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Abstract

Bound states in the continuum (BICs) are unusal solutions of wave equations describ-
ing light or matter: they are discrete and spatially bounded, but exist at the same
energy as a continuum of states which propagate to infinity. In this thesis, we will
explore optical BICs from different perspectives, including physical intuitions, funda-
mental theories, sample fabrications, experimental setups, and real-life applications.

First, we demonstrate the existence of such exceptions realized in macroscopic two-
dimensional periodic photonic crystals slab. The reason for these special modes to
completely decouple from the continuum of free-space modes is through mismatching
their symmetries. Further, we distinguish these special non-degenerate states with
quality factors as high as 10' that extend over 108 unit cells from other existing modes
in the system.

Then, we show BICs have profound implications in light-emission applications.
When coupling these special states to emitters, we demonstrate greatly enhanced and
strongly modulated spontaneous emission from organic molecules, due to the unique
properties of BICs. Furthermore, these BICs enable lasing of organic molecules with
threshold at least one order of magnitude lower than previous reported results.

Third, we demonstrate a different kind of BICs: those are not protected by sym-
metry incompatibility. We experimentally demonstrate that light can be perfectly
confined in a patterned dielectric slab, even though outgoing waves (symmetry-
compatible) are allowed in the surrounding medium. Such states exist stably in a
general class of geometries where all of its radiation amplitudes vanish simultane-
ously due to destructive interference.

Finally, we provide a fundamental understanding about the nature of BICs that
unify both types of BICs. We also explain the robustness of them through their topo-
logical nature. We show that both types of BICs are vortex centers in the polarization
direction of far-field radiation. The robustness of these BICs is due to the existence
of conserved and quantized topological charges, defined by the winding number of the
polarization vectors. Such charges can only be generated or annihilated by making
large changes in the system parameters, and then only according to strict rules, which
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we derive and test numerically.
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2-1 SEM images of the fabricated PhC. (a) Top-view, (b) Tilt-view, and (c)

Side-view SEM images of the fabricated PhC. The structure is made

of a 250 nm thick Si3N4 with periodic cylindrical holes on top of 6 Am

thick SiO2 layer with average period of 320 nm, average hole diameter

of 160 nm, and average hole depth of 55 nm. . . . . . . . . . . . . . .. 23

2-2 Band diagrams of the PhC obtained from reflectivity measurement and

finite difference time domain (FDTD) simulation. Reflectivity mea-

surements of the PhC with (a) Ey and (d) E., polarized beam. The

inset shows a schematic of the experimental setup. (b), (e) A slice of

the reflectivity spectrum at 1.8'. (c), (f) Band diagram of the eight

lowest energy modes (measured at the IF point) of the PhC obtained

from FDTD simulation. The four lower frequencies modes (numbered

1-4) are TE-like and the four higher frequencies (numbered 5-8) are

TM-like. Modes excited externally by odd (even) polarized source

with respect to the x-axis are colored purple (green); other modes are

shown with gray dashed lines. Their E_ field profiles at the center of

the Si3N4 layer at k = [0.01, 0].(27r/a) are also shown. Contour of the

hole is shown with black dashed circle. The inset depicts a schematic of

the unit computational cell used in the numerical calculation. By ap-

plying periodic boundary conditions the simulated structure becomes

periodically infinite. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
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2-3 Simulation results for radiative quality factors. The high-Q singly-

degenerate modes are shown with solid lines, while the doubly-degenerate

(at F) are shown with dotted lines. . . . . . . . . . . . . . . . . . . . 26

2-4 Qto*a values retrieved by fitting Eq. (2.1) to the measured data. Insets

show the reflectivity spectra of leaky mode 5 measured at three angles

(0.10, 0.4 , and 0.8'). The right inset depicts an example of the curve

fitting process discussed in the text. Note the distinct higher quality

factors of the singly-degenerate modes close to zero angle (i.e. zero

w ave vector). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3-1 Optofluidic platform of organic molecules coupled to Fano resonances

of the macroscopic photonic crystal. (a) Schematic drawing of the two

lowest singlet energy levels of a dye molecule and transitions it un-

dergoes during fluorescence emission. (b) Schematic drawing of the

experimental setup of the angle-resolved fluorescence measurements of

Rhodamine 6G (R6G) dissolved in methanol at 1 mM concentration

placed on top of the PhC. The grey substrate is the macroscopic PhC

slab. The orange spheres are schematic drawings of the R6G molecules

in solution. The blue surface represents the equal energy density sur-

face of the Fano resonance. Fluorescence spectra of the organic solu-

tion for both cases were recorded using a high-resolution spectrometer

placed close to the normal of the PhC. By tuning the position of the

spectrometer, fluorescence spectra of the molecules along F to X and

F to M were measured. . . . . . . . . . . . . . . . . . . . . . . . . . . 34
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3-2 Significantly enhanced fluorescence emission from R6G molecules. Com-

parison of fluorescence spectra of R6G molecules measured in the nor-

mal direction, among on the PhC (solid lines) both pumped on-resonance

(blue) and off-resonance (red) as well as on a uniform unpatterned slab

(dashed green line). By comparing the spectra, we obtain the excita-

tion (Axp), extraction (Axp ), and total (AXP) enhancement factors,

which are compared with the theoretical predictions, as described in

the text. The inset of the figure shows FDTD calculation results of

the band structure from which the incident angle (#) for on-resonance

coupling is determined (Oh 10.0), showing good agreements with

experiment (OxP = 10.02'). . . . . . . . . . . . . . . . . . . . .. 40

3-3 Comparison between theoretical model and experimental results of the

enhancement mechanisms. (a) The band structure of the PhC along F

to M and F to X directions. (b) Angle-resolved fluorescence measure-

ments of R6G solution suspended on top of the PhC. The correspon-

dence between the color and number of photons (arbitrary units) is

given in the color bar on the side. (c) Total enhancement factors Ath,

for mode 1 (blue line) and mode 4 (green line) calculated through the

product of excitation enhancement AC, and extraction enhancement

Af(k, Wk) using the theoretical model. (d) Theoretical prediction of

the averaged total enhancement factor, Ath, between 0 and 1.5', to

be compared to experiment. (e) Total enhancement factor, Aexp, ex-

tracted from experimental results in (b). Comparison between (d) and

(e) for the same angle range (0 - 1.50) shows good agreements not only

in trend but also in values. . . . . . . . . . . . . . . . . . . . . . . . 43
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3-4 Low threshold lasing of 100 nm thin layer of R6G molecules in so-

lution. Input-output energy characteristics of lasing through mode 4

(580 nm) under pulsed excitation. The solid lines are analytic pre-

dictions from our lasing model while red circles are energies measured

using the spectrometer. Green circles are data measured with a power

meter. The jump in output power clearly indicates the onset of lasing.

The lower inset shows the same results in linear scale, where the output

grows linearly with the pump energy beyond threshold. Top inset is

the measured power spectrum of emission from the PhC slab at normal

incidence below (blue) and above (red) the lasing threshold. Single-

mode lasing is attained at approximately 9 x 103 nJ/cm2 (corresponding

to the intensity of 1.8 kW/cm 2 ) . . . . . . . . . . . . . . . . . . . . 46

4-1 Theory predictions. a, Schematic of the photonic crystal (PhC) slab.

b, Calculated band structure. Yellow shaded area indicates light cone

of the surrounding medium, where there is a continuum of radiation

modes in free space. The trapped state is marked with a red circle,

and the TM1 band is marked with a green line. Inset shows the first

Brillouin zone. c,d, Normalized radiative lifetime Qr of the TM1 band

calculated from FDTD, with values along the F-X direction shown in

d. Below the light cone there is no radiation mode to couple to (i.e.

total internal reflection), so Qr is infinite. But at discrete points inside

the light cone, Qr also goes to infinity. e, Electric-field profile E, of

the trapped state, plotted on the y = 0 slice. f,g, Amplitudes of the s-

and p-polarized outgoing planewaves for the TM1 band, with c, along

the F-X direction shown in g. Black circles in f indicate k points where

both c, and c, are zero. . . . . . . . . . . . . . . . . . . . . . . . . . 51
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4-2 Fabricated PhC slab and the measurement setup. a, Schematic lay-

out of the fabricated structure. The device is immersed in a liquid,

index-matched to silica at 740 nm wavelength. b,c, SEM images of the

structure in top view and side view. Inset of b shows an image of the

whole PhC. d, Schematic of the setup for reflectivity measurements.

BS, beamsplitter; SP, spectrometer. . . . . . . . . . . . . . . . . . . 54

4-3 Detection of resonances from reflectivity data. a, Experimentally mea-

sured specular reflectivity for p-polarized light along '-X. The crucial

feature of interest is the resonance, which shows up as a thin faint

line (emphasized by white arrows) extending from the top-left corner

of the top panel to the bottom-right corner. Disappearance of the

resonance feature near 350 indicates a trapped state with no leakage.

Bottom panel shows slices at three representative angles, with close-ups

near the resonance features. b, Calculated p-polarized specular reflec-

tivity using the rigorous coupled-wave analysis (RCWA) method [1]

with known refractive indices and measured layer thickness. c, Top:

schematic for the scattering process in temporal coupled-mode the-

ory (CMT), which treats the resonance A and the incoming/outgoing

planewaves sm as separate entities weakly coupled to each other. Bot-

tom: reflectivity given by the analytical CMT expression; the resonance

frequency and lifetimes, which are the only unknowns in the CMT ex-

pression, are fitted from the experimental data in a. . . . . . . . . . 56

4-4 Quantitative evidence on the disappearance of leakage. a,b, Normal-

ized radiative lifetime Qr extracted from the experimentally-measured

reflectivity spectrum (a) and the RCWA-calculated reflectivity spec-

trum (b). Black solid line shows prediction from FDTD. . . . . . . . 59

4-5 Quantitative evidence on the disappearance of leakage. a,b, Normal-

ized radiative lifetime Qr extracted from the experimentally-measured

reflectivity spectrum (a) and the RCWA-calculated reflectivity spec-

trum (b). Black solid line shows prediction from FDTD. . . . . . . . 61
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4-6 Quantitative evidence on the disappearance of leakage. a,b, Normal-

ized radiative lifetime Q, extracted from the experimentally-measured

reflectivity spectrum (a) and the RCWA-calculated reflectivity spec-

trum (b). Black solid line shows prediction from FDTD. . . . . . . . 62

5-1 Stable bound states in the continuum (BICs) as vortex centers of po-

larization vectors. a, Schematics of radiation field decomposition for

resonances of a slab structure. The spatially-averaged Bloch part of

the electric field (uk) is projected onto the x-y plane as the polariza-

tion vector c = (ca, cy). A resonance turns into a BIC if and only

if cX = CY = 0. b, Schematic illustration for the nodal lines of cx

(green) and of cy (red) in a region of k space near a BIC. The direc-

tion of vector c (shown in arrows) becomes undefined at the nodal line

crossing, where a BIC is found. c, Two possible configurations of the

polarization field near a BIC. Along a closed loop in k-space contain-

ing a BIC (loop goes in counterclockwise direction, 1-+2-+3-4), the

polarization vector either rotates by angle 27r (denoted by topological

charge q = +1) or rotates by angle -21r (denoted by topological charge

q = -1). Different regions of the k space are colored in four gray-scale

colors according to the signs of cx and cy. In this way, a BIC happens

where all four gray-scale colors meet, and charge q = +1 corresponds

to the color changing from white to black along the counterclockwise

loop C, and charge q = -1 corresponds to the color changing from

black to white. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
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5-2 Characterization of BICs using topological charges. a, Calculated ra-

diative quality factor Q of the TM1 band on a square-lattice photonic

crystal slab (as in ref. 2), plotted in the first Brillouin zone. Five BICs

can be seen. b, Directions of the polarization vector field reveal vortices

with topological charges of +1 at each of the five k points. The area

shaded in blue indicates modes below the lightline and thus bounded

by total internal reflection. c, Nodal lines and gray-scale colors of the

polarization vector fields (same coloring scheme as in Fig. 5-1 (c)). . . 67

5-3 Symmetry requirements for BICs. Systems in the blue circle are in-

variant under operators CT and o-, where stable BICs at arbitrary

wavevectors can be found. In the red circle, where C is a symmetry

of the system, robust BICs can be found at high-symmetry wavevec-

tor points. Here, high-symmetry wavevectors mean C-invariant ones,

while arbitrary wavectors are not necessarily C-invariant. In the over-

lapping area (region II), both types BICs can be found. All numerical

examples in this Letter are within region III. . . . . . . . . . . . . . . 68

5-4 Evolution of BICs and conservation of topological charges. . . . . . . 71

5-5 Generation of BICs. a, Schematic drawing of a photonic crystal slab

with two-dimensional periodicity. b, Generation of BICs on the TE1

band when the slab thickness h is increased. Each time, four pairs of

BICs with charges 1 are generated simultaneously, consistent with

the charge conservation and C4, symmetry. Insets show the locations

of BICs in the k space and their corresponding topological charges for

h/a = 1.0, 1.2,1.35,1.8, and 2.4. As the slab thickness increases, the

BICs move outward and eventually fall below the light line into the

area shaded in dark blue. . . . . . . . . . . . . . . . . . . . . . . . . 73
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5-6 Stable BIC with topological charge -2. a, Schematic drawing of the

photonic crystal slab. b, Q plotted in the first Brillouin zone, showing

a BIC at the F point. c, Polarization vector field characterizes the BIC

with a stable topological charge of -2, as can be shown from double

degeneracies of both nodal lines. . . . . . . . . . . . . . . . . . . . . . 78
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Chapter 1

Overview

The realization of high quality factor cavities in photonic crystals has led in the

past two decades to experimental observations of novel physical phenomena in both

fundamental and applied research [3-14]. Modes supported by such cavities fall into

two categories: 1) pure modes with infinite lifetimes that lie outside the light cone and

2) resonant modes with finite lifetimes that lie within the light cone and consequently

can couple to radiation modes.

