as ρ2 cos 2φ

and (or) ρ2 sin 2φ on the pupil. This is almost, but not quite the variation associated

with third-order, Seidel astigmatism.2 It is readily decomposed into terms that vary

as ρ2 cos2 φ (Seidel astigmatism) and ρ2 cos0 φ (Seidel curvature of field). The tilt

and decenter terms have the same functional dependence on pupil coordinates as the

symmetric term, but vary linearly with distance from the center of the field σ, and

vary as the cosine and (or) sine of the field angle θ. We shall again refer loosely to

any aberration that has the same dependence upon pupil coordinates as astigmatism,

even when it does not have the Seidel dependence on field position. Figure 1-2a

shows the point spread function at various points in the field for the symmetric term

in equation (1.2). Figure 1-2b shows the point spread function pattern characteristic

of either the tilt or decenter terms in equation (1.2).3

As with the comatic aberrations, the astigmatic field pattern shown in Figure

1-2b will in general be superimposed on the Seidel pattern if one is present. Some

previous treatments have referred to this superposition of field patterns as a single

misalignment pattern; McLeod [10] describes a single astigmatism pattern, which he

symmetrizes in the course of aligning his telescope; Thompson [24] refers to a binodal

astigmatism pattern which results from misalignments. In this paper we decompose

the astigmatism into two patterns, a symmetric one characteristic of an aligned tele-

scope and an asymmetric one introduced by misalignments. The asymmetric pattern

described by McLeod [10] and the binodal pattern plotted by Thompson [24] are

produced by superimposing the symmetric and asymmetric patterns in Figures 1-

2a and 1-2b. The nodes are simply field positions where the symmetric Seidel and

2By convention “Seidel” astigmatism is taken to vary as ρ2 cos2 φ on the pupil. By contrast
“Zernike” astigmatism is almost always taken to vary as ρ2 cos 2φ. The Seidel definition emerges
naturally from the derivation of aberration patterns. The Zernike definition makes for more sym-
metric wavefronts and orthogonality among the different aberrations. A similar ambiguity arises in
the definition of trefoil.

3The “dreamcatcher” plot of Figure 2b makes cameo appearances in a number of contexts. It can
be seen in a map of image elongations at the prime focus of the LBT [16] and in the point spread
function map, Figure 4.14, in version 12.0 of the Chandra Proposer’s Observatory Guide [28]. The
first such plot of which the authors are aware is in the paper by Shack & Thompson [20]. Maréchal
[8] comes close plotting the magnitude and orientation of the misalignment astigmatism pattern but
suppressing the sign.
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asymmetric misalignment patterns have cancelled.4

Both for coma and for astigmatism (and in the cases of the additional aberrations

considered below) the misalignment pattern varies as one power of field radius less

rapidly than the corresponding symmetric pattern.

1.3.3 curvature of field

Coma and astigmatism are just two of the five third-order Seidel aberrations. Curva-

ture of field (henceforth COF) manifests itself as a defocus that varies as the square

of the distance from the center of an assumed flat focal plane. McLeod might in

principal have used curvature of field (rather than astigmatism) to align the Whip-

ple 1.2-m, but there is a potential degeneracy with a tilted instrument. Following

Schroeder and McLeod, we find an associated wavefront,

GCOF = GCOF
Seidelσ

2ρ2 +GCOF
decenterσℓρ

2 cos(θ − φℓ) +GCOF
tilt σαρ2 cos(θ − φα). (1.3)

The first term on the right hand side gives the symmetric Seidel curvature of field

typical of an aligned two mirror telescope, and the next two give the defocus patterns

typical of a decenter or tilt of the secondary. The coefficients GCOF
Seidel, G

COF
decenter, and

GCOF
tilt again depend upon the radii of curvature, Ri and conic constants, Ki of the two

mirrors, the indices of refraction of the air preceding the mirrors, ni, the positions,

si and magnifications, mi of the object for each mirror, and the distance from the

primary mirror to the secondary, W . The details of the derivation of the above are

given in appendix C.

The Seidel term varies as the square of the field radius σ and varies as ρ2 on the

pupil. But the dependence on pupil position is exactly the same as that of defocus,

which is a first-order aberration. Anticipating the nomenclature introduced in §1.5

4Terms that are nonlinear in the misalignments also contribute to the positions of the nodes.
Most interestingly, the inclusion of a non-linear term may rotate the orientation of the nodes by
90◦. However, the inclusion of terms that are nonlinear in the misalignment has no effect on the
underlying Seidel or linear patterns.
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below, curvature of field might equally well be called “third-order defocus,” but we

bow to convention. The tilt and decenter terms vary linearly with distance from a

line passing through the center of the field, but have the same functional dependence

on pupil coordinates. This is precisely what one would expect for a tilted focal plane.

Figure 1-3a shows the point spread function at various points in the field for the

Seidel term in equation (1.3). Figure 1-3b shows the point spread function pattern

introduced by either the tilt or decenter terms in equation (1.3).

Figure 1-3 Curvature of field patterns. (a) Seidel COF typical of an aligned telescope.
(b) COF field indicating a tilt and (or) decenter of the secondary along the x axis.

1.3.4 distortion

While distortion is one of the five Seidel aberrations, for many purposes it can be

neglected, since it does not degrade image quality. Distortion does, however alter

the positions of images in the field, and of particular interest for the measurements

of weak gravitational lensing, it changes the shapes of extended objects. And most

importantly for the present discussion it may be of some use in aligning a telescope.

Following the conventions of Schroeder and McLeod, we find the associated wave-

front delay for a misaligned two mirror telescope:
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Gdistortion = Gdistortion
Seidel σ3ρ cos(φ− θ) (1.4)

+Gdistortion
decenter,σσ

2ℓ cos(θ − φℓ)ρ cos(φ− θ) +Gdistortion
decenter,ρσ

2ℓρ cos(φ− φℓ)

+Gdistortion
tilt,σ σ2α cos(θ − φα)ρ cos(φ− θ) +Gdistortion

tilt,ρ σ2αρ cos(φ− φα)

The Seidel term on the right varies as the cube of field angle σ and as ρ cosφ and

(or) ρ sinφ on the pupil. Distortion differs from coma, astigmatism and curvature of

field in having two distinct misalignment aberration patterns rather than only one.

We will encounter several similar pairs of misalignment aberration patterns when we

consider fifth-order misalignment patterns in §4. The two terms are distinguished by

whether the direction of the tilt, α⃗ or decenter, ℓ⃗ enters in a dot product with the field

position, σ⃗ or the pupil position, ρ⃗. We use “σ” and “ρ” to label the two alternatives.

The σ terms have the same functional dependence on pupil coordinates as the

Seidel term, but are proportional to the square of the field angle σ and the cosine

of its polar coordinate, θ. These produce a field distortion pattern directed radially

outward, but with a magnitude that depends on the product of the field angle and

its projection onto the decenter or tilt.

The ρ terms also have the same functional dependence on pupil coordinates as

the first, but vary only as the square field angle σ. The direction of the distortion is

that of the decenter or tilt, but its magnitude increases outward as the square of the

distance from the center of the field.

The three distortion patterns are shown in figure 1-4. Details of the derivation of

the coefficients are given in appendix D.

Each of the two distinct misalignment distortion patterns is characterized by a

two-vector. Were one able to measure those vectors with the same accuracy as the

two-vectors that characterize coma and astigmatism one might in principle use only

distortion measurements to align a two mirror telescope.
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Figure 1-4 Distortion field patterns. (a) The “σ” distortion pattern indicating a tilt
and (or) decentering of the secondary along the x axis. (b) Seidel distortion typical
of an aligned telescope. (c) The “ρ” distortion pattern indicating a tilt and (or)
decentering of the secondary along the x axis.

1.3.5 spherical aberration

Spherical aberration is the fifth of the Seidel aberrations and is constant across the

field. Tilts and decenters do not produce asymmetric spherical aberration patterns.

1.3.6 generalization

In the preceding subsections the third-order aberrations were cast so as to display

explicitly the azimuthal dependence upon pupil position, ρ⃗ and field angle, σ⃗. These

can be recast more compactly and transparently in vector form. For example the

Seidel distortion term above varies as (σ⃗ · σ⃗)(σ⃗ · ρ⃗).

Suppose a single mirror i serves as its own pupil. The wavefront delay G3rd for a

ray that intercepts the mirror at position ϖ⃗ and that makes an angle ψ⃗ with the axis

of the mirror is given by5

5We reserve ρ⃗ for the position on the pupil when the optic is despaced from the pupil.
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Table 1.1. Aberration coefficient values for the optic-centered pupil.

W040 W131 W222 W220

nR
4 ((Rs − 1)2 +K) −nR(Rs − 1) nR 0

G3rd = W040(
ϖ⃗

R
· ϖ⃗
R
)(
ϖ⃗

R
· ϖ⃗
R
) +W131(ψ⃗ · ϖ⃗

R
)(
ϖ⃗

R
· ϖ⃗
R
) (1.5)

+W222(ψ⃗ · ϖ⃗
R
)(ψ⃗ · ϖ⃗

R
) +W220(ψ⃗ · ψ⃗)(ϖ⃗

R
· ϖ⃗
R
)

+W311(ψ⃗ · ψ⃗)(ψ⃗ · ϖ⃗
R
)

where W040 is the spherical aberration coefficient, W131 is the coma coefficient, W222

is the astigmatism coefficient, W220 is the curvature of field coefficient, and W311 is

the distortion coefficient. These aberration coefficients depend only on the curvature

of the mirror, R, the conic constant of the mirror, K, the magnification of the mirror,

m, the position of the object for the mirror, s, and the index of refraction immediately

preceding the mirror, n6. In §5.1 of his book Schroeder [18] shows that the aberrations

which vary linearly with ray height on the optic must be zero for conic section optics

which serve as their own pupils. We therefore set W311 to zero and ignore it in the

following discussion. The values for the other coefficients are given in Table 1.1.

Following Schroeder [18], one finds that if the pupil is offset by W along the axis

of the mirror, the position at which a ray lands on the mirror, ϖ⃗ depends upon its

position on the pupil, ρ⃗ and the angle the chief ray makes to the pupil normal, σ⃗

(which is defined to be the field angle), and upon W . The angle that the ray makes

with the axis of the mirror, ψ⃗ depends upon field angle σ⃗ and the pupil offset, W .

If the mirror is tilted by angle α⃗, it changes the angle ψ⃗ that a ray makes with

6We adopt the convention of Schroeder [18] whereby rays traveling in opposite directions en-
counter oppositely signed indices of refraction; a ray incident on the primary mirror through air
(n = 1) will encounter a negative index of refraction (n = −1) once reflected and traveling towards
the secondary. Therefore, although this discussion deals primarily with mirrors and thin lenses, the
index of the refraction of the material surrounding the optics cannot be entirely ignored.
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the mirror’s axis. And if the mirror is decentered from the optical axis (which is

perpendicular to and centered on the pupil) by ℓ⃗, it changes both the position at

which a ray lands on the mirror, ϖ and the angle ψ⃗ that the ray makes with respect

to the mirror’s axis.

The net effect of a pupil offset or a misalignment of the mirror relative to the pupil

is to shift the position ϖ⃗ at which a given ray strikes the mirror and to change the

angle ψ⃗ that the ray makes with the axis of the mirror. The transformations from

pupil coordinates, ρ⃗ and field angle, σ⃗ to mirror coordinates and mirror angle for a

mirror despaced by an amount W and decentered and tilted by l⃗ and α⃗ are then7

ψ⃗ = (1− W

s
)σ⃗ − (α⃗ +

l⃗

s
) (1.6)

ϖ⃗ = (ρ⃗−W σ⃗)− l⃗. (1.7)

An offset of the pupil from the mirror by an amount W causes what was Seidel

spherical aberration to manifest itself as a combination of spherical aberration, coma,

astigmatism, curvature of field and distortion, all of which have the symmetric Seidel

field dependence. Likewise what was coma manifests itself as a combination of coma,

astigmatism, curvature of field and distortion. This cascade downward from spherical

to coma to astigmatism and curvature of field and finally to distortion is embodied

in the “stop shift” formulae (e.g. Wilson 26).

Decenterings and tilts of the mirror relative to the pupil also produce cascades.

7In deriving equations (1.6) and (1.7) we assume that all of the effects of the curvature of an
optic on aberrations are embodied in equation (1.5), and we subsequently treat displacements, W ,

decenters, ℓ⃗ and tilts, α⃗ of an optic as displacements, decenters, and tilts of the flat surface defined by
the plane containing the vertex of that optic. This is equivalent to using a first order approximation
of pupil and field coordinates. While this assumption reproduces the stop shift formulae given in
Schroeder [18] and Wilson [26], it is not strictly correct in the cases of large or very curved mirrors,
large fields, or cases where the stop is quite close to the optic. In particular, when a telescope’s
primary mirror is the aperture stop, the computed aberrations are only correct when W for the
primary mirror is set equal to zero, even though the physical aperture is defined by the edge of the
optic, which may actually be a finite distance from the optic’s vertex. Setting W equal to zero in this
special case is natural, as equation (1.5) completely describes the aberrations introduced by an optic
that is its own pupil, without any need for modification. However, this inconsistency would seem to
indicate that the assumptions that predicate equations (1.6) and (1.7) may need to be modified in
order to compute higher order aberrations.
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For an axially symmetric telescope we may assume that these tilts and decenters

are small and ignore terms that are quadratic and higher in either or both. In the

aberration patterns associated with the surviving linear terms, a field angle vector

σ⃗ is replaced by either a tilt, α⃗ or a decenter, ℓ⃗/R. The field angle exponents for

the misalignment aberration patterns are therefore smaller by one than those of the

corresponding Seidel aberrations.

Table 1.2 gives aberration patterns that arise when a mirror is offset by W with

respect to its pupil, and decentered and tilted by small amounts.

The different signs for odd and even numbered mirrors arise from the fact that the

chief ray for a given optic may be traveling in the opposite angular direction than the

chief ray on the pupil for the primary mirror, which here determines the field angle

σ⃗. Put otherwise, the sign accounts for the fact that preceding mirrors flipped the

images. It does not account for the changing indices of refraction which are contained

in the Wklm coefficients. The σ-type distortion patterns have factors σ⃗ · l⃗
R or σ⃗ · α⃗.

The ρ-type distortion patterns have factors ρ⃗ · l⃗
R or ρ⃗ · α⃗.

1.3.7 application to 2-mirror telescopes and 2.5-mirror tele-

scopes

Table 1.2 of the previous subsection gives the third-order aberrations for a single

mirror with a pupil offset by W along the optical axis. The aberrations for a 2-mirror

telescope are found by computing the elements of two such tables, one for the primary

and one for the secondary, and adding.

Before one can use Table 1.2 to compute aberrations, one must first know the

location of the center of the field as it is defined by the pointing of the pupil. If the

center of pointing is unknown then one must add an additional vector variable to the

table, m⃗, which maps the true field coordinate, σ⃗ to that adopted for measurement,

σ⃗′ via the relation σ⃗ → σ⃗′ − m⃗. This focal plane decenter will mathematically map

Seidel terms to misalignment terms, but it will not physically aberrate the images.

For the sake of simplicity, we here assume that the center of pointing is known and
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Table 1.2. Symmetric and asymmetric aberration patterns for mirrors offset,
decentered and tilted with respect to the pupil.

aberration pupil offset W decenter ℓ⃗ tilt α⃗

spherical ( ρ⃗
R · ρ⃗

R)(
ρ⃗
R · ρ⃗

R)×W040

coma ( ρ⃗
R · ρ⃗

R)(
ρ⃗
R · σ⃗)×∓a

[
( ρ⃗
R · ρ⃗

R)(
ρ⃗
R · l⃗

R)×
[

( ρ⃗
R · ρ⃗

R)(
ρ⃗
R · α⃗)×

[
(
W
s − 1

)
W131 −

(
R
s

)
W131 −W131

+4W
R W040

]
−4W040

] ]

astigmatism ( ρ⃗
R · σ⃗)( ρ⃗

R · σ⃗)×
[

( ρ⃗
R · σ⃗)( ρ⃗

R · l⃗
R)×±a

[
( ρ⃗
R · σ⃗)( ρ⃗

R · α⃗)×±a
[

(
W
s − 1

)2
W222 2

(
R
s

) (
W
s − 1

)
W222 2

(
W
s − 1

)
W222

+2W
R

(
W
s − 1

)
W131 +2

(
2W
s − 1

)
W131 +2W

R W131

+4W 2

R2 W040
]

+8W
R W040

] ]

COF ( ρ⃗
R · ρ⃗

R)(σ⃗ · σ⃗)×
[

( ρ⃗
R · ρ⃗

R)(σ⃗ · l⃗
R)×±a

[
( ρ⃗
R · ρ⃗

R)(σ⃗ · α⃗)×±a
[

(
W
s − 1

)2
W220 2

(
R
s

) (
W
s − 1

)
W220 2

(
W
s − 1

)
W220

+W
R

(
W
s − 1

)
W131 +

(
2W
s − 1

)
W131 +W

R W131

+2W 2

R2 W040
]

+4W
R W040

] ]

distortion ( ρ⃗
R · σ⃗)(σ⃗ · σ⃗)×∓a

[
b ( ρ⃗

R · l⃗
R)(σ⃗ · σ⃗)×

[
( ρ⃗
R · α⃗)(σ⃗ · σ⃗)×

[

2W
R

(
W
s − 1

)2
W220 −2

(
W
s − 1

)2
W220

+2W
R

(
W
s − 1

)2
W222 −2

(
W
s

) (
W
s − 1

)
W222 −2W

R

(
W
s − 1

)
W222

+3W 2

R2

(
W
s − 1

)
W131 −2W

R

(
3W
2s − 1

)
W131 −W 2

R2 W131

+4W 3

R3 W040
]

−4W 2

R2 W040
] ]

( ρ⃗
R · σ⃗)(σ⃗ · l⃗

R)×
[

( ρ⃗
R · σ⃗)(σ⃗ · α⃗)×

[

−4
(
W
s

) (
W
s − 1

)
W220 −4W

R

(
W
s − 1

)
W220

−2
(
W
s − 1

) (
2W
s − 1

)
W222 −2W

R

(
W
s − 1

)
W222

−4W
R

(
3W
2s − 1

)
W131 −2W 2

R2 W131

−8W 2

R2 W040
] ]

aThe upper sign is for a primary, tertiary, or other odd numbered mirror. The lower sign is for a secondary or
even numbered mirror.

bThe W311 term has been omitted as it is equal to zero.
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treat a decentered focal plane as a ‘complication’ in §1.7.

For many two-mirror telescopes the pupil is coincident with the primary. If one

also takes the primary to define the pointing of the telescope, one can take the pupil

offset, W1, the mirror decenter, ℓ⃗1 and the mirror tilt, α⃗1 all to be zero. The misalign-

ment patterns are then due entirely to the decenter, ℓ⃗2 and tilt, α⃗2 of the secondary.

One need only measure two of the five misalignment patterns in Table 1.2 to align

the telescope. If the aperture stop (and consequently the pointing) instead coincide

with the secondary mirror as in Noethe & Guisard [12], the misalignments of the

secondary mirror may be treated as identically zero and only the misalignments of

the primary mirror relative to its pupil need to be considered. In this case as well,

one need only measure two of the five misalignment patterns in Table 1.2 to align the

telescope. There is a third case where the aperture stop is independent from either of

the mirrors. In this case we would treat the aperture stop as a third optical element

and analyze this telescope configuration as a three mirror telescope.

McLeod [10] measures coma and astigmatism in his two mirror telescope. He

might in principle have used the two distortion patterns, but these would require a

high precision astrometric catalog (perhaps using galaxy positions to avoid the effects

of stellar proper motions). Moreover as the misalignment distortion patterns vary as

a higher powers of field angle than the misalignment astigmatism and coma patterns,

they might be expected to have smaller amplitudes. McLeod might also have used

curvature of field, although here there is the danger that the detector might be tilted

with respect to the primary. Or, had he been feeling particularly masochistic, he

might have measured all five patterns, for the sake of redundancy.

With their folding flats, the Magellan telescopes in their Nasmyth configuration

qualify as 2.5-mirror telescopes. One need not worry about the decentering of the

tertiary but one must measure and correct for its tilt, α⃗3. The alignment procedure

described by Palunas et al. [13] adds the curvature of field misalignment pattern

(equivalent to a focal plane tilt) to those of coma and astigmatism.

41



1.4 Aligning 3-mirror telescopes using distortion

patterns

Calculating the aberration patterns for a 3-mirror telescope (say a three mirror anas-

tigmat, henceforth a TMA) is not quite twice as difficult as for a 2-mirror telescope.

One applies Table 1.2 to the tertiary and finds misalignment patterns that depend

upon the decenter ℓ⃗3 and tilt α⃗3 of the tertiary. If the stop is coincident with the

primary, only the secondary and tertiary contribute to the five third-order misalign-

ment patterns in Table 1.2. The patterns are linear in the decenter and tilt vectors,

so that the combined wavefront gives the same five patterns, each characterized by a

new pattern 2-vector. Each pattern 2-vector, µ⃗, is a linear combination of the four

misalignment 2-vectors, the tilts α⃗2 and α⃗3, and the decenterings ℓ⃗2 and ℓ⃗3. Likewise

if the stop is coincident with the secondary or tertiary mirrors, only tilts and decenters

of the other two mirrors contribute.

If coma, astigmatism and curvature of field are the only aberrations that adversely

affect science, there is a two-dimensional “subspace of benign misalignment” for which

the coma, astigmatism and curvature of field misalignment patterns are all zero in

the limit of small misalignments. But if one does not bring additional information

to bear, one runs the risk of drifting increasingly far from perfect alignment. This

would produce large misalignment distortion, and ultimately, fifth-order misalignment

patterns and third-order patterns that depend quadratically on the mirror tilts and

decenters.

To measure the misalignment distortion patterns one would need either overlap-

ping fields of images [21] or pre-existing astrometry. If one uses overlapping fields,

one risks changing the misalignment between pointings, thus rendering distortion of

limited use for measuring alignment at a given pointing. If one relies on pre-existing

astrometry, the accuracy with which the distortion patterns could be measured would

then be limited by the accuracy of the astrometric catalog. Moreover, regardless

the technique used to measure the aberrations, the misalignment distortion patterns

might be expected to have smaller amplitudes than misalignment astigmatism and
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coma as the misalignment distortion patterns vary as a higher power of field angle.

This raises the question of whether one might use fifth-order aberration patterns to

keep the telescope aligned.

1.5 Generic fifth-order aberration patterns

1.5.1 fifth-order aberrations for a single mirror

In §1.3.6 we considered the third-order aberrations produced by a single mirror with

a stop at the mirror. The generalization to fifth-order is straightforward. The fifth-

order wavefront delay, G5th for a ray that hits the mirror at position ϖ⃗ and that

makes an angle ψ⃗ with the axis of the mirror is given by

G5th = W060(
ϖ⃗

R
· ϖ⃗
R
)(
ϖ⃗

R
· ϖ⃗
R
)(
ϖ⃗

R
· ϖ⃗
R
) +W151(

ϖ⃗

R
· ϖ⃗
R
)(
ϖ⃗

R
· ϖ⃗
R
)(
ϖ⃗

R
· ψ⃗) (1.8)

+W242(
ϖ⃗

R
· ϖ⃗
R
)(
ϖ⃗

R
· ψ⃗)(ϖ⃗

R
· ψ⃗) +W240(

ϖ⃗

R
· ϖ⃗
R
)(
ϖ⃗

R
· ϖ⃗
R
)(ψ⃗ · ψ⃗)

+W333(
ϖ⃗

R
· ψ⃗)(ϖ⃗

R
· ψ⃗)(ϖ⃗

R
· ψ⃗) +W331(

ϖ⃗

R
· ϖ⃗
R
)(
ϖ⃗

R
· ψ⃗)(ψ⃗ · ψ⃗)

+W422(
ϖ⃗

R
· ψ⃗)(ϖ⃗

R
· ψ⃗)(ψ⃗ · ψ⃗) +W420(

ϖ⃗

R
· ϖ⃗
R
)(ψ⃗ · ψ⃗)(ψ⃗ · ψ⃗)

+W511(
ϖ⃗

R
· ψ⃗)(ψ⃗ · ψ⃗)(ψ⃗ · ψ⃗)

Since the pupil is coincident with the mirror, we might equally well have written

the same equations but with position on the mirror ϖ⃗ replaced by position on the

pupil ρ⃗ and the angle that a ray makes with the axis of the mirror, ψ⃗ replaced by the

field angle σ⃗. For the remainder of this subsection we shall take ρ⃗ = ϖ⃗ and σ⃗ = ψ⃗.

W511: fifth-order distortion

The W511 term has the same variation on the pupil as distortion, but varies as field

angle to the fifth. We shall refer to this as “fifth-order distortion.”8

8Our nomenclature is driven primarily by the functional form of the aberration on the pupil. Thus
an aberration that varies as ρ3 cosφ is referred to as coma. In this scheme third-order (Seidel) coma
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W420: fifth-order defocus

The W420 term has the same variation on the pupil as defocus, and produces a point

spread function indistinguishable from that of Seidel curvature of field . But as this

term varies as the fourth power of field angle rather than quadratically, we call this

term “fifth-order defocus.”

W422: fifth-order astigmatism

The W422 term has the same variation on the pupil as third-order astigmatism, and

produces a point spread function indistinguishable from it. But as this term varies as

the fourth power of field angle rather than quadratically, we call this term “fifth-order

astigmatism.” Again as with third-order astigmatism, this term varies on the pupil

as ρ2 cos2 φ. It can be decomposed into a term that varies as Zernike astigmatism,

ρ2 cos 2φ, and a second that varies as defocus, ρ2 cos0 φ,

W331: fifth-order coma

The W331 term has the same variation on the pupil as coma, but varies as field angle

cubed. We call this “fifth-order coma.”

W333: trefoil

The W333 term varies as ρ3 cos3 φ on the pupil and as field angle cubed. None of the

third-order aberrations has this behavior on the pupil; here we call it trefoil. This

term can be decomposed into a term that varies as Zernike trefoil, ρ3 cos 3φ, and a

second that varies as coma, ρ3 cosφ. Figure 1-5 shows the point spread function due

to Zernike trefoil with varying amounts of an aberration that varies as ρ3 added to it.

varies linearly with field angle and fifth-order coma varies as the cube of field angle. By contrast,
the term that varies as ρ5 cosφ on the pupil is referred to here as second coma or coma-II. Hopkins
[2] calls this term fifth-order coma, but from our pupil oriented perspective this term, albeit one of
fifth-order, cannot be called coma, which can only vary as ρ3 cosφ. Curiously, we agree with Hopkins
in calling the term that varies as ρ2 cos2 φ fifth-order astigmatism and in calling the term that varies
as ρ cosφ fifth-order distortion. We reserve the term “Zernike” aberrations for the orthogonalized
linear combinations of aberrations described here.
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Figure 1-5 Point spread functions due to trefoil with Gtref = ρ3 cos 3φ. Increasing
amounts of a symmetric wavefront Gsym = ρ3 have been added to bring out the
three-fold symmetry of the wavefront. (a) +2

5G
sym (b) +Gsym (c) +2Gsym

W240: fifth-order spherical

The W240 has the same variation on the pupil as spherical aberration, but varies as

field angle squared. We shall refer to this as this “fifth-order spherical.”

W242: second astigmatism

Figure 1-6 Point spread functions for ordinary astigmatism, Gastig−I = ρ2cos2φ and
second astigmatism, Gastig−II = ρ4cos2φ. (a) Ordinary astigmatism +1

4G
defocus. (b)

Pure ordinary astigmatism. (c) Pure second astigmatism.

The W242 term varies as ρ4 cos2 φ on the pupil. The angular dependence is that

of astigmatism but the radial dependence is quartic not quadratic. We shall call

this “second astigmatism” or “astigmatism-II.” Figure 1-6 shows the PSF for second
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astigmatism next to those for ordinary astigmatism.

W151: second coma

Figure 1-7 (a) Off axis (ordinary) coma PSF for the third-order and fifth-order coma
patterns. The sine of the apex half angle is 1/2, giving an apex angle of 60◦. (b) Off
axis second coma PSF. The sine of the apex half angle is 2/3, giving an apex angle
of 83.6◦.

TheW151 term varies as ρ5 cosφ on the pupil. The azimuthal dependence is that of

coma but the radial dependence is quintic not cubic. We shall refer to this as “second

coma” or “coma-II.” Figure 1-7 shows a PSF produced by second coma alongside one

produced by ordinary (first) coma.

W060: second spherical

We shall call the W060 term “second spherical” or “spherical-II.” Were we strictly

consistent we would have called spherical aberration “second defocus” and would

have called this “third defocus” but as Emerson says, a foolish consistency is the

hobgoblin of a small mind.
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Table 1.3. Fifth-order aberration patterns

aberration symmetric misalignment

2nd spherical (ρ⃗ · ρ⃗)(ρ⃗ · ρ⃗)(ρ⃗ · ρ⃗)
2nd coma (ρ⃗ · ρ⃗)(ρ⃗ · ρ⃗)(ρ⃗ · σ⃗) (ρ⃗ · ρ⃗)(ρ⃗ · ρ⃗)(ρ⃗ · µ⃗cII)
2nd astigmatism (ρ⃗ · ρ⃗)(ρ⃗ · σ⃗)(ρ⃗ · σ⃗) (ρ⃗ · ρ⃗)(ρ⃗ · σ⃗)(ρ⃗ · µ⃗aII)
fifth-order spherical (ρ⃗ · ρ⃗)(ρ⃗ · ρ⃗)(σ⃗ · σ⃗) (ρ⃗ · ρ⃗)(ρ⃗ · ρ⃗)(σ⃗ · µ⃗5s)
trefoil (ρ⃗ · σ⃗)(ρ⃗ · σ⃗)(ρ⃗ · σ⃗) (ρ⃗ · σ⃗)(ρ⃗ · σ⃗)(ρ⃗ · µ⃗t)
fifth-order coma (ρ⃗ · ρ⃗)(ρ⃗ · σ⃗)(σ⃗ · σ⃗) (ρ⃗ · ρ⃗)(ρ⃗ · σ⃗)(σ⃗ · µ⃗5cσ)

(ρ⃗ · ρ⃗)(σ⃗ · σ⃗)(ρ⃗ · µ⃗5cρ)
fifth-order astigmatism (ρ⃗ · σ⃗)(ρ⃗ · σ⃗)(σ⃗ · σ⃗) (ρ⃗ · σ⃗)(ρ⃗ · σ⃗)(σ⃗ · µ⃗5aσ)

(ρ⃗ · σ⃗)(σ⃗ · σ⃗)(ρ⃗ · µ⃗5aρ)
fifth-order defocus (ρ⃗ · ρ⃗)(σ⃗ · σ⃗)(σ⃗ · σ⃗) (ρ⃗ · ρ⃗)(σ⃗ · σ⃗)(σ⃗ · µ⃗5f )
fifth-order distortion (ρ⃗ · σ⃗)(σ⃗ · σ⃗)(σ⃗ · σ⃗) (ρ⃗ · σ⃗)(σ⃗ · σ⃗)(σ⃗ · µ⃗5dσ)

(σ⃗ · σ⃗)(σ⃗ · σ⃗)(ρ⃗ · µ⃗5dρ)

1.5.2 fifth-order aberrations for misaligned systems

Tilts and decenterings of mirrors produce misalignment patterns in a manner entirely

analogous to those of third-order aberrations. The dependence upon field and pupil

position and the first order dependence on misalignments are given in Table 1.3.

Equations (1.6) and (1.7) are used to transform from the positions and angles with

respect to the optic, ϖ⃗ and ψ⃗ of equation (1.8) to positions and angles with respect

the pupil, ρ⃗ and σ⃗.9 Terms with the same dependence on both of the latter are

then added. The vectors µ⃗ indicate linear combinations of misalignment angle α⃗ and

decenter ℓ⃗.

In Table 1.3 we give only the dependence upon pupil position and field angle

for the symmetric fifth-order aberration patterns and their associated misalignment

patterns. For the third-order aberrations, there was one misalignment pattern each

associated with coma, astigmatism and curvature of field, with two misalignment

9Third-order aberrations produced by an optic (equation (1.5)) may also contribute to the fifth-
order aberrations on the pupil when the pupil and the optic do not coincide. As noted in §§1.3.6
equations (1.6) and (1.7) are truncated at first order in pupil and field coordinates. Analogous
equations for (1.6) and (1.7) that have been expanded to third order can map third-order aberrations
on the optic to fifth-order aberrations on the pupil. Other such approximations may also need to be
relaxed in order to compute the magnitudes of the fifth-order aberrations.
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patterns associated with distortion. There are again distinct σ and ρ misalignment

patterns for fifth-order distortion, and now also for fifth-order astigmatism and fifth-

order coma.

1.5.3 fifth-order aberration patterns and alignment

The amplitudes of aberration patterns implicit in Table 1.3 provide, at least in prin-

ciple, additional information for use in aligning telescopes. But in all cases there

are similarities between the fifth-order misalignment aberration patterns and their

third-order counterparts. The ability to distinguish between the two depends, for the

first group described below, upon the sampling of the wavefront, and, for the second

group, upon the sampling of the field.

second coma: misalignment

The misalignment aberration pattern for second coma, shown in Figure 1-8 is iden-

tical to that for ordinary (first) coma (see Figure 1-1). The point spread functions

for second coma and ordinary (first) coma have the same azimuthal dependence on

pupil position but different radial dependence. The ability to distinguish between

the coma-II misalignment pattern and the coma-I misalignment pattern therefore

depends critically upon the sampling of the wavefront.

second astigmatism: misalignment

As with second coma, the misalignment aberration pattern for second astigmatism,

shown in Figure 1-9 is identical to that for ordinary (first) astigmatism (see Fig-

ure 1-2). The point spread functions for second astigmatism and ordinary (first)

astigmatism have the same angular dependence on pupil position but different radial

dependence. The ability to distinguish between the astigmatism-II misalignment pat-

tern and the astigmatism-I misalignment pattern again depends critically upon the

sampling of the wavefront.
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Figure 1-8 Second coma field patterns. (a) Second coma pattern typical of an aligned
telescope. (b) Second coma pattern indicating a tilt and (or) decenter of a mirror
along the x axis.

Figure 1-9 Second astigmatism field patterns. (a) Second astigmatism pattern typical
of an aligned telescope. (b) Second astigmatism pattern indicating a tilt and (or)
decentering of a mirror along the x axis. Spherical aberration has been added to
bring out the asymmetry of the pattern.
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fifth-order spherical: misalignment

Figure 1-10 Fifth-order spherical field patterns. (a) Spherical aberration pattern
typical of an aligned telescope. (b) Spherical aberration indicating a tilt and (or)
decenter of a mirror along the x axis.

The aberration patterns for fifth-order spherical, shown in Figure 1-10 are iden-

tical to those for those of curvature of field. However the point spread functions

are identical to spherical aberration, which itself has the same angular dependence

on the pupil as defocus and COF, but a different radial dependence. The ability to

distinguish between the fifth-order spherical and curvature of field misalignment pat-

tern once again depends critically upon the sampling of the wavefront. The ability

to distinguish between fifth-order spherical and ordinary spherical depends on the

sampling of the field.

trefoil: misalignment

The PSF for trefoil is quite different from that of any of the Seidel third-order aber-

rations, as is its misalignment pattern, shown in Figure 1-11.
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Figure 1-11 Trefoil field patterns. (a) Trefoil pattern characteristic of an aligned
telescope. (b) Trefoil indicating a tilt and (or) decenter of a mirror along the x axis.
In both cases a constant wavefront varying as ρ3 has been added to bring out the
orientation of the aberration.

Figure 1-12 Fifth-order astigmatism field patterns. (a) The “σ” astigmatism pattern
indicating a tilt and (or) decentering of a mirror along the x axis. Note that the astig-
matism is radially aligned. (b) Astigmatism pattern typical of an aligned telescope.
(c) The “ρ” astigmatism pattern indicating a tilt and (or) decentering of a mirror
along the x axis. Note that the azimuthal dependence on field angle is identical to
that for third-order misalignment astigmatism. A constant defocus has been added
to all three panels to show the orientations of the aberrations.
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fifth-order astigmatism: misalignment

The PSF for fifth-order astigmatism is identical to that of Seidel, third-order astigma-

tism. But the two misalignment aberration patterns shown in Figure 1-12 are unlike

third-order misalignment astigmatism (see Figure 1-2). The ρ misalignment pattern

has the same azimuthal field dependence as for third-order astigmatism, but has a

different radial dependence. The σ misalignment pattern has a different azimuthal

field dependence and a different radial dependence. The ability to distinguish between

the two fifth-order astigmatism misalignment patterns and the third-order astigma-

tism misalignment pattern therefore depends critically upon the sampling of the field

rather than the wavefront.

fifth-order coma: misalignment

Figure 1-13 Fifth-order coma field patterns. (a) The “σ” coma pattern indicating
a tilt and (or) decentering of a mirror along the x axis. Note that the coma is
radially aligned. (b) Fifth-order coma characteristic of an aligned telescope (c) The
“ρ” coma pattern indicating a tilt and (or) decentering of a mirror along the x axis.
Note that the azimuthal dependence on field angle is identical to that for third-order
misalignment coma.

As with fifth-order astigmatism, the PSF for fifth-order coma is identical to that

of Seidel, third-order coma. But the two misalignment aberration patterns shown

in Figure 1-13 are unlike third-order misalignment coma (see Figure 1-1). The ρ

misalignment pattern has the same azimuthal field dependence as for third-order

coma, but different radial dependence. The σ misalignment pattern has a different
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azimuthal field dependence and a different radial dependence. As with fifth-order

astigmatism, the ability to distinguish between the two fifth-order coma misalignment

patterns and the third-order coma misalignment pattern therefore depends critically

upon the sampling of the field rather than the wavefront.

fifth-order defocus: misalignment

As with fifth-order astigmatism and coma, the PSF for fifth-order defocus is identical

to that of curvature of field (which might equally well be called third-order defocus).

But the misalignment aberration patterns are not identical. They have the same

angular dependence, but exhibit a different radial dependence. Once again, the ability

to distinguish between the fifth-order defocus misalignment pattern and the curvature

of field misalignment pattern depends critically upon the sampling of the field rather

than the wavefront.

1.5.4 discussion of fifth-order misalignment aberration pat-

terns

The literature on fifth-order aberrations is limited for several reasons. First, by their

very nature, they tend to be smaller than the third-order (Seidel) aberrations. Second,

they are rather cumbersome. As a matter of course, ray tracing programs handle them

correctly, so as a matter of practice, they receive little attention.

But as we have seen in the previous section, fifth-order aberrations may be needed

to keep a three-mirror telescope aligned, and would almost certainly be needed to

keep a four-mirror telescope aligned. Conversely, if one uses only the more commonly

measured third-order aberrations, coma, astigmatism, and COF, to keep a telescope

aligned, there are degenerate telescope configurations that zero out these third-order

misalignment aberrations and yet produce distortion and fifth-order misalignment

aberrations. It is therefore of some interest to estimate which of these might be more

or less substantial.

An order of magnitude argument can be made by noting that the entries in Table
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1.3 are homogeneous and of sixth order in the sum of the exponents of the pupil

radius and the field angle. Both of these are rendered dimensionless by the focal

lengths. We would argue that it is the focal ratio of the fastest element that matters

most in such considerations. Modern fast, wide field telescopes have primary f-ratios

approaching unity, while the field angles are rarely greater than a tenth of a radian.

By this argument the terms at the top of Table 1.3 would be larger than those at

the bottom. Third- and fifth-order aberrations for three specific optical systems: the

LSST, HET corrector, and a Magellan-like telescope, are analyzed in the following

subsections.

1.5.5 Tessieres’ models for the LSST

The approach advocated here is quite similar to that adopted by Regis Tessieres in

an unpublished M.S. thesis [2003] carried out at the University of Arizona. Tessieres

analyzed the off-axis aberrations for two telescopes in terms of patterns derived in

Thompson’s unpublished [1980] PhD thesis. But instead of computing the amplitudes

of the patterns according to the principles set forth by Thompson, he used ray-tracing

software to produce wavefronts across the field for various misalignments. He then fit

these wavefronts to the expected patterns.

Of particular relevance for the present work, he analyzed an early version of the

Large Synoptic Survey Telescope (Seppala 19; henceforth LSST) in which the tertiary

and primary were independent (rather than fabricated from a single monolith, as with

the ultimate design). He applied decenters and tilts to the secondary and tertiary

(and to the corrector assembly) and decomposed the computed wavefronts into the

third- and fifth-order aberration patterns. Results of those calculations are given in

Table 1.4, which show the effects of tilts in the secondary and tertiary.10 Each entry

gives the amplitude of the aberration at the edge of the field and at the edge of the

pupil, in microns, for one degree of tilt. Up to factors of order unity the rms spot size

10Tessieres’ nomenclature is similar to Hopkins’, but each aberration is preceded by its field angle
dependence. Thus what we would called third-order misalignment astigmatism he calls field-linear
astigmatism.
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will be proportional to these.

The first impression one gets is that the third-order aberrations are factors of 30-

300 larger than the fifth-order aberrations. A consequence of this disparity is that, to

the extent that the fifth-order and third-order aberration patterns are correlated, a

small relative error in a measurement of a third-order aberration pattern will produce

a large relative error in the corresponding fifth-order aberration pattern. This bodes

ill for using fifth-order aberrations for telescope alignment. Tessieres’ calculations

are themselves not entirely immune from such errors, but Tessieres had the luxury of

measuring the wavefront with high precision at a large number of points in the field.

There are several patterns for which Tessieres did not report amplitudes – fifth-

order astigmatism-σ and the ρ patterns for fifth-order coma and astigmatism for the

secondary mirror. One suspects that the amplitudes for these were so small as to be

in the noise, but Tessieres is not explicit on this point.

Tessieres did fit several patterns that vary quadratically with tilt and decenter.

We suspect that the coefficients for these would approach zero for successively smaller

tilts and decenters. Assuming iterative alignment correction these will play no role

once the misalignments are small, and we have not included them in our discussion.

Tessieres did not measure the misalignment patterns for either spherical aberration

or curvature of field (defocus). These surely contributed to his figure of merit, and his

alignment experiments might have converged more rapidly had he measured them.

Finally Tessieres did not measure distortion, which might in principle be used to

align a telescope.

1.5.6 Manuel’s models for the HET corrector

In another unpublished Ph.D. thesis, Anastacia Manuel [2009], working at the Uni-

versity of Arizona, carried out a ray-tracing misalignment analysis of a four-element

corrector for the Hobby-Ebberly telescope.

The emphasis was on identifying the combinations of motions of the four elements

that produced the largest aberrations using singular value decomposition. These

modes sometimes involved more than one of the patterns considered here. Several
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Table 1.4. Amplitude of misalignment patterns at edge of the field for an early
version of the LSST (in microns) for tilts of 1◦.

here Tessieres M2 M3

third-order coma constant coma 178 186
third-order astigmatism linear astigmatism 114 36
coma-II constant fifth-order coma 2.4 4.3
astigmatism-II linear oblique spherical 0.58 0.17
trefoil quadratic elliptical coma 0.41 0.49
fifth-order coma-σ quadratic coma#2 0.90 2.09
fifth-order coma-ρ quadratic coma#1 a 3.5
fifth-order astigmatism-ρ cubic astigmatism#1 a 1.72

ano value given

of the larger modes were associated with despacing and manifested themselves in

symmetric aberration patterns.

But of the misalignment patterns, the three largest were the misalignments associ-

ated coma, curvature of field, and astigmatism, all of which are third-order. Next after

that came linear combinations of second coma and second astigmatism misalignment

patterns. These modes produced a figure of merit (which we take to be proportional

to the wavefront error) a factor of 104 smaller than those for coma-I and a factor of 30

smaller than those for astigmatism-I. This would again suggest that measurements of

fifth-order aberrations may not contribute much to aligning the system in question.

1.5.7 modeled aberrations for a Magellan-like telescope

In order to explore the feasibility of using distortion or the fifth-order aberrations for

telescope alignment, we used Zemax R⃝ to measure the third- and fifth-order aberra-

tions of a Gregorian telescope adapted from the Magellan Baade and Clay telescopes.

The model telescope consists of three optical elements and a detector: a 6.4784m

diameter aperture stop which sits 0.32512m in front of the primary mirror, a primary

mirror with radius of curvature of -16.2553m and conic constant -1.00001, and a sec-
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Table 1.5. Design specifications of the Magellan-like telescope.

Surface
Radius of

Curvature (m)
Diametera(m) Conic Constant

Distance (m) to
Next Surface

object plane - - - infinity
aperture stop - 6.4784 - 0.32512000
primary mirror -16.2553 6.4805 -1.00001 -9.72205034
secondary mirror 2.86282 1.6134 -0.63286 14.00230590
image plane - - - -

aDiameter of the optic is larger than the diameter of the beam at the optic.

ondary mirror 9.72205m in front of the primary with radius of curvature 2.86282m

and conic constant -0.63286. The focal plane sits 4.28026m behind the primary mir-

ror. We analyzed two telescope configurations: one with a 1mm decentered secondary

mirror and one with a 1/4◦ tilted secondary mirror. The telescope specs appear in

table 1.5.

For each telescope configuration, the ZemaxR⃝ analysis tool Fringe Zernike was

used to compute the Zernike wavefront aberrations at the edge of the pupil for a total

of 21 field points spanning the x and y axes of the field. For the points along each

telescope axis, the Zernikes corresponding to the pupil variations given in tables 1.2

and 1.3 were then fit to the field patterns using a simple least squares algorithm.

Measurement of the wavefront delay along two field axes was necessary to distinguish

the effects of ρ and σ fifth-order astigmatism and also ρ and σ fifth-order coma.

For the other aberrations the second field axis provided a redundancy with which

to verify the results. All of those third-order patterns fitted redundantly are self-

consistent to within 0.2%. The fifth-order patterns are self-consistent to within 2%

with the exception of second coma for the tilted telescope and misalignment trefoil

for the decentered telescope. The former is likely corrupted by higher order effects

which will be discussed later, and the latter is consistent with zero.

We also used the Zemax R⃝ analysis tool Grid Distortion to analyze third- and

fifth-order distortion for both telescope configurations. As with fifth-order coma and
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Table 1.6. Amplitudes of aberration patterns for a Magellan-like telescope.

Aberration Symmetric
Misalignment (ρ,σ) Misalignment (ρ,σ)

Decentered 1mm Tilted 1/4◦

Third-order

spherical -0.005
coma -29.161 -15.600 108.527
astigmatism 129.592 -0.479 51.848
COF -591.745 7.631 -72.386
distortiona -7.908 0.079 -1.363

0.098 -0.619
Fifth-order

spherical-II 0.000
coma-II 0.013 0.587 -4.087
astigmatism-II 1.005 -0.014 0.031
fifth-order spherical -0.592 0.039 -0.248
trefoil 0.261 -0.001 0.263
fifth-order coma 3.641 -0.037 -0.375

-0.055 0.286
fifth-order astigmatism -0.031 0.001 -0.143

-0.003 0.280
fifth-order defocus 0.102 0.002 -0.168
fifth-order distortiona 0.010 0.000 -0.003

0.024 0.027
Analytic third-order

spherical -0.005
coma -29.180 -15.625 108.702
astigmatism 129.731 -0.425 51.485

fifth-order astigmatism, we fit the distortion and fifth-order distortion patterns along

two separate field axes in order to distinguish between the effects of the ρ and σ

misalignment patterns.

The fitted aberrations for third- and fifth-order and the corresponding analytically

computed aberrations for third-order appear in table 1.6. The coefficients are given

in microns of wavefront delay at the edge of the pupil for an image at the edge of a

1◦ field, with the exception of distortion and fifth-order distortion which are given in

arcseconds of image displacement at the edge of the field.
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Table 1.6 (cont’d)

Aberration Symmetric
Misalignment (ρ,σ) Misalignment (ρ,σ)

Decentered 1mm Tilted 1/4◦

COF -591.864 7.660 -29.027
distortiona -7.787 0.078 -1.369

0.112 -0.875

aDistortion and fifth-distortion are reported in arcseconds of displace-
ment at the edge of a 1◦ field. All other values are reported in microns
of wavefront delay at the edge of the pupil.