In 1929, von Neumann and Wigner proposed the first counterexample, in which

they designed a quantum potential to trap an electron whose energy would normally

allow coupling to outgoing waves. This concept is also known as bound states in

the radiation continuum (BICs), or embedded eigenvalues. However, such artificially

designed potential does not exist in reality: the trapping is destroyed by any generic

perturbation to the potential. More recently, other counterexamples have been pro-

posed theoretically in quantum systems [15-17], photonics [2, 18-20], acoustic and

water waves [21, 22], and mathematics [23]. While no general explanation exists,

some cases have been interpreted as two interfering resonances that leaves one reso-

nance with zero width. Among these many proposals, most cannot be readily realized

due to their inherent fragility. A different form of embedded eigenvalue has been re-

alized in symmetry-protected systems, where no outgoing wave exists for modes of

a particular symmetry. Even for these symmetry-protected BICs, there has been no

direct demonstration of existence of such states.
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In my thesis, I will explore optical BICs from a few aspects as follows: in Chapter

2, we provide am example of the first type of BICs (the ones protected by symme-

try). These modes exist in macroscopic two-dimensional periodic photonic crystals

slab. Their lifetimes are predicted to approach infinity as their crystal wavevector ap-

proaches zero within the light cone. In this chapter, we employ a centimeters square

photonic crystal slab to demonstrate the existence of such unusal states. Further, we

distinguish these special BICs with quality factors as high as 10' and extending over

108 unit cells from other modes in the system.

In Chapter 3, we show BICs have prefound implications in light-emission appli-

cations. The spectral and angular radiation pattern of the organic molecules placed

close to the surface are dramatically modified compared to their free space emission

due to the strongly altered spectral density of states presented by the PhC. Sharp

spectral features in their fluorescence spectra are observed, with enhancement of the

differential radiated power as high as 6.3 x 103 times. This property can be used

for optical sensing and spectroscopy purposes. Furthermore, we show that the exist-

ing enhancement mechanisms induced by BICs also contribute to reduce the lasing

threshold by an order of magnitude when compared to previously demonstrated laser

cavities with the same gain medium.

In Chapter 4, we show a different type of BICs: those are not symmetry-protected.

In this chapter, we predict and experimentally demonstrate that light can be perfectly

confined in a patterned dielectric slab, even though outgoing waves are allowed in

the surrounding medium. This happens when all raidaiton channels drop to 0 due

to interference effects. These modes exist in a robust way: when certain system

parameters are varied, these modes still exist but at a slightly different wavevector.

Despite all different explanations for different types of BICs; in Chapter 5, we

provide a unifying theory about the basic nature of BICs that unify both types of

BICs presented. We also provide a topological explanation on the robustness of BICs.

We show that both types of BICs are essentially vortex centers in the polarization

direction of far-field radiation. The robustness of these BICs is due to the existence

of conserved and quantized topological charges, defined by the number of times the

18



polarization vectors wind around the vortex centers. Such charges can only be gen-

erated or annihilated by making large changes in the system parameters, and then

only according to strict rules, which we derive and test numerically.

In Chapter 6, I conclude and discuss potential research directions in this field of

BICs.
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Chapter 2

Observation and Differentiation of

Symmetry-Protected BICs

2.1 Introduction

The realization of high quality factor cavities in photonic crystals has led in the

past two decades to experimental observations of novel physical phenomena in both

fundamental and applied research [3-14]. Modes supported by such cavities fall into

two categories: 1) pure modes with infinite lifetimes that lie outside the light cone and

2) resonant modes with finite lifetimes that lie within the light cone and consequently

can couple to radiation modes.

A proposed surprising exception to the latter involves special Fano resonances

of a macroscopic two-dimensional periodic photonic crystals slab, whose lifetimes

are predicted to approach infinity as their crystal wavevector, k, approaches zero

within the light cone [24-26]. The only possibility for these special Fano resonances

to completely decouple from the continuum of free-space modes is by mismatching

their symmetries. It is the periodic nanostructure that determines the symmetry of

the modes and the macroscopic large area that enables their approaching-to-infinity

lifetime. In this chapter, we employ a centimeters square photonic crystal slab to

demonstrate the existence of such unusal states. Further, we distinguish these special

non-degenerate Fano resonances at k~0 with quality factors as high as 104 that extend
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over 108 unit cells.

The photonic crystal, fabricated using interference lithography, consists of a square

lattice array of holes in Si3 N4 layer with periodicity of 320 nm. Through angle-

resolved spectral measurements and temporal coupled-mode theory, we determined

the resonances' quality factors and the various physical mechanisms that govern their

value. Using symmetry considerations, we elucidate the behavior of the different

resonances at k~0. The physical origin of Fano resonances in PhC slabs lies in the

coupling between the guided modes supported by the slab and external plane waves,

which occurs because of the periodic modulation of the dielectric constant. Typically

all these Fano resonances have long lifetimes or high quality factors (Q), but there

is a special subset of them whose Q's have been proposed to approach infinity. In

theory, in a perfect infinite periodic PhC slab, due to symmetry considerations, very

unusual Fano 'resonances' at k=0 have been predicted to completely decouple from

the external world with infinite radiative quality factor (Qrad) despite lying within the

light cone [24-26]. For k near zero, these unique guided resonances have ultra-long

(but finite) lifetime, providing an efficient means to couple light in and out of the slab.

In practice due to the finite size of any experiment, the incoming and outgoing beams

always include wavevectors with k>0, and hence the resonance lifetime is finite.

Although this very unique behavior of Fano resonances in PhC slabs has been

discussed theoretically [24-27], experimental verification of high-Q Fano resonances

near k=0 over a macroscopically large area has yet to be demonstrated. The key

challenge in observing these resonances is that in practical structures, in addition

to limits imposed by material absorption, fabrication imperfections partially break

the crystal symmetry which results in coupling of these Fano resonances to radiating

modes. In addition, the mode itself needs to extend over a macroscopic area in order

to support high Qrad, posing a significant fabrication challenge.
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2.2 Sample fabrication and characterization

Realizing high quality-factor resonances in photonic nano-structures requires both the

careful consideration of the bulk material properties and the sub-wavelength structure

geometry. Material absorption sets the upper bound of the attainable quality factor,

while the structure geometry can be optimized to minimize scattering due to surface

roughness and non-uniformities of the periodic structure. A favorable candidate for

achieving high quality factor resonances in the visible is a slab of Si3 N 4 deposited on

top of microns thick oxide layer of a silicon wafer [28]. With refractive index of 2.02,

Si3N4 provides sufficient index contrast with the SiO 2 below and air or fluids on top.

We fabricated large area square lattice PhC with periodicity of 320 nm and unit cell

consisting of a 55 nm deep, 160 nm in diameter cylindrical

5005nm

500nnm

Figure 2-1: SEM images of the fabricated PhC. (a) Top-view, (b) Tilt-view, and (c)
Side-view SEM images of the fabricated PhC. The structure is made of a 250 nm thick
Si3N 4 with periodic cylindrical holes on top of 6 pm thick SiO 2 layer with average
period of 320 nm, average hole diameter of 160 nm, and average hole depth of 55 nm.

hole in a 250 nm thick Si3N 4 layer (Fig. 2-1). Uniform periodic patterns were

obtained on samples as large as 3 cm 2 . We performed optical characterization of the

PhC slab using a supercontinuum laser source at small incident angles, 0, measured

from the normal to the PhC plane towards the x-axis. The reflection spectra as a

function of angle, for two orthogonal pump polarizations are presented in Fig. 2-2(a)
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and 2-2(d) revealing eight energy bands.
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Figure 2-2: Band diagrams of the PhC obtained from reflectivity measurement and
finite difference time domain (FDTD) simulation. Reflectivity measurements of the
PhC with (a) Ey and (d) E, polarized beam. The inset shows a schematic of the
experimental setup. (b), (e) A slice of the reflectivity spectrum at 1.8 . (c), (f)
Band diagram of the eight lowest energy modes (measured at the F point) of the
PhC obtained from FDTD simulation. The four lower frequencies modes (numbered
1-4) are TE-like and the four higher frequencies (numbered 5-8) are TM-like. Modes
excited externally by odd (even) polarized source with respect to the x-axis are colored
purple (green); other modes are shown with gray dashed lines. Their E, field profiles
at the center of the Si3N 4 layer at k = [0.01, 0]-(27r/a) are also shown. Contour of
the hole is shown with black dashed circle. The inset depicts a schematic of the unit
computational cell used in the numerical calculation. By applying periodic boundary
conditions the simulated structure becomes periodically infinite.

To corroborate these results we used finite difference time domain simulation to

calculate the modes of the PhC. Fig. 2-2(c) and 2-2(f) show the dispersion curves of

the eight lowest energy bands along the F-X line (k(F) = [0, 0].(27r/a), k(X) = [0.5,

0]-(27r/a), k = [km, ky] and k- = (w/c)sin(6)). The four lower frequencies bands are

TE-like (numbered 1-4) and the four higher frequencies are TM-like (numbered 5-8).

The presented E, component of all eight modes are calculated at the center of the
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Si3 N4 layer at k = [0.01, 0].(27r/a). The calculated resonant wavelengths are shifted

by not more than 0.5% from the measured spectra, well within the uncertainty of

the measured periodicity or the value of the refractive index. Exception to that is the

TE-like mode number 2 in Fig. 2-2(a) that appear to be very faint (almost missing):

we explain the cause for this later.

It is evident from the measured spectral reflectivity of Fig. 2-2(a) and (d) that the

incident beam may excite different modes of the PhC depending on its polarization.

This can be understood from symmetry considerations: exciting the PhC slab with

a source of one type of symmetry results in coupling to the modes of the same type

of symmetry only. Note that moving away from F to X the symmetry group changes

from C 4, to Clh [29], reducing the number of irreducible representations from 5 to

2. Mirror reflection operation around the x-axis leaves the modes of one irreducible

representation unchanged, while the modes of the other irreducible representation are

altered by a factor of -1. We can determine the symmetry of each mode by examining

the mode profile of its E, component as shown in Fig. 2-2(c) and (f). Modes 1, 2, 4,
and 6 are altered by a factor -1 under mirror reflection operation around the x-axis

and hence excited by E, polarized source, while modes 3, 5, 7, and 8 are unchanged

under the same operation and hence excited by E, polarized source.

Fig. 2-3 depicts the calculated Q""' of these eight bands. It reveals that while

the doubly-degenerate (at F) bands 3, 4 and 6, 7 have finite Qo 1 at k~0, the singly-

degenerate (at F) bands 1, 2, 5, and 8 have Q,' that go to infinity when approaching

k=0. This can be qualitatively understood from symmetry arguments. As mentioned

earlier, a mode at the F point belongs to one of five irreducible representations of the

C 4, point group [26,29]. One of the irreducible representations is doubly degenerate

and has the same symmetry as free-space modes, while the rest are all singly degener-

ate and are completely decoupled from free-space modes. As a result, Qal of these

four singly-degenerate modes at the F point should be infinite despite lying within

the light cone, while the doubly-degenerate modes have finite Qtotal As we move

away from F to X the point group becomes Clh and doubly-degenerate modes split

into two. The two irreducible representations of the Clh point group share symmetry
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Figure 2-3: Simulation results for radiative quality factors. The high-Q singly-
degenerate modes are shown with solid lines, while the doubly-degenerate (at F)
are shown with dotted lines.

with the free-space modes and therefore Qtotal become finite for all resonances, as is

evident from the calculation.

2.3 Identification and differentiation of symmetry-

protected BICs

To gain a deeper insight into the physics of the measured resonances, we developed a

semi-analytical temporal coupled-mode theory mode that accounts for the presence

of guided leaky resonances in the Si3 N 4 layer [3,26]. We excited the model with an

incident source propagating from the top and impinging onto the Si3 N4 layer resonant

cavity. From first-order perturbation to Maxwells equation, energy conservation con-

siderations, and neglecting second-order effects, we attained the following expression
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for the reflectivity of our sample:

rPhC12 d7tol * (7toird + ysio 2 td) 2
i(w - wo) + 7tol/2 + /2+ I/rftsta -

Tdand td are the complex reflection and transmission coefficients of the sample without

the square lattice of cylindrical air holes. -yt.i and 7sio2 are the coupling strengths of

the resonant mode to the top environment and the SiO 2 layer respectively, and can

be related to the quality factors by 7sio2 = WO/Qra2 and Ytoi = wo/Qto.

From Eq. (2.1), it becomes obvious that there exist two temporal pathways: rd,

represents the direct transmission and reflection processes of the uniform stack, and

the second term represents the guided resonances excited within the Si3 N4 layers

whose energy leaks into the far-field. It is the superposition of the two physical

processes that contribute to the typical narrow Fano line shapes superimposed on a

Fabry-Perot-like background that are observed in the reflectivity spectra of Fig. 2-2(b)

and (e). We fitted Eq. (2.1) to the measured spectra and obtained the corresponding

Qtotal, defined as:

1/Qto tal = a/Qtt+ 1/Q t'a (2.2)

where Qtotal includes losses from both material absorption and scattering due to fab-

rication imperfections. The results are summarized in Fig. 2-4, with an example of

a fitted Fano resonance curve for the data measured at 0.80 of band 5. A comple-

mentary approach that also provides further intuitive understanding to calculate the

reflection from such structure was proposed by Pottage et al [30].

Fig. 2-4 reveals a clear distinction between the singly-degenerate (modes 1, 2,

5, and 8) and the doubly-degenerate (modes 3, 4, 6 and 7) modes at small angles.

While the measured value of Qotal increases when approaching k=0 for modes 1, 5,

and 8, the doubly-degenerate modes have decreasing or fixed values. We note that

although Qtotal as high as 10' are observed, the calculated Qtotal (Fig. 2-3) of therad

singly-degenerate modes are much greater at small angles, suggesting that close to

k=0 the resonant energy decay is dominated by absorption and incoherent scatter-

ing from fabrication imperfections (Qt otal o ;zz 10'), both of which could be
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Figure 2-4: Qt"' values retrieved by fitting Eq. (2.1) to the measured data. Insets
show the reflectivity spectra of leaky mode 5 measured at three angles (0.10, 0.40,
and 0.8'). The right inset depicts an example of the curve fitting process discussed
in the text. Note the distinct higher quality factors of the singly-degenerate modes
close to zero angle (i.e. zero wave vector).

significantly reduced by improving the fabrication process. On the other hand, the

four low-Q bands 3, 4 and 6, 7 in Fig. 2-4 have Qt al values that are comparable to

the calculated Qtol and smaller than Q o'a. Indeed, FDTD calculations of the reso-

nant mode show that the energy confinement is approximately unchanged within the

plotted range of angles, suggesting that QCat is relatively constant in the considered

range of angles.

Apart from limiting the values of Qtt " and hence the linewidth of the resonant

lineshapes, the presence of relatively large scattering loss and absorption compared

to far-field radiation near normal incidence leads to reduced resonant amplitudes.

Conversely, the decrease of Qta1 away from the normal provides a better match

between Qsgat and Qtoal, which leads to an increase in the height of the features.

This is consistent with Eq. (2.1), and also explains why band 2 appears only weakly

in the measurement results shown in Fig. 2-2(a). Unlike other high Qtotl modes whoserad mode

values decrease rapidly away from the F point, the Qtota of the missing TE-like band
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2 remains high (Fig. 2-3) for most angles, resulting in small reflectivity amplitudes

which are harder to detect.

2.4 Concluding remarks

In this chapter, we experimentally differentiate and demonstrate the existence of

a special class of resonances in PhCs with quality factors that could, in principle,

approach infinity despite lying within the light cone. These non-degenerate Fano

resonances are delocalized modes that decouple from the light cone states at k=0 due

to symmetry considerations. A clear distinction between these modes and degenerate

Fano resonances with finite Qtotal at the F point is presented. With future improved

fabrication that decreases the roughness and non-uniformities of the PhC slab, the

current observed quality factors of ~104 can be significantly enhanced.

The experimental realization of this mode has four important consequences:

1 the strongly enhanced field close to the PhC surface and the simple access to it

provides a new platform for the study of light and matter interaction;

2 it offers an easy-to-fabricate structure that supports delocalized modes with

ultrahigh quality factors;

3 it can be shown from coupled mode theory [31] that up to 50% of external

radiation can be coupled to these strongly confined modes in symmetric PhC

slabs, when one ensures that the Q-matching condition between the radiative

life-time, and the absorptive life-time is satisfied;

4 despite the macroscopically large area resonator, only a few high-Q modes are

supported within a fairly broad frequency range

The delocalized nature of this mode is particularly important in applications where

the interaction of an enhanced electric field with a macroscopic volume of matter can

dramatically improve the performance of the process, such as in bimolecular sens-

ing and organic light emitting devices. Furthermore, the realization of this novel
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resonance could enable the enhancement and the demonstration of new physical phe-

nomena in laser physics, energy conversion, nonlinear optics, and optical filters.
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Chapter 3

Enabling Enhanced Emission and

Low-Threshold Lasing of Organic

Molecules Using BICs

3.1 Introduction

Organic molecules are pervasive in the daily life: from natural proteins, to human syn-

thesized fluorescing labels, to organic semiconductors. The interaction of light with

such molecules is at the heart of important technological advances in biomolecular de-

tection [32-35], fluorescent microscopy [36], and organic light emitting devices [37-40]

as well as more fundamental studies of cavity quantum electrodynamics [41-43] and

various types of enhanced spectroscopy [44] and sensing [45]. In all, it is frequently

sought to alter [46-49] and often enhance this interaction by allowing it to occur in

a typically nanostructured cavity where both the lifetime of the resonances and the

optical density of states (DOS) [50] can be tailored. However, there are inherent chal-

lenges in incorporating organic molecules in such cavities: first, their dissimilar com-

positional structure makes it difficult to incorporate them within the high dielectric

regions of the cavity where long-lifetime resonances concentrate their electromagnetic

energy. Second, micro- and nanostructured cavities typically only have a small por-
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tion of their mode volumes extending outside their high-dielectric regions, making it

challenging to bring external entities precisely to within that volume. Third, pattern-

ing of organic materials at the nano-scale is extremely challenging and incompatible

with inorganic processes. As a result, experimental realizations of systems of excitons

of organic molecules and optical resonances are limited when compared to systems of

inorganic quantum nanostructures.

Here, we present and study a novel dielectric surface that enables simple incorpo-

ration of organic molecules onto a macroscopic nanostructured resonant cavity. This

system demonstrates strongly enhanced interaction of light with organic molecules

that are brought to within one hundred nanometers from its macroscopic surface.

The surface, patterned with a sub-wavelength periodic structure, supports a special

type of Fano resonances [26,51], some of which are completely decoupled from free-

space radiation due to symmetry arguments and thus maintain in principle infinitely

long life time despite lying within the light cone. The uniqueness and simplicity of this

system whereby delocalized resonances with ultralong life time can exist above the

surface and consequently easily interact with added molecules anywhere along the sur-

face provides a novel optofluidic platform for molecular sensing and lasing purposes.

The spectral and angular radiation pattern of the organic molecules placed close to

the surface are dramatically modified compared to their free space emission due to the

strongly altered spectral density of states (SDOS) [50] presented by the PhC. Sharp

spectral features in their fluorescence spectra are observed, with enhancement of the

differential radiated power [44] as high as 6.3 x 103 times. We theoretically show that

the origin of enhancement can be attributed to two mechanisms: enhancement of the

local excitation field and enhancement of the extraction rate. We develop a theoret-

ical model involving coupled mode theory (CMT) and Green's functions expansion

in the basis of Bloch modes to predict the contribution of each mechanism to the to-

tal enhancement. Furthermore, we show that the two enhancement mechanisms also

contribute to reduce the lasing threshold by an order of magnitude when compared to

previously demonstrated laser cavities with the same gain medium (Rhodamine 6G,

which was used here) [52-55]. To the best of our knowledge, this is also the first lasing
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demonstration of organic dye molecules using this special type of Fano resonances.

3.2 Theoretical framework of emission enhance-

ments

We start by outlining the theoretical framework for the interaction of optical res-

onances and organic molecules in the weak-coupling regime. Without loss of gen-

eralities, we consider here a PhC covered with organic molecules in solution, shown

schematically in Fig. 3-1. This PhC slab, made out of a periodic square array of holes,

supports Fano resonances with delocalized wavefunctions and long lifetimes [26,51].

The electronic transitions of the fluorescence process in organic molecules are shown

in Fig. 3-1(a) involving the two lowest energy singlet states [44]. The interaction of

light with the organic molecules can be dramatically modified in the presence of op-

tical resonances [56-58] through two mechanisms: 1. Enhancement of the molecules'

absorption by coupling the pump into a resonance mode compared to free-space cou-

pling, Ac; 2. Enhancement of the extraction rate of generated photons into the far

field in the presence of PhC compared to the free space, AT. In this section, we

derive a theoretical model for the two enhancement factors stressing effects involving

the sub-wavelength structure of the resonator. Since the quantum yield of many dye

molecules is close to unity [59], we assume it remains unchanged due to enhancement

effects.

3.2.1 Excitation enhancement

Excitation enhancement occurs in structures that support resonances for the exci-

tation wavelength via the enhancement of the local electric field in the site of the

molecules. Since typically in nanostructured resonances the active volume of the

organic material that interacts with the resonance is small (compared to the wave-

length), in most cases only a small fraction of the excitation beam is absorbed. How-

ever, the local excitation field can be orders of magnitude higher than in free space
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when the pump is coupled to resonances with long lifetime (the pump resonant mode)

Singlet
N

DN2
2

Pump
absorption

N,

0N'

t

z
X q9

stimrulated
emission

spontaneous
emission

reabsorption

non-radiative
transitions

relanition

(a)

1"

(b)

Figure 3-1: Optofluidic platform of organic molecules coupled to Fano resonances
of the macroscopic photonic crystal. (a) Schematic drawing of the two lowest sin-
glet energy levels of a dye molecule and transitions it undergoes during fluorescence
emission. (b) Schematic drawing of the experimental setup of the angle-resolved flu-
orescence measurements of Rhodamine 6G (R6G) dissolved in methanol at 1 mM
concentration placed on top of the PhC. The grey substrate is the macroscopic PhC
slab. The orange spheres are schematic drawings of the R6G molecules in solution.
The blue surface represents the equal energy density surface of the Fano resonance.
Fluorescence spectra of the organic solution for both cases were recorded using a
high-resolution spectrometer placed close to the normal of the PhC. By tuning the
position of the spectrometer, fluorescence spectra of the molecules along F to X and
F to M were measured.

and therefore lead to enhanced absorption. The power absorbed by bulk molecules

is given by PB = (Nogabsd) x Pi, where Uabs is the absorption cross-section of

molecules, No is the number density of molecules, d is the thickness of the layer that

the molecules occupy and Pin is the pump power. Using CMT [3,31,60], the excitation

enhancement can be shown to be:

Ac abs~ pB
abs

2AP aP(QP)2

ndp r
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where A' is the pump wavelength, n is the refractive index of the liquid where organic

molecules are dissolved, Q' and QP are the radiative and total quality factor of the

pump mode, dff is the effective length of the evanescent tail of the pump mode

into the molecule layer and &p is the energy confinement of the pump mode in the

molecule layer. Note that all quantities in Eq. (3.1) can be found either by FDTD

simulation [29] or fitting spectral reflection measurements to CMT [51]. Excitation

enhancement, Ac, is maximized when the standard Q-matching condition between

the radiative and non-radiative Q of the pump mode, Q' and QP, is satisfied [31].

To make it simpler to keep track of the various Q's that appear in the paper, we

first summarize and label them with detailed explanations in Table 3.1. The processes

to obtain different Q's can be summarized as follows. Firstly, we did angle-resolved

reflectivity measurement of the PhC immersed in methanol. Secondly, we model the

whole system from the perspective of CMT. In this CMT model, we excited the system

with an incident source propagating from the top and impinging onto the Si3 N4 layer

resonant cavity. From the first order-perturbation to the Maxwell's equation, energy

conservation considerations, and by neglecting any higher order effects, we came

up with a semi-analytical model that predicts the reflectivity of the PhC with the

parameters of the resonances as variables, including the central frequency positions

and the values of all different Q's. Finally, we fit the experimental results to the

semi-analytical model and obtain all the information about the resonances, including

different Q's used as the input of the current study. This whole process is identical

to what has been described in the previous chapter.

3.2.2 Extraction enhancement

The second mechanism is extraction enhancement due to strong modification of the

SDOS in the presence of Fano resonances. The angular emission of molecules can be

dramatically altered when coupled to a macroscopic nanostructure resonance com-

pared to in free-space. When coupled to resonances, the decay rate of a collection

of randomly polarized, randomly positioned molecules into given wavevector k and
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Table 3.1: Summary of all the Q's. For each resonance, total Q's represent the
linewidth; non-radiative Q's are generated due to material absorption, scattering from
imperfections in fabrication, and inhomogeneous broadening; radiative Q's through
the top account only for the leakage towards the top surface of the PhC that partic-
ipate in the pumping and fluorescing processes; while total radiative Q's account for
all radiative channels and can be calculated from FDTD simulations.

Pump mode Fluorescence mode

total Q QP QF
non-radiative Q QFr Q r

radiative Q through the top QF QF

total radiative Q QP'tot QF'tot

frequency w can be written as:

FPhC(w) =No F(r, w)dr (3.2)

gain

= No2 E, r AWk (3.3)N o f (o -k )2 + AW2
kjwkgain dr (WWk) k

Here, AWk is the linewidth of the resonance and jpl is the electric dipole momentum

of the molecules. This result is achieved by decomposing the Green's function of

the system with the basis of normalized Bloch modes Ek,Wk(r) (EF(r)) with finite

lifetime characterized by QF 2k , instead of true eigen-modes with infinitely long

lifetime [61].

For a macroscopic PhC slab with area of A as discussed in this paper, we can

substitute E in Eq. (3.2) with A ff dkdky as is commonly done in solid state
k

physics. When evaluating Eq. (3.2) at the resonance of the PhC (W = wk), we get the

differential on-resonance decay rate:

FPhC (k, k ANOWk -aFQ NOWrk aF x S(k,wk) (3.4)
67r2 hEo 3hco

S(k,Wk) = (3.5)
470AWk

Here, aF = f EF (r) 2dr is the energy confinement of the fluorescence resonant
gain

mode in the gain medium region. S(k, Wk) is the spectral density of states (SDOS)
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of the system at k and Wk. In Eq. (3.4), we clearly show the linear relation between

the decay rate of molecules into crystal momentum k resonant frequency Wk and the

corresponding SDOS.

Note that two assumptions were adopted in equation (3.4): 1. The gain medium

is uniform and isotropic; 2. The quality factors of the resonances are large enough,

such that different resonances at the same k are far apart from each other compared

to their linewidth. Also note that the results in Eq. (3.4) is essentially related to [62].