While the magnitude of misalignment aberrations are specific to telescope design,

for the Magellan-type telescope modeled here, the fifth-order misalignment aberra-

tions are never more than 4% of the magnitude of the third-order misalignment coma

aberration (and more often than not, less than 1% of misalignment coma). While

the misalignment distortion terms are also small, −1.′′363 and −0.′′619 for ρ and σ

distortion respectively in the tilted telescope, they are significant compared to the re-

ported RMS error of the SDSS astrometric catalog, 0.′′045− 0.′′075 and 0.′′100 for stars

with magnitudes up to 20 and 22 [15]. If the wavefront sensors on this hypothetical

telescope sample the pupil well, second coma is the most easily measured fifth-order

aberration with which to align the secondary. If field sampling is preferable to pupil

sampling and either a catalog exists for the field or one is willing to dither on the

field [21], distortion could be used for alignment.

In general, there is good agreement between the magnitudes of the third-order

aberrations computed analytically using the formulae presented here and by Zemax R⃝.

By far the most significant discrepancy between the analytically computed aberrations

and those measured by Zemax R⃝ is for misalignment curvature of field for the tilted

mirror. This discrepancy could be due to an inadvertent focal plane tilt with the

mirror tilt. Zemax R⃝, however, reports that the focal plane is aligned with the primary

mirror.

Interestingly, seventh-order effects become important for the measurement of the

spherical and fifth spherical, second coma, and second spherical aberrations. For
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each of these aberrations, the next order aberration intrinsic to the aligned telescope

(seventh-order spherical, seventh-order second coma, and seventh-order second spher-

ical) is of a similar magnitude or greater than the symmetric fifth-order aberration.

Fortunately for telescope alignment, the corresponding seventh-order misalignment

aberrations are smaller than the fifth-order misalignment aberrations.

1.6 Wavefront Sensors: How Many, Where and to

What Order?

1.6.1 General considerations

In §1.3 and §1.5 we showed that telescope misalignments produce a finite and rela-

tively small set of distinct aberration patterns, each of which is characterized by a

two-vector. The degrees of freedom that produce these patterns are likewise finite

and small in number.

Suppose that we have an N -mirror telescope with n wavefront sensors distributed

throughout the field each capable of measuring m aberrations. We take the position

and pointing of the telescope to be defined by one of the mirrors. There remain

N − 1 tilts and N − 1 decenters, each of which is described by a two-vector, that can

produce our misalignment aberration patterns. If the aberration patterns are linearly

independent, one would need to measure and correct 2(N −1) misalignment patterns

to keep the telescope aligned.

1.6.2 A naive approach to the 3-mirror telescope using trefoil

For a 3-mirror telescope one would certainly measure the coma, astigmatism, and

curvature of field patterns, since these produce the largest aberrations. The choice of

a fourth pattern is much less obvious, but for the sake of the present exposition, we

choose trefoil (despite its relatively small amplitude compared to several other fifth

order aberrations).
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Coma, astigmatism and trefoil each have two independent components on the

pupil: one that varies as cosφ, cos 2φ and cos 3φ respectively and another that varies

as sinφ, sin 2φ and sin 3φ respectively. Thus, if the Seidel patterns and effects of

despace errors and mirror deformations are well-constrained, one wavefront sensor

alone will suffice to measure the two-vectors for the misalignment aberration patterns

associated with these.

By contrast, defocus is radially symmetric on the pupil, and each wavefront sensor

produces only one number. Two wavefront sensors suffice to measure the curvature

of field pattern, provided that they are not diametrically opposed.

The situation is complicated by despace (piston) errors which produce the sym-

metric aberration patterns characteristic of aligned but incompletely corrected tele-

scopes. One would certainly want to measure and correct the first-order defocus

that this produces, but this demands a third wavefront sensor to distinguish between

simple (uniform) defocus and curvature of field.

One possible arrangement of these three wavefront sensors would be to space

the wavefront sensors around the periphery of the field, where the effects of the

misalignments are largest. An alternative would be to have one wavefront sensor at

the center of the field and two at the periphery, but not co-linear.

As there are two degrees of freedom for despace errors, one must measure a second

field-symmetric pattern in addition to defocus. The three candidate patterns are

coma, astigmatism and spherical aberration. Only two wavefront sensors are needed

to distinguish between the third-order misalignment coma and the symmetric coma

pattern characteristic of a telescope with despace errors. The same holds true for

astigmatism. The three wavefront sensors needed to distinguish uniform defocus

and curvature of field therefore provide information about both despace errors. In

addition, one would obtain three measurements of spherical aberration, which at third

order is constant across the field.

Our naive scheme has one major strength and one major weakness. The strength

is that the aberrations are low order on the pupil. Wavefront sensors work by subdi-

viding the pupil and making measurements on those elements. The more finely one
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subdivides the pupil, the more light is needed. Moreover, high-order aberrations are

likely to be small, so there is little danger of our low order aberrations being corrupted

by covariances with higher order aberrations. Finally, for the case of wavefront sen-

sors based on out-of-focus images, image overlap is less of a problem if one can work

with images that are more nearly in focus, which this method allows.

The substantial weakness in our scheme is the use of trefoil, which, as we have

noted, would appear to produce a substantially smaller signal than some of the other

fifth-order misalignment aberrations.

1.6.3 alternatives to trefoil: second coma, astigmatism and

spherical

Tessieres’ results, shown in Table 3, would suggest second coma as an alternative to

trefoil. But as is evident if Figure 7, the point spread functions for second coma and

ordinary (third order) coma are quite similar to each other. And the misalignment

patterns, shown in Figures 2 and 8, are identical. So one would need to sample the

pupil well in order to distinguish between the two.

Coma and second coma vary, respectively, as ρ3 cosφ and ρ5 cosφ. We let

C =

∫ ro
ri
(ρ5)(ρ3)ρdρ

[∫ ro
ri
(ρ5)(ρ5)ρdρ

∫ ro
ri
(ρ3)(ρ3)ρdρ

] 1
2

(1.9)

be a measure of the correlation of the two wavefronts, where we have suppressed the

azimuthal dependence and assumed that the center of the pupil is obstructed out to

some fraction ri of its total radius. Taking ri = 0.5 and ro = 1.0 gives C = 0.981,

indicating a very strong correlation. By contrast C is identically zero for any two of

defocus, coma, astigmatism and trefoil.

As a consequence of this strong correlation, one needs very accurate wavefront

sensing to keep the large third-order coma signal from corrupting the weaker second-

coma signal.

The problem is exacerbated by the large central obscurations associated with
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wide-field telescopes. One must obtain at least two radial samples in the range 0.5 <

ρ < 1.0. For a Shack-Hartmann sensor, this would mean at least 8 lenslets across the

diameter of the pupil. For out-of-focus wavefront sensing this would mean defocussing

by at least 8 seeing disks.

The same argument holds for discriminating between ordinary (third order) astig-

matism and second astigmatism, but with a slightly smaller correlation, C = 0.978.

And it holds again for discriminating between curvature of field and second spherical

aberration, again with with C = 0.978.

1.6.4 alternatives to trefoil: fifth-order coma and astigma-

tism

The PSFs produced by the σ and ρ fifth-order misalignment coma are indistinguish-

able from those produced by third-order misalignment coma, but each of these pro-

duces substantially different field patterns. One can therefore hope to distinguish

among them using additional wavefront sensors.

Since each of these patterns is characterized by a two-vector, and since each wave-

front sensor gives only two numbers associated with the coma at that point, a bare

minimum of three wavefront sensors are needed to distinguish among the three mis-

alignment coma patterns.

Of the two alternative arrangements described in our naive approach, the one with

all three wavefront sensors on the periphery fails to discriminate between the fifth-

order ρ-coma pattern and the third-order misalignment coma pattern. By contrast

the arrangement with one at the center and two non-colinear on the periphery does

successfully discriminate among all three patterns.

One can still use only peripheral wavefront sensors as long as one was careful to

include the contributions of misalignments to both the third-order coma pattern and

fifth-order ρ-pattern. In solving for the misalignments, one might iterate, ignoring

ρ-coma on the first iteration and then subtracting it off on subsequent iterations. But

this would preclude counting ρ-coma as one of the 2(N − 1) needed patterns.
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The same arguments hold for the three misalignment astigmatism patterns as

well. A strictly peripheral arrangement of wavefront cannot distinguish between the

third-order misalignment astigmatism pattern and the fifth-order ρ pattern.

1.6.5 alternatives to fifth-order: pointing and distortion

One could alternately choose to neglect fifth-order aberrations and instead use point-

ing or distortion to maintain alignment in a three mirror telescope.

Tilt (or pointing) is one of only two first-order aberrations. As its name implies,

pointing uniformly shifts the location of every object in the field. It does not alter

an image’s point spread function and so it cannot be measured with a wavefront

sensor unless the position of that wavefront sensor in the image plane is accurately

known. In a paper on the Advanced Solar Telescope, Manuel & Burge [7] suggest

that one might use pointing to constrain telescope alignment. This method would

require accurate measurement of the position of the detector with respect to one of

the mirrors.

In the same way that spherical aberration might equally well have been called

“second defocus” – the two have same dependence upon pupil azimuth – distortion

might equally well have been called “second tilt.” For a field with a pre-existing as-

trometric catalog, misalignment distortion can be measured directly from the science

data or using two wavefront sensors whose positions are accurately determined. In the

absence of a pre-existing catalog, one might also solve for the misalignment distortion

patterns by comparing overlapping fields, as suggested by Sudol [21]. The distortion

terms would then constrain four degrees of freedom of telescope misalignments.

1.6.6 An improved approach to the 3-mirror telescope

Both wavefront sensor arrangements adopted for our naive approach to the 3-mirror

telescope suffice to keep it aligned, but not for the same reasons. For the arrangement

with three peripheral wavefront sensors, either the σ-coma and σ-astigmatism is likely

to give a stronger alignment signal than the trefoil pattern.
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Alternatively, for the arrangement with one wavefront sensor at the center and

two non-colinear sensors on the periphery, the ρ-coma and ρ-astigmatism can also

be used. This would seem to give sufficient information to keep a 4-mirror telescope

aligned, or a 3-mirror telescope with a corrector.

It should be noted, however, that if one measures all three misalignment coma

patterns, one must add a fourth wavefront sensor if one also wants to measure the

symmetric coma pattern due to despace errors. The same holds true for astigmatism.

Table 1.7 is a summary of misalignment and piston errors, and the number of

wavefront sensors required to constrain them. The aberrations are divided into those

measurable with very low order wavefront sensing, and those which require greater

sampling of the pupil. Patterns that are degenerate in a single wavefront sensor and

therefore require separate wavefront sensors to distinguish among them are grouped

together. The P’s and M’s show the patterns one would measure with a minimal

system of three wavefront sensors all at the same radius on the periphery: P denotes

those patterns which can be used to constrain piston; M misalignments. Six inde-

pendent misalignment patterns are measured, more than sufficient for a three mirror

telescope and barely sufficient for a four mirror telescope.

1.7 Complications

1.7.1 mirror deformation

We have until now treated the mirrors of a telescope as rigid bodies. But under the

influence of changing gravitational and thermal stresses, the mirror surfaces deform

and influence the wavefront. Deformations of the mirrors can be expanded in terms of

Zernike polynomials, but it is more efficient to expand them in terms of their elastic

bending modes [11, 9, 17].

If the stop is coincident with one of the mirrors, then the deformations of that

mirror have the same effect on the wavefront at every point in the field. But if not,

deformations of a mirror will project onto different parts of the pupil at different points
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Table 1.7. Wavefront sensing summary.

VERY LOW ORDER WAVEFRONT SENSING

first-order symmetric defocus P
third-order symmetric defocus (COF)
third-order misalignment defocus (COF) Ma

third-order symmetric astigmatism P
third order misalignment astigmatism M
fifth-order misalignment astigmatism-σ M
fifth-order misalignment astigmatism-ρ b

third-order symmetric coma P
third order misalignment coma M
fifth-order misalignment coma-σ M
fifth-order misalignment coma-ρ b

fifth-order misalignment trefoil M

HIGHER ORDER WAVEFRONT SENSING

third-order symmetric spherical

fifth-order misalignment second-astigmatism

fifth-order misalignment second-coma

fifth-order misalignment spherical

aThird-order misalignment defocus alone requires two
wavefront sensors to fully constrain, even in the absence of
first- or third-order symmetric defocus.

bIf only three wavefront sensors are used, the four astig-
matism patterns and the four coma patterns are degenerate.
But if the misalignment can be determined from the remain-
ing patterns, one of these can be computed from the align-
ment solution. For rho-coma this degeneracy is broken by
placing a wavefront sensor at the center of the field. How-
ever, the astigmatism degeneracy cannot be broken this way.
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in the field. Applying the same mirror deformation pattern to different mirrors will

produce aberrated wavefronts that are offset with respect to each other. One must

therefore sample the wavefront at relatively high density to ascertain which element

is deformed.

Among the fifth-order aberrations, second-coma, second-astigmatism and fifth-

order spherical likewise require good sampling of the pupil to distinguish their mis-

alignment patterns from those of third order aberrations. The accuracy with which

one might determine these fifth-order aberrations is diminished by the need to use

the same information to determine the mirror deformations.

This would argue for using two kinds of wavefront sensors: low-order sensors,

using only coma, astigmatism and defocus to correct the rigid body motions, and

high-order sensors to correct for mirror deformations. These latter sensors might be

run at lower cadence than the former, except perhaps immediately following a large

change in telescope pointing.

In such a scheme one might still measure fifth-order misalignment coma and fifth-

order misalignment astigmatism with the low-order wavefront sensors, provided that

there are a sufficient number of such sensors. If the telescope is then properly aligned

the second-coma and second-astigmatism misalignment patterns will be zeroed out

on the high-order wavefront sensors, giving a cleaner measurement of the mirror

deformations in the high-order sensors.

1.7.2 central obscuration

Many wide field telescope designs have a large central obscuration. As mentioned in

§1.6, this would make it more difficult to distinguish between second coma and second

astigmatism on the one hand and ordinary coma and astigmatism on the other, which

in third-order have the same field pattern. The smaller range of pupil radii would

increase correlated errors.
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1.7.3 focal plane misalignments

We have until this point avoided the question of how one knows the position of one’s

wavefront sensors or one’s field with respect to one or another of a telescope’s mirrors.

As noted in the discussion of pointing in the previous subsection, the position and tilt

of the focal plane or wavefront sensors might be determined mechanically or interfer-

ometrically. But if not, and if one wishes to correct for focal plane misalignments, one

must measure two additional aberration patterns, one for the tilt of the focal plane,

and one for the decenter.

A tilted detector produces a field pattern identical to misalignment curvature of

field. However, if that pattern is used to correct the detector tilt, it cannot also be

used to keep the mirrors aligned.

A decentered focal plane creates no aberrations of its own, but as is discussed

in §§1.3.7, it can cause Seidel or fifth-order aligned aberrations to masquerade as

misalignment aberrations. Measuring telescope aberrations relative to an incorrect

field center will produce spurious misalignment aberrations even if the telescope is

otherwise aligned.

One can choose to fit for this focal plane decenter by measuring an additional field

pattern. If it is not feasible to measure an additional field pattern and one assumes

that the center of the detector is the center of pointing, he can still completely null

the measured misalignment coma, astigmatism and curvature of field by tilting and

decentering one of the mirrors and tilting the focal plane. Compensating for the

detector decenter with mirror misalignments can put the telescope into a state of

‘benign misalignment’, where only the smaller aberrations patterns: misalignment

distortion, the fifth-order misalignment aberrations, and the aberrations which vary

as the square of misalignments are present.

1.7.4 transmitting correctors

In his treatment of the LSST, Tessieres [22] studies the effects of tilts and decenters

on a focal plane assembly consisting of a multi-element corrector and the focal plane
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array. Two additional patterns are needed to keep this assembly aligned. Interest-

ingly, the fifth-order aberration patterns produced by these tilts and decenters are

larger, compared to the third-order aberration patterns, than for the secondary and

tertiary mirrors.

1.8 Using and not using misalignment aberration

patterns

At least three of the generic misalignment aberration patterns described in the previ-

ous sections are currently used to align wide-field telescopes, and there may soon be

reason to use more of them. Ignoring for the present, the question of whether or not

to use distortion11 we imagine here an N -mirror telescope with n wavefront sensors

distributed throughout the field each capable of measuring m aberrations. One must

determine N−1 tilts and N−1 decenters, each of which is described by a two-vector.

1.8.1 independent analysis of the wavefront sensors

The most straightforward and transparent approach is to analyze each wavefront

sensor separately, determining the coefficients of the aberrations at each of m points

in the field. One then fits the these coefficients to a linear combinations of the

misalignment aberration patterns described in the previous section and finally fits the

amplitudes of the misalignment patterns (assuming one has measured more patterns

than one actually needs).12

A complication of this approach is that at each step the quantities for which one is

fitting may be correlated with each other. Aberration coefficients will be correlated,

pattern amplitudes will be correlated and tilts and decenters will be correlated. Under

such circumstances one must be careful to fit for all correlated quantities; otherwise

one runs the risk of introducing systematic errors in the quantities for which one does

11We take the view what can be measured can hurt you.
12It would not be surprising if two or more patterns were produced by the same, or nearly the

same combination of tilts and decenters.
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fit.

1.8.2 simultaneous fit of all wavefront sensors for pattern

amplitudes

Instead of measuring the aberrations at each point in the field, one might fit the

data for all n wavefront sensors simultaneously to determine the amplitudes of the

misalignment aberration patterns. This has the advantage of eliminating the problem

of correlated aberrations at each point, but unmodelled aberrations may then lead to

systematic errors.

1.8.3 simultaneous fit of all wavefront sensors for tilts and

decenters

One might also fit directly for the tilts and decenters, short-circuiting the misalign-

ment aberration patterns except for using them to turn tilts and decenters into pre-

dicted wavefronts that are then compared with observed wavefronts. This reduces the

number of parameters for which one fits and implicitly accounts for the correlations

of aberration pattern amplitudes. Rather than fitting for poorly determined ampli-

tudes of fifth-order aberration patterns, all of the fifth-order dependence is attributed

to a smaller number of tilts and decenters, which are strongly constrained by the

third-order aberration patterns.

1.8.4 forget about misalignment patterns

Finally one might dispense entirely with the decomposition of the wavefront into

specific aberrations and instead use ray tracing to determine how it varies at each

measured point. While this obviates the need for misalignment patterns, it sacrifices

all understanding of why one might need n wavefront sensors with enough resolution

to measure m aberrations.
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1.9 Summary

We have derived and illustrated the generic third-order aberration patterns that arise

when the axial symmetry of a telescope is broken by small misalignments of optical

elements. There are five patterns: one each for coma, astigmatism and curvature

of field and two for distortion. Each of these misalignment patterns is character-

ized by an associated two-dimensional vector. These two-vectors are in turn linear

combinations of the tilt and decenter vectors of the individual optical elements.

For an N -mirror telescope, 2(N − 1) patterns must be measured to keep the

telescope aligned. For N = 3, as in a three mirror anastigmat, there is a two-

dimensional “subspace of benign misalignment” over which the misalignment patterns

for third-order coma, astigmatism and curvature of field are identically zero. If pre-

existing astrometry is available, one or both of the distortion patterns may be used

to keep the telescope aligned. Alternatively, one might measure one of the fifth-order

misalignment patterns.

We have illustrated the generic fifth-order misalignment patterns that arise from

small misalignments. These are relatively insensitive to misalignments and may be

of little use in telescope alignment. One would appear to be driven back to using

distortion, or alternatively, pointing.
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1.10 Appendix A: Coma

Schroeder [18], calculates the the coma pattern cause by tilting and decentering the

secondary of a two mirror telescope by amounts α and ℓ.

G = B2ρ
3 sinφ (1.10)

B2 = B2(cen) +
1

R2
2

[
l

R2

[
K2 −

(
m2 + 1

m2 − 1

)]
− α

(
m2 + 1

m2 − 1

)]

B2(cen) =
θ

R2
1

− Wθ

R2
2

[(
m2 + 1

m2 − 1

)(
1

W
− 1

R2

)
+

K2

R2

]

where ρ and φ are the radial and angular coordinates on the pupil and θ is the radial

coordinate of the image in the field. The quantities Ri, Ki and mi are all mirror

properties: the radius of curvature, conic constant, and magnification of a mirror,

where the subscript denotes which mirror is being addressed. The index of refraction

has been set equal to 1 for the primary mirror and -1 for the secondary mirror. Finally,

W is the distance from the primary mirror to the secondary.

B2(cen) is the coma of an aligned two mirror telescope. For the sake of simplicity

the tilt and decenter of the secondary from the primary, and the object displacement

from the optical axis have been taken lie along the y axis in Schroeder’s analysis.

Schroeder’s equations can be generalized for an object displaced from the optical

axis in an arbitrary direction. The chief ray for the object is given by σ⃗ with radial

and angular components σ and θ. The equations can be further generalized to allow

decentering and tilting of the secondary mirror in arbitrary directions ℓ⃗ and α⃗ with

radial components ℓ and α and angular components φℓ and φα. The equations become:

G = B2xρ
3 cosφ+B2yρ

3 sinφ (1.11)
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where the field dependences are given by

B2x = Gcoma
Seidelσ cos θ +Gcoma

decenterℓ cosφℓ +Gcoma
tilt α cosφα (1.12)

B2y = Gcoma
Seidelσ sin θ +Gcoma

decenterℓ sinφℓ +Gcoma
tilt α sinφα

Gcoma
Seidel =

1

R2
1

− W

R2
2

[(
m2 + 1

m2 − 1

)(
1

W
− 1

R2

)
+

K2

R2

]

Gcoma
decenter =

1

R3
2

[
K2 −

(
m+ 1

m− 1

)]

Gcoma
tilt = − 1

R3
2

(
m+ 1

m− 1

)

Consolidating the above equations yields

Gcoma = Gcoma
decenterσρ

3 cos(φ−θ)+Gcoma
decenterℓρ

3 cos(φ−φℓ)+Gcoma
tilt αρ3 cos(φ−φα) (1.13)

which is the form for the coma aberration given in §1.3

1.11 Appendix B: Astigmatism

McLeod [10] follows the notation of Schroeder and calculates the astigmatism pattern

for a two mirror telescope for which the secondary mirror has been aligned (decen-

tered) to null the field constant coma pattern. McLeod gives the form of the remaining

astigmatism patterns as
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W = Z4ρ
2 cos 2φ+ Z5ρ

2 sin 2φ (1.14)

Z4 = B0(θ
2
x − θ2y) + B1(θxαx − θyαy) + B2(α

2
x − α2

y)

Z5 = 2B0(θxθy) + B1(θxαy + θyαx) + 2B2(αxαy)

B0 = Ap
0r

2
p − As

0r
2
s

B1 = −r2s [2A
s
0 + (W + dn)A

s
1]

B2 = −r2s
[
As

0 + (W + dn)A
s
1 + (W + dn)

2As
2

]

A0 =
W 2

2R

[
K

R2
+

(
1

W
− 1

R

)2
]

A1 =
W

R2

[
1

W
− K + 1

R

]

A2 =
K + 1

2R3

where ρ and φ are the (normalized) radial and angular coordinates on the pupil and

θx and θy are the cartesian coordinates of the image in the field. The quantities Ri,

Ki and mi are again all mirror properties: the radius of curvature, conic constant,

and magnification of a mirror, where the subscript denotes which mirror is being

addressed, the primary p, or the secondary s. W is the distance from the primary

mirror to the secondary, and αx and αy are the tilts of the secondary mirror with

respect to the primary mirror. The indices of refraction preceding the primary and

secondary mirrors have been set to 1 and -1 respectively.

McLeod additionally uses two constants that are not present in Schroeder’s anal-

ysis of the coma pattern: ri, which is the marginal ray height at the optic, and dn,

which denotes the position of the coma free point. As McLeod nulled the misalign-

ment coma prior to analyzing the astigmatism, the decenter of the system ℓ⃗ is given

by ℓ⃗ = dnα⃗. McLeod chose to express the astigmatism only in terms of the tilt of

the secondary mirror, though he could have equivalently expressed the astigmatism

only in terms of the decenter or as a combination of the two terms. For greater trans-

parency of the field patterns caused by both decenters and tilts, we here decouple the

75



decenter and tilt terms in McLeod’s equations, removing the variable dn. We also

de-normalize the pupil coordinates and remove the terms which vary as the square of

the misalignment.

W = Z4ρ
2 cos 2φ+ Z5ρ

2 sin 2φ (1.15)

Z4 = B0(θ
2
x − θ2y) + B1decenter(θxℓx − θyℓy) + B1tilt(θxαx − θyαy)

Z5 = 2B0(θxθy) + B1decenter(θxℓy + θyℓx) + B1tilt(θxαy + θyαx)

B0 = Ap
0r

2
p − As

0r
2
s

B1decenter = 2As
0 +WAs

1

B1tilt = As
1

A0 =
W 2

2R

[
K

R2
+

(
1

W
− 1

R

)2
]

A1 =
W

R2

[
1

W
− K + 1

R

]

By converting the field variables to polar coordinates σ and φσ and similarly

converting the misalignment variables to polar form ℓ, φℓ, α, φα, the expression for

the wavefront delay yields the form given in §1.3,

Gastig = Gastig
Seidelσ

2ρ2 cos 2(φ−θ)+Gastig
decenterσℓρ

2 cos(2φ−θ−φℓ)+Gastig
tilt σαρ2 cos(2φ−θ−φα)

(1.16)

where B0, B1decenter and B1tilt are equal to Gastig
Seidel, G

astig
decenter and Gastig

tilt . 13

1.12 Appendix C: Curvature of Field

The misalignment patterns for curvature of field are less well-explored in the liter-

ature. Thompson [24] presents forms for the patterns, and we re-derive them here

13The form of the astigmatism field pattern holds even for telescopes which have not been aligned
to null the misalignment coma pattern. The expanded coefficients for the wavefront delay of a
randomly misaligned telescope can be found in Table 1.2.
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from the despaces and misalignments of a single mirror from the pupil.

As stated in §1.3.6, the contribution of a single mirror to the wavefront delay of

the ray which strikes the mirror at position ϖ⃗ and makes an angle ψ⃗ with the axis of

the mirror is given by:

G3rd = W040(
ϖ⃗

R
· ϖ⃗
R
)(
ϖ⃗

R
· ϖ⃗
R
) +W131(ψ⃗ · ϖ⃗

R
)(
ϖ⃗

R
· ϖ⃗
R
) (1.17)

+W222(ψ⃗ · ϖ⃗
R
)(ψ⃗ · ϖ⃗

R
) +W220(ψ⃗ · ψ⃗)(ϖ⃗

R
· ϖ⃗
R
)

+W311(ψ⃗ · ψ⃗)(ψ⃗ · ϖ⃗
R
)

where W040 is the spherical aberration coefficient, W131 is the coma coefficient, W222

is the astigmatism coefficient, W220 is the curvature of field coefficient, and W311 is

the distortion coefficient. These aberration coefficients depend only on the curvature

of the mirror, R, the conic constant of the mirror, K, the magnification of the mirror,

m, the index of refraction of the air preceding the mirror, n and the position of the

object for the mirror, s.

The transformations from pupil coordinates ρ⃗ and σ⃗ to mirror coordinates for a

mirror despaced by an amount W and decentered and tilted by l⃗ and α⃗ are

ψ⃗ = (1− W

s
)σ⃗ − (α⃗ +

l⃗

s
) (1.18)

ϖ⃗ = (ρ⃗−W ψ⃗)− l⃗. (1.19)

Expanding the wavefront delay caused by a single mirror in terms of the pupil

coordinates and keeping only those terms which vary as ρ2 on the pupil14 and vary

linearly with the misalignments or less, we find an expression for the curvature of

field wavefront delay added by a single offset mirror.

14The astigmatic component of the wavefront additionally has terms which vary as ρ2 on the
pupil. We exclude these astigmatic terms in the analysis of COF
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GCOF
i =

[
1

2

(
W

s
− 1

)2

W220 +
W

R

(
W

s
− 1

)
W131 + 2

W 2

R2
W040

]
(
ρ⃗

R
· ρ⃗
R
)(σ⃗ · σ⃗)

(1.20)

+

[
2

(
R

s

)(
W

s
+ 1

)
W220 +

(
2W

s
+ 1

)
W131 + 4

W

R
W040

]
(
ρ⃗

R
· ρ⃗
R
)(σ⃗ · l⃗

R
)

+

[
2

(
W

s
+ 1

)
W220 +

W

R
W131

]
(
ρ⃗

R
· ρ⃗
R
)(σ⃗ · α⃗)

For a two mirror telescope, the primary and the secondary both contribute to the

wavefront delay. As the primary is neither despaced nor misaligned from the pupil,

the form of its contribution to the wavefront delay is simplified; notably, the primary

mirror only contributes to the Seidel aberration. The secondary mirror is despaced

and possibly misaligned from its pupil and therefore contributes to the decenter and

tilt terms as well as the Seidel pattern. Combining the effects of the primary and

secondary mirror yields:

GCOF = GCOF
Seidel(σ⃗ · σ⃗)(ρ⃗ · ρ⃗) +GCOF

decenter(σ⃗ · ℓ⃗)(ρ⃗ · ρ⃗) +GCOF
tilt (σ⃗ · α⃗)(ρ⃗ · ρ⃗) (1.21)
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1W2201 +R2
2
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2
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W
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W1312 + 2

W 2

R2
2

W0402

]
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2

[
2
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)(
W
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(
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)
W1312 + 4

W
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W0402

]

GCOF
tilt = −R2

2

[
2

(
W

s2
+ 1

)
W2202 +

W

R2
W1312

]

which is the form for the COF wavefront delay that appears in §1.3.

1.13 Apendix D: Distortion

The distortion field patterns can additionally be derived from the wavefront delay

caused by a single optic. Again expanding equation (1.17) in terms of pupil coor-

dinates, but now retaining only those terms which vary as ρ on the pupil and vary
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linearly with the misalignments or less yields the expression for the distortion con-

tribution of a single mirror which is despaced by W , decentered by ℓ⃗ and tilted by

α⃗:15

Gdistortion
i = −

[
2
W

R

(
W

s
− 1

)2

(W220 +W222) + 3
W 2

R2

(
W

s
− 1

)
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]
(
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R
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(1.22)

−
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−
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−
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−
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W 2
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(
ρ⃗

R
· α⃗)(σ⃗ · σ⃗)

For a two mirror telescope, only the secondary contributes to the distortion wave-

front delay, as the primary is by construct not despaced from its entrance pupil.

Grouping the coefficients in the above equation into terms of field dependences yields

the form for distortion in §1.3:

Gdistortion = Gdistortion
Seidel σ3ρ cos(φ− θ) (1.23)

+Gdistortion
decenter,σσ

2ℓ cos(θ − φℓ)ρ cos(φ− θ) +Gdistortion
decenter,ρσ

2ℓρ cos(φ− φℓ)

+Gdistortion
tilt,σ σ2α cos(θ − φα)ρ cos(φ− θ) +Gdistortion

tilt,ρ σ2αρ cos(φ− φα)

The coefficients are given by:

15As noted in §1.3, we have omitted the W311 coefficient as it is equal to zero.
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Gdistortion
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where all mirror properties and object distances refer to the secondary mirror, and

the chief ray angle is the chief ray angle on the primary mirror.
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Chapter 2

Analytic PSF Correction for

Gravitational Flexion Studies

Published 12/2013 by Publications of the Astronomical Society of the Pacific

Volume 125, issue 934, pp.1474-1495

http://www.jstor.org.libproxy.mit.edu/stable/10.1086/674333?seq=0

2.1 Abstract

Given a galaxy image, one cannot simply measure its flexion. An image’s spin one

and three shape properties, typically associated with F- and G-flexion, are actually

complicated functions of the galaxy’s intrinsic shape and the telescope’s PSF, in

addition to the lensing properties. The same is true for shear. In this work we

create a completely analytic mapping from apparent measured galaxy flexions to

gravitational flexions by (1) creating simple models for a lensed galaxy and for a PSF

whose distortions are dominated by atmospheric smearing and optical aberrations, (2)

convolving the two models, and (3) comparing the pre- and post-convolved flexion-like

shape variations of the final image. For completeness, we do the same for shear. As

expected, telescope astigmatism, coma, and trefoil can corrupt measurements of shear,

F-flexion, and G-flexion, especially for small galaxies. We additionally find that PSF

size dilutes the flexion signal more rapidly than the shear signal. Moreover, mixing
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between shears, flexions, and asymmetric aberrations can create additive offsets in

lensing measurements that vary with both galaxy size and galaxy ellipticity and

flexion values. But all is not lost; by measuring the patterns, we can correct for

them.

2.2 Introduction

Weak gravitational lensing is one of the key tools with which we can probe the dark

matter content of our universe and by extension explore its structure and formation

history. Tyson et al. [30] were the first to measure the statistical apparent alignment

of many galaxies caused by gravitational shear. Since their initial measurement, weak

lensing has been used to measure mass structure and substructure in regimes outside

of strong lensing’s reach. Flexion, the next order gravitational effect that transforms

weakly sheared galaxy images into arcs, has the potential to bridge the gap between

shear and strong lensing by probing scales between the two and providing orthogonal

constraints on the mass estimates of each. Goldberg & Bacon [6] made the first

measurement of flexion, and Velander et al. [31] and Cain et al. [4] made notable

progress in this area.

But lensing measurements must still be honed if they are to live up to their the-

oretical potential. Observationally, weak lensing is the science and art of measuring

small shape distortions imparted to galaxy images by foreground masses– a mea-

surement which faces many practical encumbrances. Weak lensing signals are by

definition small; shear measurements are swamped by scatter in intrinsic galaxy el-

lipticities; flexion signals mix with galaxy ellipticity and gravitational shear and are

then quickly degraded by low signal to noise [32, 31, 23].

To circumvent these issues, we might (and do) average shears and flexions over

many objects. But averages aren’t a foolproof way to boost the signal. Imperfect

masking of stars and neighboring galaxies limit available lensing targets over which

averages can be made [4, 23] and can impart net biases in the flexion measurements

for those which we do consider [31]. For ground based images, the atmosphere di-
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lutes the lensing signal, biasing measured lensing signals low. Telescope jitter can

add asymmetries to the PSF and consequently impart directional bias to shear and

flexion measurements. Optical aberrations and detector effects add field variable

asymmetric distortions to the images, such that the PSF varies in both magnitude

and direction with field location [29, 27]. Accordingly, directional offsets in shear and

flexion measurements are variable in the field.

The 2008 and 2010 GRavitational lEnsing Accuracy Testing challenges, GREAT08

and GREAT10, [3, 12] were controlled lensing simulations specifically deployed to test

“the accuracy of current shape measurement methods” used to detect the weak lensing

shear signal. The GREAT10 challenge was an improvement over its predecessor in

that it simulated the field variability of the shear-like signal often present in a point

spread function (PSF). In evaluating the results of the GREAT10 challenge, Kitching

et al. [12] note two biases relating to the PSF that we quote here:

• “Despite the PSF being known exactly we find contributions to biases from PSF

size, but less so from PSF ellipticity. The methods with the largest biases have

a strong PSF-size correlation.”

• “For large galaxies well sampled by the PSF, with scale radii ∼> 2 times the

mean PSF size we find that methods meet requirements on bias parameters for

the most ambitious experiments. However if galaxies are [relatively] unresolved

with radii ∼< 1 time the PSF size, biases become significant.”

Properly accounting for the PSF, whether symmetric or asymmetric, seems to demand

future improvement for various lensing measurement techniques, especially when an-

alyzing galaxies of small size relative to the PSF. If lensing surveys are to be con-

ducted from the ground, as is proposed with with Large Synoptic Survey Telescope

[19], accounting for large, atmospherically induced PSFs will be critical. The GREAT

challenges do not address measurements of gravitational flexion and how they may

be affected by symmetric and asymmetric PSFs.

There are two primary methods for determining weak lensing flexion (and by

default some information about shear) in galaxy images: by measuring moments of
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galaxy images and by fitting the images to models. Moment measuring techniques

notably include Higher Order Lensing Image Characteristics (HOLICS) of Okura et al.

[21], based on the work of Kaiser et al. [11] (KSB). For KSB, weighted second image

moments are related to shear. HOLICs extends the principles of KSB, measuring

moments through fourth to obtain the flexion signal as well. Image fitting methods

include shapelets [24, 25] and the Analytic Image Method (AIM) [4]. For image

fitting techniques, a model of an unlensed galaxy is artificially lensed by shear and

flexion and then fit to the galaxy image. For the shapelets method, image data

are decomposed into cartesian or polar shapelets, a basis of two-dimensional Gauss-

Hermite polynomials (cartesian) or modified Laguerre polynomials (polar), and the

coefficients of the decomposition are fit against an artificially sheared and flexed model

galaxy represented in that same basis. For AIM, a flexed galaxy model, comprised of

an unlensed galaxy model lensed by (variable) shear and flexion, is fit directly to the

image data, with no prior decomposition step.

Different groups deal with the PSF in different ways. Kaiser et al. [11] proposed

a semi-empirical method of PSF correction whereby biases in the shear are corrected

ignoring the effects of seeing, and then the ‘seeing induced suppression [of shear] as a

function of image size’ is calibrated out using artificially smeared and degraded HST

data. The KSB method accounts for anisotropies in the PSF, but overall the form of

the PSF required by this deconvolution method needs to be rather simple. Okura &

Futamase [20] expanded on the traditional KSB approach using Elliptical-HOLICs,

dividing the PSF into elliptical components orthogonal and parallel to the galaxy

shear rather than into isotropic and anisotropic components.

Melchior et al. [18] introduced an alternate PSF deconvolution technique for mo-

ments methods that avoids some of the shortcomings of the traditional KSB ap-

proach. DEIMOS, short for ‘deconvolution in moments space’, is a method for sep-

arating the PSF’s moments from a sheared galaxy’s moments, without assuming an

a priori form for the PSF, or splitting the PSF into isotropic and anisotropic (or

orthogonal/parallel) components. While the weighting functions required to accu-

rately measure moments in noisy fields necessarily make this method mathematically
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approximate, the technique is still highly accurate, and only requires the same com-

putational time as the traditional KSB approach. This same principle of deconvolving

the PSF in moments space which is applied to shear measurements in Melchior et al.

[18] could be extended to higher order for flexion studies.

Groups using the shapelets method account for the PSF before even fitting the

galaxy data to a model. As detailed in Kuijken [13] and Velander et al. [31], a model

for the PSF is created by decomposing stellar images into shaplets. Next, a model

for each lensed galaxy is created by superposing circularly symmetric shapelets. The

galaxy model is then translated, sheared and flexed, and finally convolved with the

model PSF. This lensed, convolved galaxy model is represented in the polar shapelets

basis. Finally, the image data is decomposed in the polar shapelets basis, and this

decomposed galaxy data is fit to the aforementioned galaxy model. The resulting

best fit lensing parameters are therefore pre-corrected for the PSF. This method of

PSF ‘deconvolution’ allows for as complex a PSF as the image resolution and the

CPU performing the convolution can handle.

While one can always treat each individual case numerically, analytic estimates

permit the design of observing programs without resorting to massive simulation.

We therefore seek an analytic conversion from measured image properties to true

lensing parameters. In order to achieve this end we create simple, analytic models

for the galaxy and the PSF. For the galaxy model, we draw heavily on the work of

Cain et al. [4] and AIM. For the PSF model, we use the fact that, in the presence

of atmospheric seeing, geometric optics suffice to describe the telescope aberrations,

and the combination of seeing and the optically induced aberrations will dominate

over other effects. We therefore draw from Jarvis et al. [9] to construct an analytic

PSF model at individual field positions and refer the reader to Schechter & Levinson

[27] for a model of PSF field variations. We convolve the models for the lensed galaxy

and aberrated PSF, create a mapping from gravitational to measured lensing values,

and invert to find the mapping from measured to gravitatoinal.

The outline of the paper is as follows. In §2, we demonstrate that weak lensing de-

flections and telescope aberrations are functionally equivalent, and thus will manifest
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in images in very similar ways. In §3, we derive a simple model for a lensed galaxy by

assuming that the unlensed galaxy can be approximated by a Gaussian radial profile.

Next, we derive a simple model for an aberrated PSF by assuming that atmospheric

smearing produces a stellar image with a Gaussian radial profile. For transparency,

we choose to work directly with the Gaussian models of the galaxies, treating lens-

ing and aberration effects as perturbations to Gaussians, and only switching to the

shapelets basis of Refregier [24] and Refregier & Bacon [25] to perform convolutions

between the PSF and galaxy, §4. In §4, we additionally present the form of the final

convolved galaxy image, and infer the transformation from the measured to gravita-

tional lensing terms. In §5 we conclude. A review of the complex vector notation

that will be used throughout this work to express the aberration and lensing models

and the effects of lensing shear and flexions on images can be found in appendix A.

2.3 Aberrations: glass or mass, it’s all the same

Optical aberrations and gravitational lensing distortions are formally identical be-

cause they are computed nearly identically– from path length differences of rays,

using the same small angle approximations and expansions in circular bases to ex-

tract leading order terms. We here outline the parallel procedures used to develop

the two theories and so demonstrate their equivalence.

2.3.1 Telescope aberrations

Telescope aberrations are computed from the optical path length difference between

the ray striking the center of the pupil (which defines the center of the unaberrated

object in the image plane) and a ray from the same source object striking an arbi-

trary location on the pupil. These path length differences are non-linear functions of

the mirror shape, but in practice they are linearized in order to quantify the most

extreme distortions to the image. Because the pupil is usually circular, the natural

basis in which to represent the aberrations as they vary on the pupil are Zernike

polynomials [33], namely (tilt1, tilt2, defocus, astigmatism1, astigmatism2, coma1,
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coma2, trefoil1, trefoil2, spherical, and higher-order aberrations). The higher-order

aberrations will generally be negligibly small in magnitude [27].1

The mathematical forms for these aberrations as they vary with pupil coordinates

ρ and φ are given in tables 2.1 and 2.2. The tables exclude terms that displace

measured image locations rather than distort images. In practice, the orthonormality

of the Zernikes is often dropped when discussing the aberrations, and we have done

so here.2 The derivation of the telescope aberrations through 3rd order can be found

in chapter 5 in Schroeder [29]. For field variations and extension through 5th order,3

see Schechter & Levinson [27].

2.3.2 Weak lensing aberrations

A gravitational lens is entirely analogous to a telescope, with the lens plane of a weak

lensing system akin to the pupil plane of an aberrated lens system. Distortions are

introduced to the weak lens system in the same way as they were in the telescope

system, namely through the optical path length differences between the ray defining

the center of an object in the lens/pupil plane (which defines the center of the undis-

torted object in the image plane) and a ray from the same source object striking an

arbitrary location in the lens plane. These path length differences are non-linear func-

tions of the lensing potential, but in practice they are linearized in order to quantify

the most extreme distortions to the image. Due to convention and a desire to express

lensing effects in terms of same-order derivatives of the lensing potential, the lensing

community has adopted the following basis for representing aberrations as they vary

with distance from the center of the source on the lensing plane (convergence, shear1,

shear2, F -flexion1, F -flexion2, G-flexion1, G-flexion2).

1The low order aberrations may be small in magnitude by design, but misalignment of the
telescope optics can quickly render them large again.

2It is safe to drop the orthonormality in this discussion as we’re not trying to compute the
magnitude of each aberration type from first principles, but rather trying to group the functional
dependences, i.e even if some 5th order coma sneaks into what we’re calling coma it doesn’t matter.

3Trefoil is in fact considered to be a 5th order aberration due to its 3rd order variation in field
coordinate as well as pupil coordinate in an aligned system. It is thus smaller than the other listed
aberrations. However, no other 3rd or 5th order aberrations vary with a similar spin symmetry. We
include it because of its relevance to flexion measurements
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Table 2.1. Optical and gravitational aberration patterns.

telescope aberration pupil plane variation gravitational aberration lens plane variation

defocus ρ2 convergence θ2

astigmatism1 ρ2 cos 2φ shear1 θ2 cos 2ω
astigmatism2 ρ2 sin 2φ shear2 θ2 sin 2ω
coma1 ρ3 cosφ F -flexion1 θ3 cosω
coma2 ρ3 sinφ F -flexion2 θ3 sinω
trefoil1 ρ3 cos 3φ G-flexion1 θ3 cos 3ω
trefoil2 ρ3 sin 3φ G-flexion2 θ3 sin 3ω
spherical ρ4

Telescope pupil radial and angular coordinates are ρ and φ. Source object radial
and angular coordinates at the lens plane, centered on the object, are θ and ω. The

aberrations are identical.

Table 2.2. Vector notation for optical and gravitational aberration patterns.

telescope aberration pupil plane variation gravitational aberration lens plane variation

defocus ρ2 convergence θ2

astigmatism ρ⃗2 shear θ⃗2

coma ρ2ρ⃗ F -flexion θ2θ⃗

trefoil ρ⃗3 G-flexion θ⃗3

spherical ρ4

Telescope pupil vector is ρ⃗. Source object vector at the lens plane is θ⃗. The
aberrations are identical.

The mathematical forms for these aberrations as they vary with lens plane coor-

dinates centered on the object, θ and ω, are given in tables 2.1 and 2.2. They are

identical to the telescope aberrations but with pupil coordinates replaced by lensing

plane coordinates. Note that the net deflection imparted to the image by the lens

would have the same form as tilt1 and tilt2, but this effect is not measurable in most

weak lensing studies as the undeflected galaxy position is unknowable, so we have

excluded those terms here.

Some may be unfamiliar with the lensing aberrations as computed from optical
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path length differences as opposed to deflections, but one can compute distortions

equally well from either. Deflections of light from a source are simply gradients in

that light’s wavefront. Consider that, in the thin lens approximation, the deflection

of light from a source galaxy at the lens plane is given by the gradient of the lensing

potential, Φ. It follows that Φ is analogous to the wavefront of the source at the lens

plane.4

In the weak lensing approximation, one is assuming that the wavefront can be

linearized locally. Using the notation discussed in the appendix, the optical path

length difference between the ray from the center of the source and a ray emanating

from elsewhere in the source, Φ(θ)− Φ(θ0), is given by

Φ(θ)− Φ(θ0) =

(
∂⃗

∂θ
Φ|θ0 · θ⃗

)
(deflection)

(2.1)

+
1

2

[
1

2

(
∂2

∂θ2
Φ|θ0θ2

)
+

1

2

(
∂⃗2

∂θ2
Φ|θ0 · θ⃗2

)]
(convergence & shear)

+
1

4

1

3

[
3

2

(
∂2

∂θ2
∂⃗

∂θ
Φ|θ0 · θ⃗

)
θ2 +

1

2

(
∂⃗3

∂θ3
Φ|θ0 · θ⃗3

)]
. (F- & G-flexion)

The net deflection of the object from the source to the lens plane is the vector first

derivative of the lensing potential, ∂⃗
∂θΦ|θ0 . Convergence and shear are the spin zero

and spin two second derivatives, 1
2

∂2

∂θ2Φ|θ0 and 1
2

∂⃗2

∂θ2Φ|θ0 . F -flexion and G-flexion

are the spin one and spin three derivatives, 1
2

∂2

∂θ2
∂⃗
∂θΦ|θ0 and 1

2
∂⃗3

∂θ3Φ|θ0 . Each term has

the radial variation given in table 2.2.

To compute the resultant distortion imparted to the image one takes the gradient

of this optical path length difference and recovers that the deflection term will be the

4A traditional, unaberrated wavefront at a telescope pupil consists of parallel rays emanating
from a single point in space. The telescope’s pupil is thus uniformly illuminated. For a gravitational
lensing system, the image of the galaxy at the lens plane is composed of rays emanating from multiple
locations on the galaxy, not from a single point. Therefore the lens plane ‘pupil’ does not contain
a wavefront in the classical sense, but rather is filled with an unevenly illuminated image of the
source galaxy. As is discussed in section §2.4, the differing illuminations of the telescope pupil and
gravitational lens ‘pupil’ can change the effects of their (identical) wavefront aberrations.
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same for all rays, simply displacing an image between source and image planes. Only

second and third derivatives will vary with ray position and thus contribute to shape

distortion. The above derivation could be inferred from many lensing works, though

the fundamentals of lensing, flexion, and the imaginary number notation are set in

Bartelmann & Schneider [2], Goldberg & Natarajan [7] and Goldberg & Bacon [6],

and Bacon et al. [1] respectively.

2.4 Models for a lensed galaxy and an aberrated

PSF

We aim here to capture the effects of shear, flexion, and corruptions to their mea-

surable signals by an aberrated PSF. Desiring only leading order influences on the

asymmetries of the true and convolved galaxy, we use the simplest physically plausible

models for both the galaxy and the PSF:

• An elliptical Gaussian model for the unlensed galaxy.