FRom here on, all parameters of the fluorescence mode (QFQFa FSPhC) are for one

specific mode with (k, Wk), unless specified otherwise.

Although the molecule layer is assumed to be infinitely thick on top of the PhC,

only Neff = NOAd F number of molecules can couple to the fluorescence resonance

mode. Here dff is defined to be the thickness of the fluoresncece mode in the gain

medium in which region (1 - -) of the total energy in the gain medium is stored. In

our particular setup, d'ff was determined to be 100nm through FDTD calculations.

When compared to radiation in the free space, we also need to take into account that

not all but only Q portion of generated photons can be radiated coherently to the far

field when placed on top of PhC. Therefore, under the assumption that the radiation

direction is close to normal, the extraction enhancement can be written as:

FPhC X FaF 2

AT(k, Wk) f-s n (rd Qf) (3.6)

Here, AF is corresponding wavelength of the fluorescence mode. To maximize AT,

similar as in the case of Ac, one seeks to maximize aF as well as to enforce the Q-
matching condition of the fluorescence mode (Qr = QF tot) instead of to lower QF

in general as often suggested. Similar to Eq. (3.1), all quantities in Eq. (3.6) can be

obtained from FDTD calculations and spectral reflection measurements.

There are three major differences between this formalism and local optical density

of states (LDOS) [50] enhancement calculations in micro-cavity systems [12,63-67]:

1. Here, we are considering the emission of a uniform and isotropic ensemble of

molecules placed on a periodic macroscopic PhC into fixed crystal momentum
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k at Wk, which is proportional to the SDOS of the system instead of the LDOS

(proportional to the emission of one dipole into all directions [68-72]);

2. To treat an infinitely large system, the basis adopted here to expand Green's

functions are Bloch modes under periodic boundary condition instead of local-

ized eigen-modes as often used in LDOS calculations;

3. The portion (&) of generated photons to be radiated coherently to the far field

and reach the detector is taken into account; therefore the maximizing condi-

tion changes from adopting lower Q' in general to Q-matching in consistence

with [73].

3.2.3 Total enhancement

Given knowledge of the excitation and extraction enhancement, the total enhance-

ment factor A(k,,wk) can be shown to be:

A(k,wk) - EPhC W2 ef' F xE dffa 2 [EF (r)12EP(r)12dr] X [(QP) 2  (QF) 2 1
?7Oeff ef r r'~

gain

overlap integral

~ AcAT(k,wk) (3.7)

Here, EF (r) is the normalized mode profile for the fluorescence mode, and EP(r) is

that for the pump mode. The approximation A(k, Wk) ~ ACAT(k, Wk) in Eq. (3.7) is

valid under two assumptions: 1. The quantum yield of the molecules remains constant

as mentioned; 2. More importantly, the normalized pump and fluorescence mode pro-

files are roughly uniformly distributed in similar region in space, therefore the overlap

integral in Eq. (3.7) can be simplified to be ap x aF. The latter approximation is

commonly ignored in photonic systems; however, it can lead to further enhancement.

Note that in many plasmonic systems, the origin of enhancement comes mostly from

this mode overlap integral term and cannot be simplified.

Unlike plasmonic systems, the most significant contribution to the enhancement
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in photonic systems typically comes from the high Q's of the resonances and given by

the last term of Eq. (3.7): ( - This term reaches its maximum of ; Qz Q 6

under the Q-matching condition as stated previously. Accordingly, to achieve the

highest enhancement, a photonic system is desired to both present resonances with

high radiative and non-radiative Q's and possess a "tuning" mechanism such that

the Q-matching condition can be achieved. The photonic crystal presented here

satisfies both of these two requirements. This structure was demonstrated to achieve

non-radiative Q as high as 10' [51] only limited by fabrication imperfections, and

radiative Q approaching infinity due to the decoupling from free space radiation based

on symmetry arguments. Since the radiative Q of the resonances strongly depend on

the wavevector k (Qr OC V) at small k, the Q-matching condition can always be

satisfied at a certain small angle.

3.3 Experimental results of enhaced fluorescence

emission and comparison to theory

We experimentally studied a system comprising solution of Rhodamine 6G (R6G)

molecules in methanol suspended on top of a PhC slab supporting this special type of

Fano resonances [51]. A schematic drawing of the setup is shown in Fig. 3-1(b), where

the grey substrate is the PhC slab consisting of a square lattice of air cylindrical holes

(same as in the previous chapter).

The PhC was placed in a liquid cell with a channel thickness of dch = 2 Am and

filled with R6G solution dissolved in methanol at the concentration of 1 mM. The

liquid cell was mounted on a precision motorized rotating stage, where the incident

angle of the laser # can be precisely controlled along the F - X direction. The

fluorescence spectrum was collected using a spectrometer with resolution of 0.03 nm

(HR4000, Ocean optics) aligned close to the normal direction, since we were mainly

interested in the special Fano resonance with k near F. The dimension of the aperture

in the spectrometer is about 5pm in X and 2mm in Y direction corresponding to
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acceptance angle of about 10. By tuning the position of the spectrometer with a XYZ

stage, we were able to detect fluorescence into different emission angles along F - X

and F - M direction. The molecules are excited by a 532 nm continuous wave (CW)

laser at the power level of 20 mW, well below the lasing threshold of the system.
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Figure 3-2: Significantly enhanced fluorescence emission from R6G molecules. Com-
parison of fluorescence spectra of R6G molecules measured in the normal direction,
among on the PhC (solid lines) both pumped on-resonance (blue) and off-resonance
(red) as well as on a uniform unpatterned slab (dashed green line). By comparing
the spectra, we obtain the excitation (Acxp), extraction (A'xp), and total (AexP) en-
hancement factors, which are compared with the theoretical predictions, as described
in the text. The inset of the figure shows FDTD calculation results of the band
structure from which the incident angle (#) for on-resonance coupling is determined
(o = 10.0'), showing good agreements with experiment (#eoxnP - 10.020).

Fig. 3-2 shows comparison of the fluorescence spectra of R6G molecules measured

in the normal direction for three scenarios: on an unpatterned slab (dashed green line)
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and on the PhC (solid lines) pumped on-resonance (blue) and off-resonance (red). The

spectrometer was fixed at the normal direction of the PhC sample, while switching

between on- and off- resonance coupling was achieved by tuning the incident angle

of the pump, #. From FDTD calculations of the band structure (inset of Fig. 3-2),

on-resonance coupling angle 01h was determined to be 10.00 agreeing well with the

measured 0*1P = 10.02'.

3.3.1 Comparison of excitation enhancement

In the on-resonance case the excitation field within dpff from the surface is strongly

enhanced compared to off-resonance, while the remainder of the bulk layer exhibits

no enhancement. The excitation enhancement can be analyzed by comparing emis-

sion spectra for on-resonance (blue) and off-resonance coupling (red). The difference

between the two is solely due to excitation enhancement since the extraction enhance-

ment AT for the same wavelength at the same angle remains the same.

For wavelengths away from the three resonances at F, under off-resonance cou-

pling, most of the emission comes from the absorption in the dch = 2 Am thick bulk

layer. For on-resonance coupling, the majority (over 80%) of the absorption happens

within the evanescent tail of the pump resonance mode, although deff deh. The

absorption in dpf for on-resonance coupling can be calculated from the difference of

fluorescence signal between on- and off-resonance coupling: Ion - Io; while that for

off-resonance coupling can be calculated from the thickness ratio: Ioff x (d ff/dch)-

Here, Ion and Ioff are measured fluorescence intensity for wavelengths far away from

the three resonances at F. The effective length of the evanescent tail of the pump

resonance mode in the molecule layer, dpff, is defined similar to d F.

.A Io - Ioff

exc off x (d1F /dch) -80 (3.8)

The theoretical prediction of excitation enhancement was calculated by plugging

all quantities in Eq. (3.1). For the pump mode: QP = 1.6 x 10' obtained from FDTD

calculation; QP = 6300 obtained from reflection measurements; d p = 100 nm from
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previous section; -abs = 3.8 x 10- 2 0m 2 from literature [52]; No = 6 x 102 3 m- 3 ; aC =

6% from FDTD calculation; n = 1.33 for methanol and A' = 532 nm. Therefore,

Qbs - OasNO =- 1.1 X 104. From Eq. (3.1), -~ 12.7%, meaning the absorption

in the 100 nm evanescent tail of the pump resonance is about 12.7% for on-resonance

coupling. Therefore, the theoretical prediction of excitation enhancement is given by:

2AP ap(QP) 2  60 (3.9)
= irnder, QP

showing good agreement with experimental results, . Note that the factor QP is

different from the total radiative Q of the pump-mode (Qpftot): QP only accounts for

the leakage of the resonance that can be coupled to the pump. Here, only leakage

through the top surface is taken into account.

3.3.2 Comparison of extraction and total enhancements

The extraction enhancement AT as in Eq. (3.6) depends on Q', which is strongly an-

gular dependent near normal direction. Therefore, angle-resolved fluorescence mea-

surements were carried out to study AT experimentally. In total, the fluorescence

signal was measured at 125 different angles up to 4.5' along F - X and up to 1.5'

along F - M as shown in Fig. 3-3(b). Each slice on the horizontal axis represents the

emission spectrum at that angle. The incident angle of the pump was fixed at 10.020

for on-resonance coupling in all measurements. For comparison, Fig. 3-3(a) shows the

band structure of the PhC from FDTD calculations within the same range of angles.

The bands are labeled number 1 through 5 for the simplicity of further discussion.

The first feature of Fig. 3-3(b) is that the fluorescence is always maximized around the

Fano resonances of the PhC . This can be intuitively understood from Eq. (3.2): the

decay rate into frequency w is proportional to (_w"k-w)2, which is maximized at

W = Wk. The second feature of Fig. 3-3(b) is the strong angular dependence similar to

AT. While similar angular dependence has been previously reported [57,58], here we

present the first rigorous quantitative model that faithfully predicts the experimental

results.

42



M<----- r ------------------ > X M<----- F ------------------- X

560 25
(a)

565 20

570 15

575

580 1058 -3 / 7
585 4 5-

10'5
590 -1

-I 0 1 2 3 4 -1 0 1 2 3 4
Angle (degrees) Angle (degrees)

8000
(c) (d)

-6000

4000

V 2000
0

0 1 2 0 0.5 1 1.5 0 0.5 1 1.5 2 3 4
Angle (degrees) Angle (degrees) Angle (degrees)

Figure 3-3: Comparison between theoretical model and experimental results of the
enhancement mechanisms. (a) The band structure of the PhC along F to M and
F to X directions. (b) Angle-resolved fluorescence measurements of R6G solution
suspended on top of the PhC. The correspondence between the color and number of
photons (arbitrary units) is given in the color bar on the side. (c) Total enhancement
factors Ath, for mode 1 (blue line) and mode 4 (green line) calculated through the
product of excitation enhancement A8'h, and extraction enhancement Af (k, Wk) using
the theoretical model. (d) Theoretical prediction of the averaged total enhancement
factor, Ath, between 0 and 1.5', to be compared to experiment. (e) Total enhancement
factor, Aexp, extracted from experimental results in (b). Comparison between (d) and
(e) for the same angle range (0 - 1.5') shows good agreements not only in trend but
also in values.

Theoretical prediction of extraction enhancement, A , for bands l and 4 were

calculated using Eq. (3.6) within 2' along F - X.Here aF for both mode 1 and 4 is

approximately 6%. Based on this result, theoretical prediction of total enhancement

Ath is plotted in Fig. 3-3(c). Note that Ath goes to zero for both bands at F since

QF of both modes are infinity at F [26,51]. Away from F, QF of both modes drops

(oc I) and A is maximized when the Q-matching condition between QFtot 1 ~QF

and QF is reached. From [51], we see that QF of mode 1 drops much slower than

that of mode 4, which explains why Ath of mode 1 increases much slower than that

of mode 4 near F. Finally, before we can directly compare theory to experiment, Ath
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needs to be averaged over the range of k corresponding to the acceptance angle of the

spectrometer aperture, which is narrow in the X direction (the difference of resonance

frequencies of allowed k within corresponding acceptance angle is small compared to

the resonance linewidth), but wide (m 1') in the Y direction. Due to the limitation

of the angles where QF was measured in [51], averaged total enhancement Ath can be

calculated only between 0 and 1.50 along the F - X as shown in Fig. 3-3(d).

Experimentally observed total enhancement, A*xP, is defined as the ratio between

the fluorescence signal from the evanescent tail of the fluorescence mode d'if for on-

resonance coupling case and that for on unpatterned substrate:

A** =x o (3.10)
Islab x (deff/dch)

The maximum of total enhancement can be approximated under Q-matching between

QFtot and Qr- Taking QF = 104 [51], one can get Ath F aF(Q.r)l = 104.Tain "rnr L'',g T ... eff 8

Combining with A h = 60, the maximum value of Ath of band 1 can be approximated

to be 6.24 x 103, which agrees well with the maximum value of AexP (6.3 x 10') in

Fig. 3-3(e). In Table 3.2, we also present the comparison of the enhancements for

band 4 at F between our theoretical prediction and experimental results.

Table 3.2: Comparison of the enhancement factors for band 4 at F. For mode
4 at F, results of excitation enhancement Ac; extraction enhancement AT, and total
enhancement A from theoretical prediction through the model presented in the text
are compared to the results extracted from experiments and showing good agreements
with each other.

AC AT A
Theoretical prediction 60 50 3 x 103

Experimental results 80 35 2.8 x 103
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3.4 Effects of enhancement mechanisms on reduc-

ing lasing threshold

One direct consequence of the enhancement mechanisms is the reduction in lasing

threshold of such systems. We experimentally observed significantly reduced lasing

threshold of the specific organic molecules, R6G, while compared to previously re-

ported results.

The reduction of lasing threshold in this new type of dye laser that utilize these

special Fano resonances is due to two reasons. First, the excitation field is dramati-

cally enhanced near the surface of the PhC (Ac > 1) enabling substantial absorption

of the pump within a thin layer of diluted molecules near the PhC surface. The sec-

ond contribution originates from the enhanced emission rate of the molecules into the

lasing mode when compared to their free-space emission with similar mode volume.

This enhancement can be introduced phenomenologically into the lasing rate equa-

tion [14, 74] through the spontaneous emission factor, 3, which is classically defined

as the ratio between the emission rate into the lasing mode and the total emission

rate. The lasing threshold is typically inversely proportional to 0 and hence can

be reduced in cases where the emission rate into the lasing mode is enhanced while

the total rate remains almost constant. A rigorous CMT model of the laser dynam-

ics of the system of organic molecules in nano-structured cavities was developed by

our group elsewhere [74]. The high Q of the system also helps to reduce the lasing

threshold.

The lasing experiment was carried out using the same setup as the fluorescence

measurements other than replacing the CW pump with the 532 nm second harmonic

of a 5 ns collimated Nd:YAG pulsed laser at 10 Hz repetition rate. Narrow emission

lines were observed at A 4 580 nm first and then At ; 575 nm, both well within the

R6G's emission spectrum. At A4 , Q4 = 8.3 x 103 was retrieved from results in [51].

The emission spectra of the molecules when pumped below (blue) and above (red)

threshold are shown in Fig. 3-4 (inset). Plugging the rates of electronic transitions in

R6G and parameters of the PhC cavity into the CMT laser model [74,75], the pulse
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Figure 3-4: Low threshold lasing of 100 nm thin layer of R6G molecules in solution.

Input-output energy characteristics of lasing through mode 4 (580 nm) under pulsed

excitation. The solid lines are analytic predictions from our lasing model while red

circles are energies measured using the spectrometer. Green circles are data mea-

sured with a power meter. The jump in output power clearly indicates the onset of

lasing. The lower inset shows the same results in linear scale, where the output grows

linearly with the pump energy beyond threshold. Top inset is the measured power

spectrum of emission from the PhC slab at normal incidence below (blue) and above

(red) the lasing threshold. Single-mode lasing is attained at approximately 9 x 103

nJ/cm2 (corresponding to the intensity of 1.8 kW/cm 2).

energy input-output curve is plotted against the measured data in Fig. 3-4. The jump

in the log-log plot clearly indicates the onset of lasing.

The same result in linear scale is shown in the lower inset of Fig. 3-4, where the

output energy grows linearly with the pump energy beyond threshold. The theoretical

predictions of both threshold and slope efficiency match reasonably well with the ex-

perimental results within experimental errors. In particular, the measured threshold

energy is 9 x 103 nJ/cm 2 (intensity of 1.8 kW/cm2 ), an order of magnitude lower than

previously demonstrated laser cavities with the gain medium [52-55]. We attribute
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this low lasing threshold of R6G to the two enhancement mechanisms: 1. The excita-

tion enhancement Ac ~ 60 that enables 12.7% absorption of the pump energy within

only 100 nm thin layer of the dye solution; 2. The rate of spontaneous emission into

the lasing mode in such structure, which is proportional to S(kL, WL), is enhanced

over that in free space, yielding higher value of #.

3.5 Concluding remarks

In this chapter, we present and study a novel optofluidic platform that enables the

strongly enhanced light interaction with organic molecules due to the macroscopic

Fano resonances in the nano-structured cavity. We experimentally demonstrated

dramatic spectral and angular redistribution of fluorescence from molecules coupled

to the special Fano resonances supported by the PhC. Theoretical framework of the

system was developed to explain and calculate the enhancement mechanisms showing

good agreements with experiments. We found that to maximize the overall emission

enhancements, Q-matching requirements need to be satisfied not only for the pump

mode but also for the fluorescence mode.

Furthermore, we report lasing of 100 nm thin layer of diluted organic dye molecule

solution with threshold that is an order of magnitude lower than any previously

demonstrated laser systems using similar molecules. The reduction of lasing thresh-

old was further explained by these enhancement mechanisms. This lasing experiment

highlights the novelty of this system whereby organic molecules or colloidal nanopar-

ticles can be simply introduced and interact with resonances of a macroscopic nano-

structured cavity anywhere along its surface. These results present exciting oppor-

tunities in optical molecular sensing and surface light emitting devices due to the

ability of simply introducing matter to the surface, the delocalized nature of the res-

onance modes and the enhancement mechanisms presented in the system. Finally we

should point out that these results are proofs of concept only and in fact lower lasing

thresholds and higher fluorescence enhancements can be achieved by optimizing the

structure using the theoretical model developed here.
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Chapter 4

Observation of

Non-symmetry-protected BICs

4.1 Introduction

Many light confinement methods exist, but they all achieve confinement with ma-

terials or systems that forbid outgoing waves. Such systems can be implemented

by metallic mirrors, by photonic band-gap materials [3], by highly disordered me-

dia (Anderson localization [76]) and, for a subset of outgoing waves, by translational

symmetry (total internal reflection [3]) or rotation/reflection symmetry [51,77]. Ex-

ceptions to these examples exist only in theoretical proposals [18-20,78].

In this chapter, we predict and experimentally demonstrate that light can be per-

fectly confined in a patterned dielectric slab, even though outgoing waves are allowed

in the surrounding medium. Technically, this is an observation of an "embedded

eigenvalue" [79]-namely a bound state in a continuum of radiation modes-that is

not due to symmetry incompatibility [15-23, 78,80]. Such a bound state can exist

stably in a general class of geometries where all of its radiation amplitudes vanish

simultaneously due to destructive interference. This method to trap electromagnetic

waves is also applicable to electronic [16] and mechanical waves [21,22].

The propagation of waves can be easily understood from the wave equation, but

the localization of waves (creation of bound states) is more complex. Typically, wave

49



localization can only be achieved when suitable outgoing waves either do not exist

or are forbidden due to symmetry incompatibility. For electromagnetic waves, this is

commonly implemented with metals, photonic bandgaps, or total internal reflections;

for electron waves, this is commonly achieved with potential barriers.

In 1929, von Neumann and Wigner proposed the first counterexample [80], in

which they designed a quantum potential to trap an electron whose energy would

normally allow coupling to outgoing waves. However, such artificially designed po-

tential does not exist in reality. Furthermore, the trapping is destroyed by any generic

perturbation to the potential. More recently, other counterexamples have been pro-

posed theoretically in quantum systems [15-17], photonics [18-20, 78], acoustic and

water waves [21,22], and mathematics [23]; the proposed systems in refs. 19 and 21

are most closely related to what is demonstrated here. While no general explanation

exists, some cases have been interpreted as two interfering resonances that leaves one

resonance with zero width [15,16,19]. Among these many proposals, most cannot be

readily realized due to their inherent fragility. A different form of embedded eigen-

value has been realized in symmetry-protected systems [51,77], where no outgoing

wave exists for modes of a particular symmetry.

4.2 Theoretical prediction and numerical demon-

stration

To show that an optical bound state is feasible even when it is surrounded by

symmetry-compatible radiation modes, we consider a practical structure: a dielectric

slab with a square array of cylindrical holes (Fig. 4-1 (a)), an example of photonic

crystal (PhC) slab [3]. The periodic geometry leads to photonic band structures,

analogous to how a periodic potential in solids gives rise to electron band structures.

The PhC slab supports guided resonances whose frequencies lie within the continuum

of radiation modes in free space (Fig. 4-1 (b)); these resonances generally have finite

lifetimes because they can couple to the free-space modes. However, using finite-
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Figure 4-1: Theory predictions. a, Schematic of the photonic crystal (PhC) slab. b,
Calculated band structure. Yellow shaded area indicates light cone of the surrounding
medium, where there is a continuum of radiation modes in free space. The trapped
state is marked with a red circle, and the TM1 band is marked with a green line.
Inset shows the first Brillouin zone. c,d, Normalized radiative lifetime Q, of the TM1
band calculated from FDTD, with values along the F-X direction shown in d. Below
the light cone there is no radiation mode to couple to (i.e. total internal reflection),
so Qr is infinite. But at discrete points inside the light cone, Q, also goes to infinity.
e, Electric-field profile E, of the trapped state, plotted on the y = 0 slice. f,g,
Amplitudes of the s- and p-polarized outgoing planewaves for the TM1 band, with cp
along the F-X direction shown in g. Black circles in f indicate k points where both c,
and c, are zero.

difference time-domain (FDTD) simulations [81] and along with the analytical proof

below, we find that the lifetime of the resonance goes to infinity at discrete k points on

certain bands; here we focus on the lowest TM-like band in the continuum (referred

to as TM1 hereafter), with its lifetime shown in Fig. 4-1 (c),(d). At these seemingly

unremarkable k points, light becomes perfectly confined in the slab, as is evident both

from the divergent lifetime and from the field profile (Fig. 4-1 (e)). These states are

no longer leaky resonances; they are eigenmodes that do not decay.

In the functional analysis literature, eigenvalues like this, which exist within the

continuous spectrum of radiation modes, are called embedded eigenvalues [79]. Here,
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embedded eigenvalues occur at five k points over the first Brillouin zone. The one at

IF arises because symmetry forbids coupling to any outgoing wave [51]; the other four

(which are equivalent under 900 rotations) deserve further analysis since, intuitively,

they should not be confined.

To understand this unexpected disappearance of leakage, we examine the outgoing

planewaves. Using Bloch's theorem [3], we let the electric and magnetic fields of

the resonance be Ek(p, z) = eik'Puk(p, z) and Hk(p, z) = eik'Pvk(p, z) where k =.

(kx, ky, 0), and Uk, Vk are periodic functions in p = (x, y). Outside of the slab, these

fields are composed of planewaves that propagate energy and evanescent waves that

decay exponentially. For frequencies below the diffraction limit, the only propagating-

wave amplitudes are the zeroth-order Fourier coefficients, given by

cS(k) = (ek - Uk), cp(k) = (6k -Vk) (4.1)

for s and p polarizations respectively, where 8k = (ky, -kr, 0)/kI is the polarization

direction of the in-plane fields, and the brackets denote spatial average on some x-y

plane outside of the slab. The outgoing power from the resonance is proportional to

(IcS 2 + IcI2) cos 0, with 0 being the angle of propagation. In general, c, and cp are

two non-zero complex numbers, with a total of four degrees of freedom: therefore

the outgoing power is unlikely to be zero when only two parameters (kx and ky) are

varied.

However, for a certain class of geometries, the degrees of freedom can be reduced.

If the structure has time-reversal symmetry E(r) = E*(r) and inversion symmetry

c(r) = E(-r), then the periodic part of the fields can be chosen to satisfy uk(r) =

ut(-r) and vk(r) = v*(-r) (ref. 82). If the structure also has a mirror symmetry in

z direction, then the fields must transform as t1 under mirror flips in z (ref. 3), so the

plane-parallel components must satisfy ul(x, y, z) = :u (x, y, -z) and v (x, y, z) =

Fvk(x, y, -z). Following these two properties, the amplitudes c, and cp must be

purely real or purely imaginary numbers on every k point. With only two degrees of

freedom left, it may be possible that the two amplitudes cross zero simultaneously
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as two parameters k, and ky are scanned. A simultaneous crossing at zero means

no outgoing power, and therefore, a perfectly confined state. We note that such

an "accidental" crossing is distinct from those where leakage is forbidden due to

symmetry incompatibility between the confined mode and the radiation modes [51,77].

This disappearance of leakage may also be understood as the destructive inter-

ference between several leakage channels. The field profile inside the PhC slab can

be written as a superposition of waves with different propagation constants #, in z

direction. At the slab-medium interface, each wave partially reflects back into the

slab, and partially transmits into the medium to become an outgoing planewave. The

transmitted waves from different 0z channels interfere, and at appropriate k points

they may cancel each other. One can make this argument quantitative by writing

down the corresponding equations, yet because this argument ignores the existence of

evanescent waves, it is intrinsically an approximation that works best for slabs much

thicker than the wavelength [21]. Nonetheless, this argument provides an intuitive

physical picture that supplements the exact (yet less intuitive) mathematical proof

given above.

With FDTD simulations, we confirm that both Fourier amplitudes are zero at the

k points where the special trapped state is observed (Fig. 4-1 (f), (g)). The zeros

of c, on the two axes and the zeros of c, on the diagonal lines arise from symmetry

mismatch, but the zeros of c, along the roughly circular contour are "accidental"

crossings that would not be meaningful if c, had both real and imaginary parts. We

have checked that a frequency-domain eigenmode solver [82] also predicts planewave

amplitudes that cross zero at these k points.

4.3 Sample fabrication and experimental setup

To experimentally confirm the existence of this trapped state, we use interference

lithography to fabricate a macroscopic Si3N4 PhC slab (n = 2.02, thickness 180 nm)

with a square array of cylindrical holes (periodicity 336 nm, hole diameter 160 nm),

separated from the lossy silicon substrate with 6 pm of silica (Fig. 4-2 (a)). Scanning
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Figure 4-2: Fabricated PhC slab and the measurement setup. a, Schematic layout of

the fabricated structure. The device is immersed in a liquid, index-matched to silica
at 740 nm wavelength. b,c, SEM images of the structure in top view and side view.

Inset of b shows an image of the whole PhC. d, Schematic of the setup for reflectivity

measurements. BS, beamsplitter; SP, spectrometer.

electron microscope (SEM) images of the sample are shown in (Fig. 4-2 (b),(c)). The

material Si3 N4 provides low absorption and enough index contrast with the silica layer

(n = 1.46).