• A circular Gaussian model for the effects of atmospheric seeing, in absence of

telescope aberrations.

While adding more complexity to the radial profiles of the unlensed galaxy and atmo-

spherically aberrated PSF models might yield results which can be better fine-tuned

to a particular telescope’s PSF (or a particular galaxy’s morphology given adequate

sampling to determine it), adding additional complexity to models can often obscure

the physically motivated trends in the results. We therefore use simple Gaussians for

the radial profiles of unlensed galaxies and symmetrically aberrated PSFs.

To create the galaxy model, we use shear and flexion to lens a model for an ini-

tially unlensed galaxy. The lensing wavefront variations are given by the rightmost

components of table 2.2. In the weak lensing approximation, these delays are im-

parted onto the image of the galaxy at the plane of the lens. The final galaxy model

only accounts for shape distortions imparted by the lensing terms onto the initially

unlensed galaxy, and no further aberrations.
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To create the PSF model, we assume the PSF obtains an initial broad shape from

the atmosphere and is then further aberrated by defocus, astigmatism, coma, and

trefoil arising in the telescope.5 These leading order aberrations impart onto the

image wavefront delays at the uniformly illuminated pupil of the telescope, see table

2.2. Analogous to the galaxy model, the final PSF model is the total image created

by the symmetric atmospheric broadening and the possibly asymmetric effects of the

telescope aberrations.

For the galaxy model, we consider all terms through second order in shear. These

second order terms are cumbersome, but we keep them out of foresight, not malice.

They will in some cases have a larger effect on the final PSF convolved image shape

than terms varying linearly in telescope aberration asymmetries.

In order to provide physical intuition for the galaxy and PSF models, we will ex-

press them first using the complex number notation shorthand. Only when necessary

will we switch to shapelets coefficients for convolution.

2.4.1 Generic model for a lensed galaxy, a review

A lensed galaxy in the image plane, I(θ⃗), is exactly represented by

I(θ⃗) = I
(
β⃗(θ⃗)

)
. (2.2)

for source plane coordinate β⃗ and image plane coordinate θ⃗. However, as detailed in

the previous section, the deflection from source to image plane is approximated by a

truncated Taylor series of the lensing potential, and thus the mapping of coordinates

from source to image plane β⃗(θ⃗) is imperfect. Likewise, if we express β⃗ = θ⃗ + δ⃗θ, δ⃗θ

is imperfect.

As most galaxy models have some form of exponential radial profile (e.g. Gaussian,

Sersic), it is often best to move the approximation for δ⃗θ, the difference in angular

distance between ray offset from galaxy center in the source and image planes, out of

5Spherical aberration is very small in telescopes by design and cannot be reintroduced by mis-
alignment errors. While it can be reintroduced by despace errors between optical elements, these
are usually well-controlled.
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the exponent. Fortunately, δ⃗θ is small, and this can be achieved via another Taylor

expansion as is done in Goldberg & Bacon [6], and expanded here in vector notation

as

I(θ⃗) ≈ I(β⃗)|β⃗=θ⃗+
∂⃗

∂β
I(β⃗)|β⃗=θ⃗ · δ⃗θ+

1

2

(
1

2

∂⃗2

∂β2
I(β⃗)|β⃗=θ⃗ · (δ⃗θ)

2 +
1

2

∂2

∂β2
I(β⃗)|β⃗=θ⃗(δθ)

2

)
.

(2.3)

In practice, the second derivative in this second, galaxy Taylor expansion is often

dropped, but we have included it here for completeness, as all terms through second

order in shear (galaxy ellipticity) will be addressed fully as will terms that vary as

the product of ellipticity and flexion. Those varying as the square of flexion will be

dropped as they are yet smaller. For the remainder of this work, the first derivative in

equation (2.3) will be referred to as the linear galaxy expansion term and the second

as the quadratic galaxy expansion term. These expansions of the galaxy model are not

to be confused with flexion and shear, which are expansions of the lensing potential.

Given that the deflection from source to image plane coordinates, α⃗(θ⃗) is the

gradient of the linearized lensing potential from §2.3, equation (2.1), one can compute

β⃗(θ⃗) in vector form to be

β⃗(θ⃗) = θ⃗ − α⃗(θ⃗) (2.4)

≈ θ⃗ − α⃗0 − κθ⃗ − γ⃗θ⃗∗ − 1

4
ψ⃗′∗
1 θ⃗

2 − 1

2
ψ⃗′
1θ

2 − 1

4
ψ⃗′
3(θ⃗

∗)2

where α⃗0 =
∂⃗

∂θ
Φ|θ0

κ =
1

2

∂2

∂θ2
Φ|θ0

γ⃗ =
1

2

∂⃗2

∂θ2
Φ|θ0

ψ⃗′
1 =

1

2

∂2

∂θ2
∂⃗

∂θ
Φ|θ0

ψ⃗′
3 =

1

2

∂⃗3

∂θ3
Φ|θ0 .
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In the above equation, α⃗0 is the deflection from the center of the galaxy in the source

plane to the center of the galaxy in the image plane, κ is the convergence, γ⃗ is the

shear, and ψ⃗′
1 and ψ⃗′

3 are the unitful flexions. Since we are using θ⃗ as the coordinate

centered on the galaxy center in the image plane and β⃗ as the coordinate centered

on the galaxy center in the source plane, we can drop the constant deflection, α⃗0

from the expression. Assuming that we will not have an independent measure of the

gravitational magnification with which to break the mass sheet degeneracy, we also

divide the equation through by 1− κ, following Schneider & Er [28]. To simplify the

notation, we introduce the reduced the shears and flexions (g⃗, ψ⃗1, and ψ⃗3) which are

the unreduced shears and flexions each divided by 1−κ. The source plane coordinate

β⃗ is also divided by 1−κ, however we absorb the coefficient into β⃗ and do not change

the variable name. The resulting expression for β⃗(θ⃗) is

β⃗(θ⃗) = θ⃗ − g⃗θ⃗∗ − 1

4
ψ⃗∗
1 θ⃗

2 − 1

2
ψ⃗1θ

2 − 1

4
ψ⃗3(θ⃗∗)

2. (2.5)

For the rest of this work, all shears and flexions will be reduced shears and flexions

unless explicitly stated otherwise.

Unitless flexions are more appropriate for the following discussion as these quan-

tities measure galaxy shape and thus are true properties of a measured image rather

than properties of a deduced lensing potential. We therefore switch to unitless re-

duced flexions F⃗ and G⃗, where ψ⃗1 and ψ⃗3 are rendered unitless by multiplying by

the galaxy half-light radius rhl. The equation for the source plane coordinate β⃗(θ⃗)

becomes

β⃗(θ⃗) = θ⃗ − g⃗θ⃗∗ − 1

4rhl

(
F⃗ ∗θ⃗2 + 2F⃗ θ2 + G⃗(θ⃗∗)2

)
. (2.6)

Subtracting θ⃗ from the above expression thus yields δ⃗θ as

δ⃗θ = −g⃗θ⃗∗ − 1

4rhl

(
F⃗ ∗θ⃗2 + 2F⃗ θ2 + G⃗(θ⃗∗)2

)
, (2.7)

a third order approximation of the deflection of rays about the center of the galaxy.
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2.4.2 Test Case: Circular Gaussian model for the unlensed

galaxy

First we will consider a circular model for the unlensed galaxy. While this model may

seem overly simplistic, as a galaxy’s intrinsic ellipticity is generally too large to be

ignored, this test case provides insight into the final model for the image which uses

an elliptical Gaussian as the prior for the unlensed galaxy.

To second order in shear, the model for a lensed (initially circular) galaxy with

unlensed Gaussian width α is

I(θ⃗) =
I0

2πα2
exp

(
− θ2

2α2

)
×
[
1 (2.8)

+

{
1

α2

(
g⃗ · θ⃗2

)
+

1

4
√
2ln(2)α3

[
3
(
F⃗ · θ⃗

)
θ2 +

(
G⃗ · θ⃗3

) ]}

+

{
− 1

4α2
g2θ2 +

1

4α4
g2θ4 +

1

4α4

(
g⃗2 · θ⃗4

)

− 1

4
√

2ln(2)α3

[
3

(
1

3

(
2g⃗F⃗ ∗ + g⃗∗G⃗

)
· θ⃗
)
θ2 +

((
g⃗F⃗
)
· θ⃗3
) ]

+
1

8
√
2ln(2)α5

[ ((
3g⃗F⃗ ∗ + g⃗∗G⃗

)
· θ⃗
)
θ4 +

((
3g⃗F⃗

)
· θ⃗3
)
θ2 +

((
g⃗G⃗
)
· θ⃗5
) ]}]

.

In the above expression and all following discussion, we simplify all terms into ‘poly-

nomial’ form, where products of aberrations multiply powers of θ⃗.

The first row of the expression is the circular, unlensed galaxy simply moved to

the image plane. The first braced term is the linear part of the galaxy expansion and

varies linearly with shear and flexion. The second braced term containing the last

three rows are the quadratic part of the galaxy expansion. These vary as the square

of shear and the products of shear and flexion. For the moment, we shall retain all

terms in equation (2.8) without further reduction. However, the observant reader

will likely note that the flexion-like spin one and spin three terms with cubed radial

dependence in row 4 can be incorporated into the linear expansion term through a
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transformation of F⃗ and G⃗ to new variables ⃗̃F and ⃗̃G by shear.

2.4.3 Elliptical Gaussian model for the unlensed galaxy

Inserting a more physically realistic, intrinsically elliptical galaxy into equation (2.3),

we find

Ie(θ⃗) =
I0

2πα2
exp

(
− 1

2α2

(
(1 + e2)θ2 − 2

(
e⃗ · θ⃗2

)))
×
[
1 (2.9)

+

{
1

α2

(
g⃗ · θ⃗2

)
+

1

4
√

2ln(2)α3

[
3
(
F⃗ · θ⃗

)
θ2 +

(
G⃗ · θ⃗3

) ]}

+

{
− 1

4α2
g2θ2 +

1

4α4
g2θ4 +

1

4α4

(
g⃗2 · θ⃗4

)

− 1

4
√
2ln(2)α3

[
3

(
1

3

(
2g⃗F⃗ ∗ + g⃗∗G⃗

)
· θ⃗
)
θ2 +

((
g⃗F⃗
)
· θ⃗3
) ]

+
1

8
√

2ln(2)α5

[ ((
3g⃗F⃗ ∗ + g⃗∗G⃗

)
· θ⃗
)
θ4 +

((
3g⃗F⃗

)
· θ⃗3
)
θ2 +

((
g⃗G⃗
)
· θ⃗5
) ]}

+

{
−
(
2e⃗θ⃗∗

)
·
( 1

α2

(
g⃗θ⃗∗
)
+

1

4
√
2ln(2)α3

[
F⃗ ∗θ⃗2 + 2F⃗ θ2 + G⃗(θ⃗∗)2

])}]

where e⃗ is the intrinsic galaxy ellipticity, apart from induced shear g⃗. The Gaussian

width is α in the limit of zero ellipticity.

The first row of the model is now the elliptical unlensed galaxy moved to the image

plane. The next four rows are unchanged from the model created using a circular

unlensed galaxy; the first braced term is the linear galaxy expansion and the second

braced term is the quadratic lensing expansion. However, these terms now multiply

an elliptical Gaussian ‘base’ galaxy rather than a circular Gaussian. In addition to

modifying the exponential term, two new terms, both second order in asymmetries,

are added to the expansion. These terms, contained in the last bracked row of the

equation, are introduced by cross terms between the intrinsic galaxy ellipticity and

the lensing terms which then carry down into the Taylor expansion.

It is useful to express the model for the galaxy image as a circular Gaussian plus
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perturbations for two reasons: (1) to restrict the discussion to the most significant

asymmetric terms only, i.e those varying to the lowest order in shear, intrinsic el-

lipticity, and flexion, and (2) to better facilitate convolutions in the shapelets basis.

Therefore we will once again Taylor expand the expression, reducing the model to a

circular Gaussian plus perturbations. We find

I(θ⃗) =
I0

2πα2
exp

(
− θ2

2α2

)
×
[
1 (2.10a)

+

{
1

α2

(
⃗̃g · θ⃗2

)
+

1

4
√
2ln(2)α3

[
3
(
⃗̃F · θ⃗

)
θ2 +

(
⃗̃G · θ⃗3

) ]}
(2.10b)

+

{
− 1

4α2

(
g̃2 + 2(g⃗ · e⃗)

)
θ2 +

1

4α4
g̃2θ4 +

1

4α4

(
⃗̃g2 · θ⃗4

)
(2.10c)

+
1

8
√
2ln(2)α5

[ ((
3⃗̃gF⃗ ∗ + ⃗̃g∗G⃗

)
· θ⃗
)
θ4 +

((
3⃗̃gF⃗

)
· θ⃗3
)
θ2 +

((
⃗̃gG⃗
)
· θ⃗5
) ]}]

.

(2.10d)

The first row and braced term in the model, (2.10a) and (2.10b), are the same

Gaussian model and linear expansion terms one would obtain by using a circular

Gaussian as the unlensed galaxy model. However, shear and flexion in (2.10b) have

been converted to new effective shears and flexions via the following transformations

with galaxy ellipticity

⃗̃g = g⃗ + e⃗ (2.11)

⃗̃F = F⃗ − 1

3
(2⃗̃hF⃗ ∗ + ⃗̃h∗G⃗)

⃗̃G = G⃗− ⃗̃hF⃗

where ⃗̃h = g⃗ + 2e⃗.

We could have made a similar transformation of F and G to tilde space for the model

created using a circular Gaussian for the unlensed galaxy, equation (2.8). In so doing,

96



we would have removed the redundant θ⃗θ2 and θ⃗3 terms there as we have done here.

The above transformations quantify the extent to which the nature of the observed

object changes depending on how much intrinsic galaxy ellipticity, lensing shear, and

each of the two types of flexions is present. Lensing is measured as distortions to

the galaxy image that are ‘shear-like’ and ‘flexion-like’ in the linear regime. For

the Gaussian model, these variations are θ⃗2, θ⃗θ2, and θ⃗3. As the ratios of intrinsic

galaxy ellipticity, gravitational induced shear, and F- and G-flexions change, so do

the amounts of each term that will contribute to any particular shape distortion in

the non-linear regime. In the non-linear regime, shear and intrinsic galaxy ellipticity

can combine with F-flexion (spin one, third derivative of the lensing potential) to con-

tribute to the G-flexion-like galaxy distortion and vice versa. The resulting quadratic

‘pseudoflexion’ adds to the linear flexion to create the total effective flexion signal.

2.4.4 Consequences of pseudoflexions

The effective F-flexion, ⃗̃F , can be modified by a mixing between the linear F-flexion

and shear (or ellipticity) or between G-flexion and shear. G-flexion is simpler; the

effective signal, ⃗̃G can only be altered by a combination of F-flexion and shear (or

ellipticity). As an extreme example of lensing signals mixing to masquerade as each

other, consider a galaxy whose intrinsic spin three shape accidentally cancels out its

linear G-flexion lensing signal. In this case, shear (or ellipticity) and F-flexion could

still produce a spin three pseudoflexion signal, which would impart a measurable G̃

lensing signal on the galaxy.

The above is an extreme example, but the quadratic pseudoflexions introduced

by the non-linear expansion to the lensed galaxy model will generally contribute to

the effective flexions by some amount. Lensing systems consistent with a Singular

Isothermal Sphere (SIS) profile will have aligned shear and flexions in the ratio −g :

−2 rhl
θe
g2 : 6 rhl

θe
g2, where rhl and θe are the half light radii of the galaxy and the

Einstein ring radius of the lens. Because shear and F-flexion have the same sign,

unless the source galaxy has significant intrinsic ellipticity opposing the shear, the

effective G̃-flexion will always be reduced by the combination of shear and F-flexion.
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Likewise, the effective F̃ -flexion, which is negative, will be rendered less negative

by combinations of shear and itself and by shear and G-flexion. For a true SIS, the

effective F̃ -flexion will be reduced by the same fraction as G̃-flexion. Figure 2-1 shows

the fractional reduction of apparent observable flexion, (F̃ or G̃ equivalently) for a

SIS as a function of radial distance from the lens. For a SIS lens at the Einstein

ring, flexion and shear will reduce the apparent flexions by a full sixth, assuming no

intrinsic galaxy ellipticity.
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Figure 2-1 Fraction of flexion signal observed for a circular galaxy lensed by a SIS.
Any ratio of rhl

θe
will produce these ratios of effective and true flexions. All apparent

signal loss occurs prior to convolution with a PSF, and is caused by linear flexion
signals mixing with shear terms to create a ‘pseudoflexion’ of opposite sign to the
linear term.

If one were to consider only terms in the lensed galaxy model that vary like first

order shears and flexions (i.e θ⃗2, θ⃗θ2, and θ⃗3), one would not be able to distinguish

between effective shears and flexions and the true lensing terms without some fore-

knowledge of either the shear or the intrinsic galaxy ellipticity. This degeneracy has

nothing to do with convolution, but rather the ability to resolve second order lensing

effects. Likewise, to first order in shear and flexion, one cannot distinguish between

a model that uses a circular or an elliptical prior for the unlensed galaxy.
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2.4.5 An Aside: Shear-flexion ‘cross-talk’ and pseudoflexion,

similarities and differences

Using HOLICs, Viola et al. [32] were the first to quantify the corruption effects of

shear-flexion mixing on flexion measurements. They named the effect ‘cross-talk’.

The HOLICs method for computing flexion relies on measuring spin one and

three distortion estimators. These distortion estimators are the spin symmetric third

moments of the galaxy intensity, divided by the spin zero fourth moment, (see eqs.

(18) and (19) in Viola et al. [32]). The estimators have units of inverse galaxy scale

length.

Okura et al. [22] relate these estimators to flexions by making several simplifying

assumptions, most notably that terms second order in shear and higher can be safely

ignored. The result of these simplifying assumptions are linear mappings between

flexions and the distortion estimators. Viola et al. [32] build on Okura et al. [22],

retaining higher order terms, including products of shear and flexion. In so doing they

find, as we do here, that the distortion estimators are in fact functions of both flexion

and the products of shear and flexion. To test their results, Viola et al. [32] create

synthetic flexed galaxies and measure their distortion estimators. They then compute

the expected distortion estimators using the known gravitational values used to create

the synthetic galaxies. They find that the expected distortion estimators computed

using shear-flexion cross talk match the measured results to good agreement. In

contrast the distortion estimators computed only using terms linear in shear and

flexion are much smaller than the measured distortions.

The non-linear mapping between distortion estimators and flexions proposed by

Viola et al. [32] is now an implicit part of the HOLICs code for converting image

moments into flexions.

Based on Viola’s results one can conclude that, using the linear relationship be-

tween the distortion estimators and flexion, the HOLICs method would predict flex-

ions which are too large. Examining (2.11) of this work, one can see that a linear

fitting model will predict flexions which are smaller than the gravitational flexion
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values. While these two statements would seem opposed, both are true.

The spin one and three distortion estimators in the HOLICs methods measure

all spin one and three distortions, irrespective of the order of radial variation on

the galaxy.6 Therefore the distortion estimators are sensitive to the quintic spin one

and three terms created by shear flexion mixing. The spin three quintic cross term

between shear and F-flexion drives the net spin three moment up, resulting in an

overestimated flexion.

In contrast, modeling techniques, such as AIM, only see the corruption to the

flexion-like, cubic spin one and three terms. The pseudoflexion in these cubic terms

forces the linear estimate of flexion lower than the true gravitational flexion, as dis-

cussed in the previous subsection. Thus, the HOLICs and model fitting methods,

while predicting opposite biases in the linear regime, are in complete agreement.

2.4.6 A minimal galaxy model for analyzing the effects of

PSF convolution

Up to and including terms which vary as the product of galaxy ellipticity (shear

induced and intrinsic) and flexion, the model created by assuming a circular unlensed

galaxy is no worse an approximation for analyzing the effects of convolution on shear

and flexion than the model created using an elliptical unlensed galaxy. In every

place in the elliptical lensed galaxy model where shear and flexion appear, either the

lensing terms can be mapped to effective shears and flexions in a way consistent with

second order approximations, or the terms can be dropped from both the elliptical

and circular lensed galaxy models without loss of accuracy to either. The result is

that the elliptical lensed galaxy model can be rendered formally equivalent to the

circular model, but with newly named, effective lensing variables.

To elaborate, in equation (2.10d) every flexion term appears in product with shear

⃗̃g, and so to second order may be replaced by its respective F̃ or G̃ equivalent. In

equation (2.10c), where shear cannot simply be mapped to tilde space, the offending

6Albeit not equally- the moments of a cubic and quintic function with the same spin will not
necessarily be the same, even if they have identical coefficients.
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θ2 term can be modified or dropped as it is completely radially symmetric, and thus

its inclusion in the model only modifies the steepness of the galaxy profile. We are

approximating the symmetric shape of the unlensed galaxy by a Gaussian, in order to

better understand the effects and interplays of asymmetries caused by gravitational

lensing and an asymmetric PSF caused by telescope aberrations. Perturbations to

the symmetric shape that affect the cuspiness of the final image are no more or less

significant than the initial assumption that the unlensed galaxy model is Gaussian.

Therefore both θ2 terms and the θ4 symmetric term in equation (2.10c) may be

folded into the Gaussian radial approximation without any additional losses. With

the conversion of shear and flexion to tilde space and the exclusion of symmetric

terms, the model created using a circular Gaussian is identical to that created using

an elliptical Gaussian unlensed galaxy.

We note here that Viola et al. [32] did explore the effects of higher order radial

variations on shear and flexion measurements and found them to be non-negligible for

flexion measurements obtained using moments. For this work where we seek general

trends imparted to the flexion signal by the PSF and fast, analytic remediation for

the same, we are ignoring these non-Gaussian radial variations of the galaxy. In the

limit of low signal to noise or large PSF, variability in radial profiles galaxy to galaxy

will wash out and this assumption should simply be crude, not devastating.

We also argue that, for the discussion of the deconvolution of the shear and flexion

terms, we may additionally drop the terms from the model varying as ⃗̃g2 · θ⃗4 and
(
⃗̃gG⃗
)
· θ⃗5 in equation parts (2.10c) and (2.10d). While the elliptical and circular

models are formally equivalent even without this step, dropping these superfluous

terms makes the following discussion simpler. Each of these terms are second order

in galaxy ellipticity and shear, and thus only their convolutions with symmetric parts

of the PSF will be retained in the final expression for the convolved galaxy image-

all convolutions of these second order terms with asymmetric PSF terms that vary as

astigmatism, coma, or trefoil must necessarily be third order small. The former term

has exclusive spin four symmetry and the latter has exclusive spin five symmetry.

The convolution of a spin m symmetric function with a spin 0 (i.e. symmetric) one
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will itself have spin m, and so these terms cannot affect measurements of shear and

flexions which have spins one, two, and three. Thus, while ⃗̃g2 · θ⃗4 and
(
⃗̃gG⃗
)
· θ⃗5 in

equation parts (2.10c) and (2.10d) will affect the appearance of the pre- and post-

convolved galaxy, they will not affect measurements of shear or flexions in either and

so can be dropped for this analysis.

The galaxy model we will be using for the remainder of this paper is thus

I(θ⃗) =
I0

2πα2
exp

(
− θ2

2α2

)
×
[

1 +

{
1

α2

(
⃗̃g · θ⃗2

)
+

1

4
√

2ln(2)α3

[
3
(
⃗̃F · θ⃗

)
θ2 +

(
⃗̃G · θ⃗3

) ]}
(2.12a)

+

{
1

4
√
2ln(2)α5

× 1

2

[ ((
3⃗̃gF⃗ ∗ + ⃗̃g∗G⃗

)
· θ⃗
)
θ4 +

((
3⃗̃gF⃗

)
· θ⃗3
)
θ2
]}

7

]

(2.12b)

where the first order effects of the spin one, two, and three terms, ⃗̃F , ⃗̃g, and ⃗̃G are

given in equation part (2.12a) and are shown separately and together for a circular

galaxy lensed by a SIS in figure 2-2. The second order spin one and three effects are

given in equation part (2.12b). The full model with these second order effects is also

shown in figure 2-2. 8

7The flexions F⃗ and G⃗ multiplying ⃗̃g in this non-linear term are intentionally left as true flexions

and not effective flexions ⃗̃F and ⃗̃G. While we earlier argued that, to second order, these terms could
be replaced by their effective flexion counterparts, we do not need to replace them here. As the
model is more accurate if we do not, we leave in the true flexions.

8The models in figure 2-2 have background artifacts, most notably a ‘pinching’ in the sheared
model galaxy and an ‘island’ on the right of the fully lensed model galaxy. The ‘pinching’ in
the sheared model is wholly accounted for by the approximation that we use for the purpose of
convolving the galaxy model with seeing, but do not make in the AIM model for fitting data. This
same approximation partially accounts for the ‘island’ in the fully lensed model. Even with this
approximation, these artifacts are in fact benign, but are accentuated by the contour levels and
zoom of the plots.
The first order Taylor expansion of an elliptical Gaussian with no flexion produces a nearly ellipti-

cal, positive intensity peak with broad, but shallow dimples along either side of the major axis. The
peak intensity of these dimples is a few percent of the intensity of the central peak. The apparent
‘pinching’ in the shear model is actually the cross over from positive to negative intensity caused by
these low intensity dimples– the outer edges of the dimples are out of the frame of the image. When
fitting data, we use the AIM model, in which we do NOT Taylor expand the elliptical Gaussian
unlensed galaxy into a circular Gaussian plus elliptical perturbations as we have done here. Rather,
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Figure 2-2 From left to right, top to bottom: a circular galaxy (a) unlensed, (b) lensed
by shear = −0.3, (c) lensed by F-flexion = −0.09 only, (d) lensed by G-flexion = 0.27
only, (e) lensed by all three in an aligned orientation, using a model linear in lensing
terms, and (f) with quadratic spin one and three perturbation terms included. Ratios
of shears and flexions simulate a SIS lens with rhl

θe
= 1

2 .

2.4.7 Shapelet basis decomposition of the model

The above model for the galaxy is physically intuitive, but for the convolution, it

serves to move to the shapelets basis detailed in Refregier [24], Refregier & Bacon

[25], Massey & Refregier [15], Massey et al. [16]. Polar shapelets are functions of

the associated Laguerre Polynomials, and are convenient for representing and ma-

nipulating perturbations of Gaussian-like functions with various spin symmetries. As

F-flexion, shear, and G-flexion have spins one, two, and three respectively, these lens-

ing terms are contained in a small number of coefficients in this basis when using

simple models for the unflexed galaxies.

we retain the ellipticity and its degenerate shear counterpart in the Gaussian’s exponent and only
expand the flexion terms. Therefore we do not get these negative intensity artifacts in an elliptical
or sheared model galaxy.
A model galaxy which has been lensed by F-flexion or G-flexion alone has one or three low intensity

dimples in addition to the central peak. The peak depth of these is only a few tenths of a percent
of the central peak intensity. The ‘island’ in the plotted full model is actually where the sky level
recovers to zero after having dropped to negative intensity.
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The relation between the lowest order shapelets and perturbations to the circular

Gaussian function are given in table 2.3. For reference, the Gaussian perturbations

used in the model and given in the table are plotted in figure 2-3. The polar shapelets,

which are essentially the orthonormal versions of the shown functions, are depicted

in Massey & Refregier [15], Massey et al. [16].

Following Massey & Refregier [15], but normalizing the flux to I0, the function

representing a galaxy of scale length α is

I(θ⃗) =
I0

2
√
πα

∞∑

n=0

n∑

m=−n

fnmχnm(θ⃗;α) (2.13)

where χnm are the Polar shapelets and fnm are unitless coefficients. The first subscript

of the coefficient, n, denotes the radial dependence of the term, and the second, m,

denotes the spin symmetry.

We note again here that the aberrations used in this work are all unitless quanti-

ties. This differs from shapelets convention, specifically that in Massey & Refregier

[15] wherein flexions are unitful and always appear in multiple with the galaxy scale

length when appearing in a shapelet coefficient.

The non-zero shapelets coefficients needed to represent the linear expansion of the

lensed galaxy of equation (2.12a) are
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f00 = 1 (2.14a)

f22 =
1√
2
⃗̃g

f31 =
1

4
√

2ln(2)

1√
2

(
3 ⃗̃F
)
, f11 =

1

4
√

2ln(2)

(
3 ⃗̃F
)

f33 =
1

4
√

2ln(2)

√
3

2
⃗̃G

f51 =
√
3p⃗, f31 = 3

√
2p⃗, f11 = 3p⃗ (2.14b)

f53 =
√
6q⃗, f33 = 2

√
6p⃗

where p⃗ =
1

4
√
2ln(2)

1

2

(
3⃗̃gF⃗ ∗ + ⃗̃g∗G⃗

)

q⃗ =
1

4
√

2ln(2)

1

2

(
3⃗̃gF⃗

)
.

Only quantities with positive spin coefficients are listed, as negative spin coefficients

are simply the complex conjugates of their positive counterparts. All other unlisted

coefficients are zero, or will otherwise not affect the final measured spin one, two, or

three image shape characteristics.

For clarity, we have broken up the shapelets coefficients into parts (2.14a) and

(2.14b) which derive from the linear galaxy expansion terms in the model given by

(2.12a), and the quadratic galaxy expansion terms in (2.12b), respectively. The total

coefficients are sums of all components.

Terms varying linearly on the galaxy, χ11, appear with non-zero coefficient, despite

having no obvious counterpart in equation (2.12). These terms appear because the

shapelets basis is orthonormal, and thus χ31 and χ51 have components which vary

linearly with radius. As the lensing distortions are not orthonormal, the inclusion of

the χ11 term is necessary in order to counter the part of the linearly varying χ31 and

χ51 terms absent from the lensing model, see table 2.3. However, measurements of

flexion are made by probing terms which vary as radius cubed on the galaxy, χ31 and
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χ33 in this basis. Thus χ11 is merely a remainder of sorts.

2.4.8 Model of a PSF

As a Gaussian is a convenient model for an unlensed galaxy, it is also a convenient,

simple approximation for a symmetric point spread function. Additionally, we argued

in §2.3 that convergence and defocus are the same, shear and astigmatism are the

same, F-flexion and coma are the same, and G-flexion and trefoil are the same. How-

ever, the lensing aberrations are applied to the galaxy image, which is non-uniformly

illuminated, but the telescope aberrations are applied to a uniformly illuminated

wavefront. We therefore cannot account for the telescope aberrations by applying

deflections to the symmetric, atmospherically aberrated PSF image in the same way

that we could treat the gravitational lens as applying deflections to the Gaussian,

unlensed galaxy.

In order to account for the effects of the telescope aberrations on the PSF, we

follow the work of Jarvis et al. [9], and compute the moments imparted onto images

by wavefront gradients in the pupil plane. If we were to compute an infinite number

of moments, we could reconstruct the exact form of the image. But, in the spirit of

informed approximation, we shall compute exact moments through third, and then

approximate the form of the PSF as Gaussian plus perturbations, similar to that

of the Galaxy model. We choose to truncate our model at third moments, as the

second and third image moments will affect shear and flexion measurements most

significantly.

The PSF is the stellar image. Ignoring atmospheric effects, which add a series of

random delays to the wavefront, the light reaching the pupil from a star is parallel.

Summarizing from Jarvis et al. [9], in the limit of geometric optics wavefront aberra-

tions will deflect light rays from a star hitting different areas on the pupil into beams

with slightly different directions. If we assume no net tilt of the wavefront, an indi-

vidual beam’s deflection will be proportional to its final displacement from the star

image’s center in the image plane.9 It thus follows that the moments of the stellar

9A net wavefront tilt will cause the entire star to be moved from its nominal position, shifting
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images are proportional to the deflections of light at the pupil, i.e. the gradients of

the wavefront.

A wavefront delay across the pupil, W ′ and its gradient, ∇⃗W ′, are given by the

following functions of the normalized pupil coordinated ρ⃗ the radius of the pupil, R,

and unitful aberrations defocus, d′, astigmatism, a⃗′, coma, c⃗′, and trefoil, t⃗′,

W ′ = d′ρ2 + a⃗′ · ρ⃗2 + c⃗′ · ρ2ρ⃗+ t⃗′ · ρ⃗3 (2.15)

so ∇⃗W ′ =

(
2
d′

R
ρ⃗+ 2

a⃗′

R
ρ⃗∗ + 2

c⃗′

R
ρ2 +

c⃗′∗

R
ρ⃗2 + 3

t⃗′

R
(ρ⃗∗)2

)

= ζ
(
2dρ⃗+ 2a⃗ρ⃗∗ + 2c⃗ρ2 + c⃗∗ρ⃗2 + 3t⃗(ρ⃗∗)2

)

= ζ∇⃗W.

We have introduced a unitless wavefront gradient ∇⃗W and unitless aberrations d,

a, c, and t, which can be rendered unitful with the coefficient ζ. The scale ζ is

arbitrary, but may be thought of as a ‘typical’ ray displacement or image size and

thus has units of the same– angle of ray displacement, or equivalently angular image

size. In radians, ζ is given by the ratio of a typical magnitude for a wavefront delay

on the pupil (possibly one wave, though there are many conventions) and the pupil

radius. The unprimed wavefront gradient ∇⃗W , the defocus, d, astigmatism, a⃗, coma,

c⃗, and trefoil, t⃗ are therefore unitless in all following discussion, however relating

these unitless quantities to the physical delays in the wavefront at the telescope’s

pupil requires that one know the scale, ζ, and pupil radius, R.

Defining the zeroth moment to be one, and the first moments to be zero, i.e.

normalized intensity and no tilt, there are four undetermined complex image moments

up to and including third; a spin zero second moment, a spin two second moment, a

spin one third moment, and a spin three third moment.

the central intensity; tilt imparts a net first moment.
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Q0 = ζ2
∫ ∫ ∣∣∣∇⃗W

∣∣∣
2

ρdρdφ (2.16)

Q⃗2 = ζ2
∫ ∫ (

∇⃗W
)2
ρdρdφ

Q⃗1 = ζ3
∫ ∫ ∣∣∣∇⃗W

∣∣∣
2

∇⃗Wρdρdφ

Q⃗3 = ζ3
∫ ∫ (

∇⃗W
)3
ρdρdφ,

Using the relations for the wavefront gradients presented in equations (2.15), we

find the resultant second and third moments for the aberrations are

Q0 = ζ2
(
2d2 + 2a2 +

2

3
c2 + 3t2

)
(2.17)

Q⃗2 = ζ2
(
4a⃗d+

1

3
c⃗2 + 2c⃗∗t⃗

)

Q⃗1 = ζ3
(
1

3
c⃗
(
8d2 + 4a2 + c2 + 9t2

)
+ 4c⃗∗a⃗d+ 8t⃗⃗a∗d+ 4a⃗2t⃗∗ + (c⃗∗)2t⃗

)

Q⃗3 = ζ3
(
3t⃗
(
4d2 + c2

)
+ 4c⃗⃗ad+ 4c⃗∗a⃗2

)
.

We will work under the assumption that the atmospheric effect will simply add

to the spin zero second moment. Moreover, we shall assume that the atmosphere will

only contribute to the spin zero moment. Q⃗1, Q⃗2, and Q⃗3 remain the same, but Q0

becomes

Q0 = ζ2
(
2d2 + 2a2 +

2

3
c2 + 3t2 + 2S2

atm

)
, (2.18)

where S2
atm is the unitless second moment caused by atmospherically induced semi-

random wavefront delays at the pupil. The factor of two is placed for convenience,

so that the spin zero second moment of star aberrated by the atmosphere alone is

2ζ2S2
atm. As the atmospheric effects become dominant over the telescope effects, Satmζ
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approaches the measured Gaussian width of the PSF.

We define the Gaussian width of the PSF as α so that a measured spin zero

second moment is 2α2, if the PSF is truly Gaussian. With this definition, the unitless

Gaussian width is

α

ζ
=

√(
d2 + a2 +

1

3
c2 +

3

2
t2 + S2

atm

)
. (2.19)

Like the second moment from which it is derived, the unitless Gaussian width is a

measurable quantity.

In the absence of other asymmetric aberrations, each spin n wavefront delay pro-

duces a spin n moment whose magnitude is proportional to the product of itself

and the defocus to some power. Therefore, analogous to the mappings from galaxy

distortions g⃗, F⃗ and G⃗ to effective spin symmetric distortions ⃗̃g, ⃗̃F and ⃗̃G, we will de-

fine new, effective aberrations in tilde space which produce spin symmetric moments,

namely

⃗̃a =
1

4α2

ζ2

(
4a⃗d+

1

3
c⃗2 + 2c⃗∗t⃗

)
(2.20)

⃗̃c =
1

24α3

ζ3

1

3

(
1

3
c⃗
(
8d2 + 4a2 + c2 + 9t2

)
+ 4c⃗∗a⃗d+ 8t⃗⃗a∗d+ 4a⃗2t⃗∗ + (c⃗∗)2t⃗

)

⃗̃t =
1

24α3

ζ3

(
3t⃗
(
4d2 + c2

)
+ 4c⃗⃗ad+ 4c⃗∗a⃗2

)
.

The magnitude of these effective aberrations for one wave (600nm) of astigmatic,

comatic, or trefoil aberration mixed with one wave of defocus is shown in figure

2.4.8 for the Magellan 6.5m telescopes and the proposed LSST 8.4m telescope. For a

constant wavefront delay due to telescope aberration, the magnitudes of the effective

asymmetric aberrations decrease with increased atmospheric smearing.

Using the effective aberrations from equation (2.20), the spin zero, one, two and

three moments simplify to,
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Figure 2-4 Magnitude of the effective, unitless astigmatism ã (black, solid), coma c̃
(blue, dashed), and trefoil t̃ (green, dot-dashed) aberrations for one wave (600nm
delay at pupil edge) of the unitful aberration plus equal defocus. As a scale for the
image size, ζ, we have used 0.′′1, which also corresponds to 100nm of wavefront delay
for 1m of mirror radius. For a fixed wavefront delay, the magnitude of the effective
aberration scales (inversely) with the width of the atmospheric smearing. We have
zoomed in on the region between atmospherically induced PSF widths of FWHM =
0.′′6 and 0.′′9, to show detail in the effective coma and trefoil aberrations in the regime
of traditional ground based observations.

Q0 =ζ
2

(
1 +

d2 + a2 + 1
3c

2 + 3
2t

2

S2
atm

)
= 2α2 (2.21)

Q⃗2 =ζ
24
α2

ζ2

(
⃗̃a
)
= 4α2

(
⃗̃a
)

Q⃗1 =ζ
324

α3

ζ3

(
3⃗̃c
)
= 24α3

(
3⃗̃c
)

Q⃗3 =ζ
324

α3

ζ3

(
⃗̃t
)
= 24α3

(
⃗̃t
)

There are many possible functions which will produce these first few moments.

However, as stated in the beginning of this subsection, we seek only a first order

approximation to the PSF, preferably one which can be easily represented as low

order shapelets for convolution. As a Gaussian is a sufficient model for a symmetric

PSF caused by atmospheric smearing, and spin one through three distortions will

most severely affect the lensing measurement, we choose a functional form consisting
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of a Gaussian plus spin one through three Gaussian perturbations which satisfies the

above listed second and third moment constraints.

We argue that the spin asymmetric Gaussian perturbations with lowest order

radial dependence are the most physically relevant and thus terms with redundant

spin symmetries but higher order radial dependences should be dropped in the model.

In the limit of geometric optics and in the absence of atmospheric effects, the telescope

produces aberrations of finite extent. Defocus images stars into finite circular rings,

perfect images of the pupil. Astigmatism does the same, unless in conjunction with

defocus, which will convert the finite rings into finite ellipses. Coma, in its extreme,

produces ‘comet’ images with a pointlike head and a dimmer, but still defined circular

tail, an image of the outer ring of the pupil. Any infinite extent of the aberrations is

caused by diffraction within the telescope and smearing due to atmospheric seeing.

Therefore, the spin asymmetries introduced by telescope aberrations would logically

affect terms with lower order radial dependence more strongly than terms with higher

order radial dependence.

Therefore we will retain the astigmatic, spin two term varying as θ⃗2 and the trefoil,

spin three term varying as θ⃗3, dropping all spin two and three terms with higher radial

dependence. The comatic, spin one term has the same radial dependence on the pupil

as trefoil (cubic, one order higher than shear’s quadratic pupillary dependence), so it

ought to have the same radial variation on the image. We therefore retain the θ⃗θ2 spin

one term, discarding the others. While this is an admittedly ad hoc approximation,

it does allow us to create a completely constrained model using only second and third

moments.

The complete model for the asymmetric point spread function as it will most

significantly affect a lensed galaxy is therefore

I(θ⃗) =
I0

2πα2
exp

(
− θ2

2α2

)
×
[
1 +

1

α2

(
⃗̃a · θ⃗2

)
(2.22)

+
1

4
√

2ln(2)α3

(
3
(
⃗̃c · θ⃗

)
θ2 +

(
⃗̃t · (θ⃗)3

)) ]
,
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exactly the same model as a the linear lensed galaxy, but with the telescope aber-

rations producing spin one, two, and three moments replacing lensing terms. The

measurable Gaussian width of the PSF is α, which is equal to Satmζ in equations

(2.17) in the limit of no telescope aberrations.

Though the aberrations ⃗̃a, ⃗̃c, and ⃗̃t are combinations of all the telescope aberra-

tions, they are proportional to astigmatism, coma, and trefoil in the absence of other

asymmetric aberrations, and produce spin two, one and three moments respectively.

Therefore we shall loosely refer to them as astigmatism, coma, and trefoil respectively.

In the limit that defocus is much larger than the asymmetric aberrations, this loose

approximation improves. Optionally (and optimally), one could measure the second

moment, measure the tilde space aberrations, and correct the telescope– this step

would be straightforward and require no iterations.

Using the same vector conversions as for the galaxy model, one can infer that the

shapelets coefficients needed to represent the PSF model are

f00 = 1 (2.23)

f22 =
1√
2
⃗̃a

f31 =
1

4
√
2ln(2)

1√
2

(
3⃗̃c
)
, f11 =

1

4
√

2ln(2)

(
3⃗̃c
)

f33 =
1

4
√
2ln(2)

√
3

2
⃗̃t.

2.5 Extracting gravitational lensing parameters from

measured values

We convolve a lensed galaxy model of scale length η and shear and flexions ⃗̃g, ⃗̃F ,

and ⃗̃G with an aberrated PSF model of scale length σ and astigmatism, coma and

trefoil, ⃗̃a, ⃗̃c, and ⃗̃t to determine the effects on the resultant image’s apparent lensing

characteristics, i.e what an observer measuring the image shape would naively take
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the true shear and flexion values to be if he were not accounting for the PSF. Given

these apparent flexion and shear values, we then provide a analytic formulae to extract

the true lensing terms, given the PSF at the position of the galaxy.

We perform the convolution in two parts. First we convolve the lensed galaxy

model with a symmetric PSF model, aberrated only by symmetric atmospheric smear-

ing. Then we convolve the galaxy model with the asymmetric, telescope aberrated

PSF model.

2.5.1 Convolution of the lensed galaxy model with the sym-

metric, atmospherically aberrated PSF model

The symmetric PSF is a simple Gaussian, or in the shapelets basis f00 = 1, and all

other coefficients are zero.

Using the shapelets representation of the galaxy model given in equation (2.13)

with coefficients in (2.14), it is straightforward to analytically compute the convolved

galaxy form. One can perform this convolution either by computing a minimal number

of relatively simple integrals, or by switching to cartesian shapelets and performing

the matrix manipulations detailed in Refregier & Bacon [25]. As spin m shapelets

will only map onto other spin m shapelets under convolution with a Gaussian, the

mathematics are tractable using either method.

The scale length ξ of the convolved galaxy is predictably equal to the quadratic

sum of the PSF and galaxy Gaussian widths,
√
σ2 + η2. This scale length dictates

the scale length of the shapelets basis in which to optimally decompose the convolved

image. Using this basis, we find the shapelets coefficients for the convolved galaxy

are
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f ′
00 = 1 (2.24)

f ′
22 =

1√
2

1

ξ2

(
⃗̃gη2
)

f ′
31 =

1

4
√
2ln(2)

1√
2

1

ξ3

(
3 ⃗̃Fη3

)
, f ′

11 =
1

4
√

2ln(2)

1

ξ

(
3 ⃗̃Fη

)(
1 +

σ2

ξ2

)

f ′
33 =

1

4
√
2ln(2)

√
3

2

1

ξ3

(
⃗̃Gη3
)

f ′
51 =

√
3
1

ξ5
(
p⃗η5
)
, f ′

31 = 3
√
2
1

ξ3
(
p⃗η3
)(

1 +
σ2

ξ2

)
, f ′

11 = 3
1

ξ
(p⃗η)

(
1 +

σ2

ξ2

)2

(2.25)

f ′
53 =

√
6
1

ξ5
(
q⃗η5
)
, f ′

33 = 2
√
6
1

ξ3
(
q⃗η3
)(

1 +
σ2

ξ2

)
,

where p⃗ and q⃗ are the functions of F⃗ and G⃗ given in equation (2.14b).

We wish to extract terms which vary as θ⃗2, θ⃗θ2, and θ⃗3 as these are the shear and

flexion like terms in the model, g⃗′, F⃗ ′, and G⃗′. Naively, one obtains these terms by

simply gathering the f ′
22, f

′
31, and f ′

33 coefficients. However, one must first remove

the effects of the higher order variances which would be detected as a separate signal

from the flexions, but ‘trickle down’ into these terms by virtue of the orthogonality

of the shapelets basis.

We remove the θ⃗θ4 and θ⃗3θ2 dependences, which would be detected as a separate

signal with θ5 radial dependence, and compare the remaining f ′
22, f

′
31 and f ′

33 terms

with the unconvolved galaxy model’s coefficients. We find the following mapping

from intrinsic ellipticity and gravitational shear and flexion to the apparent signal in

a seeing degraded image to be10

10The flexions F⃗ and G⃗ multiplying ⃗̃g in the non linear terms of (2.26b) and (2.26c) are intention-

ally gravitational flexions and not effective flexions ⃗̃F and ⃗̃G, consistent with equation (2.12).
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g⃗′ξ2 =
(
⃗̃gη2
)

(2.26a)

F⃗ ′ξ3 =
(
⃗̃Fη3
)
+ 2(

σ

ξ
)2
(
3⃗̃gF⃗ ∗ + ⃗̃g∗G⃗

)
η3 (2.26b)

G⃗′ξ3 =
(
⃗̃Gη3
)
+ 4(

σ

ξ
)2
(
3⃗̃gF⃗

)
η3. (2.26c)

To linear order in asymmetric terms, each apparent gravitational aberration is

diluted by the ratio of the uncorrupted galaxy size to the measured galaxy size to a

power equal to the radial dependence of the aberration on the galaxy.

The quadratic expansion to the galaxy model, which had formerly only contributed

to the shear and flexion-like signals by altering the origin and magnitude of the pre-

convolved flexion signals, ⃗̃F and ⃗̃G, contribute to the apparent signals again after

convolution. This new contribution is caused by a ‘mixing down’ of the quintic radial

signal to a cubic radial signal on the galaxy via convolution with the PSF. These

non-linear contributions to the apparent lensing signals are diluted by the PSF to the

same power as the linear terms, but with an additional dilution factor of the ratio of

the PSF size to the measured galaxy size, squared.

The ratio of the effective signal after convolution with a symmetric PSF (i.e.

the measured signal) and the effective lensing signal before convolution is shown in

figure 2-5. The horizontal axis contains the ratio of the PSF size to the unconvolved

galaxy size. For both shear and flexion, the larger the PSF, the less lensing signal is

retained post convolution, however the variation with PSF size differs for shear and

the flexions. The fraction of F̃ and G̃-flexions retained post-convolution will generally

depend on how much shear is present and the ratio of F- and G-flexions. As seen in

equation (2.26b), for an SIS the 1:-3 ratio of F- to G-flexions will render the effect of

convolution on F̃ -flexion independent of shear. Therefore the accelerated dilution of

F̃ -flexion relative to the shear is caused by the PSF alone. The PSF causes the same

dilution of G̃-flexion, however, the shear enhances the measured G̃-flexion in most

lenses, counteracting the effect of the PSF, as can be seen in equation (2.26c). This

is consistent with figure 2-5.
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Figure 2-5 The fraction of the shear/ellipticity (black, solid) and F- and G-flexion
(blue, dashed; green, dot-dashed) signals retained after convolution with a symmetric
PSF of increasing size. The presence of intrinsic ellipticity or gravitational shear will
generally alter the retained flexion signal, however for an SIS lens, the retained F-
flexion is independent of shear. The retained G-flexion shown here is computed with
shear and F-flexion present in the lensed galaxy, boosting the observed G′ signal.
The magnitude of the pre-degraded shear signal is −0.3, and it is aligned with F̃ -
-flexion and anti-aligned with G̃-flexion. F̃ - and G̃-flexions are in a ratio of 1:-3,
approximately consistent with a SIS of any rhl:θe ratio.
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Figure 2-6 A circular galaxy lensed by aligned shear = −0.3, F-flexion = −0.09, and
G-flexion = 0.27. (a) Unconvolved, and (b) convolved with PSFs with radii equal to
half, (c) equal, and (d) twice the unlensed galaxy size. Ratios of shears and flexions
simulate a SIS lens with rhl

θe
= 1

2 . Images have been rescaled to highlight differences
in asymmetries.