The Si3 N4 layer was grown by LPCVD on top of 6 pm thermally grown SiO 2

on a silicon wafer (LioniX), and subsequently coated with antireflection coating, a

SiO 2 intermediate layer, and negative photoresist. The periodic PhC pattern was

created with Mach-Zehnder interference lithography using a 325 nm He/Cd laser.

Two orthogonal exposures defined the two-dimensional pattern. The interference

angle was chosen for periodicity 336 nm, and the exposure time chosen for hole

diameter 160 nm. After exposures, the sample was developed, and the pattern was

transferred from photoresist to Si3 N4 by reactive-ion etching; CHF3 /02 gas was used

to etch SiO 2 and Si3 N4 , and He/0 2 gas was used to etch the antireflection coating.

To create an optically symmetric environment needed to reduce the degrees of

freedom in the outgoing-wave amplitudes, we etch the holes through the entire Si3 N 4

layer, and immerse the sample in an optical liquid that is index-matched to silica. We
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perform angle-resolved reflectivity measurements (schematic setup shown in Fig. 4-2

(d)) to characterize the PhC sample. The source was a supercontinuum laser (SuperK

Compact, NKT Photonics) with divergence angle 6 x 10-4 radian and beam-spot width

2 mm on the PhC sample at normal incidence. A polarizer selected p-polarized light,

which coupled with the TM1 band. To create o, symmetry, the sample was immersed

in a colorless liquid with index n = 1.454 at 740 nm (Cargille Labs). The sample

was mounted on two perpendicular motorized rotation stages: one oriented the PhC

to the F-X direction, while the other scanned the incident angle 9. The reflected

beam was split into two and collected by two spectrometers, each with a resolution of

0.05 nm (HR4000, Ocean optics). Measurements were made every 0.5' from normal

incidence to 600.

4.4 Experimental results and CMT analysis

In this section, we present the experimental results we got using the setup described

in the previous section. Furthermore, we apply CMT to the reflection measurement

results and extract different quality factors from the experimental results. Through

this process, we demonstrate the existence of these non-symmetry-protected BICs

and characterize the total quality factors we achieved.

4.4.1 Experimental results

Light incident on the PhC slab excites the guided resonances, creating sharp Fano

features in the reflectivity spectrum [26]. In comparison, a perfect bound state has

no Fano feature, because it is decoupled from far-field radiation. In the measured re-

flectivity spectrum (Fig. 4-3 (a)), we indeed observe that the Fano feature of the TM1

band disappears near 35'. The measurements agree well with the theory prediction,

shown in Fig. 4-3 (b), with the resonance wavelengths between the two differing by

less than 2 nm. The measured Fano features are slightly broader than predicted, due

to inhomogeneous broadening (since the measured data are averaged over many unit

cells) and scattering loss introduced by disorders.
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Figure 4-3: Detection of resonances from reflectivity data. a, Experimentally mea-
sured specular reflectivity for p-polarized light along F-X. The crucial feature of in-
terest is the resonance, which shows up as a thin faint line (emphasized by white
arrows) extending from the top-left corner of the top panel to the bottom-right cor-
ner. Disappearance of the resonance feature near 350 indicates a trapped state with
no leakage. Bottom panel shows slices at three representative angles, with close-
ups near the resonance features. b, Calculated p-polarized specular reflectivity using
the rigorous coupled-wave analysis (RCWA) method [1] with known refractive in-
dices and measured layer thickness. c, Top: schematic for the scattering process
in temporal coupled-mode theory (CMT), which treats the resonance A and the in-
coming/outgoing planewaves sm as separate entities weakly coupled to each other.
Bottom: reflectivity given by the analytical CMT expression; the resonance frequency
and lifetimes, which are the only unknowns in the CMT expression, are fitted from
the experimental data in a.

4.4.2 CMT model and fitting

In this section, we extract the resonance lifetimes from the Fano features. In tem-

poral coupled-mode theory (CMT), the field A of the resonance and fields sm of

the incoming/outgoing planewaves are considered separate entities that are weakly

coupled to each other through their spatial overlaps1 21 . A schematic illustration is

given in Fig. 4-3 (c). The resonance decays with a radiative-decay lifetime rr from

leakage into the outgoing planewaves, and a non-radiative-decay lifetime Tnr from

material absorption and disorder scattering. As we will see, the effect of 'Tr is to
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broaden the resonance feature in the reflectivity spectrum; therefore it also heuristi-

cally accounts for the inhomogeneous broadening in the measured reflectivity data.

Incoming planewaves excite the resonance with coupling coefficients denoted by ri

and K2. Thus we have

dA (i - 1) A + K 1sl++ K2 s2 +. (4.2)
diTr Tnr

The planewaves on the two sides of the slab couple to each other through a direct

scattering process, with transmission and reflection coefficients tslab and rslab. The

resonance decays into the outgoing planewaves, with coupling coefficients denoted by

d, and d2 . Therefore,

s1_ = rslabsl+ + tslabS2+ + djA, (4.3)

s2- = tslabSl+ + rslabs2+- d2A. (4.4)

Lastly, the reflection at the silica-silicon interface (with coefficient r23 ) and the prop-

agation inside the silica layer impose that

s2+ = e2 i/3h2r23 s 2- (4.5)

where = nsi 2 /c2 -k| 2 is the propagation constant in the silica layer, and h2

is the layer's thickness. The normalization of the field amplitudes is chosen such that

JA1 2 is the energy stored in the resonance, and ISm 12 is the power carried by the

incoming or outgoing planewaves.

Now, assume e-wt time dependence for the resonance amplitude A. Solving equa-

tions (1-4) as a system of linear equations, we obtain

s__ diri tslab + -r1 [tslab + 4_1-
=rslab +.1 + i(wo-w)+r- +Thrr J (w ow)+r,-T+-r,

s1+ i(WO - W) -Tr,1 + 1 e-2ioh2r-i - rslab - .-

(4.6)

which gives us the overall reflectivity. This expression can be simplified, as follows.

First, o mirror-flip symmetry of the PhC slab requires fields of the resonance to be
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either even or odd in z, and so d2 = idi. Secondly, energy conservation requires

that in the absence of input power (s1+ = 82+= 0), the energy dissipated through

radiative decay must be carried away by 81_ and s 2-; this leads to Id1 12 = 1/Tr.

Thirdly, inversion symmetry I and a-, mirror symmetry yields Io-, = C2 rotational

symmetry about the plane normal, and a combination of time reversal symmetry and

C2 symmetry leads to rslabdi + tslabd* + d, = 0 (refs. 8, 22). A combination of these

facts yields
1

1 = (rslab tslab). (4.7)
r

Lastly, the coupling coefficients for the incoming and for the outgoing waves are

actually the same under energy conservation and time reversal requirements1 ,2 1,2 2 ,

i.e. d,= tr and d2 = r2. With these known properties, we can write the overall

reflectivity as

si_ 2[tslab F f(w)]2  2
R = - = rslab - f (w) + e _i13r4  f (W]2 + (4.8)

s1+ e-2i,3h2r231 - rsa +fw

with
Q-1

f() = r Q (rslab i tslab) , (4.9)
2i(1 w/wo) + Qr-1 + n;ri

where Qr = worr/2 and Qnr = wornr/2 are the normalized lifetimes. We fit the

experimentally measured reflectivity spectrum with this expression to extract the

lifetime of the resonances.

We note that, the only unknowns in this reflectivity expression are the resonance

frequency and the lifetimes: r23 is given by the Fresnel equations, and rslab, tslab can

be approximated as the reflection and transmission coefficients of a homogeneous slab

whose permittivity is equal to the spatial average of the PhC slab19 22

In the absence of f(w), Eq. 4.9 reduces to the expression for multi-layer thin-film

reflectivity. Therefore the Fano features are completely captured by f(w). From equa-

tion (8), we see that the width of the Fano feature is proportional to Q- 1 + Q- 1, while

the height of the feature grows with Q- 1. This confirms our intuitive understanding

that, when the resonance becomes a bound state (Qr = oc), it decouples from the far
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field, and the Fano feature disappears.

It is straightforward to generalize this CMT expression to include multiple res-

onances in the spectrum; same derivation shows that we can simply replace f(W)

in Eq. 4.9 with a summation E f U) (w) for different resonances labeled by j. Each

resonance has its resonant frequency and lifetimes that are to be determined from the

fitting. Lastly, we note that the + signs relate to how the resonance fields transform

under mirror flips in z. When the electric field is used to determine the phase of A

and sm , we should read the upper signs for TE-like modes, lower signs for TM-like

modes.

4.4.3 Fitted quality factors

b. Simulation
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Figure 4-4: Quantitative evidence on the disappearance of leakage. a,b, Normalized
radiative lifetime Qr extracted from the experimentally-measured reflectivity spec-
trum (a) and the RCWA-calculated reflectivity spectrum (b). Black solid line shows
prediction from FDTD.

The only unknowns in the CMT reflectivity expression are the resonance frequency
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and the lifetimes, which we obtain by fitting to the measured reflectivity spectrum.

The fitted curves are shown in the bottom panel of Fig. 4-3 (c), and the obtained

radiative Qr is shown in Fig. 4-4 (a). At around 35', Q, reaches 1,000,000, near the

instrument limit imposed by the resolution and signal-to-noise ratio, and in a good

agreement with the values calculated from FDTD. We note that, the finite width and

non-zero divergence of the excitation beam give rise to a spread of k points, leading to

an upper bound of 1010 for the measured radiative Qr; in this experiment, this is not

the limiting factor for the measured Qr. In comparison, the non-radiative Qnr is lim-

ited to about 10' which is due to loss from material absorption, disorder scattering,

in-plane lateral leakage, and inhomogeneous broadening. Lastly, for validation, we

repeated the same fitting procedure for the simulated reflectivity spectrum, and con-

firmed that consistent theoretical estimates of Q, are obtained (Fig. 4-4 (b)). These

evidences quantitatively verify that we have observed the predicted bound state of

light.

4.5 Discussion

In this section, we provide discussions on two important aspects that was neglected

in previous analysis. First, what are the effects of having excitation beam that is not

perfectly plane waves and what is the corresponding limitation on Qr of our structure.

Second, what kind of structural perturbations breaks BICs and what kind does not.

Also, if there are extra benefits of having a tuning parameter that can switch a mode

between a true BIC and a resonance with high Q in a controllable fashion.

4.5.1 Effects of non-perfect excitation beams

Our analysis so far assumes excitation with a perfect planewave. However, some care

must be taken with the Gaussian beam from the supercontinuum source. First, the

beam spot has a diameter of 2 mm at normal incidence, so the excited mode has

a finite lateral size of L = 2 mm. This finite-sized mode consists of a spread of k

points, with 6kmode a 27r/L ~ (2 x 10- 4)(27r/a). Second, the beam has a divergence
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angle of 60 m 6 x 10-' radian, so the source also has a spread of k points, with

6ksource d (27/A)60 ~ (3 x 10- 4 )(27r/a). The measured radiative loss will be the

averaged value within this spread of k points.

The outgoing-wave amplitude goes through zero linearly (see Fig. ig of the main

text), so the outgoing power goes as (Ak) 2 near the embedded bound states, where

Ak = Ik - ko is distance from the special k point, ko. Specifically, FDTD simulations

show that near the special trapped state studied in this paper, Qr ~ 100/(Aka/27r) 2.

In a circular area with diameter 6k, the effective Qr will be 800/(6ka/27r) 2, which is

around 1010 for the k-point spread due to the beam. This sets the upper limit on the

Q, we can obtain with our source.

4.5.2 Structural perturbation that break BICs

0.5 -
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Figure 4-5: Quantitative evidence on the disappearance of leakage. a,b, Normalized
radiative lifetime Qr extracted from the experimentally-measured reflectivity spec-
trum (a) and the RCWA-calculated reflectivity spectrum (b). Black solid line shows
prediction from FDTD.

The trapped state is robust, because small variations of the system parameters

(such as cylinder diameter) only move the crossing to a different value of k,. This

robustness is crucial for our experimental realization of such states. In fact, the
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trapped state persists even when the C4 rotational symmetry of the structure is

broken (Fig. 4-5).

However, perturbations that break inversion or mirror symmetry will introduce addi-

tional degrees of freedom in the Fourier amplitudes, thus

bound state into a long-lived leaky resonance (Fig. 4-6)

rameters are used.
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Figure 4-6: Quantitative evidence on the disappearance of leakage. a,b, Normalized
radiative lifetime Q, extracted from the experimentally-measured reflectivity spec-
trum (a) and the RCWA-calculated reflectivity spectrum (b). Black solid line shows
prediction from FDTD.

4.6 Concluding remarks

In this chapter, we have observed an optical state that remains perfectly confined

even though there exist symmetry-compatible radiation modes in its close vicinity;

this realizes the long sought-after idea of trapping waves within the radiation contin-

uum, without symmetry incompatibility [15-23,78,80]. The state has a high quality

factor (implying low loss and large field enhancement), large area, and strong confine-

ment near the surface, making it potentially useful for chemical/biological sensing,

organic light emitting devices, and large-area laser applications. It also has wavevec-

tor and wavelength selectivity, making it suitable for optical filters, modulators, and

waveguides. Furthermore, the ability to tune the maximal radiative Q, from infinite

to finite (Fig. 4-6) is another unique property that may be exploited. Lastly, the

fundamental principles of this state hold for any linear wave phenomenon, not just

optics.
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Chapter 5

Topological Nature of BICs and a

Unifying Theory

5.1 Introduction

In previous chapters, we have introduced the concept of bound states in the contin-

uum (BICs) through a few examples. BICs are unusual solutions of wave equations

describing light or matter: they are discrete and spatially bounded, but exist at the

same energy as a continuum of states which propagate to infinity. Until recently, BICs

were constructed through fine-tuning parameters in the wave equation [16,80,83-85]

or exploiting the separability of the wave equation due to symmetry [51, 77,86] as

discussed in Chapter 2 and 3. More recently, BICs that that are both robust and not

symmetry-protected ("accidental") have been predicted [2,19,21,78,87] and exper-

imentally realized [2] in periodic structures; the simplest such system is a periodic

dielectric slab [2] as discussed in Chapter 4. Their existence does not require fine-

tuning of system parameters; small changes in parameters simply shift the position of

these special points along the band diagram. An intuitive understanding of why such

BICs exist and are robust was previously lacking. Recently, an explanation based on

accidental triangular symmetry of the radiating fields was proposed [88] but does not

explain the robustness of these BICs and their occurrences in TE-like bands.

In this chapter, we explore the fundamental nature of BICs and show that both
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types of BICs in such systems are vortex centers in the polarization direction of far-

field radiation. The robustness of these BICs is due to the existence of conserved and

quantized topological charges, defined by the number of times the polarization vectors

wind around the vortex centers. Such charges can only be generated or annihilated

by making large changes in the system parameters, and then only according to strict

rules, which we derive and test numerically. Our results imply that laser emission

based on such states will generate vector beams [89].

5.2 Basic nature of BICs

We now show that both types of BICs in photonic crystal slabs are vortex cen-

ters in the polarization direction of the far-field radiation of the slabs. Using the

Bloch theorem for photonic crystals [3], we write the electric field of a resonance as

Ek(p, z) = eik'Puk(p, z), where k = k,. + kJ is the two-dimensional wave vector,

p = xx + yy is the in-plane coordinate, Uk is a periodic function in p, and z is

the normal direction to the slab. While the fields inside the slab are periodically

modulated, outside the slab each state consists of propagating plane waves and/or

evanescent waves that decay exponentially away from the surface. For states above

the light line (resonances), and wavelengths below the diffraction limit, the only

non-zero propagating-wave amplitudes are the zero-order (constant in-plane) Fourier

coefficients of Uk, given by c(k) = cx(k)s + cy(k)P (Fig. 5-1). Here, cx(k) = ^ - (U)

cy (k) = Y - (Uk), and the brackets denote spatial average over one unit cell on any

horizontal plane outside the slab. Note that c(k) is the projection of (Uk) onto the

xy plane; it points in the polarization direction of the resonance in the far field, so

we refer to c(k) as the "polarization vector".

A resonance turns into a BIC when the outgoing power is zero, which happens if

and only if c, = cy = 0. In general, cx and c, are both complex functions of k, and

varying the wave vector components (kx, ky) is not sufficient to guarantee a solution

where cx = cy = 0. However, when the system is invariant under the operation C2T,

implying that E(x, y, z) = E*(-x, -y, z), we show that c, and cy can be chosen to be
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Figure 5-1: Stable bound states in the continuum (BICs) as vortex centers of po-
larization vectors, a, Schematics of radiation field decomposition for resonances of
a slab structure. The spatially-averaged Bloch part of the electric field (Uk) is pro-
jected onto the x-y plane as the polarization vector c =(cr, cs). A resonance turns
into aBIC if and only if cz = cy = . b, Schematic illustration for the nodal lines of
c2 (green) and of cy, (red) in a region of k space near a BIG. The direction of vector
c (shown in arrows) becomes undefined at the nodal line crossing, where a BIG is
found. c, Two possible configurations of the polarization field near a BIG. Along
a closed loop in k-space containing a BIG (loop goes in counterclockwise direction,
1-+2--+3-+4), the polarization vector either rotates by angle 2wr (denoted by topolog-
ical charge q =+1) or rotates by angle -2wr (denoted by topological charge q =-1).
Different regions of the k space are colored in four gray-scale colors according to the
signs of c, and cy. In this way, a BIG happens where all four gray-scale colors meet,
and charge q + +1 corresponds to the color changing from white to black along the
counterclockwise loop C, and charge q =-1 corresponds to the color changing from
black to white.

real numbers simultaneously; in other words, the far field is linearly polarized (see to

the next section, here Ci is 1800 rotation operator around z axis, and T is the time

reversal operator). When the system also has up-down mirror symmetry (os), the

outgoing waves on one side of the slab determine those on the other; for such systems,

BIgs are stable because they correspond to the intersections between the nodal line

of cz and the nodal line of cd, in the k-k plane. Such a nodal intersection naturally

causes a vortex in the polarization vector field centered on the BIC, as illustrated in

Fig. 5-1 (b), for the simplest case. Along the nodal line of cz (or cu), the direction

of c(k) is along the y axis (or x axis), as illustrated in Fig. 5-lb. As one encircles

the nodal intersection (BIG) in the kp-kl plane each component of the polarization
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vector flips sign as its nodal line is crossed so as to create a net circulation of +27r in

the polarization field. At the nodal intersection the polarization direction becomes

undefined, since at the BIC there is zero emission into the far-field. Conversely one

could say that BICs cannot radiate because there is no way to assign a far-field

polarization that is consistent with neighbouring k points. Thus robust BICs are

only possible when there is vorticity in the polarization field.

Vortices are characterized by their topological charges. Here, the topological

charge (q) carried by a BIC is defined as:

q = dkj -VkO (k), q e Z (5.1)
27r ,

which describes how many times the polarization vector winds around the BIC. Here,

#(k) = arg[c.(k) + icy(k)] is the angle of the polarization vector, and C is a closed

simple path in k space that goes around the BIC in the counterclockwise direction.The

fields Uk are chosen to be smooth functions of k, so #(k) is differentiable in k along

the path. The polarization vector has to come back to itself after the closed loop,

so the overall angle change must be an integer multiple of 27r, and q must be an

integer. Fig. 1c shows examples of how the polarization vector winds around a BIC

with charge q = +1 and also around a BIC with charge q = -1 along a loop C

marked by 1-+2-+3-+4-+1. Similar definitions of winding numbers as in Eq. (5.1) can

be found in describing topological defects [90] of continuous two-dimensional spins,

dislocations in crystals, and quantized vortices in helium II [91]. This formalism

describing polarization vortices is also closely related to Berry phases in describing

adiabatic changes of polarization of light [92] and Dirac cones in gaphenes [93].

The far-field pattern at a definite k point by itself does not reflect the vorticity

of polarization around a BIC, but laser emission centered on such a BIC will. Laser

emission always has a finite width in k-space and this wave-packet will be centered on

the BIC; hence it will consist of a superposition of plane waves from the neighborhood

of the BIC, leading naturally to a spatial twist in the polarization for the outgoing

beam. Such beams have been studied previously, and are known as vector beams [89],
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although their connection with BICs does not appear to have been realized. The

number of twists in the polarization direction is known as the order number of the

vector beam, and we now see that it is given by the topological charge carried by the

BIC.

In the example of Fig. 5-2, we show the topological charges of BICs for a structure

that has been experimentally realized in ref. 2. In this example, there are five BICs on

the lowest-frequency TM-like band (Fig. 5-2(a)). We obtain polarization vectors c(k)

from finite-difference time-domain (FDTD) calculations, which reveal five vortices

with topological charges of 1 at these five k points (Fig. 5-2(b)). As discussed

above, the BICs and their topological charges can also be identified from the nodal-

line crossings and the gray-scale colors of c, and c, (Fig. 5-2(c)).

a b c

k, Quality factor, Q(k) Polarization vector field, c(k) Polarization quadrants
7t/a 108 to o

C)6

0 104 -@ - - 0-

-it/a
-it/a 0 n/a k -c, =0 . C 0

Figure 5-2: Characterization of BICs using topological charges. a, Calculated radia-
tive quality factor Q of the TM1 band on a square-lattice photonic crystal slab (as
in ref. 2), plotted in the first Brillouin zone. Five BICs can be seen. b, Directions of
the polarization vector field reveal vortices with topological charges of t1 at each of
the five k points. The area shaded in blue indicates modes below the lightline and
thus bounded by total internal reflection. c, Nodal lines and gray-scale colors of the
polarization vector fields (same coloring scheme as in Fig. 5-1 (c)).

5.3 Symmetry requirements for stable BICs

Here, we give the proof that stable BICs at arbitrary k points can be found when

the system is invariant under CzT and a, operators, and that stable BICs at C-

invariant k points can be found when the system has C2 symmetry. Here, C means

180' rotation around z axis, and T means the time reversal operator. The schematics
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of the symmetry requirement is summarized in Fig. 5-3.

CzT CZ

& a

/ UI II

& o

/ U I

robust BICs robust BICs
at arbitrary k points both at Cz-invariant k points

Figure 5-3: Symmetry requirements for BICs. Systems in the blue circle are invariant
under operators CzT and o-, where stable BICs at arbitrary wavevectors can be
found. In the red circle, where Cz is a symmetry of the system, robust BICs can be
found at high-symmetry wavevector points. Here, high-symmetry wavevectors mean
Cs-invariant ones, while arbitrary wavectors are not necessarily Cz-invariant. In the
overlapping area (region II1), both types BICs can be found. All numerical examples
in this Letter are within region Il.

In region I, systems are invariant under the symmetry operator CzT, namely

E*(x, y, z) = E(-x, --y, z). Let Uk be an eigenfunction of the master operator [3]

)k = (V + ik) x (V + ik) x, and recall that k here only has x and y components

since we are considering a slab structure that does not have translational symmetry

in z. A short derivation shows that at any k point, uk(r) and Czu*(Czr) are both

eigenfunctions of Ek(r) with the same eigenvalue, so they must differ at most by a

phase factor,

Uk(r) e'O C2uk(Cir)

- e iOk(UX* Us'*, u**) (-x,-y,z) (5.2)

Here 0k is an arbitrary phase factor. Meanwhile, we are free to multiply Uk with any

phase factor, and it remains a valid eigenfunction. For our purpose here, we explicitly

choose the phase factor of Uk such that eisk = -1 for all k. With this choice, we can
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average over x and y to get c(k) = c*(k) for all k. That is, the polarization vector

c(k) is purely real.

Using the fact that systems in region I also have the up-down mirror symmetry

o-, namely E(x, y, z) = E(x, y, -z), we can link the radiation loss above and below the

photonic crystal slab denoted by ct and c. At any k point, uk(r) and uZuk(uzr) are

both eigenfunctions of ek(r) with the same eigenvalue, so

uk(r) = eiOkOzuk(cz r)

= e ik (UX , k ~-EkIXY,-2) (5.3)

with 9 k being an arbitrary phase factor (not to be confused with the one in Eq. (5.2)).

Since a = 1, we can apply Eq. (5.3) twice to show that eisk = 1. Averaging over x

and y, we see that ct = c.

After using these two symmetries, the number of independent real variables in all

radiation coefficients ct has been reduced from 8 to 2. Given that the number of

independent tuning parameters is also 2: (kx, ky), we are able to get stable BICs. Note

that the combination of C T and u. is just one sufficient condition for stable BICs

in photonic crystal slabs. There might be other different choices of symmetries. For

example, PT and u2 is equivalent to C T and uz, where P is the inversion operator.

Also, the requirement of a, is not necessary when there is leakage to one direction

only (such as BICs on the surface of a photonic bandgap structure [78]).

In region II, stable BICs at C-invariant k points can be found. Systems in this

region have C symmetry, namely E(x, y, z) = E(-x, -y, z). k points are C-invariant

when -k = k + G, with G being a reciprocal lattice vector. A short derivation shows

that at any k point, uk(r) and Ciuk(Czr) are both eigenfunctions of Ok(r) with the

same eigenvalue, so

uk(r) = eik C u-k(Cr), (5.4)

with 9 k being an arbitrary phase factor (not to be confused with the two phase

factors above). At these high-symmetry k points, using Bloch theorem we know:

U-k = Uk+G = Uk, so we can apply Eq. (5.4) twice to get eisk = 1. When this
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factor is +1, we can average over x and y to see that c(k) = 0, corresponding to a

BIC at this C-invariant k point.

In region III, both kinds of BICs can be found, where C, T and a- are all

present. All our numerical examples are within this region to make it easier to

understand the relation and interaction between different types of BICs.

5.4 Conservation rules of topological charges

The winding number of polarization vector along a closed path is given by the sum of

the topological charges carried by all BICs enclosed within this path [90]. When sys-

tem parameters vary continuously, the winding number defined on this path remains

invariant, unless there are BICs crossing the boundary. Therefore, topological charge

is a conserved quantity. This conservation rule leads to consequences/restrictions on

behaviors of the BICs. For example, as long as the system retains C2T and a-, sym-

metries, a BIC can only be destroyed through annihilation with another BIC of the

exact opposite charge, or through bringing it outside of the continuum (below the

light line).

Since topological charge is a conserved quantity, there are a few consequences and

restriction on the evolution of BICs. First, BICs are stable as long as the system

retains required symmetries; however, perturbations that break these two required

symmetries eliminate the existence of BICs. When C T symmetry is broken, the

coefficients (c, and cy) require complex components, meaning the radiation becomes

elliptically polarized instead of linearly polarized. When o-, symmetry is broken, the

coefficients cj, are still real numbers, but radiation towards the top and towards the

bottom become separate degrees of freedom and so they do not vanish simultaneously

in general. Second, when BICs collide into each other in the moment space, the sum

of all topological charges they carry remains the same before and after the collision.
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Figure 5-4: Evolution of BICs and conservation of topological charges.