A contour plot of a lensed galaxy that is unconvolved, and convolved with PSFs

of half, equal, and twice the unlensed galaxy size are shown in figure 2-6. When the

radius of the PSF is only half of the size of the unconvolved galaxy, most of the overall

image shape is retained, consistent with figure 2-5. Once the radius of the PSF is

equal to the size of the unconvolved galaxy, the shear and flexion signals become more

noticeably diminished. However, the spin three flexion signal is still apparent even

when its spin one counterpart is nearly wiped out, because combinations of spin one

flexion and shear can mix to create an additional apparent spin three flexion post-

convolution. Convolutions with yet larger PSFs circularize the final galaxy image.

These trends in signal dilution are in agreement with figure 2-5.

2.5.2 Convolution of the lensed galaxy with the asymmetri-

cally aberrated PSF model

The asymmetrically aberrated PSF is formally the same as the linear order galaxy

model. By exploiting symmetries in the two models, and only considering asymmet-

ric perturbations to second order, we can analytically compute the convolution of the

lensed galaxy with the asymmetrically aberrated PSF induced by telescope aberra-

tions. As with the convolution of the galaxy and the symmetric PSF, this can be done

either by computing a minimal number of relatively simple integrals, or by switching
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to cartesian shapelets and performing the matrix manipulations detailed in Refregier

& Bacon [25]. The shapelets coefficients for the convolved galaxy image are

f ′
00 = 1 +

η2σ2

ξ4

(
⃗̃a · ⃗̃g

)
(2.27a)

f ′
22 =

1√
2

1

ξ2

[ (
⃗̃gη2 + ⃗̃aσ2

)
+

9

8
ησ

(
⃗̃c ⃗̃F +

1

ξ4

(
3⃗̃c ⃗̃Fη2σ2 − ⃗̃c∗ ⃗̃G− ⃗̃F ∗⃗̃t

))]
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1

4
√
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1√
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)]

f ′
33 =

1

4
√
2ln(2)

√
3

2

1

ξ3

[ (
⃗̃Gη3 + ⃗̃tσ3

)
+
ησ

ξ2
6
(
⃗̃a ⃗̃Fσ3 + ⃗̃g⃗̃cη3

)]

f ′
51 =

√
3
1

ξ5
(
p⃗η5
)
, f ′

31 = 3
√
2
1

ξ3
(
p⃗η3
)(

1 +
σ2

ξ2

)
, f ′

11 = 3
1

ξ
(p⃗η)

(
1 +

σ2

ξ2

)2

(2.27b)

f ′
53 =

√
6
1

ξ5
(
q⃗η5
)
, f ′

33 = 2
√
6
1

ξ3
(
q⃗η3
)(

1 +
σ2

ξ2

)
.

Again, we wish to extract the manifestations of shear and flexion-like variations on

the galaxy, the θ⃗2, θ⃗θ2, and θ⃗3 terms. Following the steps in subsection §§2.5.1, we first

account for the higher order shape variations that will be detected as separate signals,

and then compare the coefficients f ′
22, f

′
31, and f ′

33 to their unconvolved counterparts

to obtain the terms which vary as shear and F- and G-flexion respectively. We find
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g⃗′ξ2 =
{
⃗̃gη2 + ⃗̃aσ2

}
+
{9
8
ησ

(
⃗̃c ⃗̃F +

1

ξ4

(
3⃗̃c ⃗̃Fη2σ2 − ⃗̃c∗ ⃗̃Gη4 − ⃗̃F ∗⃗̃tσ4

))}
(2.28a)

F⃗ ′ξ3 =
{
⃗̃Fη3 + ⃗̃cσ3

}
+
{
2(
σ

ξ
)2
(
3⃗̃gF⃗ ∗ + ⃗̃g∗G⃗

)
η3 (2.28b)

+
ησ

ξ2
1

2

(
⃗̃a ⃗̃F ∗σ(2σ2 − η2) + ⃗̃g⃗̃c∗η(2η2 − σ2)− ⃗̃a∗ ⃗̃G(ση2)− ⃗̃g∗⃗̃t(ησ2)

)}

G⃗′ξ3 =
{
⃗̃Gη3 + ⃗̃tσ3

}
+
{
4(
σ

ξ
)2
(
3⃗̃gF⃗

)
η3 +

ησ

ξ2
6
(
⃗̃a ⃗̃Fσ3 + ⃗̃g⃗̃cη3

)}
. (2.28c)

The effects of telescope aberrations on the final convolved image can be broken

down into terms which vary linearly with asymmetries due to lensing and telescope

aberrations (first braced), and those which vary quadratically with lensing and tele-

scope aberrations (second braced). For flexion, the terms quadratic in asymmetries

have two distinct origins:

• The first group of non-linear terms vary as the product of shear and flexion (only

with lensing aberrations, not with telescope aberrations). These are carry-overs

from the convolution of the quadratic expansion of the galaxy model and the

symmetric part of the PSF, and as such are also present in equation (2.26), the

mapping for the lensing terms under convolution with a symmetric PSF.

• The second group of non-linear terms are cross terms between the telescope

aberrations ⃗̃a, ⃗̃c, and ⃗̃t and gravitational lensing aberrations ⃗̃g, ⃗̃F , and ⃗̃G. These

terms are caused by mixing of spin signals under convolution to create signals

with different spin symmetry. The apparent shear signal is also influenced by

such cross terms.

The linear contributions of the telescope aberrations in the first braced terms of

equations (2.28a), (2.28b), and (2.28c), highlight the similar forms of the PSF and

lensing models- each lensing distortion adds to its telescope aberration counterpart

(shear/astigmatism, F-flexion/coma, G-flexion/trefoil), but the lensing aberration is

scaled by the size of the galaxy and the PSF aberration is scaled by the size of the

PSF, each to the radial dependence of the aberration. The cross terms between the
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telescope and lensing aberrations in the second braced part of the equations also

show the intrinsic symmetries between the two types of aberrations. However, the

parallelism between the lensing and telescope aberrations is broken by the fact that

the galaxy model is expanded to quadratic order in lensing terms, while the PSF is

truncated at linear order.

2.5.3 Interpretation of the apparent shear and flexions

Figure 2-7 shows the apparent shear and flexions on galaxies of varying intrinsic

size for a PSF with fixed size and various asymmetries. In the limit of zero galaxy

size, the apparent shear and F- and G-flexion signals are equal to the values of their

corresponding telescope aberrations, astigmatism, coma, and trefoil. This result is

somewhat intuitive, as a galaxy of zero width is a star, which produces the PSF when

imaged by the telescope. In the other extreme, of very large galaxy size, the apparent

lensing values approach the pre-convolved, effective lensing values and are virtually

unaffected by the PSF and its aberrations. This is also expected.

To describe the behavior of the variations in the lensing terms between the zero

and infinite galaxy size extremes for a fixed PSF size, we break down apparent shears

and flexions into their contributions from linear and non-linear terms.

Referring back to figure 2-5, in absence of any telescope aberration, atmospheric

smearing causes the lensing signal to be diluted by the ratio of the unconvolved to the

convolved galaxy size, to the radial power of the lensing aberration. In absence of any

asymmetric telescope aberration, this same relation holds here; shear approaches its

true value as η2

ξ2 and flexion approaches its true value as η3

ξ3 . However, note that figure

2-7 depicts a fixed PSF and increasing galaxy size on the horizontal axis whereas its

predecessor had the inverse ratio on the horizontal axis.

Now including telescope aberrations, but only allowing terms linear in asymme-

tries (first braced terms of equation (2.28)), we find that the effect of asymmetric

telescope aberrations is to add an offset to the post-convolved lensing terms which

varies as the ratio of the PSF size to the convolved galaxy size, again, to the radial

power of the aberration. For shear this is σ2

ξ2 , and for flexion this is σ3

ξ3 . In the limit
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Figure 2-7 Shown within each plot are the apparent shear (black, solid) and F and
G-flexion (blue, dashed; green, dot-dashed) signals for a circular galaxy model lensed
by aligned shear = −0.3, F̃ -flexion = −0.09, and G̃-flexion = 0.27. Also shown are
the apparent F- and G-flexion signals for the same galaxy model if shear were not
present (thin blue, dashed; thin green, dot-dashed), though these signals may be
identical to their counterparts where shear is present. The unit of the galaxy radius
on the horizontal axis is the PSF half light radius, σ. Top left to bottom right: the
apparent signal after convolution with a PSF that is (a) symmetric, (b) astigmatic,
(ã = −0.06), (c) comatic, (c̃ = −0.06), (d) corrupted by trefoil, (t̃ = 0.06), and
(e) corrupted by all of the listed aberrations. Pre convolved values for the lensing
parameters approximately simulate a SIS lens with rhl

θe
= 1

2 . Aberrations are large for
the sake of illustration.
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of a star, where ξ = σ, these constants are one, fully weighting the aberration; in the

limit of a large galaxy, these constants approach zero, fully nulling the aberration.

For the sake of comparing the relative magnitudes of the terms linear and non-

linear in asymmetries, it is mathematically advantageous to separate out the effect

of atmospheric dilution from each term in equation (2.28). Once the effect of the

atmosphere has been uncoupled, these terms can then be thought of as perturbations

to the pre-convolved shear and flexions, which are then diluted by the atmosphere

with them. This treatment of the effect of the atmosphere and telescope aberrations

on the final apparent shears and flexions is perhaps less physically intuitive than

the view where the effects of the telescope and atmosphere are coupled, but it does

assist with the interpretation of the relative sizes of the biases introduced by different

aberrations. Therefore, we decouple the effect of the atmosphere from the other terms

here.

g⃗′ =
η2

ξ2

[{
⃗̃g + ⃗̃a

σ2

η2

}
+

{
9

8

(
⃗̃c ⃗̃F

σ

η
+
η4

ξ4

(
3⃗̃c ⃗̃F

σ3

η3
− ⃗̃c∗ ⃗̃G

σ

η
− ⃗̃F ∗⃗̃t

σ5

η5

))}]
(2.29a)

F⃗ ′ =
η3

ξ3

[{
⃗̃F + ⃗̃c

σ3

η3

}
+
η2

ξ2

{
2
(
3⃗̃gF⃗ ∗ + ⃗̃g∗G⃗

) σ2

η2
(2.29b)

+
1

2

(
⃗̃a ⃗̃F ∗(2

σ4

η4
− σ2

η2
) + ⃗̃g⃗̃c∗(2

σ

η
− σ3

η3
)− ⃗̃a∗ ⃗̃G

σ2

η2
− ⃗̃g∗⃗̃t

σ3

η3

)}]

G⃗′ =
η3

ξ3

[{
⃗̃G+ ⃗̃t

σ3

η3

}
+
η2

ξ2

{
4
(
3⃗̃gF⃗

) σ2

η2
+ 6
(
⃗̃a ⃗̃F

σ4

η4
+ ⃗̃g⃗̃c

σ

η

)}
.
]

(2.29c)

As the galaxy size becomes large with resect to the PSF, the ratio of the true to

measured galaxy size, η
ξ , approaches one while the ratio of PSF to true galaxy size,

σ
η approaches zero. Assuming that most observers will either appropriately weight

(or simply discard) galaxies for which PSF dilution will effectively wipe out any

lensing signal, we take σ
η to be small for most (priority) galaxies in a lensing survey.11

11For a given PSF, the smallest galaxies will have the noisiest measurements of PSF-corrected
flexions, as the error in the measurement must propagate when removing the effects of PSF dilution.
Thus the galaxies with the least noisy measurements will be the largest ones for which minimal
dilution correction is required.
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Accordingly we take η
ξ to be non-negligible, order of one.

Examining equation (2.29), for shear, astigmatism perturbs the lensing distortion

at a ‘rate’ of σ2

η2 . Likewise, coma and trefoil each perturb their respective flexions at

rates of σ3

η3 . These effects of these perturbations drop off quickly for the large galaxies

of primary interest. By contrast, the terms non-linear in asymmetries given in the

second braced terms of equations (2.28) and (2.29) perturb their lensing distortions at

rates up to σ
η . Thus, the effects of these cross terms can manifest in the measurements

of shears and flexions in galaxies of much larger galaxy sizes than the linear terms

can.

Anywhere in figure 2-7 where the apparent flexion signal is different when com-

puted with and without the presence of shear in the galaxy is a demonstration of

the effect of the non-linear asymmetric terms on the apparent signal. The apparent

signal enhancement of G-flexion in figure 2-7c is an extreme effect; coma has been

added to this PSF, not trefoil.

2.5.4 Extraction of the PSF from the lensing terms

If one can solve equations (2.28) for the pre-convolved lensing values, ⃗̃g, ⃗̃F , and ⃗̃G, one

can create a completely analytic method for deconvolving the effects of an asymmetric

PSF from a measured galaxy image. We use the simplifying assumption that telescope

coma, trefoil, and astigmatism are small enough that cross terms between them and

flexion might be ignored. We do not make the same assumption for shear.

Using the variable µ for σ
ξ , and removing all references to η which is only mea-

surable indirectly, we find the deconvolution of shear and flexion in terms of the

properties of the PSF and the directly measurable properties of the galaxy,
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⃗̃g =

(
1

1− µ2

)(
g⃗′ − ⃗̃aµ2

)
(2.30a)

⃗̃F + 2µ2
(
3⃗̃gF⃗ ∗ + ⃗̃g∗G⃗

)
= (2.30b)

(
1

1− µ2

)3/2 (
F⃗ ′ − ⃗̃cµ3

)
− µ

(
1− µ2

)1/2 (⃗̃g⃗̃c∗
)
+

1

2
µ3

(
1

1− µ2

)1/2 (
⃗̃g⃗̃c∗ + ⃗̃g∗⃗̃t

)

⃗̃G+ 4µ2
(
3⃗̃gF⃗

)
= (2.30c)

(
1

1− µ2

)3/2 (
G⃗′ − ⃗̃tµ3

)
− µ

(
1− µ2

)1/2 (
6⃗̃g⃗̃c
)
.

This solution is, of course, recursive, but can be approximated to second order in

aberrations, in uniformity with the rest of this work.

We hesitate in the case of either type of flexion to assign or plot a correction

‘factor’ as a function of PSF size. Ideally, such a correction factor could be used as

a short-cut to convert from the apparent to the pre-convolved flexion values, or from

the apparent to the ‘true’ flexion values specified by the derivatives of the lensing

potential. Even for a completely symmetric PSF, such a factor must either ignore

the mixing between shear and the two types of flexions that occurs both prior to

convolution and during convolution, or assume some relation between the two types

of flexion based on a particular lens model. Only the shear signal, when lensed by an

atmospherically aberrated PSF in absence of asymmetric telescope aberrations can

be corrected by a simple factor. Correction of either flexion signal requires knowledge

of the shear and the other flexion.

2.6 Conclusion

Multiple influences bear upon the final measured values of the terms we think of as

shear and F- and G-flexions in galaxy images. We summarize our findings here.

1. Mixing between shear and flexion alters the magnitude and origin of the F-

-flexion-like spin one signal and G-flexion-like spin three signal on the galaxy
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even prior to convolution with a PSF. Intrinsic galaxy ellipticity also changes

the magnitude of the pre-convolved flexion signals.

2. Under convolution with a symmetric PSF, the shear signal will drop off as the

ratio of the unlensed to the lensed galaxy size, squared.

3. A symmetric PSF will have two effects on the measured flexion signals. (a) It

will cause those spin one and three variations on the galaxy with cubed radial

dependence to drop off as the ratio of the unlensed to the lensed galaxy size,

cubed. This effect is analogous to the dilution in shear, but higher order. (b) It

will cause those spin one and three variations on the galaxy with quartic radial

dependence to mix down into the corresponding spin one and three flexion-like

signals, possibly enhancing the flexion-like signal on the galaxy.

4. Shear and F- and G-flexion have telescope aberration counterparts, astigma-

tism, coma, and trefoil, with matching deflection properties. For asymmetric

PSFs, each apparent lensing aberration will approach the value of its corre-

sponding telescope aberration in the limit that the unconvolved galaxy size is

small compared to the PSF size. When the seeing is equal to the width of

the unsmeared galaxy, the contributions of the telescope aberrations and the

contributions of the gravitational distortions to the final measured image are

equally weighted.

5. Under convolution with an asymmetric PSF, the pre-convolved shear and flex-

ions can mix with the PSF asymmetries to corrupt to final convolved signals

of the other lensing terms. For example, the apparent spin three signal in a

convolved galaxy image might have contributions from spin two shear mixed

with spin one coma. This effect may be relatively large in certain PSF regimes.

One must account for all of the above when using measurements of ‘shear’ and ‘flex-

ion’ to reconstruct the true lensing parameters. This work corroborates, and more

importantly quantifies, the well-known signal dilution of shear caused by atmospheric
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seeing, and bias to the same introduced by spin two fields in the PSF (i.e. astig-

matism). Moreover, we have analyzed the effect of the PSF on F- and G-flexion,

and have found that the atmospheric dilution is not the same for these lensing terms

as it is for shear. Importantly, one must carefully account for cross terms between

shear and flexions when reconstructing the flexion signals, a detail not required for

accurately reconstructing the shear signal.

As always, a small PSF, either due to a steady, absent, or controlled atmosphere

(e.g. with wide-field adaptive optics) is of primary importance to retaining the grav-

itational lensing signal. However, a well-maintained telescope focus will be especially

critical to obtaining unbiased flexion measurements, as focus will dictate the severity

of the effective astigmatic, comatic, and trefoil aberrations. These aberrations, which

can create corruptive signals on their own or interplay with shear and flexion to cre-

ate non-linear distortions, will be much harder to measure with certainty and recover

from in post processing than simple signal dilution from the PSF or shear-flexion

mixing. The telescope that can best control its aberrations will surely be most suited

to measure flexion. For the rest, we must do the best we can to measure aberrations

and account for them.
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2.7 Appendix: Using vectors and complex num-

bers to represent lensing

In weak lensing, convergence, shear, and flexion are often expressed as components

of matrices and tensors acting upon vector coordinates in the lens plane. A complex

number formalism for flexions as vectors and ‘pseudovectors’ with various spin sym-

metries was introduced to weak lensing by Bacon et al. [1] in order to simplify the

discussion of flexion.12 However, this complex formalism for vectors is typically only

used to describe the lensing terms themselves; matrices and tensors are still relied

upon to describe the distortions to images imparted by shears and flexions. Cain et

al. [4] is a notable exception.

Here we shall avoid matrices and tensors, as the physical origins and spin sym-

metries of the lensing terms can easily be obscured within them. We shall instead

rely solely on vectors to capture the effects of the lensing terms on images. For ease

of notation, we will use the complex number formalism to express these vectors and

pseudovectors. For those unfamiliar with imaginary number notation as a tool to

manipulate vectors, we review it here.

2.7.1 Spin n vectors

Lensing distortions have magnitude, direction, and spin symmetry. They are pseu-

dovectors that may be expressed as

12As tensors, ellipticities have been treated near identically to pseudovectors since at least Kaiser
[10], however the complex number formalism wasn’t explicitly used there.
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v⃗ = v1 + iv2 = veinφ (2.31)

where v1 = vcos(nφ)

and v2 = vsin(nφ)

where v, φ, and n are the vector magnitude, direction, and spin. A pseudovector’s

spin reflects its rotational symmetry; a pseudovector with spin n requires a rotation of

2π
n to be mapped back onto itself. Therefore an ordinary vector is spin one, requiring a

full circle rotation before pointing back onto it’s initial direction. However the vector

describing the magnitude and orientation of an equilateral triangle is spin three, as

any rotation of 2π
3 will map the object back onto itself. A spin zero object is a scalar.

The complex conjugate of a vector is simply another vector given by

v⃗∗ = v1 − iv2 = ve−inφ (2.32)

The vector multiplication of two vectors u⃗ and v⃗ is the multiplication of the

complex numbers used to express them,

v⃗u⃗ = (v1u1 − v2u2) + i(v2u1 + v1u2) = uvei(nvφv+nuφu). (2.33)

The dot product of two vectors in this notation works exactly like the dot product

of two ordinary vectors in any other notation. Namely

v⃗ · u⃗ = (v1u1 + v2u2), (2.34)

the result being a real number. Equivalently, a dot product can be expressed as

v⃗ · u⃗ =
1

2
(v⃗u⃗∗ + v⃗∗u⃗) , (2.35)

an expansion that will be used often in this paper to simplify expressions. Thus, any
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vector taken in dot product with itself, or in multiple with its complex conjugate,

will be expressed as its magnitude squared, in agreement with equations (2.34) and

(2.35): v⃗ · v⃗ = v⃗v⃗∗ = v2. However, a vector squared and its magnitude squared are

very different, see equation (2.33), and so vector quantities in this paper will always

be denoted as such, and all quantities not denoted as vectors may be assumed to be

scalars.

2.7.2 Partial derivatives

Partial derivatives with respect to a vector are also vectors and will be denoted by a

vector sign.

A vector first derivative is given by

∂⃗

∂θ
=

∂

∂θx
+ i

∂

∂θy
(2.36)

and operates on a scalar, converting it into a spin one vector. The vector first deriva-

tive is the gradient operator ∇⃗ and may be written and referred to as such.

There are two second derivatives, one which is spin zero and will map a scalar

onto another scalar, and one which is spin two and will map a scalar onto a vector.

The spin zero second derivative is the product of the first derivative (spin one) and its

complex conjugate (spin negative one). The spin two second derivative is the vector

product of the first derivative and itself. They are respectively expressed as

∂2

∂θ2
=

(
∂⃗

∂θ

)∗
∂⃗

∂θ
=

∂2

∂θ2x
+

∂2

∂θ2y
(2.37)

∂⃗2

∂θ2
=

∂⃗

∂θ

∂⃗

∂θ
=

(
∂2

∂θ2x
− ∂2

∂θ2y

)
+ i

(
2
∂

∂θx

∂

∂θy

)
. (2.38)

Extensions of the same principles can be made for third, fourth, and higher order

derivatives. The spin one and spin three vector third derivatives which are needed to

derive the F- and G-flexions from the lensing potential are
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∂⃗3

∂θ3
=

∂⃗

∂θ

∂⃗

∂θ

∂⃗

∂θ
=

(
∂3

∂θ3x
− 3

∂3

∂θx∂θ2y

)
+ i

(
3

∂3

∂θ2x∂θy
− ∂3

∂θ3y

)
. (2.40)
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Chapter 3

A failure to measure galaxy-galaxy

flexion in Abell 1689, and the role

of shape noise at z ∼ 1

3.1 Abstract

We set out to measure halo truncation in the cluster galaxies of Abell 1689 using

galaxy-galaxy lensing flexion. While we were able to reproducibly measure spin-1

and 3 galaxy perturbations for objects down to 26th magnitude in our wide field

images taken with Megacam on the Magellan Clay telescope, our measurement of a

galaxy-galaxy lensing signal was thwarted by the intrinsic shape noise in our source

galaxy population. We detail in this work how we detect and measure flexion for the

galaxies in our images using DoPHOT, compensate for telescope aberrations which

mimic gravitational flexion in our data, and ultimately find a null result for galaxy-

-galaxy flexion. We then analyze the inherent flexion-like shapes of galaxies in the

local universe and in the population of source galaxies at z ∼ 1. We find that the

standard deviations in the intrinsic dimensionless flexion vector components of Abell

1689’s source galaxy population are approximately 0.101 for F-flexion and 0.126 for

G-flexion when measured in the r’ filter. These deviations are much larger than those
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found for the local population, 0.028 and 0.031 for F- and G-flexions respectively.

Based on the lessons learned from the observational shortcomings which led to the

null measurement, we recommend that future attempts to measure galaxy-galaxy

flexion in clusters use yet deeper, redder, and possibly space based, imaging, and a

wider variety of filters than we employ here.

3.2 Introduction

Measuring flexion is a tricky business. Flexion was first introduced to the lensing

community as the lensing octupole moment by Goldberg & Natarajan [26]. Goldberg

& Bacon [24] and Bacon et al. [2] gave flexion its current name, and expanded upon it

as a complement to shear for cluster lensing, galaxy-galaxy lensing, and cosmological

lensing measurements. Since these initial works, many authors have suggested how we

might best measure lensing flexion, by using shapelets [45, 25], Higher Order Lensing

Image Characterizations (henceforth HOLICs; Irwin & Shmakova 32, Okura et al.

52), or the Analytic Image Method (henceforth AIM; Cain et al. 15). Others have

expanded on how we might best use flexion, either in tandem with shear to constrain

mass profiles and substructure in clusters [53, 1], or for galaxy-galaxy lensing studies,

especially to measure eccentricities in galaxy halo profiles [28, 20, 19, 21]. However,

observations of flexion have not kept up with this plethora of theory. Goldberg &

Bacon [24] measure flexion in the Deep Lens Survey and two HST clusters. Velander

et al. [65] analyze flexion in the HST Cosmic Evolution Survey (COSMOS) fields. All

other measurements of flexion in unsimulated data have been on the cluster Abell

1689 [25, 37, 52, 38, 15].

For a summary of the flexion formalism, we refer the reader to Goldberg & Ba-

con [24] or any of the authors cited in the previous paragraph. Qualitatively, weak

lensing flexion results in the apparent spin-1 and spin-3 distortions (lopsidedness and

triangularity) of galaxy images, just as shear manifests as the elongation (spin-2 dis-

tortion) of galaxy images. The final image shape of a lensed galaxy will therefore

be at least as complex as the unlensed galaxy shape, and any perfect representation
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of the imaged galaxy requires either: (a) perfect knowledge of the unlensed galaxy

shape and the lensing potential, or (b) the ability to completely model any random

galaxy shape. Fortunately, perfect representations of galaxies are not needed in order

to capture the effects of weak lensing flexion, and learn from it.

Even though galaxy shapes are complex, flexion in galaxies can be well-captured

by simple measurements or simple models. As demonstrated by Goldberg & Leonard

[25], Okura et al. [51, 52], one can characterize flexion in galaxy images by measuring

a handful of low order image moments. Alternately, one can capture the essence of

galaxy shapes and their flexions by fitting models of relatively few, low-order shapelets

[7, 54, 55]. Goldberg and & Bacon’s initial flexion measurements were made using

shapelets. Massey et al. [45] refined the method, and Leonard et al. [37] and Velander

et al. [65] successfully used shapelets to measure cluster flexion in Abell 1689 and

galaxy-galaxy lensing flexion in the COSMOS fields, respectively.

There is reason to believe that one can model galaxy shapes even more simply and

still capture the effects of gravitational lensing. The 2008 and 2010 GRavitational

lEnsing Accuracy Testing challenges, GREAT08 and GREAT10, [13, 35] demonstrate

that simple model fitting methods can do quite well in capturing the shear lensing

signal. Cain et al. [15] successfully measures lensing flexion in Abell 1689, using

the AIM method of fitting a simple lensed elliptical Gaussian model directly to the

imaged source galaxies.

Notwithstanding these successes, efforts to measure flexion have encountered var-

ious hurdles over the last decade. Viola et al. [66] first quantified shear-flexion mixing

and the detrimental effect it can have on the HOLICs measurement technique. Levin-

son [40] independently found and quantified the effect of the shear flexion mixing on

the AIM method, and also discovered additional corruptions of the spin-1 and spin-3

flexion measurements that arise in the presence of atmospheric smearing and tele-

scope aberrations. Fortunately, these corruptions of the spin-1 and spin-3 flexion can

be accounted for in either method.

On top of shear-flexion mixing, scatter in intrinsic galaxy shapes, measurement

(photon) noise, and pixelization all affect flexion measurements. Goldberg & Bacon
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[24], Goldberg & Leonard [25] put the scatter in the inherent magnitudes of the unit-

less flexion-like asymmetries of galaxies at ∼ 0.03, where the flexions are rendered

dimensionless by the galaxies’ semi-major axes. While this flexion scatter is 1/10th

of the shear scatter, it is still not insignificant when compared with the weaker grav-

itational flexion signal. Okura et al. [52] place the dispersion of the unitful F-flexion

vector components in the background galaxies of Abell 1689 higher, 0.112/′′, corre-

sponding to a standard deviation in the dimensionless flexion vector components of

∼ 0.146. Rowe et al. [56] create a simulation of flexed HST data specifically to address

the measurement challenges for flexion. Their results suggest that photon noise will

be the limiting factor to flexion measurements, as the flexion signal degrades quickly

with decreasing signal-to-noise as compared to shear. They additionally find that the

recoverable flexion signal also drops off for objects of smaller angular size, i.e. with

size and resolution.

In addition, the Rowe et al. [56] simulations address an often under-appreciated

aspect of flexion measurement, crowded fields and overlapping objects. Rowe et

al. [56] use SExtractor [8] to extract and deblend their simulated HST images, and

note in particular that “significant numbers of objects are being affected by noise

in the determination of their properties at the SExtractor detection and deblending

stage.” Cain et al. [15] note similar difficulties in their analysis of cluster lensing

in Abell 1689. They use SExtractor in two passes, one to detect large obejcts and

known cluster members, and a second pass, to detect potential background source

galaxies, after removing all objects found in the first pass. Even so, they find that

corruption of dim objects by nearby neighbors accounts for many of their rejected

flexion measurements.

Despite these known obstacles to flexion measurements, we sought to measure

galaxy-galaxy flexion for cluster galaxies, using ground-based observations,1 in order

to chart galaxy halo truncation as a function of position in the cluster. During cluster

formation, mass is tidally stripped from the outer parts of the non-BCG cluster

1Ground based observations are less expensive than space based observations, but extracting the
flexion signal from the ground is more difficult. Just how much more difficult is a lesson we learned
from our efforts.
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members. This tidal stripping results in galaxies whose mass profiles are truncated

at small radii. Numerical simulations of cluster formation by Limousin et al. [43]

predict that this stripping is most severe for the innermost cluster members and that

the half mass radii of galaxies in clusters will trend upwards by roughly a factor of five

between 0.3 and 3Mpc from the cluster center. The simulations predict that the dark

matter is preferentially stripped before the luminous matter, so galaxies of comparable

luminosity in different parts of the cluster can be compared more or less directly to

infer halo stripping. As gravitational flexion is more sensitive to substructure and

small scale variations in mass than shear, but can be used to probe a wider field than

strong lensing, it is an ideal tool for halo truncation measurements in clusters.

Previous successes with strong and weak lensing suggested that we might also

be successful. Natarajan et al. [50] combine strong and weak lensing measurements

in five clusters to find evidence of truncation in subhalo substructure. Halkola et

al. [27] use strong lensing measurements in Abell 1689, a cluster rich with multiply

lensed systems [42], to measure the halo truncation of the innermost cluster members

in that system. They find that “the cluster galaxy halos in Abell 1689 are strongly

truncated” as compared to the halos of field galaxies. Limousin et al. [41] measure

halo truncation in galaxies using gravitational shear. Notably, this measurement

is made using ground based data. Encouraged by these measurements and by the

cluster flexion measured on Abell 1689 by Goldberg & Leonard [25], Leonard et al.

[37], Okura et al. [52], Cain et al. [15], Leonard & King [38], we set about measuring

galaxy-galaxy flexion in this system.

Ultimately, we failed in our efforts to measure galaxy-galaxy flexion in Abell 1689.

This failure was mostly due to our underestimation of shape noise in galaxies at z ∼ 1.

We were also hindered by a lack of understanding of the scale and true nature of the

hurdles involved in a galaxy-galaxy flexion measurement. In §3.3 of this paper, we

outline our data, methods, and noise laden result. We then analyze why we failed

to measure galaxy-galaxy flexion. In §3.4 we first establish those areas in which we

did not fail: (a) in robustly measuring image shape distortions and (b) in correctly

compensating for image aberrations in our flexion predictions. We then analyze the
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areas where we did not fully anticipate the challenges and therefore fell short: (§3.5)

intrinsic galaxy shape noise, (§3.6) required signal-to-noise for flexion measurements,

and (§3.6) required ranges of filters needed for photometric redshift determination.

In the process of understanding these failures, we make measurements of the spread

of intrinsic flexion in the source population behind Abell 1689, and map the increase

in uncertainty of the flexion measurement with decreased signal-to-noise. In §3.7

we look more closely at the 20 systems for which we would expect to see the most

galaxy-galaxy gravitational lensing flexion, and confirm our non-detection. In §3.8,

we provide flexion measurements for a number of lensed galaxies in our field so that

future works may compare their measurements to our own. We conclude in §3.9, with

a breakdown of how one might, with the advantage of hindsight, succeed in measuring

galaxy-galaxy lensing flexion in clusters.

3.3 How we set out measuring galaxy-galaxy flex-

ion

3.3.1 Target selection

Abell 1689 is an ideal observational target for measuring halo truncation in galaxies

using flexion. In brief, Abell 1689 is among the richest in Abell’s catalog, with

the largest Einstein ring (in arcseconds), and with many massive galaxies to act

as lenses. The cluster is relatively low redshift (z = 0.18) and therefore has an

abundance of z ∼ 1, relatively bright background sources. It is relatively relaxed

and has been shown to contain inner galaxies with more truncated halos than field

galaxies [27]. The inner regions of the cluster have been imaged extensively, allowing

for mass models of the cluster from both strong and weak lensing studies (Broadhurst

et al. [14], Limousin et al. [42], Halkola et al. [27], and many, many others). SDSS

overlap with the field provides easy photometric calibration, and publicly available

spectroscopy from Frye et al. [22], Houghton et al. [30] allows for the calibration of

a Faber-Jackson relation for the cluster. Last, Abell 1689 is literally the poster child
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for flexion studies [25, 37, 52, 38, 15], so any flexion measurements from this study

can be weighed against the existing literature.

3.3.2 Observations

Megacam [48] on the Magellan telescope Clay is almost certainly the best instrument

on the ground with which to observe the variation of flexion effects across a cluster of

galaxies. As noted in Levinson [40] and detailed further below, flexion measurements

require small and stable PSFs. Moreover, measurements of the variation in halo

truncation across a cluster require a field large enough to capture the entire cluster, so

that comparisons can be made between a cluster’s center and edge galaxies. Megacam

has a 25′×25′ field of view with 0.′′08 pixels, which we binned by 2x for our observations

of Abell 1689. During our run in November 2010 with this instrument, we obtained

images as good as 0.′′38 (FWHM). These varied by only ±0.′′03 (full range) across its

half degree field.2 High et al. [29] are able to use the small, stable PSF provided

by Megacam on Clay to measure weak lensing shear with rms ellipticity residuals of

better than 0.005 for five galaxy clusters.

Since a small PSF is critical to the flexion measurement, one might question

why we are observing from the ground rather than with HST. While HST does not

suffer from atmospheric effects, and thus has a much smaller PSF than ground based

imagers, Megacam has a substantially larger field of view.3 Additionally, observing

from the ground allows us to test the feasibility of ground-based flexion measurements

in anticipation of the several new ground-based wide-field surveys that propose to

make detailed lensing measurements – in particular the recently initiated Dark Energy

Survey (DES) on the Blanco Telescope, the Kilo-Degree Survey (KiDS) with the VST,

and ultimately the Large Synoptic Survey Telescope (LSST).

We chose to observe in three filters: i’ and r’ for measuring flexion in the galaxies,

and g’ for color discrimination of the cluster and source galaxies. We initially chose

2Unfortunately Abell 1689 was not observable during this November run. Our best images on
Abell 1689 were 0.′′48 (FWHM) in r’.

3MIT also has guaranteed 10% time on Magellan, giving us a foot in the door for longer and
repeated observations.
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observations times to achieve similar depths in each filter (i’ has less throughput

and a higher expected background than r’, but a superior PSF). However, the i’

band images suffer from severe fringing. In order to be able to remove this fringing,

we were required to dither our exposures, thus relinquishing control of the (field-

dependent!) PSF. Additionally, due to the size of the brighter galaxies and saturation

on the brighter stars, we were never able to perfectly flatten exposures in the i’ band.

Therefore, after our first observation run, we switched to observing primarily in r’.

While we sought to obtain as deep data as was possible, the times of year for

which Megacam was available on Clay restricted how often and for how long we could

observe a given field.4 We were able to obtain 10.75 total hours on the cluster, (355

mins in r’, 210 mins in i’, and 80 mins in g’), 9 hours of which was with seeing better

than our threshold of 0.′′75. Our data are summarized in table 3.1.

Date
# exposures
g’ i’ r’

notes

2011 May 3 16 8
2012 April 8 2 10 Used for g’ only. > 0.′′7 seeing.
2013 June 5 24 53 Best data. 0.′′48 FWHM

Table 3.1 Observations of Abell 1689. All science exposures are 300s.

3.3.3 Reduction, data rejection, coaddition, and weighting

Data from 2013 June were reduced at the Harvard Center for Astrophysics (CfA)[48].

The CfA’s Megacam reduction pipeline includes overscan correction, bias correction,

flat fielding with twilight flat exposures, fringe correction for the i’ filter, and an

illumination correction when possible. The 2011 May and 2012 April data were

reduced with IRAF [63], using the MSCRED [64] and MEGARED [48] packages.

These images underwent the same overscan correction, bias correction, flat fielding,

and i’ filter fringe corrections as the 2013 June data.

4Megacam at Magellan requires an f/5 secondary mirror to be mounted on the Clay telescope,
blocking the default f/11 secondary mirror. The overhead of installing and then removing such a
large instrument and its requisite secondary mirror necessitates the allocation of pre-scheduled f/5
observing blocks agreed upon by and divided between the members of the LCO consortium. All of
our observations with Megacam had to fit within the windows that the camera was on the telescope.
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After basic reduction, we performed a simple analysis of the positions and zeroth

through second moments of bright stars in each chip of each image, in order to

determine the approximate transparency, seeing, and linear position offset of each

image. We then used these parameters to estimate the quality of each image and

fitness for inclusion in the final coadded images. We use the following metric to

evaluate image quality:

quality =

(
0.′′7

FWHM

)2

(transparency loss)

(
1

1 + uncertainty in shift (pixels)

)
.

(3.1)

The first term degrades images taken in poor seeing conditions, as measurable

shear dilutes as the second power of seeing [40]. The flexion signal will actually dilute

as the third power of seeing, but here we are being generous to the lower quality

images. We use 0.′′70 as a reference point for the PSF quality.

The second term will down-weight images taken in low transparency conditions.

The scale factor is an approximation of the signal-to-noise degradation in dim galaxies

due to any lack of transparency. Assuming that dim galaxies of interest for flexion

studies will have peak central intensities of approximately 1/2 the sky intensity, we can

estimate the signal-to-noise loss from transparency from the corrected stellar central

intensities in each image, I, and the max stellar central intensity, IMax, following:

I = Imeasured

(
FWHMmeasured

0.′′7

)2

(3.2)

signal-to-noise =
√
gain

I√
I + sky

(3.3)

(
signal-to-noise

signal-to-noiseMax

)

fixed seeing

=
I

IMax

√
1 + sky/IMax√

I/IMax + sky/IMax

transparency loss =

(
signal-to-noise

signal-to-noiseMax

)

dim galaxy, fixed seeing

=
I

IMax

√
3√

I/IMax + 2

(3.4)

Here, the subscript Max denotes the observation with the brightest scaled stellar
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intensity. As the intensity of the stars will drop by the same ratio as the intensity of

the galaxies, the ratio of the intensity of stars of the brightest exposure to the given

exposure can be used with equation 3.4 to compute the signal-to-noise loss due to

decreased transparency of the galaxies in the given exposure.

All of the images of Abell 1689 were taken under nearly photometric conditions,5

so the transparency loss term varies very little from image to image.

The third component of the quality metric gauges how well the stars align between

a given image and the reference image on which the stellar positions were initially

measured. Images whose various stars predict differing linear field offsets from the

reference image are more likely to be rotated with respect to the reference or have

a significantly different distortion pattern. Coadding these rotated or differently dis-

torted images with the reference frame would significantly degrade the quality of the

final output due to the misalignment of edge objects. As any deviation between stars

in their proposed linear image offsets will increase the uncertainty in the averaged,

optimal image shift, we use the uncertainty in the offset as a metric of the image’s

fitness for coaddition with the reference.

The best images in each filter are grouped by their quality, and coadded using a

weighted average of the data. We chose not to resample the images when coadding

them, as resampling will corrupt the PSF and apparent shapes of the galaxies. In-

stead, images are shifted linearly by integer pixel amounts in order to optimally align

stars across the field, and then coadded by pixel. Consequently, we only coadd images

with similar field rotations, distortion patterns, and PSF sizes, i.e. those with large

quality metric values. Images which are deemed poor by this metric, (< 0.40 for i’

and r’), are discarded and not used to create the final coadded images.

Weight images are additionally generated. A friends of friends algorithm modified

from ‘image-object-extractor’ [39] is used to identify all pixels associated with sat-

urated objects and objects larger than the BCG, and these pixels are assigned zero

weight in the weight images. By masking saturated and very large objects, we enable

5There were some clouds on the nights of the 2011 May observations, but none observable during
the observations of Abell 1689. As a caution, we coadd and calibrate the images from this run
separately from the images in the other runs.
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faster and more robust image analysis using DoPHOT in the following step.

We can cleanly coadd 215 mins of exposures in the r’ filter and 80 mins in the i’

filter. The other data in i’ and r’ have more degraded PSFs. We choose to divide the

r’ and i’ data into 105 min and 110 min, and 45 min and 35 min, coadded images in

order to further isolate the best data and also to have a second set of images in each

filter with which to verify that our measurements are reproducible. The PSFs for the

two r’ coadded images have radially averaged FWHMs of 0.′′50 and 0.′′58. These values

are computed using the second moments of stars on the chip containing the cluster

center. The corresponding FWHMs in the two i’ filters are 0.′′54 and 0.′′56. In order to

obtain photometric data on the brightest objects, we retain some of the lesser quality

r’ images, in which fewer objects are saturated. We coadd these degraded images

separately from the higher quality ones. Table 3.2 contains a list of the final coadded

images used for the rest of this analysis.

Image total depth FWHM (′′) avg. quality
g’ 1 35 mins 0.′′86 0.203
g’ 2 30 mins 1.′′06 0.168
i’ 1 45 mins 0.′′54 0.466
i’ 2 35 mins 0.′′56 0.466
r’ 1 105 mins 0.′′50 1.574
r’ 2 110 mins 0.′′58 1.174
r’ 3 25 mins 0.′′68 0.846
r’ 4 30 mins 0.′′84 0.455

Table 3.2 Coadded images of Abell 1689. While we perform the same analyses on
all filters, the first two coadded r’ images and the first two coadded i’ images have
the smallest PSFs and are therefore the best images for measuring flexion. The third
and fourth r’ images and the g’ images are mostly useful for photometry, though they
may occasionally yield flexion measurements as well. The PSF FWHMs shown here
are computed for the chip containing the cluster center.

3.3.4 DoPHOT object extraction and shape fitting

In anticipation of the effects of object contamination in crowded fields, and embracing

the notion that one might do well-with a simple model, we employ DoPHOT [58] to

analyze the galaxies in Abell 1689. DoPHOT is a model fitting photometry package
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initially designed to measure accurate stellar photometry in crowded star fields. Af-

ter some modification, we have optimized it for galaxy fields. DoPHOT will detect

objects above a specified noise threshold, classify those objects as stars, double stars,

galaxies, or artifacts (e.g. cosmic rays), fit a simple model to the objects, and subtract

that model from the images so that faint neighbors can be detected in the regions sur-

rounding brighter objects. DoPHOT performs the aforementioned object detection

autonomously and iteratively by brightness, refitting each object with every iteration

so that object models can be improved as their neighbors are better subtracted from

the image. DoPHOT additionally maintains a noise file for the image, keeping track

of those objects which it subtracts, so that the noise estimate in model determination

is tractable.

Following the work of Levinson [40], the galaxy model used by DoPHOT is that

of an elliptical Gaussian galaxy lensed by both shear and gravitational flexion and

convolved with an atmospherically smeared, asymmetrically aberrated PSF:

Ie(θ⃗) = I0exp

(
− 1

2α2

(
(1 + g′2)θ2 − 2

(
g⃗′ · θ⃗2

)))
× (3.5)

[
1+

1

4
√
2ln(2)α3

[
3
(
F⃗ ′ · θ⃗

)
θ2 +

(
G⃗′ · θ⃗3

) ]]
.

A detailed explanation of the vector notation used here can be found in the appendix

of Levinson [40].

In the above 11 parameter model, θ⃗ denotes the position of the galaxy, I0 is the

galaxy’s central intensity, and α is the observed Gaussian width of the galaxy, includ-

ing the broadening effects of atmospheric smearing. A constant sky level is also fitted

with the galaxy parameters, though it is omitted in the equation above. Dimension-

less spin-1, 2, and 3 galaxy asymmetries, denoted by F⃗ ′, g⃗′, and G⃗′, comprise the last

six free parameters in the model. While these terms are traditionally associated with

gravitational shear and gravitational F- and G-flexions, apparent galaxy asymmetries

are generally caused by telescope aberrations and inherent galaxy shapes in addition
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to gravitational lensing. In the special case where first order gravitational shear and

flexions are they only origins of asymmetry in the galaxy, and there is no atmospheric

smearing, the fitted dimensionless parameter g⃗′ is equal to the gravitational shear,

and the fitted dimensionless parameters F⃗ ′ and G⃗′ can be related to the dimensioned

shear derivatives ∂⃗∗γ⃗ and ∂⃗γ⃗ following

F⃗ ′ =
θ1/2
1− κ

∂⃗∗γ⃗ =

√
2ln(2)α

1− κ
∂⃗∗γ⃗ (3.6)

G⃗′ =
θ1/2
1− κ

∂⃗γ⃗ =

√
2ln(2)α

1− κ
∂⃗γ⃗,

where θ1/2 is the observed half light radius of the galaxy, and κ is the gravitational

convergence. Here, in absence of atmospheric smearing, the observed galaxy half

light radius is the unsmeared, but still gravitationlly magnified half light radius of

the galaxy. The factor of 1
1−κ converts the shear derivatives into reduced flexions [5].

Henceforward, when we refer to gravitational flexion in this work, we will be

referring to the dimensionless quantity in equation 3.6, not the dimensioned shear

derivative. Moreover, whenever we refer to a ‘flexion’ caused by any source, i.e. aber-

rations, mixing, inherent galaxy shape, or gravitational lensing, we will be referencing

the dimensionless quantity.

In contrast to the model presented in Levinson [40], the shear and intrinsic elliptic-

ity in the DoPHOT model given in equation 3.5 are retained in the exponential term,

rather than expanded out. The retention of the shear term in the exponent yields a

model with a truer shape to that of an intrinsically elliptical galaxy or gravitationally

sheared object. However, the flexion terms have been Taylor expanded out of the

exponential, for both consistency with Levinson [40] and to avoid erroneous peaks in

the model that may occur in the limit of large flexion and large spatial separations

from the galaxy center.

In order to more facilitate more robust convergence of the model on the data, the

exponential in equation (3.5) is implemented as an 11th order pseudo-Gaussian.6 In

6Not to be confused with the 11 parameter model. The expansion of the exponential function
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the pseudo-Gaussian approximation, exp[−z] is expanded as (1 + z/2! + z2/3!... +

z11/11!)−1. A second order pseudo-Gaussian approximation is used in the initial

versions of DoPHOT [46, 58].7 Unlike a traditional Taylor expansion of a nega-

tive exponential, the pseudo-Gaussian approximation has the advantage of gradually

approaching 0 when far from 0, rather than approaching ±∞. The 11th order ap-

proximation used here is very close to the unapproximated exponential.

This 11 parameter model will sometimes fail to converge on very dim objects for

which the signal-to-noise is insufficient to support 11 free parameters. It will also

sometimes fail on very well-resolved objects, where the object’s substructure renders

it sufficiently distinct from the model. In these cases, DoPHOT will attempt to fit

the object with a less complex, seven parameter elliptical pseudo-Gaussian model.

This model is identical to that presented in equation 3.5, however the flexion terms

are fixed to zero. For the dimmest objects and objects otherwise unable to converge

on the 11 or 7 parameter model, an even simpler, four parameter star model, varying

only the position, sky and intensity levels of the elliptical pseudo-Gaussian, is used

to fit the object. This failure mode still allows the object to be detected, flagged

as unusual, and crudely subtracted from the image so as not to corrupt other image

measurements. It also yields usable photometry for those cases where the object is

star-like in shape.

For the 160′′x360′′ chip adjacent the cluster center in the 105 minute coadded

r’ image of Abell 1689, DoPHOT finds 1205 objects when searching down to 5σsky

above the sky level. Of these found objects, DoPHOT is able to fit 834 to the full,

11 parameter, flexed galaxy model. Of the remaining objects, 269 are successfully fit

to the 7 parameter model.

DoPHOT could detect more objects and produce a cleaner residual image if we

does not add any free parameters to the model.
7The second order pseudo-Gaussian approximation converges much more rapidly and robustly on

data than an unapproximated Gaussian function. However, the second order expansion is insufficient
to faithfully and unbiased-ly reflect the asymmetries imposed upon Gaussian galaxy images by
flexion. An 11th order pseudo-Gaussian expansion (or greater) is required. We kept the 11th order
pseudo-Gaussian approximation rather than reverting to an unapproximated Gaussian partially
out of inertia, and also in recognition that the expanded function will generally fit the data more
effectually than the exponential.
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set the detection floor closer to the noise limit. However, we chose to set a very

conservative detection floor as the conservative floor (1) lowers the number of objects

which are found, but are of limited utility for flexion analysis as they are too faint

for an 11 parameter model to be fitted to them, (2) lowers the chance of detecting

false objects in the residuals of the brightest galaxies, thus corrupting these galaxies’

photometry, and (3) allows DoPHOT to conduct a speedy analysis of each image, as

it doesn’t spend undue time on the aforementioned false or dim objects. In §3.6,

we more closely examine the percentage of all objects for which we can retrieve

meaningful flexion measurements and find that for the dimmest objects identified

above this detection floor, we can only measure the flexion signal at any confidence

for < 15% of the objects. Detecting dimmer objects therefore would not gain us very

much.

Fig. 3-1 shows a representative region at the edge of the chip containing the cluster

center before and after DoPHOT has subtracted out models for each of the objects.

DoPHOT is able to successfully find, fit, and subtract out excellent models for most

of the objects brighter than the imposed 5σsky detection limit. The saturated stars

are masked out before fitting (i.e. assigned zero weight in the noise file) and therefore

not identified or modeled by DoPHOT. The brightest, most morphologically resolved

galaxies have a characteristic ‘bulls-eye’ residual, indicating that the cuspiness of

the object is not captured by the Gaussian model- a Sérsic would likely do better.

However, the overall asymmetry (ellipticity or flexion-like shape) of the objects is still

captured in an unbiased way [15] by the elliptical Gaussian plus flexion model.

3.3.5 Matching objects observed in multiple filters

Object detections in different coadded images are matched with the help of SCAMP

[9] and wcsutil [59]. SCAMP and BIG-Macs-calibrate [34] analyses of the different

coadded images provide relative photometric offsets between the coadded frames and

absolute photometric zero-points for each filter. Aperture photometry provided by

DoPHOT is averaged between redundant measurements within each filter, accounting

for the relative photometric offsets. Measurements of galaxy half light radii, shear,
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Figure 3-1 Before and after images of DoPHOT’s analysis of a 57′′x92′′ region centered
on (13h11m20s.0, −01◦20′′55.′′8), just below the cluster center. The image has a coad-
ded depth of 105 minutes in r’. The right image is a copy of the left, minus DoPHOT’s
best fitted models for all found objects. The two saturated stars are masked out prior
to DoPHOT’s analysis and therefore are not modeled or subtracted from the image.
The brightest, most morphologically resolved galaxies generally have a characteristic
‘bulls-eye’ residual, indicating that the cuspiness of the object is not captured by the
Gaussian model. One such bright galaxy, to the right and above the lower left satu-
rated star, appears to be un-modeled entirely. However this is a trick of the galaxy’s
morphology and the scaling used to display the image. The galaxy has a very sharp
and bright core which DoPHOT models and subtracts from the image. However, the
galaxy’s outer parts are not captured by this model, resulting in a bright residual
image. Had we set the noise floor for detecting objects lower, DoPHOT would likely
have fit this residual image as a separate low surface brightness galaxy. However, this
double detection of the galaxy would have negatively impacted our photometry.
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and flexion in each image are NOT averaged, as they will in general differ with the

image quality and aberrations, see 3.3.8. Instead, all of the shape measurements for

each galaxy are retained along with the associated PSF of the image and chip from

which the measurements were taken.

3.3.6 Pairing sources and lensing galaxies: color-magnitude

selection

We use color-magnitude selection to separate the cluster members and potential back-

ground and foreground galaxies in the field. We then implement a magnitude cut on

the non-cluster galaxies in order to isolate background galaxies from the foregrounds.

Once the populations of cluster members and background source galaxies is deter-

mined, we search for background source galaxies in the region around each cluster

member. Any background galaxies found within the influence of a lensing cluster

member are ‘paired’ to that lens. Once a galaxy-galaxy lensing pair is established, all

subsequent lensing predictions are made assuming that the background source galaxy

is lensed by the cluster member galaxy to which it is paired.

For a clean galaxy-galaxy lensing measurement required to measure the radial

profile of the lensing galaxy’s halo, background source galaxies should ideally be

influenced by one lensing galaxy only.8 We assess the influence of potential lensing

galaxies by the strength of their imposed F-flexion signal, which falls off as the square

inverse of the radial separation of the lensing foreground galaxy and background

source galaxy. If a background galaxy is found to be influenced by three or more

possible lensing galaxies, it is discarded from further analysis. If the background

galaxy is found to be influenced by two lensing galaxies, we evaluate the gravitational

pull of each lensing galaxy at the position of the source. If both lensing galaxies

have nearly equal gravitational influence on the background source galaxy, the source

is discarded. However, if one lensing galaxy has significantly more influence on the

source than the other, (i.e the SIS predicted flexion caused by lens A is at least

8A lensing galaxy, of course, may lens many sources
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12x greater than the SIS predicted flexion caused by lens B), then the background

source galaxy is paired to whichever lensing galaxy has greater gravitational influence.

Background galaxies influenced by one lensing galaxy only, are naturally paired to

that lensing galaxy.

Because we are interested in galaxy-galaxy lensing flexion, and must pair all iden-

tified potential background source galaxies with cluster member lensing galaxies, we

walk a fine line when identifying cluster member galaxies and background galaxies.

It is imperative to identify the cluster members (potential lensing galaxies) correctly,

neither erroneously excluding too many cluster members from the list, nor overpop-

ulating the cluster member list with foreground objects and background galaxies.

The first danger of being too stingy in our cluster member selection is straightfor-

ward: if we fail to identify potential lensing galaxies, our statistics suffer and we

have fewer lensing systems with which to beat down the intrinsic shape noise. More

detrimentally, if we fail to identify a lensing cluster member galaxy, but do manage

to identify a background galaxy that it lenses, that background source may be er-

roneously paired to another, weaker lensing galaxy that just happens to be nearby.

This mistakenly matched source/lens pair throws an essentially random data point

into our galaxy-galaxy flexion analyses.

The danger of being too generous in our selection of cluster members is similar:

if there are too many erroneous objects in our list of cluster members, the odds that

a background source galaxy will be paired with a random, unassociated foreground

or background object jumps.

Being too generous or stingy in the selection of potential background galaxies

carries the same detriments: too few galaxies and we will not have enough objects

for any statistics, too many false background galaxies and we will have too many

blatantly incorrect measurement predictions.

Therefore, when selecting cluster members and background source galaxies in

color-magnitude space, we must be cautious. The ‘red-and-dead’ elliptical galaxies

in a cluster will tend to lie along a straight line in color-magnitude space [10, 11].

However, foreground or background galaxies may lie near or on the cluster line, and
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less evolved cluster member galaxies may lie slightly off of that cluster line. Gladders

et al. [23] use galaxy morphology and restrict their sample to those galaxies with high

central concentration in order to emphasize the cluster line in their higher redshift

Abell clusters. However, visual assessment of each potential cluster member is not

feasible for this work. Instead, in order to minimize the contamination of background

and foreground galaxies in the lens population and cluster members in the background

source galaxy population, we use a narrow swath around the cluster line to select

cluster members, and designate regions close to this line in color magnitude space

as ambiguous, i.e. objects which fall into those regions of color-magnitude space are

neither selected as cluster members nor as background source galaxies. In order to

improve the chances of cluster members to fall within the narrow cluster line, we

insist that all objects be detected in all three filters,9 and use two colors (g’-r’) and

(g’-i’) for object selection. Colors are determined using aperture magnitudes rather

than fit magnitudes as the lensing galaxies often have visible substructure that is not

entirely captured by the model.10 If an object falls onto the cluster line in either color-

magnitude plot, it is categorized as a cluster member and potential lensing galaxy. If

an object falls far enough from the cluster line, in either color-magnitude plot, so as

to provide some certainty that it is not a cluster member, it is designated as a possible

background source galaxy.11 Finally, if the object is designated as ambiguous in both

colors, it is neither designated as a lensing galaxy nor a potential background source

galaxy. This last criterion is wasteful of potential lensing and source galaxies, but

necessary to avoid contamination. The color-magnitude plots are shown in figure 3-2.

As a diagnostic for the color-magnitude selection of cluster members and sources,

we examine the spatial distributions of the found cluster members and potential

background galaxies. We expect that the regions closest to the cluster center will

contain a higher density of cluster members than at the field edges. In contrast, the

9The object does not need to be detected in all of the coadded images, but it must be detected
in at least one of the images in each filter.

10Even allowing for galaxy substructure, the fitted magnitudes provide excellent relative photom-
etry within each image. However, variations in the PSF from image to image render the fitted
magnitudes variable between images. Therefore we use aperture photometry to compute colors from
our g’ data taken in poor seeing conditions and our better r’ and i’ data.

11Although it might possibly be a foreground galaxy.
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Figure 3-2 Color-magnitude diagrams used for selection of cluster members and background source
galaxy candidates. Colors are computed using aperture magnitudes which are computed from the
images after models for all neighboring objects have been subtracted off. The plot contains galaxies
only; objects small enough to be designated as a star in any filter are discarded prior to plotting. In
each image, the black line traces the best found cluster line. Red lines enclose the region containing
cluster members. This region is intentionally asymmetric, including more objects bluer than the
“red and dead” objects on the cluster line, and fewer redder objects. Objects outside the blue
lines are considered as potential background source galaxies. Objects between the red and blue
lines are neither cluster members nor potential background sources unless selected in the other
color-magnitude space.

sources should be approximately evenly distributed throughout the field. As can be

seen in figure 3-3, the density of cluster members is peaked at the cluster center, and

the distribution of sources is approximately flat, indicating that our selection criteria

for both groups is adequate.

The objects selected in color-magnitude space as cluster members and potential

background sources undergo additional filtering before being considered in further

analysis.

1. Any object classified by DoPHOT as a star in any filter is discarded from both

the cluster member and the background source galaxy lists.

2. We discard dim cluster members, i.e. any with a predicted SIS Einstein ring of

less than 0.′′1. These objects gravitationally influence too small of a region to

be of concern and/or use in our analysis.

3. We remove any background source galaxies for which DoPHOT is not able to

fit a full 11 parameter model. These objects are often still found and fit to
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Figure 3-3 Distributions of color-magnitude selected cluster members (blue) and potential back-
ground source galaxies (red). The top image shows the spatial distribution of the objects over the
interior 10′ (radius) of the field. The axes show the distance from the approximate cluster center.
The absence of sources at RA ∼ 0.06◦ is caused by Megacam’s large chip gap. The bottom image
shows the density of cluster members and background galaxies out to 20′. Units for the density are
normalized counts per square degree of sky: counts per 0.02◦ bin, normalized over the 20′ sampling
region, and divided by 2π times the radial distance of the bin from the cluster center in degrees.
As one would expect, the density of cluster members is peaked at the cluster center and drops off
towards the edge of the field. The density of background source galaxies is approximately constant
throughout the field, however a small drop-off towards the edge of the field is noticeable. This
drop-off can be partially attributed to the degraded PSF at field edge, which makes objects at any
redshift harder to detect, though some contamination from cluster members is possible.
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simpler, seven parameter flexion-less models, and therefore contribute useful

photometric and positional information. However, if an object has no flexion

measurement in any filter, it is not of use as a source.12

4. We discard any background source galaxies for which the measured half light

radius is less than 1.5x the PSF half light radius. Any gravitational flexion signal

in these objects will be too degraded by the PSF for analysis to be significant.

This selection removes most of the flexion measurements in the g’ filter from

consideration.

5. We further refine the background source galaxy candidates by an empirically

determined magnitude cut of 22.75 in g’, and 22.00 in r’ and i’. We find that

objects brighter than this threshold are more often than not cluster members

with visible substructure.

Color-magnitude selection isolates 1600 potential cluster members and 3369 po-

tential non-cluster member galaxies in our field. Of the cluster members, 592 have a

sufficiently large Einstein ring to render them efficient lensing galaxies. Of the non-

-cluster members 1345 are dim, large, and have measured flexions, rendering them

useable background galaxies for lensing studies. However, only 92 (7%) of these po-

tential source galaxies are located within 20 Einstein rings of a lens. Of these lensed

sources, 42 (46%) are influenced by multiple lensing galaxies, leaving only 50 source

galaxies which are galaxy-galaxy lensed by a single galaxy.

3.3.7 Setting velocity dispersion of lenses with a Faber-Jackson

relation

In order to identify the sphere of influence of a cluster member galaxy and to estimate

its lensing effect on a given background source galaxy, we estimate the cluster mem-

ber galaxy’s velocity dispersion by using the Faber-Jackson relation between galaxy

12Such objects are still perfectly fine lensing galaxies, as all useful information for a lens comes
from its location and photometry. In fact, many promising lensing galaxies will not converge on
the 11 parameter model, as they have too much detectable substructure not captured by the model.
Simple 7 parameter elliptical Gaussian models often do converge in these cases.
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magnitude and velocity dispersion. Houghton et al. [30] analyze the Faber-Jackson re-

lation in the inner regions of Abell 1689, and make their photometry and spectroscopy

publicly available [31]. We use their derived Faber-Jackson relation for Abell 1689,

adjust the relation for the relative slope between their modeled object magnitudes

and our aperture magnitudes,13, and calibrate a zeropoint for the relation using our

magnitudes and the provided spectroscopy. Figure 3-4 shows the relation between

the velocity dispersion and the magnitudes for galaxies in Abell 1689 that fall on the

cluster line.

Figure 3-4 Faber-Jackson relation for central chips in Abell 1689. Velocity disper-
sions provided by Houghton et al. [31]. Magnitudes are computed using DoPHOT’s
measured aperture fluxes for the galaxies after subtracting out models for neighboring
objects. The slope of the magnitude luminosity relationship is derived from Houghton
et al. [30] and corresponds to σ ∼ L0.368.

13Houghton et al. [30] use De Vaucouleurs and Sérsic profiles to compute their photometry.
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3.3.8 Predicting the flexion measurements

We predict the gravitational flexion at the location of each background source galaxy

by assuming that the source galaxy is influenced by the cluster potential plus the

cluster member galaxy to which it is paired. We assume a singular isothermal sphere

(SIS) profile for both the cluster and the cluster member galaxy, as an SIS is a simple

and very good approximation to cluster and galaxy mass profiles, even if an NFW

profile is technically more accurate. To compute the Einstein ring radius of the lensing

galaxy, we use the luminosity of the galaxy to estimate its velocity dispersion, using

the Faber-Jackson relation discussed in the previous subsection. We assume that the

lensing galaxies lie at z = 0.18 and that the background source galaxy population

lies at z ∼ 1 [42]. Assuming that the source galaxies are all located at the average

redshift of the source galaxy population is a benign approximation, as the dependence

of the Einstein ring radius with the redshift of the source galaxy population is slow

around z = 1; the Einstein ring radius varies less than 15% from its value at z = 1

for galaxies as near as z = 0.6 or as far as z = 3. We take the Einstein ring radius of

the cluster to be 50” [49, 16, 14].

The radial components of the shear and dimensionless flexions, (γr, Fr, and Gr),

for an SIS lensing potential are given by

κ =
1
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θE
θ
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where κ is the convergence of the SIS, κtotal is the total convergence of all lenses acting

on the source galaxy, θ is the radial separation between the source galaxy and the
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center of mass of the lens, θE is the Einstein ring radius of the lensing galaxy, and θ1/2

is the (unaberrated but still gravitationally magnified) half light radius of the source

galaxy. The half light radius of the source galaxy is required in order to render the

shear derivative unitless, so that flexion, like shear, is a scale independent property

of the gravitationally distorted galaxy. The 1
1−κ multiplier for the shears and flexions

indicates that we are dealing with reduced values [5]. The tangential components of

the shears and flexions for an SIS are zero.

As each source galaxy is influenced by the cluster potential as well as the lensing

galaxy to which it is paired, the total gravitational shear and dimensionless flexion

are given by
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Gravitational effects are not the only actors on the final spin-1, 2, and 3 sig-

nals measurable in a lensed galaxy. In addition to a galaxy’s intrinsic ellipticities

and flexion-like shapes, mixing between the shear/ellipticity and the flexions causes

additional pseudo-flexions which are detectable in the image [40]. Additionally, at-

mospheric smearing and telescope aberrations will affect flexion measurements in a

strongly non-linear fashion [66, 40].

However, the mixing effect can be analytically modeled, and aberrations can be

measured, modeled, and subsequently accounted for in order to predict the flexion-like

signal in the final image.14

14We loosely refer to the spin-1 and spin-3 signals in an image as flexions, even though they can
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We use the following relations simplified from equations 28a-c of Levinson [40], in

order to make predictions of DoPHOT’s dimensionless flexion measurements:15

⃗̃g =

(
1
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g⃗′ − ⃗̃aµ2

)
(3.9a)
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,

where F⃗ ′ and G⃗′ are the measured dimensionless flexions for each source galaxy, and

g⃗′ is the measured total ellipticity in the galaxy image. The ratio of the PSF and

measured galaxy sizes is given by µ. The unitless spin-1, 2, and 3 PSF distortions

at the location of the galaxy are given by ⃗̃c, ⃗̃a, and ⃗̃t. These asymmetries of the

PSF are most often associated with coma, astigmatism, and trefoil wavefront delays,

though each spin-n asymmetry is generally comprised of a combination of telescope

aberrations [40]. However, just as we refer to the dimensionless spin-1, 2, and 3

galaxy asymmetries in an image as flexions, even though their origin may not be

strictly gravitational, we refer to the dimensionless spin-1, 2, and 3 PSF asymmetries

as coma, astigmatism, and trefoil. We reproduce the relations between the unitless

coma, astigmatism, and trefoil values and their associated wavefront delays in the

appendix for completeness.

The gravitational component of the flexion signal and shear signals will degrade as

the ratio of the PSF to the observed galaxy size, µ, increases. Astigmatism, coma, and

be caused by mixing, intrinsic galaxy shapes, and aberrations as well as gravitational flexion. When
we are referring to the gravitational component specifically, we will be sure to identify it as such.

15“Predictions of the measurement” may seem overly verbose, however, it is important to clarify
and emphasize that the predictions are for the expected dimensionless flexion-like signal in the
aberrated images, not just the gravitation signal that contributes to it. When we “predict the
measurement”, we are using the model for a smeared, aberrated, and flexed galaxy to predict the
flexion-like signal that DoPHOT should measure for a given object in the image.
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trefoil aberrations will add offsets to the measured flexions when the source galaxy is

of comparable size to the PSF.

The effective shears and dimensionless flexions denoted by a tilde in the above

equations, (⃗̃g, and ⃗̃F , ⃗̃G), can be computed from the reduced gravitational shear,

the inherent galaxy ellipticity, and dimensionless reduced flexions, (γ⃗, e⃗, and F⃗ , G⃗)

following

⃗̃g = γ⃗ + e⃗ (3.10)

⃗̃F = F⃗ − 1

3
(2⃗̃hF⃗ ∗ + ⃗̃h∗G⃗)

⃗̃G = G⃗− ⃗̃hF⃗

where ⃗̃h = γ⃗ + 2e⃗.16

In order to resolve the degeneracy between shear and intrinsic galaxy ellipticity,

we treat the gravitationally predicted shear as correct, and assume all other ellipticity

is inherent to the galaxy. DoPHOT’s measurements of F ′ and G′ are therefore fully

predictable, assuming that there is no intrinsic flexion-like signal in the unlensed

source galaxy, and the measurements of the telescope aberrations at the position of

the background source galaxies are accurate.

16The factor of 2 in front of the inherent ellipticity in this term is not a typo. The mixing between
the shear, g⃗, and the flexion comes from the transformation from the source plane to the image
plane of the symmetric component of the unlensed galaxy, (see equations 10 and 11 of Levinson
[40]). In contrast, the mixing between the inherent galaxy ellipticity, e⃗, and the flexion comes from
the transformation of the asymmetric component of the unlensed galaxy from the source plane
coordinate to the image plane coordinate. While the first order effects of shear and galaxy ellipticity
are the same, this is merely a consequence of the form we chose for inherent galaxy ellipticity.
We could just as well have dropped the ellipticity contribution from the symmetric term of the
unaberrated galaxy model and dropped the factor of 2 from the asymmetric term. Then g⃗ and e⃗
would appear to be very unalike, despite both resulting in an effective elongation of the galaxy.
Moreover, even with this specially chosen form for the un-lensed galaxy model, the second order
factors of shear and inherent galaxy ellipticity betray that these distortion vectors do not simply
behave as one summed vector describing galaxy elongation, even in absence of lensing flexion. So
it should not be entirely jarring that the mixing between shear and flexion is NOT the same as the
mixing between galaxy ellipticity and flexion.
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3.3.9 The null result

Using the models for flexion discussed in the previous subsection, we predict DoPHOT’s

measured flexions for each of the found galaxy-galaxy lensed sources. We present the

result in figure 3-5.

While there is plausible correlation between the flexion measurements and the pre-

dictions, especially visible in the binned images, that correlation is primarily caused

by the mixing of the galaxy ellipticity (and shear) with the telescope aberrations,

and our successful prediction of the effect of that mixing on the measurable flexion.

Because the measured spin-1 and 3 image moments are not primarily attributable to

gravitational lensing, the magnitudes of the radial and tangential components are, on

average, nearly equal in scale.

In order to uncover any underlying trend caused by gravitational lensing, we

remove the predicted effects of the asymmetric aberrations from the flexion measure-

ments and compare the result to the flexion prediction in absence of those aberrations.

The resulting measurements and predictions of the de-aberrated flexion are shown in

figure 3-6. These de-aberrated flexions show what we would have measured if the

telescope were aberration-free.17

Figure 3-6 shows that we do predict a non-negligible gravitational flexion signal for

some of the galaxies especially in the radial components, even considering atmospheric

dilution. However the measured signal does not generally match the prediction, es-

pecially in the regimes where the predicted magnitudes of the de-aberrated flexions

are large. The trend towards overly large, positive F-flexions could possibly be a con-

sequence of imperfect subtraction of the lensing galaxy; a residual brightness at the

location of the lensing galaxy after it is removed from the image would create a gra-

dient in the background luminosity that would appear as F-flexion in the direction of

the lens. The larger the predicted gravitational flexion, the closer the lens and source

galaxies, and thus the more likely the overestimation of the radial F-flexion measure-

17The theoretical measurement in absence of asymmetric telescope aberrations is only as accurate
as our prediction of the aberration contributions. In 3.4, we discuss in more detail the accuracy of
our predictions, finding them to suffice for the large galaxies considered here.
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Figure 3-5 Relationship between measured and predicted flexions for the 50 found background
source galaxies in the vicinity of a cluster member lensing galaxy. There are 177 total flexion
measurements of these objects from data in the multiple i’, r’, and g’ filter images. Left: All
measurements plotted with errors. Right: Objects have been binned by their predicted flexions and
the measured flexions have been averaged within each bin. The size of each point is proportional
the inverse error of the weighted average. For both binned and unbinned plots, the line shows the
ideal 1-1 relation, and not a best fit.
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ment for the source due to an imperfectly subtracted model for the lens. However,

the scatter in the measurements, even when binned, makes these hypotheses difficult

to confirm.

Even though there are some possible trends present in the de-aberrated flexions,

the measured signals are highly scattered. This scatter is likely caused by a combi-

nation of:

1. intrinsic galaxy shape noise,

2. imperfect gravitational lensing predictions due to ambiguous redshifts of the

sources and corresponding ambiguity of in the lensing strengths of cluster and

individual lensing galaxies at the position of the source,

3. or erroneous flexion predictions caused by improperly identified cluster members

or sources.

We further explore these failures in §3.5 and §3.6.

3.4 Where we succeeded

While we failed to measure galaxy-galaxy lensing flexion, we did succeed on two im-

portant points– in extracting galaxies and their shape properties when these galaxies

are in close vicinity to brighter objects, and in measuring and compensating for at-

mospheric and telescope aberrations. This section contains a more thorough analysis

of our success in these two areas.

3.4.1 Measurement and prediction of spin-1 and spin-3 galaxy

shapes

In order to verify the accuracy of the lensed galaxy model from §3.3.8, and DoPHOT’s

ability to extract spin 1-3 galaxy shapes in fields of potentially overlapping galaxies,

test DoPHOT on synthetic data sets.
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Figure 3-6 Measured v. predicted de-aberrated flexions for the 50 found sources in the vicinity of
a lensing galaxy in the cluster. The de-aberrated flexion measurements reported here are the differ-
ences between the total measured flexion in the image and the predicted aberrational component,
i.e the plots show the measured and predicted flexions in the hypothetical case where the telescope
introduces no asymmetric aberrations onto the images. However, atmospheric dilution and shear-
flexion mixing still contribute to both the measurements and predictions. Left: All measurements
plotted with errors. Right: Objects have been binned by their predicted flexions and the measured
flexions have been averaged within each bin. The size of each point is proportional the inverse error
of the weighted average. For both binned and unbinned plots, the line shows the ideal 1-1 relation,
and not a best fit.
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Each data set consists of 60 objects: 20 simulated stars, 20 elliptical Gaussian

lensing galaxies, and 20 source galaxies. The stars and lensing galaxies are placed

randomly in a 1024x2048 image, and each source galaxy is placed randomly around

its lensing galaxy at a separation of 3-6 Einstein rings. We separately test sets of

source galaxies whose unlensed shapes are intrinsically elliptical and circular. In

both cases the radial profile of the unlensed galaxy is Gaussian. Each circular or

elliptical source galaxy is lensed by its associated lensing galaxy, assuming an SIS

profile for the galaxy mass. As the form of the lensing potential is completely known

for this simulation, the lensing transformation is performed without invoking the weak

lensing approximation.

Finally the image is numerically convolved with a symmetric or asymmetric (co-

matic, astigmatic, and trefoiled) PSF of our construction. Beyond the pixelization,

no noise is intentionally added to the synthetic image. This final convolved image

is analyzed by DoPHOT for the shape parameters of each object, and these fitted

parameters are compared to the predictions of the weak lensing model from §3.3.8.

Table 3.3 details the parameter ranges for each object in the simulation.18

The results of DoPHOT’s analyses of the synthetic data sets are shown in figures

3-7 and 3-8. While large ellipticities in the source galaxies introduce some scatter

between the modeled and predicted measurements, DoPHOT’s measurements still

quite faithfully reflect the predictions.

We do note that decreasing the size of the galaxies with respect to the size of

the PSF increases the scatter. This scatter is largely caused by the imperfection of

the model in predicting the effect of cross talk between the galaxy ellipticity and

the asymmetric aberrations. The range of galaxy sizes tested here produce measured

galaxy sizes which are 1.5−2.5× the size of the PSF. Recall from the previous section

that we reject all source galaxies whose measured half light radii are smaller than 1.5x

the PSF.19 The largest source galaxies in our data are closer to 2.0x the PSF size than

18This analysis is designed to test DoPHOT’s ability to extract flexion from inherently noiseless
data with potentially overlapping objects, and to demonstrate that the model is effective at predicting
DoPHOT’s measured flexions. This is NOT a test of DoPHOT’s robustness to noise (Poisson or
otherwise) in the galaxy or the sky.

19This rejection of small galaxies would be prudent even with a completely accurate cross talk
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Synthetic Data Sets
Sky intensity 500 DN
Central intensity of stars 1600 DN
Central intensity of lensing galaxies 800 DN
Central intensity of source galaxies 100 DN
Lensing galaxy unaberrated half light radius (1.68− 3.44)pixels = (0.′′27− 0.′′55)
Source galaxy unlensed, unaberrated half light radius (1.68− 3.44)pixels = (0.′′27− 0.′′55)
Separation of source from lens (3.0− 6.0) Einstein rings
Einstein ring radius 8.4pixels = 1.′′35
Intrinsic ellipticity normal about 0, σ = 0.20
PSF half light radius 1.5pixels = 0.′′24
Effective astigmatism 0.020
Effective coma 0.020
Effective trefoil 0.020

Table 3.3 Parameters used to generate the stars, galaxies, and PSFs in the synthetic
data sets. All central intensities are the pre-convolved intensities; simulated atmo-
spheric smearing will dilute the final measurable intensity. The astigmatism, coma,
and trefoil are only non-zero when testing the effects of an asymmetric PSF. Simi-
larly, we perform separate analyses of cases where the unlensed source galaxies are
inherently circular and where they are inherently elliptical. For the simulations of
inherently elliptical galaxies, both components of the ellipticity are drawn from the
above stated normal distribution.

Figure 3-7 Measured v. Predicted F-Flexion (left), Shear (middle), and G-flexion (right), for
synthetic data. The unlensed galaxies are circular Gaussians. They are then lensed by randomly
oriented SIS potentials, and numerically convolved with a PSF. The top figures compare DoPHOT’s
measurements of the galaxy parameters and the model’s predictions for those same paramters when
the convolution PSF is symmetric. The bottom shows the measurements and predictions for an
image where the PSF is corrupted by astigmatism, coma, and trefoil aberrations.
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Figure 3-8 Same as figure 3-7, but for intrinsically elliptical source galaxies. Again, the top figures
compare measurements and predictions for images convolved with a symmetric PSF. The bottom
figures compare measurements and predictions for images convolved with an asymmetric PSF.

2.5.

In §3.5, we perform a full analysis of the reproducibility of measurements. Here

it suffices to say that the measurements are indeed reproducible to within reported

errors, even in the presence of realistic noise. In §3.6, we provide a detailed analysis

of how our ability to measure flexion in galaxies degrades for objects with lower signal

to noise.

3.4.2 Measurement and compensation for aberrations

One can see in equations 3.9b and 3.9c that atmospheric smearing and telescope aber-

rations contribute significantly to all flexion predictions. The amount of the contribu-

tion will depend on the ratio of the PSF half light radius and the observed galaxy half

light radius, and also on the elongation of the galaxy. Table 3.4 shows the contribution

of aberrations to the final G flexion signal for demonstrative PSF to observed galaxy

prediction, as the measured flexion is diluted by (1− µ2)3/2, where µ is the ratio of the PSF size to
the measured galaxy size.
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size ratios, µ = PSF/θ1/2, of 1/2 and 2/3. For µ = 1/2, dimensionless coma = 0.02,

and galaxy elongation = 0.3, the contribution of coma to the final G-flexion signal

can be greater than the atmospherically diluted gravitational G-flexion signal caused

by an SIS lensing galaxy at a separation of 8.6 Einstein rings. Therefore, in order to

correctly predict the flexion signal in the images, we must accurately characterize the

aberrations in each image.

Aberration contribution (×103) Diluted gravitational G-flexion (×103)
µ coma trefoil θ = 5θE θ = 10θE θ = 15θE
1/2 10.1 2.50 21.7 5.12 2.24
2/3 7.41 5.93 13.8 3.27 1.43

Table 3.4 Contributions of coma (magnitude 0.020) and trefoil (magnitude 0.020)
to the predicted G-flexion of a galaxy with ellipticity 0.3. Predictions assume that
the coma and galaxy elongation are oriented to create a maximal effect on the final
G-flexion signal. Contributions of aberrations to the flexion signal will generally
depend on the ratio of the PSF to the measured galaxy size, µ. For reference, the
atmospherically diluted G-flexion imparted by an SIS lensing galaxy at 5, 10, and 15
Einstein rings of separation from the galaxy are also shown. The ratio of the measured
galaxy half light radius to the Einstein ring radius is taken to be 0.5. Effects of mixing
between galaxy elongation and gravitational flexion are ignored because this mixing
can either dilute or enhance the flexion signal depending on the relative orientations
of the elongation and flexions.

While it is possible to model the variation of image aberrations across a field

[57], we choose to treat the aberrations across each chip as constant. We use this

simplification for the following reasons:

1. The relative heights and tilts of each chip will require each chip to have its

own defocus and tilt model [33, 61]. For Megacam, which has 36 chips, this

chip variation alone contributes 108 parameters to a model that otherwise has

relatively few parameters.

2. The aberrations in Megacam are fairly constant across the field, and even less

variable across each chip [48].

In order to determine the effective aberrations in each chip, we average the astig-

matism, coma, and trefoil, (i.e the measured shear, F-flexion, G-flexion, see Levinson

[40]) measured in each of the stars found in that chip. The found half light radii,
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astigmatism, and coma for the brightest stars on each chip in the deepest i’ and r’

coadded images are depicted in figure 3-9. The average aberrations by chip for the

same images are given in table 3.12. In appendix 3.11 we perform the same aber-

ration analysis on the best individual exposures in r’ and i’, demonstrating that the

aberrations present in the coadded image are very similar to the aberrations in the

individual images and are thus unlikely to have been introduced by the coaddition.

Following Levinson [40], the aberrations which we here refer to as astigmatism,

coma, and trefoil are actually the spin-2, 1, and 3 components of the model used to fit

the stars. This is the same model used to fit the galaxies, given in eq. 3.5, but with

astigmatism replacing shear/ellipticity, coma replacing F-flexion, and trefoil replacing

G-flexion. The wavefront aberrations on the pupil can in principle be derived from

these unitless aberrations by following eqs (18) and (19) in Levinson [40]. However,

the relation between the measured unitless spin properties of the PSF and the physical

aberrations that cause them is decidedly non-linear, and in order to use them, one

must additionally know the atmospheric seeing, in absence of telescope aberrations,

at the time of the observation.20 We perform this exercise of converting the PSF

spin-1, 2, and 3 moments to wavefront delays in appendix 3.10

As mentioned in the previous subsection, the predicted flexions are in excellent

agreement with DoPHOT’s measurements, even in the presence of the asymmetric

telescope aberrations discussed here. Table 3.3 contains the simulation details, and

figures 3-7 and 3-8 show the resulting relations between the predicted flexions and

DoPHOT’s best fit parameters for images convolved with both symmetric and asym-

metric PSFs.

20The DIMM seeing can provide a reasonable estimate of atmospheric smearing. For Clay, one can
additionally estimate this value by using Baade’s reported seeing, as Baade has real-time wavefront
correction for the mirror during normal operations. Clay has the same correction capability, but it
cannot be used with the f/5 secondary needed for Megacam.
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Figure 3-9 Unitless astigmatism (left) and coma (right) in the deepest coadded images
in the i’ filter (top) and r’ filter (bottom). Each ellipse (astigmatism plots) or vector
(coma plots) represents the measurement from one star. Chip boundaries are shown
as black lines. For the astigmatism images, the size, eccentricity, an orientation of
each ellipse shows the object’s measured half light radius, astigmatism magnitude
(exaggerated x5), and orientation. For the coma images, the direction and size of the
vector correspond to the direction and size of the measured coma. The color of each
ellipse or vector indicates the half light radius (′′) of the object, as indicated by the
color scale to the right of the images. Objects which are 2σ outliers in PSF size are
excluded from the plot, as these are likely mis-characterized small galaxies, not stars.
Coma and astigmatism are both largely field constant. The field variable astigmatism
underlying the field constant pattern does not follow the predicted patterns for field
symmetric or misalignment astigmatism, leading us to believe that the pattern is
ground into one of the optical elements. The average aberrations by chip are given
in table 3.12.
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3.5 Where we failed: intrinsic shape noise at z ∼ 1

In the limit of perfectly fitted data with no image noise- Poisson noise, readnoise,

pixelization or otherwise- one would still only be able to detect the gravitational

lensing signal if there were enough measurements to beat down the shape noise of

the lensed galaxies. Galaxies have physical ellipticities, lopsidednesses (i.e. inherent

F-flexion), and triangularities (i.e inherent G-flexion). These shape properties are not

imposed on a galaxy’s image due to a lensing effect or telescope aberrations, but rather

are present in the galaxies themselves due to their unique formation or merger history.

The spread in these inherent ellipticities, F-flexions, and G-flexions are termed ‘shape

noise’, as the random spread of shapes among a galaxy population will add an effective

noise to any measurement of gravitational flexion in the population.

Goldberg & Bacon [24] measure the inherent dimensionless F-flexion in the Deep

Lens Survey, (DLS) and in two HST galaxy clusters. For the galaxies in these fields,

they find that the scatter in the magnitude of the inherent F-flexion is 0.040 (DLS)

and 0.029 (HST). Goldberg & Leonard [25] analyze non-cluster member galaxies

in HST images of Abell 1689 and find scatters in the magnitudes of the inherent

flexions of 0.03 for F-flexion and 0.04 for G-flexion, after accounting for the additional

scatter added by measurement noise. Okura et al. [52] independently analyze the

inherent dimensional F-flexion in the population of galaxies behind Abell 1689, finding

somewhat conflicting spreads in the vector components of the flexion. They find

that the standard deviation of the distribution of the dimensionful flexion vector

components are 0.112/′′, corresponding to a standard deviation in the dimensionless

flexion vector components of ∼ 0.067− ∼ 0.224. Given the large flexions in our data

when compared to the gravitational and aberrational flexion predictions, we here

consider the inherent flexions in our galaxies more carefully.21

21As the distribution of the vector components of the flexion should be approximately normal
about zero, we will use the standard deviations of these one-dimensional flexion distributions to
describe the width of the spread. In contrast, flexion magnitudes are strictly positive quantities that
are not distributed normally. We will therefore quantify to the spreads of flexion magnitudes as
‘scatter’, where the scatter is the rms of the flexion magnitudes, NOT the standard deviation about
zero. As always, all flexions are unitless unless explicitly stated otherwise.
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3.5.1 Estimates of shape noise in the nearby EFIGI sample

In order to put new constraints on the inherent dimensionless flexions (triangularities

and lopsidednesses) of galaxies, we analyze the galaxies in the EFIGI (Extraction de

Formes Idealisées de Galaxies en Imagerie) [4, 3] data set. The EFIGI project was

designed to address the challenges in classifying galaxy morphology, and its data are

a collection of multi-wavelength observations, including imaging in Sloan g, r, and i,

filters, of 4458 nearby, well-resolved galaxies of all Hubble types. Because the sample

of galaxies is in the local universe and the galaxies are sufficiently larger than the

PSF, any flexion measurable in these objects is not caused by gravitational lensing,

or telescope aberrations, but rather reflects the innate asymmetries in the galaxy

itself, inherent flexion.

To render the data usable for our purposes, we clean the g, r, and i filter galaxy

images of stellar contaminants using a friends of friends algorithm. We then visually

select the 925 galaxies which are adequately isolated in all three filters using this

method, bin those images down by 7 pixels to 1 so that the flexion model can converge

quickly on the data,22 and analyze the data for flexion with DoPHOT. Of the 925

galaxies DoPHOT analyzed, 286 g filter, 214 r, and 180 i images are successfully fit

to the flexed galaxy model. Those galaxies which fail to converge on a single flexed

galaxy model are the largest and most well-resolved, even after binning.

The distribution of the fitted one-dimensional (i.e. vector component) F- and G-

flexions in the r filter of the EFIGI data set are shown in figure 3-10. The distributions

in the other filters are presented in table 3.5. We choose to report the standard

deviations of the distributions of the F- and G-flexion vector components, rather than

the distributions of the magnitudes of the flexions, as these one-dimensional flexions

should be symmetrically distributed about zero, and have the same widths for both of

22DoPHOT is optimized to analyze many, poorly resolved objects quickly. If an object is too
well-resolved, DoPHOT may attempt to fit the object as multiple objects, e.g. the core and disk
will be fit separately, as two different objects. Alternately, the object will not be modeled as two,
but rather the flexion parameters in the single galaxy model will not converge, as the object is too
radially disparate from a Gaussian. The binning used here leaves the galaxies well above Nyquist
sampled, with the average fitted half light radii equal to 2.15 pixels in g, 1.98 pixels in r, and 1.90
pixels in i. Moreover, we find the same flexion results if we bin the objects by 5x or 9x instead of
7x.
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the vector components. Therefore, the symmetry of the inherent flexion distributions

about zero, and the similarity of the distributions for the two vector components of

each of the flexions provides a check for the soundness of the distributions. As can be

seen in figure 3-10, the distributions of the one-dimensional flexions are approximately

normal about zero, and the widths of the distributions are similar for both components

of the F-flexion and for both components of the G-flexion.

The spread in the measured flexions can be attributed to the variation in inherent

flexions between the galaxies, and also any measurement error. We estimate the

measurement error by comparing flexion measurements for the same object observed

in r and i filters. The distribution of the differences in the flexion measurements

between filters can be used as a proxy for the contribution of measurement error to

our distribution. After subtracting off this measurement noise in quadrature, we find

that the distributions of the inherent dimensionless F-flexion vector components in the

r’ filter have standard deviations of approximately 0.028. The corresponding standard

deviations in the vector components of the inherent G-flexion are approximately 0.031.

The standard deviations for each vector component of the flexions are presented in

table 3.5, along with the uncorrected and corrected deviations in inherent flexion for

the other two filters, and the deviations in differences between the filters which we

use to correct for the measurement noise.

The spread of inherent flexions observed in the g filter is wider than that observed

for the r and i filters. This effect is likely caused by morphology- the bluer components

of galaxies generally have more complex shapes, whereas the redder components of

galaxies might be attributed to more uniform cores. Goldberg & Bacon [24] note the

related phenomenon that the scatter in flexion is smaller for the (redder) early type

galaxies than for the (bluer) late type galaxies.

Figure 3-11 shows that our flexion measurements are on the whole quite consistent

between filters, and also confirms that there is more deviation between g and r, and

g and i, than between r and i. If the disparity between flexions measured in r and i

is an estimate for measurement noise, then at least some of the dissimilarity between

flexions measured in g and r and g and i must be attributed to actual deviations in
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the physical galaxy shapes in different colors.

Figure 3-10 Distribution of the vector components of the unitless flexions in the r filter of the
EFIGI data set. These galaxies are in the local universe (z = 0) and well-resolved, and therefore
should not be subject to gravitational lensing effects or significant atmospheric dilution. Therefore,
the spread in flexions reflects measurement error and the real spread in the galaxies’ inherent flexions.
Distributions in g’ and i’ are similar, and their standard deviations are given in table 3.5.

3.5.2 Flexion v. shear signal-to-noise

As a point of comparison to the scale of the inherent galaxy flexions, we plot the ex-

pected gravitational flexion signals induced by a SIS lens in figure 3-12. As mentioned

in §3.3.8, derivatives of shear are dimension-ful. Therefore, in order to discuss the

gravitational effect on apparent galaxy shape caused by this term, we must render

the components of the flexions dimensionless by multiplying them with the lensed

galaxy’s half light radius, θ1/2. The larger the half light radius of the source galaxy,

the larger the apparent shape distortion that is imposed on it by the same lens (see

equation 3.9). For figure 3-12 and the following discussion of the magnitude of the
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Figure 3-11 Comparisons between measured one-dimensional F-flexions (left) and G-
flexions (right) in different filters of the EFIGI data set. Both vector components of
each type of flexion are shown. The standard deviations in each vector component of
either flexion should be the same. The variations between measurements in different
filters are quantified in table 3.5.

Measured standard deviations Implied intrinsic standard deviations
filter F1 F2 G1 G2 F1 F2 G1 G2
g’ 0.038 0.039 0.040 0.045 0.036 0.037 0.037 0.042
r’ 0.029 0.032 0.030 0.038 0.026 0.030 0.026 0.035
i’ 0.024 0.028 0.029 0.033 0.021 0.025 0.025 0.029
g’-i’ 0.019 0.020 0.017 0.019
g’-r’ 0.016 0.016 0.019 0.018
r’-i’ 0.012 0.012 0.016 0.015

Table 3.5 Standard deviations in inherent one-dimensional flexions in the g, r, and i filters of the
EFIGI data set. These galaxies are in the local universe (z = 0) and well-resolved, and therefore
should not be subject to gravitational flexion, aberrational flexion, or significant atmospheric dilu-
tion. Therefore, the distributions of measured flexions in this data set are caused by the spread in
the galaxies’ inherent flexions and measurement error. The measurement error can be estimated as
the distribution of the differences in the measurements between filters, provided at the bottom of
the table. The implied standard deviation in the inherent one-dimensional galaxy flexion for each
filter, after removing this estimated measurement error, is given in the right hand columns of the
table. Bluer filters tend to have a broader spreads in inherent flexion.
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flexion lensing effect, we use an optimistically large, but still plausible, intrinsic half

light radius of 0.′′48. We take the Einstein ring radius, θE to be 1.′′35, consistent with

a L* lensing galaxy at z = 0.18 acting on a source at z ∼ 1. As shown in the figure,

the magnitude of the measurable flexion signal in the direction of the lens will vary

with the amount and orientation of any inherent ellipticity in the source galaxy. The

figure does not include the effects of the PSF, which will generally degrade the signal.

Figure 3-12 Predicted radial flexion signal strength for a Gaussian model galaxy with θ1/2 = 0.′′48
lensed by a SIS with θE = 1.′′35. The predicted flexion signal will vary with the magnitude and
orientation of the source galaxy’s intrinsic ellipticity with respect to the lens. The points show
the range of possible magnitudes of the radial flexion predictions for source galaxies with random
ellipticities about zero with standard deviation 0.3. The line is the magnitude of the radial component
of the predicted flexion measurement when the source has zero intrinsic ellipticity. These predictions
ignore effects of atmospheric smearing, which will reduce the signal substantially.

For a set of low redshift galaxies where the distribution of one-dimensional inherent

flexions has a standard deviation of 0.03, one would need to average at least nine

flexion measurements at each radial separation from the lensing galaxy in order to

have an error in the mean measurement be less than 0.01- the gravitational F-flexion

value for a 0.′′48 source galaxy at 4.5 Einstein rings, and the gravitational G-flexion
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value at 7.6 Einstein rings. One needs to average 36 measurements in order to have

an error in the mean be less than 0.005- the F-flexion value at 6.2 Einstein rings and

the G-flexion value at 10.6 for this optimistic case. If one wants to measure F-flexion

at 10 Einstein rings with any confidence, one needs over 160 measurements of galaxies

lensed at that radial separation from the lensing galaxy.

But in theory, even allowing for a distribution of inherent one-dimensional flexions

with a standard deviation of 0.03, flexion can still be a better tool than shear for

probing the shapes of gravitational potentials (Leonard et al. [36], Bacon et al. [1],

Hawken & Bridle [28]). If shear and flexion measurements are limited by inherent

shape noise, flexion’s smaller inherent variation of 0.03 makes the flexion signal-to-

-noise greater than the shear signal-to-noise, at least close in to the lens. However,

if the spread in intrinsic flexion is twice that previously estimated, 0.06, shear has

superior signal-to-noise than flexion. Figure 3-13 shows the flexion signal-to-noise for

both low and high spread in intrinsic flexion.

3.5.3 Intrinsic flexions in the source population behind Abell

1689

The z = 0 population is far less morphologically complex than populations at higher

redshift. Galaxies most likely underwent mergers and periods of increased star for-

mation in order to reach their current state. We therefore would expect galaxies at

higher redshifts to have larger inherent flexions than their z = 0 counterparts.

In order to better understand the scatter in inherent flexions in the population

of galaxies behind Abell 1689, we follow in the footsteps of Goldberg & Leonard

[25], Okura et al. [52] and directly compute the distribution of the inherent flexions

of the 1345 background source galaxies in our data that (a) have a half light radius

greater than 1.5× the PSF half light radius, (b) most likely are not cluster member

galaxies, as determined by color-magnitude selection and the other selection criteria

discussed in §3.3.6,23 and (c) have derived intrinsic flexions and ellipticities with

23Some of these galaxies may still lie in front of the cluster. However, the magnitude cut does
help to eliminate these forgerounds.
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Figure 3-13 Predicted signal-to-noise (S/N) in gravitational flexion and shear for systems where
the spread in inherent galaxy ellipticities and flexions dominate over all other forms of noise. The left
plot shows the predicted signal-to-noise if the inherent one-dimensional flexion standard deviation
is 0.030, as it is in the local universe. The right plot shows the predicted signal-to-noise in the
hypothetical case where inherent shape noise in the one-dimensional flexion is 0.060, 2× larger than
measured in the EFIGI data set and by Goldberg & Bacon [24], Goldberg & Leonard [25]. The black
curves are the predicted shear signal-to-noise, which is the same in both plots. The blue curves depict
possible F-flexion signal-to-noises, and the green curves depict possible G-flexion signal-to-noises.
For each of the F- and G flexions we show the expected signal-to-noises for systems with intrinsic
half light radii equal to 0.25θE , and for systems with (optimistic) half light radii equal to 0.75θE .
For Abell 1689, most of the lensed sources we consider for have intrinsic half light radii closer to
0.25θE .
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magnitude less than 0.8.24

We compute the inherent flexion values for each object by taking the measured

flexions and correcting them for shear-flexion mixing, telescope aberrations, any grav-

itational shear and flexion caused by the cluster and the BCG (assuming as always

an SIS mass profile for each), and atmospheric dilution. In order to facilitate the

correction for gravitational lensing by the cluster and also to assess any possible er-

rors induced by the SIS lens approximation, we decompose the shear and flexion into

components that are radially and tangentially oriented to the cluster center. We an-

alyze the inherent shears and flexions in these components individually. We do not

correct for galaxy-galaxy lensing effects from cluster galaxies other than the BCG, as

the majority of the objects that we detect behind the cluster do not have an identified

lensing galaxy in their vicinity.

When considering all of the galaxies in our z ∼ 1 source population, we find that

the standard deviations of the inherent flexion vector components are 0.101 for F, and

0.126 for G in the r’ filter. We show a histogram of the computed one-dimensional

inherent flexions in the r’ filter in figure 3-14.

Both the spread in inherent flexions as well as measurement error contribute to

the width of the plotted distribution. Following our analysis of the EFIGI data set,

we estimate the the measurement error by comparing flexion measurements for the

same objects observed in two images. The distribution of the differences in the flex-

ion measurements between two images in the same filter can be used as a proxy for

the contribution of measurement error to the distribution. We subtract off this mea-

surement noise in quadrature. Values for the uncorrected and corrected distributions

of one-dimensionalinherent flexions are presented in table 3.6 for both the i’ and r’

filters. The table also shows the distribution of the differences between the measured

deviations in the r’ and i’ filters that we use to make the noise corrections. The

corrected standard deviations in the i’ filter are smaller than those in r’, as we would

24The 0.8 cut for inherent flexions and ellipticities removes 0.6% of the galaxies from the sample,
and does not alter the shape of the distribution in any meaningful way. Galaxies with such extreme
shapes are very likely to be two galaxies fit as one object, or to be very small and dim, possibly
rendering the correction for the atmospheric dilution inaccurate.
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expect for the redder components of galaxies, however the i’ data are much noisier

than the r’ data, resulting in noisier measurements of the inherent flexions and a

greater measured spread before correcting for the measurement noise.

Figure 3-14 Distribution of one-dimensional ellipticities (E) and flexions (F & G) in
the r’ filter for the 1115 large galaxies in the background galaxy population of Abell
1689 that are detected in this filter. These data have not been corrected for mea-
surement noise. Flexions and shears have been decomposed into directions oriented
radially and tangentially with respect to the cluster center.

Two sample K-S tests show that components of the one-dimensional inherent

galaxy ellipticities oriented radially towards and tangential to the cluster center were

drawn from the same sample with high likelihood, see table 3.7. This sameness

between the radial and tangential ellipticity distribution shows that the simple SIS

approximation is a very good, if imperfect, model for the cluster shear effect, and that

we are not introducing substantial bias into our models by using this approximation

for the lensing potential.

The distribution of one-dimensional intrinsic flexions is also approximately normal

and equally distributed in both components. Flexion drops off quickly with radius,

as compared to shear, and therefore this evenness of distribution indicates that there
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Standard deviations in inherent shapes for all background galaxies
not corrected for measurement error corrected for measurement error

image Er Et Fr Ft Gr Gt Er Et Fr Ft Gr Gt

r′1 0.202 0.193 0.112 0.100 0.142 0.143 0.201 0.192 0.106 0.095 0.127 0.124
i′1 0.199 0.185 0.109 0.100 0.154 0.160 0.195 0.182 0.086 0.083 0.087 0.102
r′1 − r′2 0.020 0.019 0.035 0.031 0.063 0.071
i′1 − i′2 0.038 0.033 0.067 0.056 0.127 0.123

Table 3.6 Standard deviations in inherent ellipticities and flexions in the r and i filters of the 1345
large galaxies in the background galaxy population of Abell 1689. Both shape noise and measurement
error contribute to the derived scatter in the inherent shapes. We estimate the measurement error
as the distribution of the differences in the measurements between two images in the same filter.
These are provided at the bottom of the table. The corrected standard deviations in the vector
components of the intrinsic shapes, after removing this estimated measurement error, are given in
the right hand columns of the table.

is no overall bias in the flexion measurements. As with shear, two sample KS tests

show that the components of inherent flexion oriented radially and tangentially with

respect to the cluster center were likely drawn from the same distribution.

K-S Test Results: Radial v. Tangential Components
K-S Statistic p-value

Ellipticity 0.046 0.167
Intrinsic F-Flexion 0.046 0.189
Intrinsic G-Flexion 0.056 0.061

Table 3.7 Results from 2 sample K-S test performed to compare the radial and tangential compo-
nents of the source galaxies’ intrinsic ellipticities and flexions. The results confirm the null hypothesis
that the radial and tangential shape properties of the galaxies are drawn from the same sample. Con-
sequently, it is very unlikely that the measurement technique or lensing model is adding bias to either
component of the flexions or shears.

3.5.4 Discrepancies in the inherent flexions in the galaxy

population behind Abell 1689

The large standard deviation in one-dimensional inherent flexions found here is in ap-

parent disagreement with the 0.03 scatter in F-flexion magnitude found by Goldberg

& Bacon [24], and the 0.03 and 0.04 scatters in inherent F- and G-flexion magni-

tudes found by Goldberg & Leonard [25]. The discrepancy with Goldberg & Leonard

[25] deserves particular attention, as they, like us, make their measurements on the

background galaxy population of Abell 1689.
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We note two conventional differences between Goldberg & Bacon [24], Goldberg

& Leonard [25] and our own work.

• Goldberg & Bacon [24], Goldberg & Leonard [25] render their flexions dimen-

sionless by multiplying the unitful (shear derivative) flexion with the galaxy

semi-major axis as defined in Bertin & Arnouts [8]. In contrast, we render the

unitful shear derivative dimensionless using the galaxy half light radius. For a

Gaussian, the semi-major axis is 1.7× the half light radius, rendering Goldberg

& Bacon’s, and Goldberg & Leonard’s measurement of the scatter in intrinsic

flexion magnitudes seemingly even more discrepant with ours.

• Goldberg & Bacon [24], Goldberg & Leonard [25] report the scatters of the

flexion magnitudes, whereas we report the standard deviations of the one-

-dimensional flexion components. We interpret Goldberg & Bacon’s and Gold-

berg & Leonard’s scatters to be the averages of the square magnitudes of the

flexions, < F 2 >.25 For normally distributed and uncorrelated flexion vector

components with standard deviation σ, the scatter in the magnitude of the

vector is
√
2σ.26

Converting Goldberg & Bacon’s and Goldberd & Leonard’s found scatters in the

flexion magnitudes into standard deviations of the flexion components comparable

with our own yields 0.012 in the one-dimensional F-flexion and 0.017 in the one-

dimensional G-flexion. These numbers are ∼ 1/2 the spreads in inherent flexion that

25Goldberg & Bacon [24] plot distributions of inherent galaxy shear and unitless flexion in figure
1 of their work. The shears and flexions in these plots are strictly positive, indicating that they
are analyzing the vector magnitudes of the shears and flexions. When referring to the spread of
those distributions, Goldberg & Bacon [24] use both the terms ‘scatter’ and ‘standard deviation’.
Goldberg & Leonard [25] also plot the distribution of the magnitude of the inherent flexions, but only
refer to the spread of that distribution as ‘scatter’. Our understanding is that ‘scatter’ is rms flexion
magnitude, while ‘standard deviation’ is the rms flexion about the average. For flexion magnitude,
whose average is strictly positive, ‘scatter’ and ‘standard deviation’ are distinct quantities. As (1)
Goldberg & Leonard [25] only use the term scatter, (2) there is no reason for the convention to vary
between the Goldberg & Bacon [24] and Goldberg & Leonard [25], and (3) the rms flexion magnitude
is a more reasonable measure of the inherent flexion spread than standard deviation about the mean,
we assume that both works are reporting the rms flexion magnitudes, not the standard deviations.

26If we have misinterpreted their findings and they are reporting the standard deviations about
the mean, then the ratio between their reported spread in the flexion magnitudes and the standard
deviation in the components is 0.655, rendering their findings in closer agreement with our own.
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we find for the nearby EFIGI galaxies and ∼ 1/8× the spreads we report here for

Abell 1689.

Okura et al. [52] also measure the spread in the F-flexion in the background

population of Abell 1689, observing in the i’ filter with Subaru. Their reported value

for the standard deviation in the dimension-ful flexion vector components are 0.112/′′,

from which we can infer a standard deviation in the dimensionless inherent flexion

vector components of 0.067− 0.224 given the range in galaxy sizes of 0.′′6− 2.′′0 that

they consider in that work.27 Okura et al. [52] very likely find more galaxies with 0.′′6

half light radii than with 2.′′0 radii, indicating that their measured flexion spread is

likely closer to the smaller value of 0.067 than 0.244.

What is the cause of this apparent discrepancy between Goldberg & Bacon [24],

Goldberg & Leonard [25], Okura et al. [52], and this work? The devil is, as always,

in the details. In the following subsections, we address each prior measurement indi-

vidually.

Goldberg & Bacon (2005)

Goldberg & Bacon [24] use two data sets to make their measurements of the scatter in

inherent galaxy F-flexion magnitude: a set of two clusters imaged with HST, and the

fields from the Deep Lens Survey (DLS). They do not correct flexion measurements in

either data set for the effect of the PSF, but rather limit their flexion measurements

to the largest and brightest galaxies, whose flexions are less likely to be significantly

diluted by the PSF. For the HST fields, Goldberg & Bacon [24] use only objects which

are sufficiently large and bright to be well-classified morphologically by eye. They

do not directly specify the galaxy size cutoff for measurements of flexion scatter in

the DLS fields, however for their analysis of gravitational flexion in the DLS fields,

they limit their flexion measurements to those galaxies with semi-major axes greater

than 0.′′9. Even with this galaxy size cut, Goldberg & Bacon [24] only use the relative

27While Okura et al. [52] do not specifically state that they are reporting the scatter in the
one-dimensional F-flexion, they report an average value for the flexion distribution of 0.000223/′′.
Since the distribution is so well centered on 0, whereas the distribution of a magnitude must have a
substantial positive average, we assume here that Okura et al. [52] are reporting standard deviations
and averages for the one-dimensional F-flexion.
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orientation between flexion and shear, not the flexion magnitude, to draw conclusions

about the lensing field.

The brightest, most well-resolved galaxies in a field are more likely to be at lower

redshift than the dimmer, less well-resolved galaxies. This preferential selection of

low-redshift galaxies will bias measurements of the flexion scatter low in two ways.

• Galaxies at high redshift are more morphologically complex than galaxies at

low redshift. This morphological complexity is a result of the increased rate of

star formation and increased rate of galaxy mergers at z ∼ 1 compared to the

present day. Therefore by limiting flexion measurements to the brightest, most

well-resolved galaxies, which are more likely to be at lower redshift than high,

one will measure a smaller scatter in inherent flexions than if one had included

the dimmer, higher redshift population. One can alternately, but equivalently

make this same argument based on color. There are more red-ellipticals in the

present universe than at z ∼ 1. As found in Goldberg & Bacon’s own work,

redder galaxies have a lower scatter in inherent flexion than the bluer galaxies;

they find that the scatter in inherent flexion for spirals is 0.041 while the scatter

in inherent flexion for ellipticals is a much more modest 0.012. By limiting

measurements to the brightest and lowest-redshift galaxies, the galaxy sample

is preferentially red, and the measured scatter in inherent flexion is pushed low.

• From the analysis of the EFIGI galaxies, we know that galaxies’ bluer features

are more lopsided and triangular than galaxies’ redder features. By the time

the light reaches Earth, the blue features in high redshift galaxies will have

shifted to be observable in redder filters. Consequently, observations of galaxies

at high redshift should yield wider spreads in inherent flexion than observations

in the same filter of galaxies at low redshift, even if those galaxies are otherwise

physically identical. Because brighter, well-resolved galaxies are more likely to

be at lower redshifts than dimmer ones, limiting flexion measurements to only

these galaxies biases the scatter low.

Of course, if the selected galaxies are not sufficiently well-resolved, the measured
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flexions will be diluted by the PSF. If the PSF isn’t then fully compensated for, the

measured spread in inherent flexions will be low.28 Therefore, using only the brightest,

most well-resolved galaxies for an analysis of the inherent flexion distribution rather

than correcting for the PSF creates a Catch-22: both more restrictive galaxy selection

and less restrictive galaxy selection will lead to an underestimation of the flexion

spread.

To test this predicted effect of using only the brightest galaxies in a field to mea-

sure inherent flexion, we perform another analysis of the spread in inherent flexions

in the background galaxy population of Abell 1689, but now using only the bright-

est 1/8th of these galaxies.29 These 172 bright galaxy objects yield a much tighter

distribution than the full sample. After removing the measurement noise from the

flexion distribution as we did with the measurements of flexion spread in the full pop-

ulation of background galaxies, we find a standard deviation in the one-dimensional

inherent F-flexion of 0.056 and a standard deviation in the one-dimensional inher-

ent G-flexion of 0.085 for the r’ filter. The distribution histograms and computed

standard deviations in the r’ filter are provided in figure 3-15 and table 3.8.

The standard deviation in one-dimensional inherent flexions that we find in this

population of brightest background galaxies is still in disagreement with Goldberg &

Bacon’s (2005) measurement. However, if we assume that Goldberg & Bacon’s (2005)

measured flexions are diluted somewhat by the PSF, we can close some of the gap

between our measured flexion distributions and theirs. While Goldberg & Bacon [24]

do not explicitly report their PSF sizes and mean galaxy sizes, we can make educated

inferences. For the DLS fields, a PSF FWHM of 0.′′85 is reasonably optimistic. If we

assume that most of the galaxies used for their flexion study have semi-major axes

28Correcting for the PSF is of course a double edged sword. While undercompensating for the
PSF biases the measurement of inherent flexion low, overcompensating will bias the measurement
high.

29If the background source galaxy population includes some erroneous foreground galaxies, then
the mean redshift of the brightest galaxies will be driven yet lower. However, the magnitude cut,
excluding all galaxies brighter than 22.00 magnitude in r’ from the source galaxy population, helps
to mitigate this foreground contamination.
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Figure 3-15 Distribution of one-dimensional inherent ellipticities and flexions in the r’
filter for the 172 brightest galaxies in the background galaxy population of Abell 1689
that are detected in this filter. These data have not been corrected for measurement
noise.

Standard deviation in inherent shapes for brightest background galaxies
not corrected for measurement error corrected for measurement error

image Er Et Fr Ft Gr Gt Er Et Fr Ft Gr Gt

r′1 0.194 0.198 0.061 0.061 0.097 0.095 0.194 0.198 0.055 0.058 0.085 0.085
i′1 0.182 0.193 0.066 0.062 0.103 0.110 0.181 0.191 0.051 0.047 0.066 0.080
r′1 − r′2 0.013 0.013 0.026 0.018 0.047 0.042
i′1 − i′2 0.021 0.026 0.042 0.040 0.079 0.075

Table 3.8 Standard deviation in one-dimensional inherent ellipticities and flexions in the r and
i filters of the 172 brightest galaxies in the background galaxy population of Abell 1689. Both
shape noise and measurement error contribute to the derived standard deviations in the inherent
shapes. We estimate the measurement error as the distribution of the differences in the measurements
between two images in the same filter. These are provided at the bottom of the table. The corrected
standard deviations in the intrinsic shapes, after removing this estimated measurement error, are
given in the right hand columns of the table.
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of ∼ 1.′′0 (recall that Goldberg & Bacon [24] use galaxies with semi-major axes of

0.′′90 and above for their gravitational flexion analyses), then their measurements of

flexion are diluted to 1/3 of their inherent values. Correcting for the effect of this

dilution on their reported scatter yields an amended standard deviation in inherent

one-dimensional flexion for the DLS fields of 0.050, in closer agreement with the

distribution measured in this work. 30

Goldberg & Bacon’s (2005) measurements of flexion in HST data (using WFPC-

2), would naturally not have required a PSF correction as large as that required for

their ground based measurements. However, even HST’s PSF can impart a non-trivial

dilution to the flexions of the smaller galaxies. While we can only guess at the sizes

of the galaxies used by Goldberg & Bacon [24], we can reasonably assume a PSF

FWHM of ∼ 0.′′10. This PSF would dilute the observed flexions in galaxies with half

light radii of 0.′′1, (semi-major axis of ∼ 0.′′17), to ∼ 65% of their inherent values.

While these galaxies are quite small compared to those used for the ground based

measurements, they are large compared to the 0.′′046 pixels on the Planetary Camera,

and thus might plausibly have been used for this scatter analysis.

Goldberg & Leonard (2007)

Goldberg & Leonard [25] measure the scatter in inherent flexion in the background

galaxy population of Abell 1689 using HOLICs.31 While they provide a procedure

by which they could correct for their PSF, they do not correct for the PSF but

rather restrict their galaxy selection to the largest galaxies only. However, they use

HST data only, implying that any PSF correction required for their measurements is

small compared to the correction needed for ground based measurements. Still, their

30For the DLS fields Goldberg & Bacon [24] report a somewhat higher scatter in the F-flexion,
0.040, than they report for their HST fields. To compute the amended DLS flexion scatter, we use
this 0.040 starting point, convert the flexions from units of semi-major axis to units of half light
radius, and divide by

√
2 to infer the standard deviation in the one-dimensional flexion rather than

the scatter in the magnitude of the flexion. We then correct for the effects of dilution. We note
again that the conversion from units of semi-major axis to half light radii and from scatter in flexion
magnitude to standard deviation in the flexion vector components will make the numerical descriptor
of the flexion spread smaller.

31They make measurements of the gravitational flexion using both HOLICs and shapelets. How-
ever the reported scatter is attributed to the measurements made using HOLICs.
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measured scatter in inherent F- and G-flexions of 0.03 and 0.04 are still in seeming

conflict with our own.

Before addressing possible points of disagreement between Goldberg & Leonard

[25] and this work, we note first that Goldberg & Leonard’s proposed correction

for effects of a symmetric PSF agrees with our correction of (1 − µ2)−3/2. Here µ

is the ratio of the PSF size to the measured galaxy size, as in eq. 3.9. Goldberg

& Leonard’s correction factor for dimension-ful G-flexion is the linear ratio of the

symmetric fourth moments of the un-aberrated and smeared galaxies. So long as the

PSF and the galaxy have the same radial profile, this is equivalent to a correction

factor of (1−µ2)−2. However, in the HOLICs method, the measurement of the unitful

G-flexion, prior to adding atmospheric correction, is the ratio of the measured spin-3

third moment, and the measured symmetric fourth moment. This ratio of moments

is equivalent to a dimensionless spin-3 shape divided by a proxy for the measured

galaxy size, both of which are uncorrected for the effects of the PSF. After correcting

this measured dimension-ful flexion for the effects of the PSF, the flexion must be

rendered dimensionless so that it reflects the scale-independent inherent shape of

the galaxy. The flexion is rendered dimensionless by multiplying the dimension-ful

value by the true (i.e PSF corrected) galaxy size. The resulting extra ratio of the

smeared and unsmeared galaxy sizes that arises when the flexion measurement is

rendered unitless provides the additional factor of (1−µ2)1/2 that makes Goldberg &

Leonard’s correction the same as our own.32

Because Goldberg & Leonard [25] measure flexion using only very large galaxies

in their sample, and the HST PSF dilutes the flexion signal from these largest objects

very little, PSF dilution likely did not affect their measured flexion scatters. Rather,

we believe that the source of the discrepancy between the scatter in inherent flexion

magnitudes measured by Goldberg & Leonard [25] and the standard deviation of

the one- dimensional inherent flexions found in this work can be attributed to the

32The form of the PSF correction for the F-flexion in the HOLICs method is slightly more compli-
cated than the correction for the G-Flexion. The added complexity is caused by centroid shift [24].
However, the correction for the F-flexion term is still fundamentally the same as the correction for
the G-flexion term.

189



same cause as the discrepancy between those reported by Goldberg & Bacon [24] and

ourselves. Namely, by using only the brightest and largest galaxies they preferentially

select low-redshift galaxies with relaxed morphology.

Additionally, Goldberg & Leonard [25] report the median flexion scatter for their

g, r, i, and z filter images. It is possible that the inclusion of the lower scatter i and z

measurements lowered their final reported scatter measurement. However, this effect

would be somewhat offset by the inclusion of the g filter measurements.

Okura, Umetsu, & Futamase (2008)

Okura et al. [52] also use the HOLICs method to analyze the spread in inherent

flexions in the background galaxy population of Abell 1689. They use Subaru to

make their observations, observing exclusively in the i’ filter, and obtaining images

with PSF FWHM of 0.′′88. For their flexion analyses, Okura et al. [52] reject all

objects from their sample of background galaxies that have measured FWHM less

than 0.′′6 or greater than 2.′′0. This exclusion of small galaxies is similar to our own

insistence that galaxies have half light radii of at least 1.5x the PSF’s. After removing

the small galaxies from their sample, Okura et al. [52] measure flexions for each of the

objects, accounting for both the isotropic and anisotropic effects of the PSF on their

flexion measurements. Their findings, like their selection methods, are not dissimilar

to our own.

Okura et al. [52] find a standard deviation of 0.11245/′′ for the distribution of

the unitful F-flexion vector components. They do not use or report on the noisier

G-flexion measurements. Assuming that Okura et al. [52] find many more smaller

galaxies than larger ones, as did we, we find that the equivalent standard deviation in

the distribution of the dimensionless flexion vector components is ∼ 0.067− 0.146.33

33We use the assumption that the standard deviation in the distribution of the dimensionless
flexion is approximately equal to the product of the standard deviation of the distribution of the
dimension-ful flexion and the mean of the half light radii. This assumption likely isn’t entirely
correct as larger galaxies will tend to be more symmetric and smaller galaxies will tend to be more
triangular and lopsided, but it is sufficient to provide a rough sense of the true value. Because
there are likely more small galaxies than large galaxies in their sample of 0.′′6− 2.′′0 FWHM objects,
the mean of the half light radius will between 0.′′6 and 1.′′3, yielding the above stated range for the
standard deviation of the distribution of the dimensionless flexion vector components.
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We note that Okura et al. [52] do not account for the contribution of measurement

error to the spread of flexion values, and therefore the standard deviation in the

spread of the inhernet flexions may be smaller than they report.34 However, if we

assume that their measurement error is similar to our own, their findings are still in

relative good agreement with ours.

3.5.5 Can we beat down the shape noise at all?

Prior to this work, we had not predicted this substantial spread in the inherent flexion

in the source galaxy population behind Abell 1689, and it is one of the primary reasons

why we failed in our endeavor to measure galaxy-galaxy gravitational flexion in that

cluster. We did not obtain flexion measurements for a large enough sample of galaxy-

-galaxy lensed sources in order to beat down the intrinsic shape noise. As indicated

by figure 3-13, for all but the very largest galaxies, we might as well have been using

shear.

However, if we remove the restriction that the background galaxies have a nearby

lensing galaxy, we have many more objects (1345) with which to explore the cluster

potential. Can we use these galaxies to measure the cluster centered symmetric

lensing potential? Certainly the answer must be no. Flexion drops off as the square

of the separation from the lensing mass center, and is thus much more sensitive to

substructure than the underlying symmetric mass profile of the cluster.35 Moreover,

any trend in the flexion with radius from the cluster center would be a trend in the

shear derivative, i.e. untiful flexion. For the range of sizes of galaxies in our data set,

the approximate standard deviation in dimension-ful F- and G-flexions are 0.28/′′ and

0.35/′′. For comparison, the cluster centered lensing flexion at 2 Einstein rings from

the cluster center, (θE ∼ 50′′), is 1/3001/′′ for F-flexion and 1/1001/′′ for G-flexion.

34At least they do not account for it explicitly, as do Goldberg & Bacon [24], Goldberg & Leonard
[25].

35The magnification will help, which is why we can see arcs behind galaxy clusters. However, only
those source galaxies very close to the cluster center will benefit enough from this magnification to
make the imposed flexion very large. And for those galaxies, the magnitude of the induced shear is
also substantial, rendering the galaxy very un-galaxy-like, and thus our tools for galaxy detection
and flexion extraction unsuitable.
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However, having nothing to lose, we look for a flexion trend anyway.

For each of the background source galaxies, regardless of its association with a

cluster member lensing galaxy, we predict the gravitational flexion imparted by the

cluster itself, using the zero-order approximation that the mass distribution of the

cluster is a SIS. We do not consider substructure. We then use the predicted gravita-

tional flexion to predict the measurable flexion in the image, considering shear-flexion

mixing, atmospheric dilution, and the effects of asymmetric telescope aberrations.36

In figure 3-16 we show the flexion measurements for each of the background source

galaxies lensed by the cluster and their associated predictions. As flexion drops off

as the squared inverse of the radial separation of the lensed background galaxy and

the cluster center, most of the flexion associated with gravitational lensing from the

cluster is effectively zero. We plot the de-aberrated flexions in figure 3-17 in order to

demonstrate this point. While it is promising that we can correctly predict the effects

of asymmetric aberrations on sheared and flexed galaxies, that plot is not proof of a

measurement of gravitational flexion by the cluster.

3.6 Secondary points of failure

Scatter in inherent flexion is not the lone culprit in our failure to observe galaxy-galaxy

lensing flexion in Abell 1689. As inherent galaxy flexion is unbiased in orientation, we

might have overcome it if we had enough galaxy-galaxy lensing systems for which (a)

we were confident in the classification of the background source galaxies and cluster

member lensing galaxies, (b) the source galaxies were sufficiently well sampled for

accurate flexion measurements, and (c) we had an accurate redshift for the source

galaxy. Put more simply, if shape noise were the only noise in our data, theoretically,

we could have beaten it.

36We also model the effect of the BCG, though it only alters the flexion predictions for the inner-
most galaxies. Inclusion of the BCG in the cluster lensing analysis is a matter of convenience, as
the analysis pipeline for galaxy-galaxy flexion is designed to compute lensing effects for the cluster
plus one other (nearby) lensing galaxy.
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Figure 3-16 Relationship between measured and predicted flexions for background source galax-
ies, regardless if a suitable lensing cluster member galaxy is found its vicinity. Predicted flexions
include the effects of gravitational lensing by the cluster, shear-flexion mixing, atmospheric dilution,
and telescope aberrations. There are 5002 total cluster flexion measurements for these 1345 source
objects, however most objects are sufficiently far from the cluster center that the predicted gravita-
tional lensing is effectively zero. Left: All measurements plotted. Error bars are excluded so as to
better show the scatter between points. Right: Objects have been binned by their predicted flexions
and the measurements have been averaged within each bin. The size of each point is proportional
the inverse error of the weighted average. For both binned and unbinned plots, the line shows the
ideal 1-1 relation, and not a best fit.
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Figure 3-17 Relationship between the measured and de-aberrated flexion for all background source
galaxies, regardless if a suitable lensing galaxy is found in its vicinity. The de-aberrated flexion is
the difference between the total measured flexion and the predicted aberrational component. Left:
All measurements plotted. Error bars are excluded so as to better show the scatter between points.
Right: Objects have been binned by their predicted de-aberrated flexions and the measurements
have been averaged within each bin. The size of each point is proportional the inverse error of the
weighted average. The line shows the ideal 1-1 relation, and not a best fit.
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Velander et al. [65] do beat the shape noise in their study of galaxy-galaxy flexion

in the COSMOS fields. With 216,873 background source galaxies with signal-to-noise

greater than 10 and known photomometric redshifts, Velander et al. [65] are able to

use their measured F-flexions to constrain galaxy density profiles, finding that, on

average, the density profiles are consistent with an isothermal sphere. The G-flexions

were sufficiently noisy to be consistent with 0 as well as gravitational lensing from by

an isothermal sphere. However, even with their large sample of background source

galaxies, they call for yet more data so that they can reduce the noise enough to

explore trends with lensing galaxy redshift or mass.

This section details the lessons we learned with hindsight, so that others trying

to measure lensing flexion might start with greater foreknowledge of the avoidable

observational hurdles. We detail the two areas where we underestimated the extent of

assailable obstacles, and which we caution others to consider more carefully in future

studies: the first is requisite image depth, and the second is cluster member selection

and photometric redshift determination.

3.6.1 Failure: insufficient signal to photon noise for flexion

measurements

The gravitational flexion signal is approximately 1/10 as strong as the shear signal.

Using the flexions and shears from an SIS lensing potential, given in equation 3.7, we

find that |F/γ| = θ1/2/θ = (θ1/2/θE) × (θE/θ). As θ1/2/θE is approximately 1/2, at

least for the galaxy-galaxy lensing systems in Abell 1689, we can expect that Flexion

will be 1/10 − 1/30 the magnitude of shear for systems 5 − 15 Einstein rings from

their sources. We’ll use the optimistic value of 1/10.

Using the similarly simplified approximation that the signal-to-noise needed for a

measurement scales as
√
Nphotons, in order to measure a gravitational flexion signal

with similar confidence as our current measurement of the shear signal, we must image

systems 100x more deeply. Alternately, we can accept that for an image in which we

can measure shear in objects down to magnitude Mγ, we will only be able to measure
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flexion in objects down to magnitude Mγ − 5.

We show in figures 3-18 and 3-19 our experimental results for how the flexion mea-

surement degrades with magnitude in our 1.75 hour coadded r’ image. Figure 3-18

shows the fraction of objects for which DoPHOT was able to fit a flexed elliptical-

Gaussian model as compared to the number of objects for which it was able to fit at

least an elliptical-Gaussian model. The drop off at bright magnitudes is caused by

the increased resolution and apparent substructure in relatively nearby objects. In

order to measure flexion in these objects, we would have to bin the data, switch to

a flexed Sérsic model for the galaxy, or perhaps use low order shapelets to make the

measurement. However these brightest objects are more often than not too nearby

to be gravitationally lensed, and therefore their flexion is not interesting for lensing

studies. Contrastingly, the dimmer objects ARE of interest for lensing studies. Un-

fortunately, the insufficient signal-to-noise in the data causes the drop off in flexion

measurements at the dim magnitude end.

Figure 3-19 shows how the signal to reported error drops for flexion with fainter

magnitudes. The signal-to-noise of the F-flexion measurement tends to be better

than the signal-to-noise of the G-flexion measurement, despite trending with image

magnitude in nearly the same way. This result is in agreement with Rowe et al.

[56], who find that the dispersion estimators for the F- and G-flexions derived from

shapelets analysis have similar power law slopes but different amplitudes when plotted

against the log scale signal-to-noise of the objects in their simulation, (see figure 10

of that work).

The signal-to-noise flattens at both the bright and dim ends of the magnitude

spectrum. The flattening at the bright end of the spectrum is caused by the high

resolution of the galaxies and the galaxies’ non-conformance to a Gaussian shape.

The flexion errors will increase as the well-resolved galaxy becomes more and more

disparate from the model. The raised tail in the flexion signal-to-noises at the dim

end of the spectrum is an artifact of the exclusion of objects for which no flexion

measurement is obtainable. Were we to include those galaxies for which there is no

convergence for the flexion parameters, and set the errors for those flexion measure-
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Figure 3-18 Fraction of objects, by magnitude, for which DoPHOT can fit flexion
parameters in the deepest r’ image. This fraction is obtained by dividing the number
of objects for which a sheared and flexed galaxy model it fitted, by the total number
of objects for which a sheared galaxy model could be fitted, regardless of flexion. The
drop-off at bright magnitude is caused by increased object resolution, while the drop
off at faint magnitude is caused by insufficient signal-to-noise with which to fit an
eleven parameter flexed galaxy model. Shown errors reflect the number of objects in
each magnitude bin, with fewer objects producing poorer statistics.

Figure 3-19 Left: Fraction of the fitted dimensionless flexoin signal to the reported
error in that signal as a function of object magnitude. Values have been binned by
magnitude and averaged. Right: Fraction of objects fitted with signal-to-noise greater
than 1.
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ments very large, the signal-to-noise in the measurement would continue to drop as

one would expect.

It is clear from these figures that increased depth on our fields would yield many

more high signal-to-noise flexion measurements with which to perform our analysis.

In the 1.75 hour coadded r’ image, DoPHOT can fit 80% of galaxy objects between

magnitudes of 21 and 24 to the eleven parameter flexion model. At the bright end

of this range, we can obtain F- and G-flexion measurements with signal-to-noise of

at least 1 for 80% (F-flexion) and 60% (G-flexion) of the objects. At the faint end of

this spectrum, the percentage of objects for which we can obtain significant flexions

is closer to 25% and 20%. To extend the range of well-fitted objects at the faint

magnitude end, (which is more interesting for gravitational lensing studies than the

bright magnitude end), we must push deeper. In order to obtain the same percentage

of high signal-to-noise flexion measurements in the set of 25th magnitude objects

as we currently do for the 24th magnitude objects, we would need to increase our

exposure times to 8.5 hours per image. For 26th magnitude, 46.6 hour images are

required.

While we did image Abell 1689 as deeply as our allotted telescope time and weather

allowed, our images were nowhere near deep enough to get adequate signal on enough

source galaxies in order to make a galaxy-galaxy flexion measurement. After remov-

ing all small galaxies for which the gravitational flexion effect is minimal and the

atmospheric smearing washes out any signal that is present, and all galaxies whose

color and magnitude indicate a potential association with the cluster, we were left

with only 1345 source galaxies. Of these, only 50 were found to be in the vicinity of

one, and only one, lensing galaxy. This is not enough data points with which to beat

down the shape noise discussed in the previous subsection.

Considering this signal-to-noise analysis, one might be inclined to believe that

we should not have excluded the lowest quality images from coaddition, but rather

pushed for as much depth as possible. However, increasing the effective size of the

point spread function by including low quality images in the coaddition will dilute

the measurable flexion signal, leaving our ultimate signal smaller. Our only option is
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to go deeper using images of comparable quality.

3.6.2 Failure: imprecise color selection of cluster members

and photometric redshifting

In §3.3.6 we detailed our color-magnitude selection criteria for Abell 1689. In order to

obtain relatively clean samples of cluster members and background source galaxies,

we establish a large exclusion region around the cluster line in color-magnitude space.

While the spatial distributions of the selected cluster members and background source

galaxies suggest that this selection method can produce relatively uncorrupted cata-

logs of both cluster members and background galaxies, it does so at the expense of

discarding many potentially useful objects.

Differentiating cluster members and source galaxies is not a new problem. Color-

magnitude selection of cluster members is not foolproof; in their study of the cluster

elliptical red sequence, Gladders et al. [23] refine their red sequence galaxy selection

based on visually inspected morphology. Houghton et al. [30] analyze the color-

-magnitude relation for Abell 1689, and, even only using objects with magnitudes

measured better than 0.1, find many cluster members that deviate into the blue. In

their weak lensing analysis of halo truncation in cluster galaxies using the Canada

France Hawaii Telescope’s 12K camera, Limousin et al. [41] are able to determine

redshifts for source galaxies using photometry in the the B, V and I filters. They use

HYPERZ with an additional prior based on the luminosity function to constrain the

degeneracies in the redshift probability distribution. However, they find that their

determined redshifts are only reliable for objects above redshift 0.5. In particular they

note that the ellipticals in their z ∼ 0.2 clusters “are assigned a Bayesian redshift be-

tween 0.35 and 0.45, systematically overestimating their redshift.” They therefore use

color-magnitude selection to determine which objects are cluster members. Limousin

et al. [42], analyzing Abell 1689, use the same Bayesian redshift method to determine

the redshift of their z > 0.5 objects. However, in order to select cluster members,

they require additional data. They compute for each galaxy the fraction of the prob-
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ability distribution which is beyond some redshift z, and then use spectroscopy from

239 galaxies [17] in Abell 1689 to find the redshift and corresponding probability that

successfully distinguishes the cluster members from the background source galaxies.

Originally, we had hoped to use photometric redshifts to further refine our clus-

ter member and background source galaxy selections beyond simple color-magnitude

selection. We initially attempted to determine redshift for our objects using the

Bayesian Photometric Redshift Code BPZ [6]. In so doing, we rediscovered the sys-

tematic overestimation of the redshift of z ∼ 0.2 objects noted in Limousin et al. [41].

We later switched to the redshift software, EAZY [12].37 While we were not expect-

ing great precision in redshift determination from three filters, we did not properly

anticipate the degeneracy in redshifts that we encountered. Ultimately we ignored

the redshift information returned by either software package and chose to rely on

color-magnitude selection alone, but not before conducting a thorough analysis as to

why the redshift solutions fail so completely on our data.

In order to rule out user error, and any problems that might be introduced by

inaccuracies or inconsistencies in DoPHOT’s photometry or our calibrations, we con-

ducted tests on the COSMOS photometry provided in Skelton et al. [60]. In that

work, the authors compile multi-wavelength observations for five fields, spanning 147

distinct imaging sets, and determine photometric redshifts for the objects therein.

They generously make both the photometry, spectroscopy, and their derived photo-

metric redshifts available to the public through the VizieR catalog access tool.

Figure 3-20 compares the reported photometric redshifts from Skelton et al. [60],

(determined from 44 filters using EAZY), to those derived using the same software,

but using only the three Solan filters corresponding to our Abell 1689 observations,

(g’, r’, and i’). While the photometric redshifts derived from 3 filters follows the 44

filter photometric redshift on average, the determinations for individual galaxies are

quite scattered, especially for galaxies near redshift of 1.5.

37We switched because we were convinced that we must be using the software incorrectly to get
such inaccurate results for our cluster galaxies. Had we carefully read Limousin et al.’s 2007 work
before attempting redshift measurements, we might have known that this redshift overestimation
was expected.
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Figure 3-20 Comparison of photometric redshifts for the COSMOS field derived by
Skelton et al. [60] using 44 filters, with those derived using only three Sloan filters.
The left figure displays a random subset of 1014 of the 33881 objects with provided
photometry. The right figure displays binned averages of the redshifts determined
with three filters, in increments of 0.02 of the photometric redshift determined with
44 filters.

Therefore, even though there is information in the photometric redshift solutions

obtained using the Sloan g’, r’, and i’ filters, it is not reliable on a galaxy-by-galaxy

basis, which is needed for the galaxy-galaxy lensing study we attempted here. As the

transmission functions of the Megacam g’, i’, r’ filters are very similar to the Sloan

filters’, we determined that photometric redshifts would not be useful for our analyses,

either as a primary means of discriminating between cluster members and background

source galaxies, or as a refinement of color-magnitude selection. Others attempting

this measurement in the future would do well to obtain wide field spectroscopy and

follow the methods of Limousin et al. [42], or obtain photometry in the infrared to

complement the g’, i’, r’ photometry.

3.7 The best cases

In an attempt to learn something about galaxy-galaxy flexion in clusters from our

data, even if we lack the numbers to make a statistical argument, we isolate 20 sources

from which we would expect to see the strongest evidence for galaxy-galaxy flexion

and examine them more closely.
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3.7.1 The selection metric

To select the best candidates for observing galaxy-galaxy lensing flexion, we establish

the following dimensionless metric:

(θ1/2θE)/θ
2, (3.11)

where θ1/2 is the unaberrated half light radius of the galaxy, θE is the lensing galaxy’s

Einstein ring radius, and θ is the separation of the lens from the source. Objects with

large metric values are the largest sources galaxies, at the smallest separation from

their lensing galaxies as measured in Einstein rings. They therefore should be the

systems that are the most obviously flexed towards their lens galaxies.

We visually inspect those systems which are chosen as ‘best’ by this metric, and

discard all objects for which

1. the background source galaxy is, in fact, most likely a cluster member or fore-

ground galaxy,38

2. the background galaxy is a duplicate of a prior object, but due to its extend-

edness the object is fitted to have sufficiently different center coordinates in

different frames and is thus treated as two objects,39

3. the background source galaxy is actually comprised of two objects, and was

improperly modeled by DoPHOT as one object,40 or

4. multiple lensing galaxies influence the background source galaxy, and therefore

any galaxy-galaxy flexion prediction assuming one lensing galaxy only is likely

inaccurate.41

Ideally, the selection criteria for background source galaxies should reject all cluster

members and foreground galaxies, however, as discussed in the previous section, ob-

ject selection is imperfect. Similarly, background source galaxies with multiple lenses

38Objects 11 & 22.
39Object 12 is a duplicate of object 8.
40Object 14.
41Objects 15, 17, 23, 24, & 28
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should have been discarded from further analysis by our pairing algorithm. How-

ever, in the cases where the second cluster member galaxy is not identified by color-

magnitude selection, the multiply-lensed background source galaxy slips through our

filter.

Images for the top 20 selected lensing systems appear in figures 3-22 and 3-23.

For each system, the top image shows the cluster member lensing galaxy and the

lensed background source galaxy. We have drawn a 3θE radius circle around each

lensing galaxy as a reference for scale. The bottom three images for each object

depict the identified background source galaxy (left), DoPHOT’s best fitted model

for the same (center), and the residual image after the model has been subtracted

(right). The measured shears, g, and flexions, F & G, for these objects in the best

two r’ and i’ coadded images are presented in table 3.14. These shears and flexions

are decomposed into components which are radially and tangentially oriented with

respect to the lensing galaxy. The table also contains the predicted flexions for each

of the observations as well as the breakdown of the contribution of aberrational and

the de-aberrated flexions for each prediction. Flexion models do not converge for

every object in every filter, therefore flexion measurements are missing for some of

the objects.

These top 20 galaxies, though selected because they are likely to have the largest

apparent gravitational flexions, do not visually appear to be arced around their lensing

galaxy. Furthermore, the measured radial components of the F- and G-flexions are,

to within the error, as likely as not to point in the direction prefered by gravitational

lensing.

3.7.2 Measurements for the top 20 objects are reliable

In order to establish that we are making valid measurements of the flexions in these top

20 objects, we analyze the measurements’ reproducibility. The two deepest r’ images

have similar aberrations, as do the two deepest i’ images. All of the r’ exposures used

to create the final coadded r’ images were drawn from data collected on a single 3 night

observing run. As these images were selected using the quality factor from equation
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3.1 in §3.3.3, and not chosen based on aberration asymmetries, it follows that the

two coadded r’ images should have similar aberrations. It is perhaps more surprising

that the two coadded i’ images should have similar aberrations, as the individual

exposures for each of these images were taken more than 2 years apart. However, the

aberrations are very similar in both of the i’ coadded images, and therefore objects

detected in both coadded images in r’ or both coadded images in i’ should have similar

flexion measurements in each.

To assess the reproducibility of the measurements, we take the differences between

flexion measurements for objects observed in both coadded images of either the r’ or

i’ filters, divide those differences by their expected errors, as computed from the

reported flexion errors in the individual measurements, and compute the standard

deviation in the resulting deviations. We report our findings in table 3.9. As the

spread in the variances is less than one for both components of the F and G-flexions,

the flexion measurements are reproducible to within the reported errors. Moreover,

the reported errors are likely too pessimistic, and should be smaller.

3.7.3 Just not caused by gravitational lensing

Having established that (a) each of the top 20 objects are likely behind the cluster,

as determined from the initial color selection and subsequent visual analysis of mor-

phology, (b) each of these objects should be significantly lensed by a nearby cluster

member galaxy, and (c) that the flexion measurements for these objects are real and

reproducible, we plot in figure 3-21 the de-aberrated flexions against the predicted

de-aberrated flexions for the top 20 objects only. As with the full set of galaxy-galaxy

lensed objects, once we remove the effect of aberrations all that remains in the data

are noise. Any gravitational flexion is buried beneath that shape noise, even for the

strongest lensed objects.

We note again, as for figure 3-6, the trend towards overly large positive radial F-

flexions. While we speculate that this may be a result of imperfectly removed lensing

galaxies, the noise makes this hypothesis difficult to confirm.

To check if the shape noise in our top 20 source galaxies is anomalous, we use a K-S
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object filter ∆Fr ∆Ft ∆Gr ∆Gt

4 i 0.94 0.46 −0.42 0.79
7 i −0.80 0.82 0.11 0.60
10 i 0.82 1.11 0.81 −0.15
17 i 0.15 −0.16 0.83 −1.10
21 i 0.25 1.08 −0.96 2.26
22 i −0.03 −0.72 −0.90 1.69
26 i −0.11 −0.57 0.40 0.66
27 i −1.02 −0.14 −0.98 0.50
6 r 0.55 0.51 −0.66 0.17
7 r −0.06 −0.10 −0.57 −0.62
8 r 1.36 0.35 1.25 −0.64
10 r 0.21 −0.25 0.65 1.16
13 r 0.34 −0.34 0.33 −0.81
17 r −0.92 −0.51 −0.41 −0.66
20 r 1.03 0.25 1.28 −0.45
21 r −1.03 0.04 −1.26 0.26
22 r −1.50 0.79 0.11 −0.81
25 r 0.64 0.49 −0.10 −0.25
27 r −0.14 0.14 0.47 1.57
avg. 0.04 0.17 0.00 0.22
dev. 0.79 0.55 0.78 0.96

Table 3.9 Deviations between measured flexion between two images in the same filter;
(flexion1−flexion2)/

√
σ2
1 + σ2

2, for measurement error σi in imagei. The two coadded
images in i’ and the best two coadded images in r’ each have similar aberrations.
Therefore, the difference between the measured flexions of a given object in either
two images should be zero to within the error. The distribution of the deviations
indicates that DoPHOT’s reported errors are, if anything, too pessimistic, and should
be smaller.
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Figure 3-21 Relationship between the de-aberrated measured and predicted flexions for the top 20
source objects as determined by predicted amount of galaxy-galaxy flexion. The de-aberrated flexion
is the difference between the total measured flexion and the predicted aberrational component, and
represents what we would observe had the telescope imparted no asymmetric aberrations onto the
image. Left: All measurements plotted. Right: Objects have been binned by their predicted de-
aberrated flexions and the measured de-aberrated flexions have been averaged within each bin. The
size of each point is proportional the inverse error of the weighted average. The line shows the ideal
1-1 relation, and not a best fit.
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test to compare the inherent flexions in these 20 objects to the distribution of inherent

flexions in the complete set of 1345 background source galaxies. We naturally remove

any gravitational, aberrational, smearing or shear-flexion mixing effects from both

sets of data so that we are comparing the inherent flexion values in each set. There

is very little evidence that the flexoins measured in the selected top 20 background

source galaxies and those measured in the full subset of background source galaxies

are drawn from different distributions. The only potential evidence against the null

hypothesis is a K-S statistic of 0.272 and corresponding p-value of 0.104 for the radial

component of F-flexion. The full results of the K-S tests appear in table 3.10.

K-S Test Results: Top 20 Galaxy-Galaxy Lensed Sources
v. All Lensed Sources

K-S Statistic p-value

Ellipticity
radial 0.144 0.828
tangential 0.144 0.824

Intrinsic
F-Flexion

radial 0.272 0.104
tangential 0.099 0.990

Intrinsic
G-Flexion

radial 0.168 0.626
tangential 0.242 0.192

Table 3.10 Results from 2 sample K-S test performed to compare the intrinsic el-
lipticities and flexions of the 20 most gravitationally flexed objects to that of the
larger population of sources. The results confirm the null hypothesis that the intrin-
sic shapes of the sample of 20 most gravitationally lensed objects comes from the
same distribution as the total source population.

3.7.4 Top 10 from color-magnitude ambiguous region

For the sake of ensuring that we did not throw away the best lensing candidates with

our stringent selection criteria for the background source galaxies, we additionally

review the top 10 galaxy-galaxy lensed objects from the set of galaxies previously

excluded from lensing analysis. These are the galaxies which were not detected in

all three filters and/or fell into the ambiguous region of color-magnitude space. As

we did with the population of the more rigorously selected background source galax-

ies, we pair these objects to cluster member lensing galaxies, compute the predicted

flexion and order the galaxies by expected galaxy-galaxy flexion as determined by
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the dimensionless metric from §3.7.1. We then exclude those systems for which the

predicted or measured gravitational flexion is unphysical, the flexion prediction or

measurement is corrupted, or the lensed galaxy shows obvious morphology indicating

that it is in fact a cluster member or foreground galaxy. The top 10 objects that

survive these cuts are shown in figure 3-24.

For each system in figure 3-24, the top image shows the lensing galaxy and the

background lensed source galaxy. We have drawn a 3θE radius circle around each

lensing galaxy as a reference for scale. The bottom three images for each object

depict the identified background source galaxy (left), DoPHOT’s best fitted model

for the same (center), and the residual image after the model has been subtracted

(right). The measured shears, g, and flexions, F & G, for these objects in the best two

r’ and i’ coadded images are presented in table 3.15, along with the flexion predictions.

It is clear from both the images in figure 3-24 and the comparison the the predicted

and measured flexions in table 3.15, that even though these galaxies are the ones for

which we would expect to see the most galaxy-galaxy lensing flexion, gravitational

flexion is not found to be present.

3.8 Individual flexion measurements in Abell 1689

Goldberg & Leonard [25], Okura et al. [52], Cain et al. [15], Leonard & King [38] all use

flexion measurements in Abell 1689 to map substructure on top of a cluster potential

preconstrained by strong lensing, weak lensing shear, or both. Here we sought to use

flexion measurements alone to find an underlying trend in halo profiles. While we

would have liked to make a statistical measurement showing galaxy-galaxy lensing

flexion (or cluster lensing flexion) following a predicted trend, we were thwarted from

doing so by inherent galaxy shape noise and the small signal from cluster flexion.

However, just because we could not establish an underlying trend in the potentials

does not mean we cannot measure flexion in individual galaxies at least as well as

previous measurements.

In order to facilitate the comparison of the flexions found here with those in other
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Figure 3-22 Image 1 of 2 of the pairs of background source galaxies and cluster member
galaxy lenses for the systems for which we expect to see the greatest unitless gravita-
tional flexion. White rings around lensing galaxies have a radius of 3θE. Subimages
show the background source galaxy, DoPHOT’s best fitted model, and the residual.
Objects are ordered from most expected galaxy-galaxy lensing flexion (top left) to
least (bottom right), with numbers corresponding to those in table 3.14.
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Figure 3-23 Image 2 of 2 of the pairs of background source galaxies and cluster member
galaxy lenses for the systems for which we expect to see the greatest unitless gravita-
tional flexion. White rings around lensing galaxies have a radius of 3θE. Subimages
show the background source galaxy, DoPHOT’s best fitted model, and the residual.
Objects are ordered from most expected galaxy-galaxy lensing flexion (top left) to
least (bottom right), continuing from image 3-22, with numbers corresponding to
those in table 3.14.

210



7 8 9 10

11 15 19 24

29 30

Figure 3-24 Top 10 pairs of background source galaxies and cluster member galaxy
lenses for the systems previously rejected by color-magnitude selection. Background
source galaxies in this set need not have been detected in all three filters, and may
have been drawn from the ‘ambiguous’ region of color-magnitude space, where color
alone is insufficient to determine the object’s status as a cluster member or background
galaxy. White rings around lensing galaxies have a radius of 3θE. Subimages show the
background source galaxy, DoPHOT’s best fitted model, and the residual. Objects are
ordered from most expected galaxy-galaxy lensing flexion (top left) to least (bottom
right), with numbers corresponding to those in table 3.15.
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works, we report our measured and PSF corrected flexions for a selection of back-

ground source galaxies in tables 3.16, 3.17, and 3.18. The PSF corrected flexion

measurements are the flexion values we would expect to measure were we observing

from a completely unaberrated space-based telescope, and thus can be easily com-

pared to measurements made using other telescopes and instruments.

Tables 3.16 and 3.17 contain flexion (and shear) values for those background source

galaxies with the smallest reported noise in the flexion measurement.42 Table 3.16

contains flexion measurements for background galaxies drawn from throughout the

field, while table 3.17 contains measurements for galaxies which lie in the 480′′×360′′

region containing the cluster center. This inner three chip region is not much larger

than the HST field, and therefore galaxies selected from this inner region are more

likely to have prior or future flexion measurements. The region is depicted in figure

3-25, with circles around those galaxies with flexion measurements reported in the

tables.

We supplement our quantitatively motivated object selections with qualitatively

selected likely-lensed galaxies from the inner cluster region. Unlike the lowest noise

objects, which are selected based on strict numerical criteria, these galaxies are hand-

picked on a completely subjective basis; these are the galaxies that look like they are

gravitationally flexed, with classic arc-like shapes. Measured flexion values for these

hand-picked gravitationally flexed galaxies are reported in table 3.18. The positions

of these galaxies are also shown in figure 3-25. Some, though by no means all, of

these galaxies’ shapes appear to encircle the cluster center. So that the measurement

is less corrupted by the PSF, we filter our selection of hand-picked objects to contain

only those galaxies with half light radii greater than 1.5× the PSF half light radius.

We additionally only consider those galaxies with r’ magnitude’s dimmer than 22,

as brighter objects are more likely to be cluster members, and therefore inherently

42For consideration in this low noise sample, galaxies must have measured F- and G-flexions which
are larger than the reported errors in those measurements. This criterion constrains the selection
of galaxies to those with non-negligible flexion. We considered sorting the objects by highest signal
to noise ratios instead of lowest overall noise in the measurement, but that standard preferentially
selected objects with very large flexions that are more likely attributable to complex inherent galaxy
structure than gravitational lensing.
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flexed rather than gravitationally flexed.

Zoomed in images from selections of the lowest noise objects in tables 3.16 and

3.17, and the hand-picked gravitationally flexed objects in table 3.18 are shown in

figures 3-26, 3-27, and 3-28. The best fit DoPHOT models and the residuals images

(image minus model) are also shown in these figures. In order to show detail in the

galaxy and model shapes, we colorize these images, with lower intensities shown as

shades of blue, and higher intensities shown as green and then red. These flexed

galaxy images are well-imitated by their respective models.

Last, in addition to presenting flexion measurements for our own lowest noise

objects, in table 3.19 we report our flexion measurements for the objects analyzed

in Cain et al. [15]. So that we can detect more objects overlapping with the HST

measurements in that work, we analyze the inner region of our field more deeply than

we do for our primary analysis of galaxy-galaxy flexion, allowing DoPHOT to detect

and fit models to objects down closer to the nosie floor in the deepest r’ image.43 We

only report on those objects in table 3 of Cain et al. [15] that are bright and well-

resolved enough to be detected in our ground based images, and are additionally larger

than 1.5× the PSF in the ground based images. Both the measured flexions and the

PSF corrected flexions are provided. Unfortunately, even for these object which can

be resolved from the ground, our inferred de-aberrated and atmospherically corrected

flexions are still too noisy to draw a definitive relation with the flexion values reported

in Cain et al. [15]. We therefore do not include a plot comparing our PSF corrected

flexion values to those reported in Cain et al. [15].44

43Recall, we choose not to detect objects down to the noise floor in the main analysis of galaxy-
galaxy lensing flexion as (1) the number of spurious or high noise objects entering our sample would
be high, (2) we would not be able to get multi-filter photometry for the deepest detected objects
in the best r’ image, and (3) false objects found in the residuals of the brightest stars and galaxies
can corrupt the photometry of those objects. Since we are using this deeper analysis to measure
the flexion in objects selected by Cain et al. [15] or those selected visually, false detections do not
pose a problem. Moreover, we are not using the photometry for the bright objects in this analysis,
so corruption to photometric measurements on the brightest objects is not a concern.

44The PSF corrected shear values do vary linearly with slope 1 with those reported in Cain et al.
[15]. However, shear is not the focus of this work.
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Figure 3-25 Abell 1689: 480′′ × 380′′ image in r’ of the three chips containing the
cluster center. The image is oriented with RA up and DEC increasing to the left,
in agreement with Megacam’s default orientation. The flexed background source
galaxies with the lowest noise in measured flexion are circled in green. These objects
correspond to those examined figure 3-27 and table 3.17. The sample of visually
selected lensed background galaxies detailed in figure 3-28 and table 3.18 are circled
in blue.
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Figure 3-26 Background source galaxies with low noise in measured flexion. For each
galaxy, the image (left), the best fit model (center), and the residual of the model
subtracted from the image (right) are shown. The images are cropped to 11× the
galaxy FWHM along each axis. Numerical values for the flexion measurements are
given in table 3.16. The galaxies shown here correspond to numbers 5, 10, and 12
in the table. Colors vary with image intensity from blue to green to red, and color
scales are consistent across each each galaxy triplet.
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Figure 3-27 Background galaxies with lowest noise in measured flexion. Objects here
are drawn from the three chips containing the cluster center, shown in figure 3-25.
For each galaxy, the image (left), the best fit model (center), and the residual of the
model subtracted from the image (right) are shown. he images are cropped to 11×
the galaxy FWHM along each axis. Numerical values for the flexion measurements
are given in table 3.17. Colors vary with image intensity from blue to green to red,
and color scales are consistent across each each galaxy triplet.
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Figure 3-28 Hand-picked galaxies that appear to be gravitationally flexed. Objects
here are drawn from the three chips containing the cluster center, shown in figure 3-
25. There is no numerical justification for choosing to display flexions and models for
these objects over any others; these are simply the objects which stand out visually
as (1) lying behind the cluster (2) uncorrupted by light from neighboring objects and
(3) very likely to be gravitationally flexed, with a classic arc-like shape. Visually
selected objects are filtered by their half light radii, which must be greater greater
than 1.5× the PSF half light radius. For each galaxy, the image (left), the best fit
model (center), and the residual of the model subtracted from the image (right) are
shown. The images are cropped to 11× the galaxy FWHM along each axis. Numerical
values for the flexion measurements are given in table 3.18. Colors vary with image
intensity from blue to green to red, and color scales are consistent across each each
galaxy triplet.
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3.9 Conclusion

We did not measure galaxy-galaxy lensing flexion in Abell 1689. Ultimately, our

measurement was thwarted by the unforseen magnitude of inherent flexion shape

noise at z ∼ 1. We conclude with a recipe, constructed from hindsight, of how one

might make this measurement in the future.

1. Start with deep measurements in good seeing conditions. Flexion measurements

require 5 magnitudes more depth than shear measurements in order to overcome

photon noise. 1.75 hours in r’ with a coadded PSF of 0.′′52 (FWHM), is only

sufficient to measure flexions with F-flexion signal to noise greater than 1 for

∼ 60% of detected objects at magnitude 22, and ∼ 20% of objects at magnitude

24. Only ∼ 50% and ∼ 15% of objects at magnitudes 22 and 24 have G-flexion

measurements with signal to noise greater than 1. This is not enough data to

beat down the intrinsic shape noise of 0.101 for F-flexion and 0.126 for G-flexion

at z ∼ 1.

2. Use IR imaging, such as is proposed for the Wide-Field InfraRed Survey Tele-

scope [62]. The inherent shape noise of galaxies is smaller at redder wavelengths.

3. Use only objects with the largest half light radii. The shape distortions imposed

on galaxy images by gravitational flexion scale linearly with the size of the source

galaxy. Moreover, the seeing will degrade the measurable galaxy shapes as the

cube of the ratio of the PSF and galaxy size. So a selection of comparatively

large source galaxies is key to a low noise flexion measurement.

4. Use only the images with the best seeing, or alternately go to space where

the PSF is smaller. While space based measurements will still require some

PSF correction, this correction will be smaller for the largest galaxies, and will

ultimately expand the range of galaxies usable for flexion analysis.

5. Either obtain spectroscopy for many objects in the field and use that spec-

troscopy to calibrate a photometric redshift solution, or supplement visual pho-
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tometry with equally deep infrared in order to break the degeneracy in pho-

tometric redshift solutions determined by g’, r’, i’ filters alone. When mea-

suring the effect on individual background source galaxies by individual clus-

ter member galaxies, accurately selecting the populations for each is critical.

Color-magnitude selection, even using two colors, is sufficient for differentiating

between source and cluster objects, but ultimately wasteful.

6. Use simple models to measure the flexion in images. Our eleven parameter

model of an elliptical unlensed source galaxy plus lensing aberrations repro-

ducibly measures flexion in low signal to noise galaxies in the crowded Abell

1689 field. While this simple model sometimes fails on more well-resolved galax-

ies, these objects are of minimal interest to lensing measurements anyway.

7. Measure image aberrations carefully and account for them in the image model.

Most of the measurable ‘flexion’ in our images was in fact coma and trefoil,

and a mixing of these telescope aberrations with galaxy ellipticity. Failure

to properly compensate for these aberrations can easily lead to a perceived

gravitational flexion measurement where there really is none.
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[6] Beńıtez, N. 2011, Astrophysics Source Code Library, 8011

[7] Bernstein, G. M., & Jarvis, M. 2002, AJ, 123, 583

[8] Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393

[9] Bertin, E. 2006, Astronomical Data Analysis Software and Systems XV, 351, 112

[10] Bower, R. G., Lucey, J. R., & Ellis, R. S. 1992, MNRAS, 254, 589

[11] Bower, R. G., Lucey, J. R., & Ellis, R. S. 1992, MNRAS, 254, 601

[12] Brammer, G. B., van Dokkum, P. G., & Coppi, P. 2008, ApJ, 686, 1503

[13] Bridle, S., Balan, S. T., Bethge, M., et al. 2010, MNRAS, 405, 2044
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3.10 Wavefront delays to unitless coma, astigma-

tism, and trefoil aberrations

A wavefront delay at the edge of the pupil, W ′ and its gradient, ∇⃗W ′, are given by

the following functions of the normalized pupil coordinate, ρ⃗, the radius of the pupil,

R, and the magnitudes (in µm) of the defocus, astigmatism, coma, and trefoil, (d′,

a⃗′, c⃗′, and t⃗′, at the edge of the pupil:
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W ′ = d′ρ2 + a⃗′ · ρ⃗2 + c⃗′ · ρ2ρ⃗+ t⃗′ · ρ⃗3 (3.12)

so ∇⃗W ′ =

(
2
d′

R
ρ⃗+ 2

a⃗′

R
ρ⃗∗ + 2

c⃗′

R
ρ2 +

c⃗′∗

R
ρ⃗2 + 3

t⃗′

R
(ρ⃗∗)2

)

= ζ
(
2dρ⃗+ 2a⃗ρ⃗∗ + 2c⃗ρ2 + c⃗∗ρ⃗2 + 3t⃗(ρ⃗∗)2

)
.

For ease of notation, we have introduced unitless wavefront aberrations d, a, c, and

t, which can be converted into microns of aberration at the pupil edge by multiply-

ing with the coefficient ζ. The scale of ζ is arbitrary, but may be thought of as a

‘typical’ ray displacement or image size and thus has units of the same– angle of ray

displacement, or equivalently angular image size.

We define the Gaussian width of the PSF as α so that a measured spin-0 second

moment of the spot created by the above wavefront delays and atmospheric smearing

is 2α2, if the PSF is truly Gaussian. With this definition, the Gaussian width is given

by

α = ζ

√(
d2 + a2 +

1

3
c2 +

3

2
t2 + S2

atm

)
, (3.13)

where we have assumed that any width added by the atmospheric smearing, Satm

adds in quadrature to the spot size caused by the wavefront delays.

Similarly, we define the dimensionless astigmatism, coma, and trefoil (⃗ã, ⃗̃c, ⃗̃t)

so that the spin-2 second moment and spin-1 and 3 third moments of the PSF are

4α2
(
⃗̃a
)
, 24α3

(
3⃗̃c
)
, and 24α3

(
⃗̃t
)
.45 The resulting relation between the unitless

astigmatism, coma, and trefoil and the telescope wavefront delays are:

45These relations ensure that the expressions for astigmatism, coma, and trefoil in the Gaussian
model are identical to shear, F-flexion, and G-flexion. See Levinson [40] for details.
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⃗̃a =
1

4α2

ζ2

(
4a⃗d+

1

3
c⃗2 + 2c⃗∗t⃗

)
(3.14)

⃗̃c =
1

24α3

ζ3

1

3

(
1

3
c⃗
(
8d2 + 4a2 + c2 + 9t2

)
+ 4c⃗∗a⃗d+ 8t⃗⃗a∗d+ 4a⃗2t⃗∗ + (c⃗∗)2t⃗

)

⃗̃t =
1

24α3

ζ3

(
3t⃗
(
4d2 + c2

)
+ 4c⃗⃗ad+ 4c⃗∗a⃗2

)
.

These relations, combined with those in equation 3.12, map the unitless spin-1,

2, and 3 aberrations back to the microns of wavefront delay at the edge of the pupil

that generates them.

However, the above relations between spin-n moments in the PSF and the wave-

front delays only hold if the measured aberrations are caused by telescope aberrations.

In the case where guiding error contributes to the measured spin-1 and spin-2 image

aberrations, the guiding error contributions to these terms must be subtracted from

the measured PSF moments before the wavefront delays can be derived.

We believe that guiding error is the primary contributor to the field constant

coma and astigmatism measured in our images. The spin-1 aberration in the best

individual r’ image is too large to be associated with a coma wavefront delay; if the

measured coma were caused by telescope aberrations, either the defocus would be so

severe that the ‘donut’ pattern caused by the obstruction of light from the secondary

mirror would be apparent in the images, or the coma would be sufficiently large that

the classic comet pattern should start to be visible in the stellar images. We see

neither of these in the images.

Additionally, we measure a large, constant spin-2 (astigmatism) aberration in the

PSFs that is in the approximate direction of the coma. Piston of the mirrors causes

a field quadratic astigmatism pattern, and mirror misalignments cause a large linear

astigmatism pattern plus a very small constant term. Therefore, in absence of a large

associated linear astigmatism pattern, the field constant term must be caused by

either misshapen mirrors or a guiding error. During observations we ran wavefront

sensing to reshape the primary mirror every 30 minutes to 1 hour. During those
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corrections, we did not see an astigmatic error on the primary large enough to create

PSFs with as much elongation as we measure in the images. It is therefore most likely

that guiding error is the cause of the field constant coma and astigmatism aberrations.

Accounting for this probable guiding error by fixing the coma wavefront delay to

zero and subtracting out the field constant contribution to the measured spin-2 (⃗ã)

aberration, we compute the wavefront delays at the edge of the pupil for images at

the edge of the field (chip 36). In order to make this computation, we must also

estimate the contribution of the seeing to the spin symmetric second moment of the

PSF. Based on the reported seeing at the Baade telescope at the time of the obser-

vation, 0.′′46 (FWHM), and the fact that the reported seeing at the Baade telescope

was 0.′′51 (FWHM), 10% larger than we measure in the images, we assume that the

atmospheric seeing alone contributes 0.′′178 to the measured Gaussian width of the

PSF, 0.′′195. From the seeing contribution to the PSF, we infer the contribution of

the telescope aberrations to the Gaussian width of the PSF, 0.′′080. We verify the

relative contributions of the atmosphere and the aberrations to the PSF by exam-

ining the recorded wavefront delays from 2010 November.46 The average drifts in

Zernike defocus, astigmatism, coma, and trefoil between primary mirror corrections

are 0.56µm, 0.29µm, 0.12µm, and 0.10µm respectively. Converting these Zernike

wavefront delays to arcseconds of wavefront delay at the edge of the pupil for the

Magellan telescope, and inserting the values into equation 3.13, we find that a typical

contribution of aberrations to the PSF Gaussian width is 0.′′08, in complete agreement

with the estimate inferred from Baade’s seeing. The resulting wavefront delays are

presented in table 3.11.

46Unlike most instruments on the Magellan telescopes, Megacam is too wide to allow for continuous
Shack-Hartmann wavefront sensing (WFS) and continuous correction of the primary mirror during
science exposures. Instead, two out-of-focus guide chips at the edges of the science camera are used
to maintain guiding and focus during exposures, and the shape of the primary is maintained by
intermittently halting science exposures, moving the Shack-Hartmann camera into the field, and
performing a WFS. The aberrations measured by the Shack-Hartmann camera before the primary
mirror corrections are implemented are used to estimate the drift in the telescope aberrations over
the course of the science exposures. We use November 2010 data as this is the only observing run
for which we recorded WFS data. The seeing on this run was excellent, making the aberrations very
easy to measure.
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Zernike wavefront delays
defocus 0.365µm
astigmatism1 −0.025µm
astigmatism2 −0.105µm
trefoil1 −0.210µm
trefoil2 −0.526µm

Table 3.11 Zernike wavefront delays on the pupil for a chip at the edge of the field
in the best r’ image. These wavefront delays would produce the observed spin-3 PSF
distortion and the field variable contribution to the spin-2 PSF distortion on chip
36 of Megacam. Coma and field constant astigmatism are assumed to be caused by
guiding error, not wavefront delays.

3.11 Aberrations in individual exposures

To test that image coaddition did not unduly corrupt our images, we analyze the

aberations in the best individual exposures in the i’ and r’ bands and compare those

aberrations to those in the coadded r’ and i’ images. While the PSF half light radii

in the coadded images are ∼ 10% larger than those in these individual exposures, as

is expeted from coadding these images with ones of lower quality, the aberrations are

very similar in each. Compare figure 3-29 and table 3.13 to their counterparts in §3.4.

In the r’ filter, the coma in the individual image is nearly identical to the coma

in the coadded image, suggesting that coaddition did not impart any effective coma

to the image. This seems only natural as we did not dither in r’, and therefore the

pointing offset between most exposures is zero to within the pointing error.

The astigmatism in the individual and coadded r’ images corroborates this hy-

pothesis that misalignments between the individual exposures are small enough so as

to not corrupt the coadded image. The astigmatism is smaller, by 0.012, in the coad-

ded image than the individual image, suggesting that the astigmatism varies slightly

between the individual exposures, but the images are ultimately aligned, forcing the

astigmatism to average out in the coaddition. This averaging would cause a slight

broadening of the PSF, which we see in the coadded image.

In the i’ filter, the magnitude of the coma in the individual image is the same as the

magnitude of the coma in the final image, but the direction changes by ∼ 13◦. This

slight change in direction likely indicates that (a) the coma in the other exposures
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is in a slightly different direction than the coma in this exposure, and/or (b) at

least some of the coma in the coadded image is caused by the image addition. The

latter is possible, as we did dither in the i’ filter in response to the fringing, leaving

ourselves vulnerable to non-integer pixel shifts between exposures. And since we

coadd images by pixel, any dithers by offsets that are not evenly divisible by the

pixel size necessitates adding together slightly offset images. However, it is unlikely

that the coma in the final image is caused entirely by the coaddition, as image offsets

alone would force the coma in the coadded image to have a larger magnitude than

the coma in the individual images, and we do not see an increase in the magnitude

of coma in the coadded image. More likely the direction shift in coma is cause by a

combination of the differing coma in the individual image and slight offsets between

the images.

The astigmatism in the coadded i’ image is minimally smaller, by 0.003, than

the astigmatism in the individual image, and has a directional offset of ∼ −10◦ on

average. This small decrease in the magnitude of the astigmatism indicates that the

astigmatism was not as well averaged out in the i’ coaddition as compared to the

r’ coaddition. This persistence of the astigmatism could be caused by (a) relative

consistency in the astigmatism between exposures, (b) generally larger astigmatism

magnitude in the other exposures (though possibly differing in direction between

frames), and/or (c) slight spatial offsets between the individual exposures which are

unresolved by the coaddition scheme. While it may contribute somewhat, it is unlikely

that spatial offsets are the primary contributers to the final image astigmatism as the

directions of the astigmatism in the individual and ocadded image are so similar.

We therefore conclude that the measured aberrations in the coadded r’ images

reflect aberrations present in the individual images, and we are not artificially intro-

ducing aberrations to the images with the r’ coaddition. The coaddition may have

added some minimal effective aberrations to the final coadded i’ images, but the coma

and astigmatism in these final images are no larger than the coma and astigmatism

in the best individual i’ exposure.

227



Figure 3-29 Unitless astigmatism (left) and coma (right) in the best single exposures
in the i’ filter (top) and r’ filter (bottom). Compare to figure 3-9, which present the
aberrations in the coadded images. Black lines denote the chip boundaries. Each el-
lipse (astigmatism plots) or vector (coma plots) represents the measurement from one
star. For the astigmatism images, the size, eccentricity, an orientation of each ellipse
shows the object’s measured half light radius, astigmatism magnitude (exaggerated
x5), and orientation. For the coma images, the direction and size of the vector corre-
spond to the direction and size of the found coma. The color of each ellipse or vector
indicates the half light radius (“) of the object, as indicated by the color chart to the
right of the images. Objects which are 2σ outliers in PSF size are excluded from the
plot. Coma is largely field constant, while the astigmatism is a combination of field
constant and field quadratic patterns. The average aberrations by chip are given in
table 3.12.
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aberrations in the coadded i’ image

chip
radius
(“)

shear1 shear2 coma1 coma2 trefoil1 trefoil2

1 0.29 0.053 0.008 0.007 0.008 0.003 0.012
2 0.29 0.033 0.009 0.009 0.008 0.002 0.007
3 0.29 0.027 0.013 0.010 0.009 0.005 0.006
4 0.28 0.025 0.018 0.011 0.007 0.005 0.006
5 0.28 0.025 0.020 0.010 0.007 0.006 0.005
6 0.28 0.023 0.025 0.010 0.006 0.006 0.004
7 0.29 0.030 0.037 0.010 0.006 0.006 0.003
8 0.29 0.033 0.044 0.009 0.003 0.007 0.003
9 0.30 0.045 0.073 0.004 0.002 0.008 0.001
10 0.28 0.038 0.021 0.007 0.006 0.000 0.000
11 0.28 0.040 0.016 0.009 0.008 0.005 0.003
12 0.27 0.037 0.019 0.012 0.009 0.003 0.003
13 0.27 0.036 0.017 0.012 0.007 0.005 0.003
14 0.27 0.039 0.018 0.011 0.007 0.005 0.004
15 0.28 0.034 0.018 0.013 0.007 0.007 0.004
16 0.28 0.034 0.023 0.012 0.005 0.004 0.004
17 0.28 0.026 0.027 0.012 0.003 0.000 0.000
18 0.28 0.042 0.032 0.010 0.006 0.004 0.002
19 0.29 0.032 0.034 0.007 0.004 0.001 0.000
20 0.28 0.031 0.025 0.009 0.006 0.004 0.004
21 0.27 0.033 0.019 0.011 0.006 0.004 0.004
22 0.28 0.032 0.018 0.011 0.007 0.003 0.003
23 0.28 0.034 0.015 0.014 0.007 0.003 0.002
24 0.28 0.035 0.016 0.013 0.007 0.004 0.002
25 0.28 0.039 0.018 0.012 0.007 0.004 0.003
26 0.28 0.040 0.017 0.011 0.007 0.005 0.006
27 0.28 0.045 0.014 0.010 0.007 0.005 0.005
28 0.30 0.014 0.052 0.004 0.004 0.008 0.003
29 0.30 -0.002 0.029 0.005 0.003 0.008 0.002
30 0.29 0.008 0.023 0.009 0.004 0.009 0.005
31 0.29 0.018 0.014 0.009 0.005 0.006 0.008
32 0.28 0.018 0.009 0.010 0.004 0.005 0.007
33 0.28 0.019 0.003 0.007 0.004 0.002 0.004
34 0.28 0.022 0.003 0.011 0.006 0.004 0.007
35 0.28 0.028 -0.000 0.010 0.008 0.005 0.009
36 0.30 0.035 -0.002 0.011 0.009 0.007 0.010

aberrations in the coadded r’ image

chip
radius
(“)

shear1 shear2 coma1 coma2 trefoil1 trefoil2

1 0.26 0.043 -0.046 0.017 -0.001 -0.018 0.000
2 0.26 0.042 -0.058 0.017 0.001 -0.023 -0.001
3 0.26 0.039 -0.059 0.017 0.001 -0.018 -0.002
4 0.26 0.028 -0.052 0.018 0.001 -0.019 -0.004
5 0.26 0.034 -0.042 0.016 0.001 -0.014 -0.003
6 0.26 0.028 -0.026 0.018 0.000 -0.018 -0.004
7 0.26 0.037 -0.020 0.018 -0.001 -0.018 -0.006
8 0.26 0.040 -0.020 0.017 -0.001 -0.019 -0.006
9 0.26 0.044 -0.029 0.015 -0.004 -0.014 -0.001
10 0.26 0.050 -0.040 0.014 -0.000 -0.016 -0.004
11 0.26 0.053 -0.053 0.017 -0.001 -0.020 -0.005
12 0.25 0.043 -0.049 0.019 0.000 -0.017 -0.002
13 0.25 0.037 -0.047 0.020 -0.001 -0.016 -0.001
14 0.25 0.034 -0.045 0.018 -0.002 -0.011 0.000
15 0.25 0.039 -0.042 0.021 -0.002 -0.014 -0.002
16 0.25 0.045 -0.039 0.019 -0.003 -0.017 -0.003
17 0.26 0.050 -0.031 0.018 -0.002 -0.015 -0.003
18 0.26 0.060 -0.037 0.019 -0.004 -0.023 -0.003
19 0.26 0.042 -0.027 0.016 -0.003 -0.013 -0.009
20 0.26 0.040 -0.023 0.018 -0.004 -0.016 -0.008
21 0.26 0.043 -0.035 0.018 -0.003 -0.012 -0.006
22 0.25 0.034 -0.039 0.019 -0.003 -0.012 -0.005
23 0.25 0.034 -0.047 0.020 -0.003 -0.012 -0.004
24 0.25 0.035 -0.056 0.020 -0.002 -0.014 -0.001
25 0.25 0.045 -0.059 0.019 -0.002 -0.015 -0.002
26 0.26 0.053 -0.067 0.018 -0.002 -0.016 -0.002
27 0.26 0.055 -0.061 0.016 -0.002 -0.020 -0.002
28 0.27 0.033 -0.016 0.016 -0.001 -0.006 -0.012
29 0.27 0.019 -0.014 0.016 -0.001 -0.009 -0.013
30 0.27 0.011 -0.013 0.018 -0.002 -0.011 -0.014
31 0.27 0.013 -0.027 0.017 -0.002 -0.008 -0.012
32 0.26 0.015 -0.045 0.017 -0.001 -0.012 -0.010
33 0.26 0.008 -0.058 0.014 -0.001 -0.011 -0.005
34 0.26 0.020 -0.068 0.014 0.000 -0.012 -0.003
35 0.26 0.030 -0.074 0.015 -0.000 -0.013 -0.002
36 0.26 0.035 -0.064 0.014 -0.001 -0.017 -0.005

Table 3.12 Unitless aberrations by chip in the deepest coadded i’ and r’ images. These measured
aberrations are a combination of the telescope and atmospheric aberrations, plus any broadening
and asymmetry introduced to the image during coaddition of individual images. While we use the
terms astigmatism, coma, and trefoil to name the spin-2, 1, and 3 aberrations, each is in fact a
non-linear combination of the associated wavefront delays.
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aberrations in single i’ image

chip
radius
(“)

shear1 shear2 coma1 coma2 trefoil1 trefoil2

1 0.27 0.046 0.002 0.010 0.011 0.001 0.007
2 0.26 0.041 -0.005 0.009 0.013 -0.001 0.006
3 0.26 0.035 -0.003 0.013 0.010 0.010 0.002
4 0.26 0.034 0.003 0.011 0.012 0.005 0.005
5 0.27 0.026 0.011 0.008 0.007 0.002 0.008
6 0.26 0.030 0.016 0.012 0.012 0.002 0.008
7 0.27 0.036 0.026 0.009 0.007 -0.000 0.010
8 0.26 0.034 0.030 0.006 0.009 0.007 0.006
9 0.27 0.038 0.021 0.009 0.010 0.004 0.010
10 0.26 0.053 0.004 0.010 0.008 0.001 0.001
11 0.26 0.048 -0.003 0.010 0.009 0.004 0.002
12 0.26 0.045 0.004 0.010 0.008 -0.003 0.002
13 0.25 0.043 0.003 0.009 0.007 0.003 0.004
14 0.25 0.045 0.011 0.007 0.010 0.005 0.007
15 0.26 0.050 0.015 0.010 0.010 0.004 0.004
16 0.26 0.048 0.015 0.005 0.011 0.008 0.004
17 0.26 0.053 0.015 0.009 0.010 0.008 0.010
18 0.26 0.052 0.015 0.009 0.007 0.004 0.009
19 0.26 0.049 0.008 0.011 0.000 0.001 0.002
20 0.26 0.044 0.009 0.006 0.005 0.001 0.001
21 0.26 0.042 0.005 0.006 0.005 -0.001 0.006
22 0.26 0.045 0.007 0.006 0.006 -0.001 0.004
23 0.26 0.045 0.004 0.006 0.011 -0.001 0.007
24 0.26 0.043 -0.001 0.005 0.008 0.002 0.009
25 0.26 0.045 -0.002 0.004 0.008 0.002 0.008
26 0.26 0.046 -0.003 0.006 0.007 0.005 0.007
27 0.26 0.049 -0.003 0.007 0.008 0.007 0.012
28 0.28 0.034 0.016 0.004 0.004 0.006 0.005
29 0.28 0.033 0.010 0.002 0.005 0.006 0.015
30 0.27 0.027 0.014 0.002 0.003 0.005 0.009
31 0.27 0.026 0.001 0.003 0.003 0.005 0.012
32 0.27 0.027 -0.007 0.002 0.003 0.003 0.014
33 0.27 0.032 -0.012 0.002 0.001 0.004 0.010
34 0.27 0.032 -0.017 0.007 0.002 -0.002 0.007
35 0.27 0.037 -0.021 0.006 0.003 0.002 0.010
36 0.27 0.038 -0.021 0.006 0.004 0.007 0.016

aberrations in single r’ image

chip
radius
(“)

shear1 shear2 coma1 coma2 trefoil1 trefoil2

1 0.23 0.064 -0.040 0.012 -0.001 -0.016 -0.005
2 0.23 0.065 -0.048 0.014 0.000 -0.012 -0.007
3 0.23 0.060 -0.047 0.014 0.001 -0.011 -0.003
4 0.23 0.056 -0.042 0.015 0.001 -0.009 -0.008
5 0.23 0.050 -0.028 0.014 -0.000 -0.012 -0.006
6 0.23 0.055 -0.019 0.017 0.000 -0.009 -0.012
7 0.24 0.056 -0.009 0.016 0.001 -0.009 -0.013
8 0.23 0.062 -0.007 0.016 -0.001 -0.009 -0.011
9 0.23 0.067 -0.024 0.017 -0.003 -0.004 -0.001
10 0.23 0.074 -0.029 0.013 -0.001 -0.010 -0.008
11 0.23 0.077 -0.037 0.013 0.001 -0.010 -0.008
12 0.22 0.075 -0.037 0.014 0.002 -0.009 -0.007
13 0.22 0.068 -0.038 0.016 0.003 -0.004 -0.009
14 0.22 0.068 -0.035 0.015 0.002 -0.002 -0.005
15 0.22 0.069 -0.033 0.019 -0.001 -0.001 -0.008
16 0.22 0.073 -0.028 0.020 0.000 -0.004 -0.009
17 0.22 0.078 -0.024 0.020 -0.001 -0.010 -0.008
18 0.23 0.089 -0.019 0.020 -0.002 -0.011 -0.008
19 0.23 0.070 -0.016 0.014 0.002 -0.007 -0.011
20 0.23 0.068 -0.012 0.013 0.001 -0.003 -0.014
21 0.23 0.066 -0.021 0.017 -0.000 -0.002 -0.009
22 0.22 0.066 -0.028 0.017 -0.002 0.000 -0.006
23 0.22 0.063 -0.035 0.017 -0.001 0.005 -0.007
24 0.22 0.067 -0.038 0.022 -0.002 -0.001 -0.005
25 0.22 0.067 -0.041 0.019 -0.002 -0.004 -0.005
26 0.22 0.075 -0.043 0.021 -0.001 -0.006 -0.005
27 0.22 0.082 -0.040 0.020 -0.001 -0.001 -0.009
28 0.24 0.052 0.002 0.014 0.002 -0.005 -0.013
29 0.24 0.040 0.009 0.016 0.002 -0.002 -0.012
30 0.24 0.034 0.007 0.018 -0.001 -0.004 -0.014
31 0.24 0.031 -0.004 0.017 -0.004 0.003 -0.010
32 0.23 0.034 -0.024 0.019 -0.004 -0.002 -0.012
33 0.23 0.041 -0.035 0.019 -0.005 -0.002 -0.009
34 0.23 0.043 -0.047 0.019 -0.002 -0.004 -0.010
35 0.23 0.050 -0.053 0.019 -0.001 -0.005 -0.005
36 0.23 0.057 -0.045 0.019 -0.002 -0.004 -0.010

Table 3.13 Unitless aberrations by chip in the best single exposure in the i’ and r’ filters. Compare
to table 3.12, which present the aberrations in the coadded images. These measured aberrations
are a combination of the telescope and atmospheric aberrations, with no contribution from image
coaddition. While we use the terms astigmatism, coma and trefoil to name the spin-2, 1, and
3 aberrations, each is in fact a non-linear combination of the various similarly named wavefront
delays.
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Table 3.14: Flexion measurements & predictions for the best 20 galaxy lensed background sources

obj #

(ra, dec)

Mr, (θ1/2θE)/θ2

img µ
data

type
gr gt Fr Ft Gr Gt eFr eFt eGr eGt

# 1

(13 : 11 : 30.0,

−1 : 22 : 33.2)

24.59, 0.0237

i2 0.′′280
0.′′455

meas -0.120 0.132 0.0820 0.0120 0.0763 0.0052 0.0518 0.0466 0.0756 0.0756

pred 0.0049 -0.0028 -0.0239 -0.0032 0.0010 0.0005 0.0033 0.0012

de-ab 0.0052 -0.0008 -0.0192 0.0004

aber -0.0003 -0.0020 -0.0048 -0.0037

r1 0.′′250
0.′′423

meas -0.098 0.149 0.0225 -0.0066 0.0773 0.0137 0.0427 0.0246 0.0550 0.0550

pred 0.0020 -0.0021 -0.0294 0.0042 0.0010 0.0004 0.0031 0.0013

de-ab 0.0054 -0.0011 -0.0189 0.0002

aber -0.0035 -0.0009 -0.0105 0.0040

# 2

(13 : 11 : 23.9,

−1 : 21 : 45.9)

23.23, 0.0201

r3 0.′′341
0.′′588

meas -0.073 -0.043 0.0825 -0.0134 -0.0079 -0.0107 0.0351 0.0276 0.0525 0.0525

pred 0.0037 -0.0052 -0.0151 -0.0070 0.0035 0.0016 0.0113 0.0019

de-ab 0.0050 -0.0020 -0.0155 -0.0040

aber -0.0013 -0.0031 0.0004 -0.0030

# 3

(13 : 11 : 46.0,

−1 : 09 : 53.6)

22.75, 0.0180

i1 0.′′279
0.′′540

meas -0.019 -0.080 0.1998 0.0997 0.0243 -0.0483 0.0449 0.0353 0.0709 0.0709

pred 0.0040 -0.0015 -0.0093 0.0014 0.0025 0.0003 0.0078 0.0007

de-ab 0.0037 -0.0002 -0.0112 -0.0006

aber 0.0003 -0.0013 0.0019 0.0020

i2 0.′′278
0.′′521

meas -0.098 -0.139 0.2682 0.1235 -0.0209 0.0366 0.0577 0.0381 0.0808 0.0808

pred 0.0022 -0.0018 -0.0059 -0.0044 0.0022 0.0003 0.0075 0.0010

de-ab 0.0031 -0.0003 -0.0109 -0.0011

aber -0.0009 -0.0015 0.0049 -0.0033

# 4

(13 : 11 : 32.6,

−1 : 21 : 02.0)

22.07, 0.0173

r1 0.′′249
0.′′502

meas -0.018 -0.031 0.0135 0.0198 0.0016 -0.0091 0.0110 0.0125 0.0203 0.0203

pred 0.0017 0.0020 -0.0041 0.0115 0.0024 0.0004 0.0005 0.0006

de-ab 0.0044 0.0029 -0.0034 0.0115

aber -0.0028 -0.0009 -0.0007 -0.0000

# 5

(13 : 10 : 59.4,

−1 : 16 : 28.9)

22.56, 0.0125

i1 0.′′281
0.′′511

meas 0.049 -0.048 -0.0400 -0.0562 0.0514 0.0546 0.0319 0.0315 0.0535 0.0535

pred 0.0045 -0.0008 -0.0092 0.0003 0.0011 0.0001 0.0031 0.0005

de-ab 0.0027 -0.0001 -0.0076 -0.0003

aber 0.0017 -0.0007 -0.0016 0.0006

r1 0.′′259
0.′′492

meas 0.055 0.003 -0.0141 -0.0961 0.0798 -0.0080 0.0124 0.0158 0.0237 0.0237

pred 0.0042 -0.0028 -0.0071 0.0035 0.0011 0.0001 0.0031 0.0004

de-ab 0.0029 -0.0001 -0.0078 -0.0000

aber 0.0013 -0.0027 0.0007 0.0036

r2 0.′′305
0.′′554

meas 0.058 -0.012 -0.0041 -0.0842 0.0567 -0.0020 0.0133 0.0170 0.0259 0.0259

pred 0.0041 -0.0030 -0.0059 0.0018 0.0012 0.0001 0.0032 0.0003

de-ab 0.0030 -0.0001 -0.0081 -0.0001

aber 0.0011 -0.0029 0.0021 0.0019
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Table 3.14: Flexion measurements & predictions for the best 20 galaxy lensed background sources

obj #

(ra, dec)

Mr, (θ1/2θE)/θ2

img µ
data

type
gr gt Fr Ft Gr Gt eFr eFt eGr eGt

# 6

(13 : 11 : 17.6,

−1 : 22 : 52.7)

22.50, 0.0120

i1 0.′′276
0.′′535

meas -0.035 -0.102 0.0803 -0.0207 0.0585 -0.0592 0.0354 0.0312 0.0528 0.0528

pred 0.0027 -0.0016 -0.0070 -0.0018 0.0005 0.0002 0.0016 0.0006

de-ab 0.0036 0.0001 -0.0113 -0.0005

aber -0.0009 -0.0018 0.0042 -0.0014

i2 0.′′280
0.′′546

meas -0.002 -0.181 0.0414 0.0098 0.0661 -0.0184 0.0335 0.0199 0.0435 0.0435

pred 0.0023 -0.0017 -0.0061 -0.0031 0.0005 0.0002 0.0015 0.0005

de-ab 0.0038 0.0002 -0.0114 -0.0009

aber -0.0016 -0.0020 0.0053 -0.0022

r1 0.′′250
0.′′526

meas 0.018 -0.135 0.0576 0.0350 0.0280 -0.0157 0.0164 0.0112 0.0230 0.0230

pred 0.0018 -0.0018 -0.0090 -0.0036 0.0005 0.0001 0.0015 0.0004

de-ab 0.0041 0.0005 -0.0121 -0.0003

aber -0.0022 -0.0023 0.0032 -0.0032

r2 0.′′295
0.′′556

meas 0.002 -0.120 0.0559 0.0331 0.0055 -0.0400 0.0222 0.0165 0.0321 0.0321

pred 0.0008 -0.0027 -0.0086 -0.0027 0.0005 0.0002 0.0015 0.0006

de-ab 0.0037 0.0000 -0.0111 -0.0007

aber -0.0028 -0.0028 0.0025 -0.0020

# 7

(13 : 11 : 43.9,

−1 : 25 : 02.9)

23.48, 0.0116

i2 0.′′279
0.′′430

meas 0.051 0.154 -0.0203 -0.0268 -0.1346 0.0252 0.0503 0.0347 0.0697 0.0697

pred -0.0014 0.0049 0.0007 0.0017 0.0010 0.0006 0.0024 0.0012

de-ab 0.0015 0.0008 -0.0037 0.0014

aber -0.0030 0.0041 0.0044 0.0003

r1 0.′′254
0.′′434

meas 0.055 0.222 0.0588 -0.0131 -0.0367 -0.0252 0.0289 0.0185 0.0361 0.0361

pred 0.0003 0.0045 0.0017 -0.0009 0.0012 0.0005 0.0029 0.0009

de-ab 0.0020 0.0007 -0.0049 0.0015

aber -0.0016 0.0038 0.0066 -0.0024

r2 0.′′300
0.′′477

meas 0.049 0.234 0.0783 0.0166 0.0149 -0.0474 0.0198 0.0397 0.0488 0.0488

pred -0.0004 0.0062 0.0039 0.0015 0.0011 0.0007 0.0027 0.0013

de-ab 0.0018 0.0011 -0.0045 0.0020

aber -0.0022 0.0051 0.0084 -0.0005

# 8

(13 : 12 : 02.2,

−1 : 08 : 32.7)

22.38, 0.0102

i1 0.′′279
0.′′479

meas 0.459 0.077 0.0120 -0.0709 -0.0587 0.0658 0.0343 0.1025 0.1039 0.1039

pred 0.0014 0.0018 -0.0111 -0.0062 0.0001 0.0001 0.0007 0.0004

de-ab 0.0022 0.0002 -0.0025 0.0004

aber -0.0008 0.0016 -0.0085 -0.0066

r1 0.′′258
0.′′489

meas 0.457 0.051 0.0410 -0.1200 -0.1398 0.1028 0.0558 0.0787 0.0958 0.0958

pred 0.0027 -0.0044 -0.0236 0.0098 0.0002 0.0003 0.0008 0.0007

de-ab 0.0027 0.0001 -0.0041 0.0003

aber 0.0000 -0.0045 -0.0195 0.0095

r2 0.′′304
0.′′541

meas 0.433 0.050 0.0744 -0.1300 -0.2051 0.1007 0.0662 0.0469 0.0762 0.0762

pred 0.0029 -0.0031 -0.0253 0.0056 0.0001 0.0002 0.0007 0.0006

de-ab 0.0026 0.0002 -0.0036 0.0004

aber 0.0003 -0.0033 -0.0217 0.0052
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Table 3.14: Flexion measurements & predictions for the best 20 galaxy lensed background sources

obj #

(ra, dec)

Mr, (θ1/2θE)/θ2

img µ
data

type
gr gt Fr Ft Gr Gt eFr eFt eGr eGt

# 9

(13 : 11 : 35.1,

−1 : 21 : 26.0)

22.10, 0.0099

i2 0.′′279
0.′′540

meas -0.213 -0.061 0.2951 0.0633 0.1177 0.0356 0.0466 0.0245 0.0591 0.0591

pred 0.0052 -0.0015 -0.0042 0.0043 0.0003 0.0002 0.0012 0.0004

de-ab 0.0021 -0.0019 -0.0104 0.0024

aber 0.0031 0.0003 0.0061 0.0019

r1 0.′′249
0.′′508

meas -0.276 -0.058 0.2437 0.0475 0.1046 0.0337 0.0317 0.0147 0.0372 0.0372

pred 0.0055 -0.0012 0.0007 -0.0023 0.0003 0.0002 0.0012 0.0005

de-ab 0.0019 -0.0018 -0.0104 0.0025

aber 0.0035 0.0005 0.0111 -0.0047

# 10

(13 : 11 : 19.5,

−1 : 22 : 36.6)

22.44, 0.0098

i1 0.′′276
0.′′504

meas -0.073 0.086 0.0902 -0.0867 0.0168 -0.1718 0.0542 0.0710 0.1039 0.1039

pred 0.0033 0.0017 -0.0034 0.0014 0.0004 0.0003 0.0018 0.0011

de-ab 0.0019 0.0007 -0.0072 0.0001

aber 0.0014 0.0010 0.0038 0.0014

i2 0.′′280
0.′′524

meas -0.013 0.151 0.1566 0.0524 0.1582 -0.1988 0.0601 0.1038 0.1402 0.1402

pred 0.0032 0.0014 -0.0032 -0.0028 0.0005 0.0003 0.0021 0.0012

de-ab 0.0022 0.0007 -0.0074 0.0003

aber 0.0010 0.0006 0.0042 -0.0031

r1 0.′′250
0.′′555

meas -0.027 0.074 0.0979 -0.0255 0.0237 -0.2079 0.0299 0.0211 0.0430 0.0430

pred 0.0049 0.0002 -0.0088 -0.0044 0.0005 0.0002 0.0019 0.0006

de-ab 0.0028 0.0006 -0.0097 -0.0003

aber 0.0020 -0.0005 0.0009 -0.0041

r2 0.′′295
0.′′580

meas -0.037 0.091 0.1072 -0.0332 0.0653 -0.1340 0.0335 0.0221 0.0471 0.0471

pred 0.0054 0.0002 -0.0084 -0.0045 0.0005 0.0002 0.0018 0.0007

de-ab 0.0025 0.0007 -0.0090 -0.0000

aber 0.0028 -0.0005 0.0005 -0.0045

# 13

(13 : 12 : 01.9,

−1 : 08 : 55.0)

22.61, 0.0084

i1 0.′′279
0.′′592

meas 0.020 -0.013 -0.0112 -0.0037 0.0177 0.0183 0.0263 0.0257 0.0450 0.0450

pred 0.0016 -0.0012 -0.0050 -0.0006 0.0002 0.0001 0.0007 0.0005

de-ab 0.0022 0.0001 -0.0065 -0.0000

aber -0.0006 -0.0013 0.0015 -0.0006

i2 0.′′278
0.′′650

meas 0.009 0.007 0.0225 -0.0024 0.0197 0.0913 0.0223 0.0228 0.0389 0.0389

pred 0.0019 -0.0006 -0.0084 0.0000 0.0002 0.0000 0.0006 0.0004

de-ab 0.0026 0.0000 -0.0079 0.0000

aber -0.0007 -0.0006 -0.0005 0.0000

r2 0.′′304
0.′′678

meas 0.030 0.007 -0.0013 -0.0148 -0.0046 0.0378 0.0119 0.0133 0.0214 0.0214

pred 0.0012 -0.0007 -0.0066 0.0025 0.0002 0.0001 0.0006 0.0003

de-ab 0.0027 0.0000 -0.0079 0.0000

aber -0.0014 -0.0007 0.0013 0.0025
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Table 3.14: Flexion measurements & predictions for the best 20 galaxy lensed background sources

obj #

(ra, dec)

Mr, (θ1/2θE)/θ2

img µ
data

type
gr gt Fr Ft Gr Gt eFr eFt eGr eGt

# 16

(13 : 11 : 17.7,

−1 : 18 : 15.0)

22.78, 0.0070

i1 0.′′273
0.′′492

meas -0.069 -0.183 0.0381 0.0665 -0.0563 0.0581 0.0245 0.0511 0.0627 0.0627

pred 0.0004 -0.0027 0.0050 -0.0006 0.0003 0.0004 0.0012 0.0009

de-ab 0.0016 0.0000 -0.0046 -0.0004

aber -0.0012 -0.0027 0.0096 -0.0002

i2 0.′′281
0.′′533

meas -0.064 -0.254 0.0445 0.0543 0.0193 -0.0422 0.0355 0.0564 0.0657 0.0657

pred 0.0011 -0.0010 0.0035 0.0003 0.0003 0.0003 0.0010 0.0006

de-ab 0.0019 0.0002 -0.0053 -0.0005

aber -0.0008 -0.0012 0.0088 0.0007

r1 0.′′247
0.′′487

meas -0.054 -0.267 0.0141 0.0515 -0.0874 0.0200 0.0098 0.0190 0.0216 0.0216

pred -0.0026 -0.0030 0.0057 -0.0108 0.0003 0.0001 0.0008 0.0004

de-ab 0.0018 0.0004 -0.0051 -0.0004

aber -0.0044 -0.0034 0.0107 -0.0104

r2 0.′′292
0.′′531

meas -0.045 -0.229 -0.0052 0.0402 -0.0999 -0.0003 0.0185 0.0113 0.0219 0.0219

pred -0.0023 -0.0037 0.0031 -0.0079 0.0003 0.0001 0.0008 0.0004

de-ab 0.0017 0.0000 -0.0049 -0.0006

aber -0.0040 -0.0037 0.0081 -0.0073

# 18

(13 : 11 : 17.8,

−1 : 22 : 37.4)

22.65, 0.0048

i1 0.′′276
0.′′516

meas -0.242 0.158 -0.0569 -0.0160 -0.1561 -0.0988 0.1005 0.1074 0.1352 0.1352

pred 0.0039 -0.0003 0.0057 -0.0012 0.0004 0.0002 0.0015 0.0012

de-ab 0.0008 0.0004 -0.0044 0.0006

aber 0.0031 -0.0007 0.0101 -0.0017

r1 0.′′250
0.′′503

meas -0.270 0.148 -0.0941 0.0007 -0.1717 -0.0793 0.0456 0.0183 0.0424 0.0424

pred 0.0055 -0.0010 0.0032 -0.0088 0.0002 0.0001 0.0008 0.0006

de-ab 0.0008 0.0003 -0.0046 0.0005

aber 0.0047 -0.0013 0.0078 -0.0093

# 19

(13 : 11 : 36.9,

−1 : 11 : 15.8)

23.63, 0.0047

i2 0.′′279
0.′′507

meas 0.029 0.290 -0.0181 0.0236 -0.0505 -0.0196 0.0527 0.0731 0.0944 0.0944

pred -0.0011 0.0023 -0.0002 0.0098 0.0005 0.0003 0.0013 0.0009

de-ab 0.0012 0.0002 -0.0034 0.0007

aber -0.0023 0.0021 0.0032 0.0091

r1 0.′′256
0.′′524

meas 0.063 0.156 0.0434 -0.0251 -0.4061 -0.2640 0.0435 0.0242 0.0545 0.0545

pred -0.0007 0.0030 0.0034 0.0024 0.0005 0.0002 0.0014 0.0008

de-ab 0.0015 -0.0000 -0.0041 0.0002

aber -0.0021 0.0030 0.0075 0.0022

r2 0.′′301
0.′′534

meas 0.105 0.146 0.1206 -0.0041 -0.2523 -0.3178 0.0606 0.0822 0.1072 0.1072

pred -0.0016 0.0044 0.0051 0.0000 0.0007 0.0006 0.0021 0.0019

de-ab 0.0012 0.0002 -0.0031 0.0005

aber -0.0028 0.0042 0.0082 -0.0005
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Table 3.14: Flexion measurements & predictions for the best 20 galaxy lensed background sources

obj #

(ra, dec)

Mr, (θ1/2θE)/θ2

img µ
data

type
gr gt Fr Ft Gr Gt eFr eFt eGr eGt

# 20

(13 : 11 : 26.6,

−1 : 20 : 52.9)

22.75, 0.0046

i1 0.′′273
0.′′501

meas -0.157 -0.089 0.0340 -0.0058 0.0547 -0.0156 0.0272 0.0217 0.0375 0.0375

pred 0.0073 0.0041 0.0196 0.0025 0.0015 0.0002 0.0018 0.0005

de-ab 0.0037 0.0038 0.0140 0.0015

aber 0.0036 0.0003 0.0056 0.0011

i2 0.′′279
0.′′476

meas -0.149 -0.102 0.0428 0.0338 0.0020 0.1083 0.0221 0.0297 0.0401 0.0401

pred 0.0057 0.0033 0.0160 0.0017 0.0012 0.0002 0.0015 0.0005

de-ab 0.0025 0.0032 0.0118 0.0003

aber 0.0033 0.0001 0.0043 0.0014

r1 0.′′249
0.′′470

meas -0.168 -0.108 0.0303 -0.0036 0.0449 -0.0093 0.0142 0.0101 0.0183 0.0183

pred 0.0052 0.0025 0.0240 -0.0021 0.0015 0.0002 0.0017 0.0004

de-ab 0.0039 0.0036 0.0142 0.0016

aber 0.0013 -0.0011 0.0098 -0.0038

r2 0.′′294
0.′′499

meas -0.151 -0.090 0.0107 -0.0030 0.0110 -0.0022 0.0126 0.0129 0.0196 0.0196

pred 0.0047 0.0012 0.0218 -0.0037 0.0012 0.0002 0.0014 0.0004

de-ab 0.0026 0.0033 0.0122 0.0005

aber 0.0021 -0.0021 0.0097 -0.0042

# 21

(13 : 11 : 19.3,

−1 : 22 : 35.6)

23.25, 0.0045

i1 0.′′276
0.′′424

meas 0.160 0.072 0.0763 0.0135 0.0408 0.0387 0.0236 0.0430 0.0566 0.0566

pred 0.0033 0.0013 -0.0041 -0.0036 0.0002 0.0001 0.0007 0.0005

de-ab 0.0009 0.0004 -0.0022 0.0007

aber 0.0024 0.0009 -0.0020 -0.0043

i2 0.′′280
0.′′446

meas 0.098 0.018 0.0750 -0.0254 -0.0291 0.1706 0.0312 0.0332 0.0538 0.0538

pred 0.0036 0.0007 -0.0059 -0.0020 0.0002 0.0001 0.0007 0.0005

de-ab 0.0010 0.0003 -0.0028 0.0004

aber 0.0026 0.0004 -0.0031 -0.0025

r1 0.′′250
0.′′403

meas 0.097 0.038 0.1287 -0.0519 -0.0579 0.1052 0.0163 0.0146 0.0264 0.0264

pred 0.0046 -0.0028 -0.0099 0.0033 0.0002 0.0001 0.0006 0.0004

de-ab 0.0009 0.0004 -0.0026 0.0005

aber 0.0037 -0.0031 -0.0073 0.0028

r2 0.′′295
0.′′449

meas 0.090 0.026 0.0944 -0.0351 -0.0537 0.0750 0.0160 0.0154 0.0266 0.0266

pred 0.0054 -0.0029 -0.0076 0.0055 0.0002 0.0001 0.0006 0.0004

de-ab 0.0009 0.0004 -0.0024 0.0005

aber 0.0045 -0.0032 -0.0052 0.0050
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Table 3.14: Flexion measurements & predictions for the best 20 galaxy lensed background sources

obj #

(ra, dec)

Mr, (θ1/2θE)/θ2

img µ
data

type
gr gt Fr Ft Gr Gt eFr eFt eGr eGt

# 25

(13 : 11 : 01.8,

−1 : 20 : 20.6)

23.39, 0.0035

i1 0.′′281
0.′′528

meas -0.117 0.063 0.0089 0.0738 0.0081 -0.0367 0.0614 0.0375 0.0841 0.0841

pred 0.0024 -0.0014 -0.0045 -0.0028 0.0002 0.0002 0.0010 0.0009

de-ab 0.0009 0.0000 -0.0031 0.0001

aber 0.0015 -0.0014 -0.0014 -0.0030

r1 0.′′260
0.′′527

meas -0.137 0.091 -0.0831 0.0254 -0.0574 0.0249 0.0299 0.0182 0.0393 0.0393

pred 0.0019 -0.0015 -0.0067 -0.0081 0.0002 0.0001 0.0007 0.0006

de-ab 0.0010 -0.0000 -0.0034 0.0001

aber 0.0009 -0.0014 -0.0032 -0.0082

r2 0.′′307
0.′′554

meas -0.144 0.091 -0.0588 0.0417 -0.0632 0.0107 0.0230 0.0280 0.0404 0.0404

pred 0.0009 -0.0017 -0.0080 -0.0066 0.0002 0.0001 0.0006 0.0005

de-ab 0.0008 0.0000 -0.0032 0.0002

aber 0.0000 -0.0017 -0.0048 -0.0068

# 26

(13 : 11 : 20.6,

−1 : 20 : 15.5)

22.48, 0.0033

i1 0.′′273
0.′′441

meas 0.008 -0.098 -0.0102 0.0017 0.0513 0.0128 0.0154 0.0199 0.0295 0.0295

pred -0.0024 -0.0040 0.0005 -0.0049 0.0002 0.0001 0.0004 0.0004

de-ab 0.0007 -0.0004 -0.0018 -0.0012

aber -0.0031 -0.0036 0.0022 -0.0036

i2 0.′′279
0.′′445

meas 0.035 -0.087 -0.0128 -0.0130 0.0680 0.0401 0.0187 0.0165 0.0292 0.0292

pred -0.0018 -0.0034 -0.0001 -0.0028 0.0001 0.0001 0.0004 0.0003

de-ab 0.0007 -0.0004 -0.0016 -0.0012

aber -0.0025 -0.0030 0.0016 -0.0016

r2 0.′′294
0.′′482

meas 0.028 -0.092 -0.0256 -0.0235 0.0774 0.0368 0.0134 0.0113 0.0208 0.0208

pred -0.0035 -0.0017 0.0028 -0.0047 0.0002 0.0001 0.0004 0.0004

de-ab 0.0008 -0.0004 -0.0019 -0.0013

aber -0.0043 -0.0013 0.0047 -0.0034

# 27

(13 : 11 : 41.9,

−1 : 12 : 43.7)

24.45, 0.0030

i1 0.′′280
0.′′569

meas -0.041 0.335 -0.0104 -0.0443 -0.1248 -0.1628 0.0757 0.0319 0.0758 0.0758

pred 0.0016 -0.0012 0.0031 -0.0074 0.0001 0.0001 0.0007 0.0006

de-ab 0.0007 -0.0001 -0.0021 0.0004

aber 0.0009 -0.0011 0.0052 -0.0078

i2 0.′′279
0.′′581

meas -0.094 0.278 -0.0949 -0.0571 -0.2452 -0.1009 0.0342 0.0878 0.0974 0.0974

pred 0.0024 -0.0014 0.0019 -0.0075 0.0002 0.0001 0.0008 0.0008

de-ab 0.0007 -0.0001 -0.0022 0.0003

aber 0.0017 -0.0012 0.0042 -0.0079

r1 0.′′256
0.′′585

meas -0.078 0.324 -0.0190 0.0012 -0.0006 -0.1281 0.0324 0.0220 0.0347 0.0347

pred 0.0036 -0.0033 -0.0047 -0.0138 0.0001 0.0001 0.0005 0.0005

de-ab 0.0008 -0.0003 -0.0024 0.0003

aber 0.0028 -0.0031 -0.0022 -0.0141

r2 0.′′301
0.′′604

meas -0.078 0.307 -0.0260 0.0051 0.0244 -0.0446 0.0358 0.0155 0.0403 0.0403

pred 0.0044 -0.0036 -0.0044 -0.0133 0.0001 0.0001 0.0006 0.0005

de-ab 0.0007 -0.0001 -0.0022 0.0004

aber 0.0037 -0.0035 -0.0021 -0.0137
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Table 3.14: Flexion measurements & predictions for the best 20 galaxy lensed background sources

obj #

(ra, dec)

Mr, (θ1/2θE)/θ2

img µ
data

type
gr gt Fr Ft Gr Gt eFr eFt eGr eGt

# 29

(13 : 11 : 26.7,

−1 : 22 : 41.6)

22.17, 0.0028

i1 0.′′276
0.′′560

meas -0.029 -0.099 0.0212 0.0078 -0.0346 0.0071 0.0238 0.0159 0.0335 0.0335

pred 0.0020 0.0006 -0.0019 0.0031 0.0001 0.0001 0.0006 0.0004

de-ab 0.0007 0.0007 -0.0031 0.0014

aber 0.0013 -0.0002 0.0012 0.0017

i2 0.′′280
0.′′559

meas -0.039 -0.080 0.0241 0.0021 0.0476 0.0155 0.0219 0.0171 0.0328 0.0328

pred 0.0019 0.0002 -0.0014 0.0032 0.0001 0.0001 0.0006 0.0003

de-ab 0.0007 0.0007 -0.0031 0.0013

aber 0.0013 -0.0004 0.0017 0.0019

r1 0.′′250
0.′′530

meas -0.062 -0.090 0.0050 0.0095 -0.0233 0.0245 0.0075 0.0114 0.0161 0.0161

pred 0.0010 -0.0006 0.0031 0.0008 0.0001 0.0001 0.0005 0.0003

de-ab 0.0007 0.0007 -0.0031 0.0014

aber 0.0003 -0.0013 0.0062 -0.0006

r2 0.′′295
0.′′573

meas -0.052 -0.088 0.0059 0.0120 -0.0184 0.0158 0.0080 0.0118 0.0170 0.0170

pred 0.0012 -0.0013 0.0035 -0.0000 0.0001 0.0001 0.0005 0.0003

de-ab 0.0006 0.0007 -0.0030 0.0013

aber 0.0006 -0.0020 0.0065 -0.0013

Table 3.14: Flexion measurements and predictions for the 20 objects for which we expect to see the

greatest galaxy-galaxy lensing flexion as defined by the unitless metric (θ1/2θE)/θ
2. Objects are

ordered by this expected galaxy-galaxy flexion, from most to least. However objects whose flexion

measurements or predictions are found by inspection to be corrupted are excluded from the list.

Both the (de-ab)errated prediction and (aber)rational component of the flexion are provided with

the full (pred)iction of the flexion.
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Table 3.15: Flexion measurements & predictions for the best 10 galaxy lensed background sources

drawn from the color-magnitude ambiguous region

obj #

(ra, dec)

Mr, (θ1/2θE)/θ2

img µ
data

type
gr gt Fr Ft Gr Gt eFr eFt eGr eGt

# 7

(13 : 11 : 13.4,

−1 : 22 : 20.9)

23.50, 0.0459

r1 0.′′259
0.′′457

meas 0.002 0.084 -0.0356 -0.0052 -0.0931 -0.0575 0.1144 0.0906 0.1666 0.1666

pred 0.0183 -0.0033 -0.0465 0.0037 0.0031 0.0008 0.0113 0.0033

de-ab 0.0153 -0.0003 -0.0444 0.0032

aber 0.0030 -0.0030 -0.0021 0.0006

# 8

(13 : 11 : 29.9,

−1 : 21 : 47.6)

22.96, 0.0444

g1 0.′′438
0.′′817

meas -0.228 -0.162 0.0651 -0.0288 0.0800 0.0193 0.0341 0.0586 0.0705 0.0705

pred 0.0225 -0.0166 -0.0636 -0.0373 0.0024 0.0013 0.0085 0.0025

de-ab 0.0219 -0.0158 -0.0803 -0.0304

aber 0.0007 -0.0008 0.0167 -0.0069

# 9

(13 : 10 : 55.7,

−1 : 23 : 32.7)

23.74, 0.0426

r3 0.′′353
0.′′681

meas 0.081 0.083 0.0525 -0.0657 -0.1135 0.1583 0.0370 0.0512 0.0737 0.0737

pred 0.0152 0.0015 -0.0388 -0.0022 0.0074 0.0009 0.0202 0.0013

de-ab 0.0139 0.0009 -0.0375 0.0022

aber 0.0013 0.0006 -0.0013 -0.0043

# 10

(13 : 12 : 18.7,

−1 : 11 : 52.0)

22.58, 0.0333

r1 0.′′263
0.′′549

meas -0.022 0.274 0.2057 -0.1083 -0.1313 -0.0878 0.0650 0.0259 0.0796 0.0796

pred 0.0131 -0.0045 -0.0417 -0.0008 0.0074 0.0019 0.0227 0.0021

de-ab 0.0108 -0.0026 -0.0328 0.0024

aber 0.0023 -0.0019 -0.0089 -0.0032

# 11

(13 : 12 : 31.3,

−1 : 18 : 01.7)

22.78, 0.0305

i1 0.′′284
0.′′451

meas -0.033 0.036 0.0549 -0.0201 -0.0435 0.0131 0.0215 0.0177 0.0340 0.0340

pred 0.0040 -0.0006 -0.0217 -0.0013 0.0014 0.0003 0.0047 0.0007

de-ab 0.0061 0.0007 -0.0205 0.0010

aber -0.0021 -0.0013 -0.0013 -0.0023

i2 0.′′280
0.′′436

meas -0.016 0.012 0.0157 -0.0304 -0.0374 0.0266 0.0196 0.0225 0.0357 0.0357

pred 0.0029 -0.0015 -0.0205 0.0008 0.0014 0.0003 0.0042 0.0008

de-ab 0.0057 0.0004 -0.0182 0.0004

aber -0.0028 -0.0018 -0.0023 0.0004

r1 0.′′264
0.′′405

meas -0.023 0.012 0.0064 0.0049 -0.0311 0.0784 0.0117 0.0180 0.0251 0.0251

pred -0.0003 0.0009 -0.0148 0.0061 0.0012 0.0004 0.0039 0.0009

de-ab 0.0050 0.0007 -0.0166 0.0011

aber -0.0053 0.0002 0.0019 0.0050

# 15

(13 : 11 : 09.1,

−1 : 12 : 12.9)

22.73, 0.0248

i1 0.′′286
0.′′469

meas 0.080 -0.220 0.1600 0.0702 -0.2129 0.0634 0.0522 0.0238 0.0668 0.0668

pred 0.0069 -0.0019 -0.0158 -0.0005 0.0046 0.0013 0.0118 0.0031

de-ab 0.0059 -0.0016 -0.0150 -0.0040

aber 0.0011 -0.0002 -0.0008 0.0035

i2 0.′′292
0.′′451

meas 0.001 -0.291 0.1052 0.0585 -0.0902 0.0409 0.0614 0.0281 0.0729 0.0729

pred 0.0072 -0.0032 -0.0096 0.0029 0.0035 0.0025 0.0108 0.0046

de-ab 0.0045 -0.0032 -0.0137 -0.0061

aber 0.0027 0.0001 0.0041 0.0090
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Table 3.15: Flexion measurements & predictions for the best 10 galaxy lensed background sources

drawn from the color-magnitude ambiguous region

obj #

(ra, dec)

Mr, (θ1/2θE)/θ2

img µ
data

type
gr gt Fr Ft Gr Gt eFr eFt eGr eGt

# 19

(13 : 11 : 22.8,

−1 : 25 : 16.6)

23.64, 0.0208

r1 0.′′252
0.′′522

meas 0.098 0.031 0.1032 0.0188 -0.0867 0.0235 0.0277 0.0381 0.0565 0.0565

pred 0.0081 -0.0040 -0.0223 0.0026 0.0013 0.0003 0.0036 0.0009

de-ab 0.0082 -0.0011 -0.0213 -0.0006

aber -0.0001 -0.0030 -0.0010 0.0031

# 24

(13 : 11 : 29.4,

−1 : 19 : 27.8)

22.69, 0.0178

r1 0.′′249
0.′′394

meas 0.296 -0.015 0.0460 -0.0681 -0.0486 0.0703 0.0330 0.0169 0.0387 0.0387

pred 0.0136 -0.0007 -0.0294 0.0172 0.0044 0.0014 0.0075 0.0015

de-ab 0.0114 0.0038 -0.0147 0.0076

aber 0.0022 -0.0046 -0.0147 0.0096

r2 0.′′294
0.′′447

meas 0.266 0.003 0.0645 -0.0195 -0.0636 0.0404 0.0191 0.0252 0.0340 0.0340

pred 0.0142 0.0000 -0.0254 0.0173 0.0044 0.0016 0.0074 0.0017

de-ab 0.0115 0.0044 -0.0142 0.0083

aber 0.0027 -0.0044 -0.0112 0.0090

# 29

(13 : 11 : 29.8,

−1 : 22 : 32.0)

24.25, 0.0138

i1 0.′′276
0.′′455

meas 0.070 0.082 0.0913 0.1066 0.3633 -0.0011 0.0897 0.0688 0.1409 0.1409

pred 0.0046 -0.0036 -0.0097 0.0045 0.0007 0.0005 0.0022 0.0015

de-ab 0.0035 -0.0000 -0.0072 0.0014

aber 0.0011 -0.0036 -0.0025 0.0031

# 30

(13 : 11 : 32.4,

−1 : 21 : 33.4)

23.61, 0.0136

i1 0.′′273
0.′′568

meas -0.248 0.006 0.0176 -0.0362 0.0234 -0.1470 0.0298 0.0372 0.0505 0.0505

pred 0.0039 -0.0058 -0.0242 0.0035 0.0002 0.0006 0.0029 0.0008

de-ab 0.0035 -0.0060 -0.0248 -0.0059

aber 0.0005 0.0002 0.0006 0.0093

r2 0.′′294
0.′′583

meas -0.253 -0.033 -0.0493 -0.0063 -0.0701 -0.0590 0.0323 0.0131 0.0321 0.0321

pred 0.0074 -0.0056 -0.0161 -0.0003 0.0002 0.0005 0.0028 0.0006

de-ab 0.0033 -0.0058 -0.0248 -0.0057

aber 0.0041 0.0001 0.0088 0.0054

Table 3.15: Flexion measurements and predictions for the 10 objects for which we expect to see the

greatest galaxy-galaxy lensing flexion as defined by the unitless metric (θ1/2θE)/θ
2. Objects here

need not have been detected in all three filters, and may have been drawn from the‘ambiguous’

region of color-magnitude space, where color alone is insufficient to determine the object’s status

as a cluster member or background galaxy. Objects are ordered from most expected galaxy-galaxy

flexion to least. However objects whose flexion measurements or predictions are found by inspection

to be corrupted are excluded from the list. Both the (de-ab)errated prediction and (aber)rational

component of the flexion are provided with the full (pred)iction of the flexion.
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Table 3.16: Lowest noise flexion measurements

(ra, dec), Mr θ1/2 gr gt Fr Ft Gr Gt

(13 : 11 : 45.0,

−1 : 27 : 23.3)

22.16

meas 0.439 0.140 0.055 0.0076 0.0255 0.0387 -0.0083

err 0.002 0.004 0.004 0.0070 0.0072 0.0113 0.0113

corr 0.358 0.215 0.110 0.0078 0.0231 0.0331 -0.0146

err 0.002 0.006 0.006 0.0143 0.0145 0.0202 0.0202

(13 : 10 : 54.2,

−1 : 26 : 12.4)

22.31

meas 0.394 0.186 0.112 0.0060 -0.0766 -0.0318 0.0658

err 0.002 0.004 0.004 0.0045 0.0099 0.0111 0.0111

corr 0.295 0.301 0.155 0.0255 -0.1395 -0.1204 0.1759

err 0.002 0.007 0.007 0.0131 0.0216 0.0232 0.0232

(13 : 10 : 58.4,

−1 : 12 : 43.4)

22.23

meas 0.438 0.082 -0.109 0.0156 -0.0522 0.0360 0.0184

err 0.002 0.004 0.004 0.0080 0.0066 0.0119 0.0119

corr 0.350 0.141 -0.147 0.0076 -0.0528 0.0491 0.0272

err 0.002 0.007 0.007 0.0165 0.0145 0.0220 0.0220

(13 : 11 : 59.0,

−1 : 30 : 00.7)

22.10

meas 0.398 -0.075 0.112 -0.0044 0.0144 -0.0052 -0.0227

err 0.002 0.004 0.004 0.0064 0.0085 0.0121 0.0121

corr 0.298 -0.123 0.232 -0.0025 0.0083 -0.0033 -0.0175

err 0.002 0.008 0.008 0.0171 0.0203 0.0258 0.0258

(13 : 11 : 51.1,

−1 : 29 : 42.7)

22.34

meas 0.457 0.182 -0.106 -0.0820 -0.0042 0.0967 -0.0280

err 0.002 0.004 0.004 0.0056 0.0095 0.0116 0.0116

corr 0.374 0.273 -0.136 -0.0699 -0.0168 0.1320 -0.0270

err 0.002 0.006 0.006 0.0121 0.0174 0.0203 0.0203

(13 : 12 : 02.6,

−1 : 29 : 28.0)

22.19

meas 0.452 0.100 -0.051 -0.0228 0.0011 -0.0448 0.0191

err 0.002 0.005 0.004 0.0059 0.0089 0.0124 0.0124

corr 0.367 0.162 -0.057 -0.0204 -0.0039 -0.0385 0.0261

err 0.003 0.007 0.007 0.0134 0.0175 0.0224 0.0224

(13 : 11 : 49.6,

−1 : 16 : 13.5)

22.27

meas 0.406 0.098 0.015 -0.0354 -0.0668 0.0237 -0.0312

err 0.002 0.004 0.004 0.0081 0.0068 0.0126 0.0126

corr 0.319 0.128 -0.010 -0.0358 -0.0771 0.0348 -0.0080

err 0.002 0.007 0.007 0.0177 0.0159 0.0242 0.0242

(13 : 12 : 24.1,

−1 : 21 : 31.4)

22.21

meas 0.475 -0.159 0.027 -0.0041 -0.0167 0.0025 0.0292

err 0.002 0.004 0.004 0.0093 0.0062 0.0128 0.0128

corr 0.395 -0.220 0.020 -0.0039 -0.0161 0.0023 0.0155

err 0.003 0.007 0.006 0.0172 0.0131 0.0217 0.0217

(13 : 12 : 11.5,

−1 : 12 : 40.0)

22.11

meas 0.475 0.055 -0.126 -0.0402 -0.0162 0.1010 -0.0402

err 0.002 0.004 0.004 0.0097 0.0059 0.0124 0.0124

corr 0.395 0.051 -0.204 -0.0427 -0.0233 0.1135 -0.0552

err 0.003 0.006 0.007 0.0178 0.0128 0.0214 0.0214
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Table 3.16: Lowest noise flexion measurements

(ra, dec), Mr θ1/2 gr gt Fr Ft Gr Gt

(13 : 12 : 21.3,

−1 : 09 : 18.3)

22.35

meas 0.421 -0.065 -0.054 0.0397 -0.0614 0.0206 -0.0565

err 0.002 0.005 0.005 0.0076 0.0078 0.0131 0.0131

corr 0.328 -0.145 -0.118 0.0358 -0.0530 0.0482 -0.0697

err 0.003 0.008 0.008 0.0178 0.0180 0.0258 0.0258

Table 3.16: Lowest noise flexion measurements on background source galaxies. Objects are ordered

by total F- plus G-flexion noise, from least to most. However only those galaxies larger than 1.5× the

PSF and with measured flexions larger than the reported noise in the measurement are considered.

Flexions are decomposed into directions oriented radially and tangentially with respect ot the cluster

center. We report both the (meas)ured galaxy shears and flexions and the PSF (corr)ected shears

and flexions. These corrected values are what one would measure if one observed from space with

an aberration free telescope.
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Table 3.17: Lowest noise flexion measurements on the 3 central chips

(ra, dec), Mr θ1/2 gr gt Fr Ft Gr Gt

(13 : 11 : 33.6,

−1 : 17 : 51.4)

22.40

meas 0.461 -0.268 -0.154 0.0418 -0.0169 0.0648 -0.0165

err 0.004 0.008 0.008 0.0153 0.0226 0.0240 0.0240

corr 0.389 -0.398 -0.213 0.0514 -0.0098 0.0942 -0.0161

err 0.005 0.012 0.011 0.0279 0.0373 0.0392 0.0392

(13 : 11 : 36.2,

−1 : 20 : 22.0)

22.22

meas 0.521 -0.064 -0.051 0.0228 0.0200 0.0825 0.0034

err 0.006 0.010 0.010 0.0155 0.0189 0.0287 0.0287

corr 0.458 -0.073 -0.080 0.0410 0.0169 0.0995 0.0080

err 0.006 0.013 0.014 0.0283 0.0324 0.0444 0.0444

(13 : 11 : 19.3,

−1 : 22 : 35.6)

22.27

meas 0.401 -0.100 0.033 -0.0940 -0.1061 -0.1045 0.0603

err 0.004 0.010 0.010 0.0145 0.0200 0.0302 0.0302

corr 0.314 -0.188 0.026 -0.1424 -0.0771 -0.1944 0.0215

err 0.005 0.017 0.017 0.0351 0.0431 0.0580 0.0580

(13 : 11 : 18.5,

−1 : 20 : 50.3)

22.26

meas 0.456 -0.089 -0.004 0.1339 -0.0003 -0.0718 0.0101

err 0.005 0.010 0.010 0.0203 0.0148 0.0303 0.0303

corr 0.382 -0.116 -0.027 0.1636 0.0045 -0.0108 0.0245

err 0.006 0.015 0.015 0.0378 0.0304 0.0506 0.0506

(13 : 11 : 41.3,

−1 : 23 : 59.4)

22.69

meas 0.509 -0.109 -0.015 -0.1684 -0.0421 0.0474 0.1036

err 0.006 0.010 0.010 0.0200 0.0157 0.0312 0.0312

corr 0.444 -0.131 -0.006 -0.1812 -0.0389 0.0121 0.0931

err 0.007 0.014 0.013 0.0343 0.0288 0.0479 0.0479

(13 : 11 : 26.0,

−1 : 18 : 18.7)

22.28

meas 0.420 -0.008 -0.006 0.0295 0.0316 0.0176 -0.0875

err 0.005 0.012 0.012 0.0183 0.0188 0.0316 0.0316

corr 0.339 -0.010 0.021 0.0326 0.0236 0.0283 -0.0849

err 0.007 0.018 0.018 0.0393 0.0400 0.0576 0.0576

(13 : 11 : 26.7,

−1 : 24 : 11.2)

22.41

meas 0.434 0.004 0.005 -0.0356 -0.0017 0.0181 0.0467

err 0.005 0.012 0.012 0.0183 0.0193 0.0318 0.0318

corr 0.355 -0.019 0.023 -0.0349 0.0011 0.0103 0.0461

err 0.006 0.018 0.017 0.0383 0.0397 0.0566 0.0566

(13 : 11 : 29.2,

−1 : 23 : 07.6)

22.58

meas 0.388 -0.018 0.070 0.0117 0.0283 0.0199 -0.0894

err 0.005 0.012 0.012 0.0213 0.0161 0.0318 0.0318

corr 0.297 -0.059 0.152 0.0244 0.0137 0.0319 -0.0999

err 0.006 0.020 0.020 0.0496 0.0418 0.0652 0.0652

(13 : 11 : 35.4,

−1 : 19 : 55.1)

22.41

meas 0.436 -0.099 0.009 -0.0925 -0.0588 -0.1404 -0.0471

err 0.005 0.011 0.011 0.0165 0.0219 0.0324 0.0324

corr 0.359 -0.147 -0.015 -0.1981 -0.0555 -0.2740 -0.0945

err 0.006 0.017 0.017 0.0353 0.0425 0.0570 0.0570
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Table 3.17: Lowest noise flexion measurements on the 3 central chips

(ra, dec), Mr θ1/2 gr gt Fr Ft Gr Gt

(13 : 11 : 26.6,

−1 : 16 : 51.4)

22.46

meas 0.392 0.078 -0.093 0.0806 0.0142 -0.1052 -0.0444

err 0.005 0.011 0.012 0.0200 0.0202 0.0330 0.0330

corr 0.304 0.117 -0.119 0.0731 0.0269 -0.1228 -0.0321

err 0.006 0.019 0.019 0.0456 0.0458 0.0651 0.0651

Table 3.17: Lowest noise flexion measurements on the background source galaxies in the three chips

containing the cluster center. The location of these objects in the cluster center region are shown in

figure 3-25. Objects are ordered by total F- plus G-flexion noise, from least to most. However only

those galaxies larger than 1.5× the PSF and with measured flexions larger than the reported noise

in the measurement are considered. Flexions are decomposed into directions oriented radially and

tangentially with respect ot the cluster center. We report both the (meas)ured galaxy shears and

flexions and the PSF (corr)ected shears and flexions. These corrected values are what one would

measure if one observed from space with an aberration free telescope.
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Table 3.18: Flexion measurements for hand-picked lensed galaxies

(ra, dec), Mr θ1/2 gr gt Fr Ft Gr Gt

(13 : 11 : 40.0,

−1 : 23 : 37.5)

22.88

meas 0.411 -0.192 -0.143 -0.0323 -0.0300 0.0644 -0.1624

err 0.007 0.015 0.015 0.0233 0.0402 0.0493 0.0493

corr 0.326 -0.281 -0.201 -0.0525 -0.0405 0.0536 -0.2182

err 0.009 0.025 0.025 0.0531 0.0770 0.0902 0.0902

(13 : 11 : 20.2,

−1 : 23 : 15.4)

22.22

meas 0.433 -0.346 0.167 -0.0429 -0.0274 -0.0278 0.0451

err 0.004 0.008 0.008 0.0114 0.0334 0.0270 0.0270

corr 0.354 -0.545 0.237 -0.0740 -0.0097 -0.1036 0.0697

err 0.005 0.015 0.012 0.0252 0.0549 0.0463 0.0463

(13 : 11 : 26.4,

−1 : 24 : 23.8)

22.62

meas 0.442 -0.221 0.402 -0.0541 0.0160 0.0027 0.0710

err 0.007 0.011 0.011 0.0609 0.0151 0.0420 0.0420

corr 0.365 -0.349 0.604 -0.0821 0.0357 -0.0093 0.1706

err 0.009 0.018 0.022 0.0984 0.0373 0.0732 0.0732

(13 : 11 : 24.7,

−1 : 23 : 55.6)

22.68

meas 0.479 -0.206 -0.215 0.0089 0.0162 0.0315 0.0265

err 0.007 0.013 0.013 0.0160 0.0416 0.0462 0.0462

corr 0.409 -0.305 -0.290 0.0165 0.0181 0.0388 0.0515

err 0.009 0.019 0.018 0.0337 0.0662 0.0720 0.0720

(13 : 11 : 27.8,

−1 : 24 : 09.0)

22.70

meas 0.529 -0.104 0.400 -0.1113 0.0510 0.0086 0.1135

err 0.011 0.015 0.015 0.0700 0.0233 0.0539 0.0539

corr 0.466 -0.147 0.526 -0.1011 0.0447 0.0058 0.1424

err 0.012 0.020 0.023 0.1007 0.0440 0.0810 0.0810

(13 : 11 : 40.5,

−1 : 19 : 32.2)

23.11

meas 0.494 -0.357 0.117 0.0171 -0.0861 -0.0600 -0.0756

err 0.009 0.014 0.013 0.0496 0.0331 0.0537 0.0537

corr 0.427 -0.477 0.138 0.0183 -0.0680 -0.0712 -0.1347

err 0.010 0.021 0.018 0.0748 0.0544 0.0801 0.0801

(13 : 11 : 41.4,

−1 : 20 : 42.7)

22.22

meas 0.418 0.049 -0.279 0.0250 0.0426 -0.0164 0.0658

err 0.005 0.011 0.011 0.0177 0.0342 0.0365 0.0365

corr 0.337 0.099 -0.451 0.0413 0.0565 -0.0614 0.1018

err 0.007 0.018 0.021 0.0411 0.0640 0.0671 0.0671

(13 : 11 : 25.7,

−1 : 19 : 00.2)

23.27

meas 0.484 -0.425 0.078 -0.0315 -0.0155 0.2813 0.1095

err 0.015 0.022 0.023 0.0631 0.0998 0.1005 0.1005

corr 0.417 -0.565 0.124 -0.0437 -0.0117 0.2258 0.1208

err 0.018 0.037 0.032 0.1021 0.1481 0.1517 0.1517

(13 : 11 : 26.5,

−1 : 16 : 39.3)

22.57

meas 0.535 0.269 -0.180 -0.0183 -0.0473 0.0035 0.0332

err 0.010 0.016 0.016 0.0289 0.0508 0.0540 0.0540

corr 0.475 0.337 -0.214 -0.0177 -0.0392 0.0191 0.0201

err 0.011 0.021 0.020 0.0485 0.0747 0.0785 0.0785
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Table 3.18: Flexion measurements for hand-picked lensed galaxies

(ra, dec), Mr θ1/2 gr gt Fr Ft Gr Gt

(13 : 11 : 23.7,

−1 : 16 : 31.7)

23.00

meas 0.469 -0.316 -0.189 -0.2133 -0.0922 -0.1285 -0.0169

err 0.026 0.045 0.044 0.1610 0.1110 0.2035 0.2035

corr 0.399 -0.438 -0.240 -0.2792 -0.1003 -0.3080 -0.1760

err 0.031 0.070 0.064 0.2561 0.1891 0.3086 0.3086

(13 : 11 : 37.8,

−1 : 23 : 40.2)

22.45

meas 0.431 0.306 -0.050 -0.0005 -0.0126 -0.0141 -0.0227

err 0.005 0.011 0.011 0.0121 0.0363 0.0368 0.0368

corr 0.351 0.476 -0.049 -0.0013 -0.0217 -0.0211 0.0081

err 0.007 0.019 0.016 0.0290 0.0619 0.0626 0.0626

(13 : 11 : 33.4,

−1 : 16 : 39.4)

22.51

meas 0.409 -0.163 0.260 0.0548 -0.0162 -0.0680 -0.0620

err 0.005 0.010 0.010 0.0337 0.0115 0.0371 0.0371

corr 0.326 -0.286 0.421 0.0979 -0.0449 -0.0420 -0.1796

err 0.006 0.017 0.018 0.0618 0.0306 0.0668 0.0668

(13 : 11 : 33.4,

−1 : 18 : 51.6)

22.48

meas 0.443 -0.510 -0.086 0.0354 0.0219 0.0273 0.0214

err 0.006 0.009 0.009 0.0304 0.0485 0.0384 0.0384

corr 0.368 -0.764 -0.131 0.0924 0.0210 0.1472 0.0653

err 0.007 0.019 0.013 0.0501 0.0739 0.0607 0.0607

(13 : 11 : 21.4,

−1 : 18 : 40.8)

22.56

meas 0.482 -0.382 0.256 -0.0688 0.0983 0.0104 0.1970

err 0.009 0.013 0.013 0.0165 0.0714 0.0618 0.0618

corr 0.414 -0.501 0.358 -0.0866 0.0838 -0.0202 0.3182

err 0.011 0.021 0.020 0.0353 0.1045 0.0921 0.0921

(13 : 11 : 19.3,

−1 : 17 : 45.9)

22.77

meas 0.446 -0.488 0.309 0.1899 -0.0777 0.1210 -0.1745

err 0.011 0.013 0.013 0.0941 0.0526 0.0676 0.0676

corr 0.372 -0.686 0.463 0.3512 -0.1222 0.4739 -0.5753

err 0.013 0.028 0.024 0.1444 0.0880 0.1081 0.1081

(13 : 11 : 22.0,

−1 : 16 : 32.1)

22.36

meas 0.425 -0.278 -0.115 0.0888 0.0202 0.1406 -0.2312

err 0.005 0.011 0.011 0.0360 0.0161 0.0412 0.0412

corr 0.346 -0.415 -0.145 0.1497 0.0205 0.2645 -0.1650

err 0.007 0.019 0.017 0.0624 0.0351 0.0699 0.0699
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Table 3.18: Flexion measurements for hand-picked lensed galaxies

(ra, dec), Mr θ1/2 gr gt Fr Ft Gr Gt

Table 3.18: Flexion measurements on hand-picked background source galaxies in the three chips

containing the cluster center. The location of these objects in the cluster center region are shown

in figure 3-25. Objects here are selected visually as likely lensing candidates and must have half

light radii that are at least 1.5× the PSF half light radius. Flexions are decomposed into directions

oriented radially and tangentially with respect ot the cluster center. We report both the (meas)ured

galaxy shears and flexions and the PSF (corr)ected shears and flexions. These corrected are what

one would measure if one observed from space with an aberration free telescope.
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Table 3.19: Flexion measurements for those objects reported on in Cain et al. [15]

#, (ra, dec), Mr θ1/2 gr gt Fr Ft Gr Gt

# 4

(13 : 11 : 22.2,

−1 : 21 : 00.2)

22.46

meas 0.489 -0.237 -0.152 0.0015 -0.0031 -0.0094 0.0004

err 0.007 0.012 0.012 0.0315 0.0237 0.0377 0.0377

corr 0.421 -0.317 -0.225 0.0062 -0.0008 -0.0044 0.0151

err 0.008 0.017 0.016 0.0512 0.0414 0.0589 0.0589

# 5

(13 : 11 : 31.5,

−1 : 20 : 36.7)

23.46

meas 0.390 -0.377 -0.120 0.1220 0.0268 0.1523 0.0262

err 0.015 0.029 0.029 0.1246 0.0481 0.1351 0.1351

corr 0.301 -0.597 -0.213 -0.0305 -0.0006 -0.0262 -0.0136

err 0.019 0.064 0.052 0.2314 0.1152 0.2499 0.2499

# 13

(13 : 11 : 22.5,

−1 : 20 : 20.4)

22.43

meas 0.518 0.100 0.111 -0.0489 -0.0068 -0.0314 0.0077

err 0.007 0.012 0.012 0.0159 0.0272 0.0361 0.0361

corr 0.455 0.142 0.132 -0.0699 -0.0009 -0.0439 0.0106

err 0.008 0.016 0.016 0.0306 0.0444 0.0552 0.0552

# 19

(13 : 11 : 26.6,

−1 : 20 : 08.4)

23.92

meas 0.472 0.022 -0.052 -0.3300 -0.1367 0.0963 -0.1150

err 0.021 0.040 0.036 0.0707 0.0508 0.1183 0.1183

corr 0.401 0.052 -0.073 1.2134 -0.0694 1.4696 -0.0772

err 0.025 0.056 0.050 0.1316 0.1026 0.1885 0.1885

# 24

(13 : 11 : 28.8,

−1 : 20 : 06.5)

22.84

meas 0.458 -0.058 0.034 -0.0136 -0.0235 0.0339 0.0486

err 0.012 0.024 0.025 0.0441 0.0380 0.0688 0.0688

corr 0.384 -0.076 0.071 0.0038 0.0038 -0.0124 0.0016

err 0.014 0.035 0.036 0.0843 0.0763 0.1164 0.1164

# 25

(13 : 11 : 21.9,

−1 : 21 : 09.3)

23.35

meas 0.403 0.075 -0.041 0.0385 -0.0268 0.0344 -0.0154

err 0.010 0.022 0.022 0.0392 0.0351 0.0625 0.0625

corr 0.317 0.121 -0.102 0.0451 -0.0174 0.0356 -0.0020

err 0.012 0.037 0.037 0.0866 0.0807 0.1200 0.1200

# 26

(13 : 11 : 30.5,

−1 : 22 : 10.8)

23.45

meas 0.389 -0.334 -0.252 0.3334 0.0421 0.3903 0.0231

err 0.015 0.030 0.029 0.1473 0.0364 0.1386 0.1386

corr 0.298 -0.584 -0.391 -0.8583 -0.3188 -0.9884 -1.6083

err 0.019 0.067 0.056 0.2963 0.1022 0.2909 0.2909

# 33

(13 : 11 : 25.4,

−1 : 21 : 16.1)

23.32

meas 0.551 0.050 -0.167 0.0189 0.0781 -0.0774 0.0204

err 0.019 0.031 0.031 0.0396 0.0739 0.0948 0.0948

corr 0.492 0.054 -0.222 0.0010 0.0637 -0.0876 0.0543

err 0.021 0.039 0.040 0.0744 0.1153 0.1402 0.1402

# 46

(13 : 11 : 30.3,

−1 : 18 : 37.0)

23.21

meas 0.407 0.034 0.005 -0.0335 0.0045 0.0977 0.0163

err 0.010 0.024 0.024 0.0359 0.0401 0.0655 0.0655

corr 0.324 0.027 0.028 -0.0357 0.0072 0.0937 0.0226

err 0.013 0.038 0.038 0.0816 0.0874 0.1242 0.1242
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Table 3.19: Flexion measurements for those objects reported on in Cain et al. [15]

#, (ra, dec), Mr θ1/2 gr gt Fr Ft Gr Gt

# 47

(13 : 11 : 26.2,

−1 : 21 : 19.7)

23.88

meas 0.445 0.057 -0.034 -0.1600 -0.0387 -0.0664 0.1059

err 0.014 0.029 0.030 0.0488 0.0502 0.0905 0.0905

corr 0.369 0.062 -0.064 -0.2938 -0.0270 -0.1954 0.0601

err 0.016 0.043 0.043 0.0987 0.0995 0.1531 0.1531

Table 3.19: Flexion measurements for objects reported on in Cain et al. [15] that are also larger than

1.5× the PSF in this work. Object numbers correspond to those in table 3 of that work. Flexions are

decomposed into directions oriented radially and tangentially with respect ot the cluster center. We

report both the (meas)ured galaxy shears and flexions and the PSF (corr)ected shears and flexions.

These corrected values are what one would measure if one observed from space with an aberration

free telescope.
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