5.4.1 Evolution of BICs

The conservation of topological charges allows us to predict and understand the be-

haviors of BICs when the parameters of the system are varied over a wide range, as we

now illustrate. First, consider the lowest-frequency TM-like mode (TM1 band) of a

1D-periodic structure in air shown in Fig. 5-4 (a). This grating consists of a periodic

array of dielectric bars with periodicity of a, width w = 0.45a, and refractive index

n = 1.45. Its calculated band structure is shown in Fig. 5-4 (b). When the thick-

ness of the grating is h - 1.50a, there are two BICs on the k_ axis, as indicated by
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the radiative quality factor of the resonances (Fig. 5-4 (c)). The polarization vector

c(k), also shown in Fig. 5-4 (c), characterizes both BICs as carrying charges q = +1.

When the grating thickness is decreased to h/a = 1.43 (all other parameters fixed),

the two BICs move towards the center of the Brillouin zone, meet at the F point, and

deflect onto the ky axis (Fig. 5-4 (d)). This is inevitable due to the conservation of

the topological charges: annihilation cannot happen between two BICs of the same

charge.

5.4.2 Annihilation of BICs

Annihilation of BICs is only possible when charges of opposite signs are present.

This can be seen in the lowest-frequency TE-like band of the same structure (Fig. 5-4

(e),(f)). When h/a = 1.04, there are two off-F BICs with charge -1 and a BIC with

charge +1 at the F point (Fig. 5-4 (e)). As h/a decreases, the two -1 charges move

to the center and eventually annihilate with the +1 charge, leaving only one BIC with

charge q = -1 (Fig. 5-4 (f)).

5.4.3 Generation of BICs

Generation of BICs is also restricted by charge conservation, and can be understood

as the reverse process of annihilation. We provide an example by considering the

lowest-frequency TE-like mode in a photonic crystal slab of n = 3.6 with a square

lattice of cylindrical air holes of diameter d = 0.5a (Fig. 5-5 (a)). As the slab thickness

increases, BICs are generated at the F point. Each time, four pairs of BICs with exact

opposite charges are generated, consistent with charge conservation and C4, symmetry

of the structure. With further increase of the slab thickness, the eight BICs move

outward along high-symmetry lines and eventually go outside of the continuum (fall

below the light line).
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Figure 5-5: Generation of BICs. a, Schematic drawing of a photonic crystal slab with
two-dimensional periodicity. b, Generation of BICs on the TE1 band when the slab
thickness h is increased. Each time, four pairs of BICs with charges 1 are generated
simultaneously, consistent with the charge conservation and C4, symmetry. Insets
show the locations of BICs in the k space and their corresponding topological charges
for h/a = 1.0, 1.2,1.35,1.8, and 2.4. As the slab thickness increases, the BICs move
outward and eventually fall below the light line into the area shaded in dark blue.

5.5 Constraints from system symmetries on BICs

When system has certain symmetries, the master equation usually will share the same

symmetries, which leads to constraints on the band structures and mode profiles.

Furthermore, we show that these system symmetries also lead to constraints on the

occurance of BICs and the topological charges they carry.

In particular, in this section, we will show: 1. all BICs related by point group

symmetries (rotations and reflections) must carry the same topological charges; 2.

BICs at high-symmetry k points can only carry certain topological charges, depending
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on the detailed mode profiles. As an example, we will focus on allowed topological

charges allowed at F point of systems with different symmetries.

5.5.1 BICs related by system symmetires carry the same

topological charge

Here, we prove that when the structure has a certain in-plane point group symmetry

R (namely, E(r) = c(Rr); R can be a combination of rotation and reflection on

the x-y plane) and when the band has no degeneracy, a BIC at k indicates there is

another BIC at Rk with the same topological charge. The assumption here is that

the eigenfunctions Uk at different k points already have their phases chosen to ensure

the reality of c(k), and the signs of Uk at different k points have been chosen such

that Uk is continuous with respect to k (so that a small change in k leads to a small

change in Uk).

We start by relating the eigenfunction at k and the eigenfunction at Rk. Let Uk be

an eigenfunction of operator Ek. Since the system is invariant under transformation

R, we know O1Uk is an eigenfunction of E1?k, so in the absence of degeneracy, we

can write OzUk = akUlZk, where ak is some number. The number ak must have

unit magnitude (due to the normalization of Uk and U1k) and must be real-valued

(because c(k) is real-valued), so it can only take on discrete values of +1. Also, ak

must be a continuous function of k since Uk is continuous with respect to k. Since ak

is both discrete-valued and continuous, it must be a constant. Then, we may denote

this constant with its value at the F point, as ak = ar. Note that Ri' = r, so we

can determine coefficient ar using the mode profile: Our = arur. In conclusion,

we have U =k arOgUk.

Now we consider how the angle O(Rk) is related to 0(k). The vector field Uk

transforms under the rotation operator as (OZUk)(r) = Zuk(7Z-1r), so averaging

over x and y we get (OzUk) = R(Uk). Let P be the operator that projects a 3D

vector onto the x-y plane, namely Pr = r - (r - 2)s; it commutes with R, since it
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does not alter the x or y component. Then c(k) = P(uk), and

c(Rk) = P(unk) = P(ar ORuk) = arRP(uk) = arRc(k). (5.5)

So, the polarization vector at the the transformed k point is simply the original

polarization vector transformed and times +1. So, the angle of the polarization

vector only changes by a constant in the case of proper rotations (where det R = 1);

in the case of improper rotations (where det R = -1), it also changes sign. So, in

general, we can write

#(-Rk) = (det R)q(k) + c (5.6)

with c being a constant depending on R and ar. It follows that Vzkq(Rk) =

(det R)RVk#(k), so the topological charge at Rk is

glZk -- Vk"4o(k") - dk" (5.7)

- Vlk'O(7k') - Rdk' (5.8)
27r -CR k

I (det R) Vzk'q#(Rk') -Rdk' (5.9)

I (det )2 j RVk/#(k') -Rdk' (5.10)

1 V-,#(k') - dk' (5.11)

= qk, (5.12)

where Cak is a closed simple path that is centered on Rk and loops in counter-

clockwise direction, R-Ck is this loop transformed by R (which centers on k in

counterclockwise direction if R is a proper rotation, or in clockwise direction if R is

improper), and Ck is this transformed loop traversed in counterclockwise direction.

In conclusion, we have proven that if a system has certain point group symmetry

R, then the topological charges carried by the BIC at k and at Rk on a singly

degenerate band have to be the same. This conclusion agrees with all examples in

Figs. 5-2-5-5.
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5.5.2 Allowed charges at IF in systems with different symme-

tries

Although the examples discussed so far only show topological charges of +1, other

values of charges can be found in higher-frequency bands of the PC or in structures

with higher rotational symmetry. For example, Fig. 5-6 shows a stable BIC of charge

-2 at the F point arising from the double degeneracy of nodal lines caused by the

C6, symmetry of the system.

The symmetries of the system also restrict the possible values of topological

charges, since the nodal curves must respect the point symmetry. Following simi-

lar derivation as in the previous section, one can calculate all possible topological

charges of BICs at high symmetry k points. For a system with C, symmetry, the

possible topological charges at the F point on a singly-degenerate band are given in

Table 5.1. This is consistent with all examples in this paper. This table can be used

to predict the charges in other systems of interest and to design high order vector

beams.

Table 5.1: Allowed stable topological charges at F for singly degenerate bands. A(B)
corresponds to modes of different representations of the symmetry operator [70]. Note
that only singly degenerate representations of symmetry operators are included in
here.

Symmetries representation Charges Allowed n Allowed charges
A mode of C2  i1 + 2n 0 +1
B mode of C2  0 +2n 0 0

A mode of C3 1 + 3n 0, 1... +1,+4,-2,...
A mode of C4 1 + 4n 0, +1, ... +1,+5,-3,...
B mode of C4 -1 + 4n 0, 1, ... -1,-5,+3,...
A mode of 06 1 + 6n 0, t1, ... +1,+4-7,-5,_...
B mode of CQ -2 + 6n 0, 1, ... -2,+4,-8,...

Allowed topological charges at high symmetry k points can be determined by the

field eigenvalues of the rotational symmetry of a system. For systems with m-fold

rotational symmetry, we can first determine the relationship between polarization

direction at wavevector k and at rotated wavevector Rk (#(k) and #(Rk)) using

Eq. (5.5). Since the wavevector gets back to its original point if applying this rotation
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m-times: R"k = k, we can then apply this relationship m times and get how many

times the polarization vector rotates around the center of the Brillouin zone. From

there, we categoraize all possible charges allowed at F as shown in Table S1. Allowed

charges depend on two factors. The first one is which symmetry representation the

band belongs to. The second one is the degeneracy of nodal lines at F, because more

nodal lines intersecting at the same point usually leads to more oscillations in color

and thus higher topological charges. This factor is reflected by the integer number

n, depending on the number of equivalent F points at this frequency [94]. Note that

only singly degenerate bands are considered here, having no crossing with other bands

in the bandstructures, as can be seen in Table 5.1. Further research directions may

include BICs on degenerate bands, as well as the search of BICs with higher-order and

potentially fractional topological charges. Also, it is worth exploring the behavior of

BICs (topological charges) happening at crossing bands. One speculative prediction

is that: they might be able to hop from one band to the other through the crossing

of the bands. Finally, it is interesting to explore whether the location of BICs may

coincide with Dirac points. As is known: optical Dirac points only happen below the

light lines, and thus are always true eigenmodes with infinitely long lifetime. When

radiation losses are introduced, the Dirac points normally break up into separate

bands. However, there is no radiation loss at BICs, therefore it is possible to find

optical Dirac point beyond lightline with the help of BICs.

5.5.3 Example of charge -2

Although the examples discussed so far only show topological charges of +1, other

values of charges can be found in higher-frequency bands of the PC or in structures

with higher rotational symmetry. For example, Fig. 5-6 shows a stable BIC of charge

-2 at the F point arising from the double degeneracy of nodal lines caused by the

C6, symmetry of the system. We consider the lowest-frequency TE-like mode of

a photonic crystal slab with a hexagonal lattice of cylindrical air holes (shown in

Fig. 5-6(a)). The refractive index of the slab is n = 1.5; the air-hole diameter is

0.5a; and the thickness of the slab is 0.5a, where a is the lattice constant. This

77



system has Cz symmetry. Normalized lifetime plot indicates a BIC at the center of

the Brillouin zone shown in Fig. 5-6(b). The polarization vector field characterizes

the BIC carrying charge -2 shown in Fig. 5-6(c). Charge -2 can also be understood

from the double degeneracy of both nodal lines of c_ (green) and c, (red), shown in

the inset of Fig. 5-6(c). All four nodal lines are pinned at F point stabilized by the

0Q symmetry.

a b Q(k) C c(k)
Charge= -2

K

M -.

- --C,= 0
10 10 0 to 00 =0

Figure 5-6: Stable BIC with topological charge -2. a, Schematic drawing of the
photonic crystal slab. b, Q plotted in the first Brillouin zone, showing a BIC at the
F point. c, Polarization vector field characterizes the BIC with a stable topological
charge of -2, as can be shown from double degeneracies of both nodal lines.

5.6 Concluding remarks

We have demonstrated that BICs in photonic crystal slabs are associated with vor-

tices in the polarization field and explained their robustness in terms of conserved

topological charges. We derive the symmetries that constrain these charges and ex-

plain their generation, evolution and annihilation. We conjecture that all robust

BICs [2,19,21,51,77,78,86,87] will correspond to vortices in an appropriate param-

eter space. Our finding connects electromagnetic BICs to a wide range of physical

phenomena including Berry phases around Dirac points [93], topological defects [90],

and general vortex physics [91]. Optical BICs in photonic crystals have a wealth of

applications. Lasing action can naturally occur at BIC states where the quality factor

diverges. The angular (wavevector) tunablity of the BICs makes them great candi-

dates for on-chip beam-steering [95]. Furthermore, photonic crystal lasers through

78



BICs are naturally vector beams [94,96], which are important for particle accelera-

tions, optical trapping and stimulated emission depletion microscopy.
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Chapter 6

Conclusion

In this thesis, we study two types optical BICs from both theoretical and experimental

aspects.

We first demonstrate the existence of the first type of optical BICs: the one

protected by symmetry, in macroscopic photonic crystal slabs. When the wavevector

approaches 0, the lifetime of the modes approaches infinity while living within the

lightcone. Through fitting the angular reflectivity measurement results to a temporal

coupled mode theory, we were able to extract the quality factor and demonstrate the

existence of these special modes.

We then show that these BICs have prefound implication in light-emission appli-

cations from two aspects. First, they allow strong and tunable interaction between

the modes and added organic molecules anywhere along the surface. Meanwhile, due

to the existing enhancement mechanisms induced by the BICs, the lasing threshold of

the system was reduced by an order of magnitude compared to demonstrated results.

Next, we demonstrate the existence of a completely different type of BICs: those

are not due to symmetry mismatching. The explanation for these modes are through

the simultaneous vanishing of radiation leakage through all channels. However, these

modes exist in a robust way: when certain system parameters vary, they won't disa-

pear, instead they simply shift to a different position in the wavevector space.

Finally, we show there is a unifying theory that explains the fundamental un-

derstanding of both types of BICs. They are all vortex centers of the polarization
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directions in the far field. We also give a topological explanation on the robustness

of the BICs based on the topological orders they carry.

A few directions worth exploring in the future include the following:

1. To explore the existence of BICs and their robustness in systems that include

gain and loss while maintaining PT symmetry. So far, all discussion are based

on passive structures, meaning without any gain or loss. However, derivation in

Chapter 5 shows BICs can exist in all PT symmetric systems. It is of interest

to demonstrate their existence and study any possible "critical point" behaviors

normally associated with PT symmetric systems.

2. To break the up-down mirror symmetry and design a laser that mostly radiate

to the air. Most photonic crystal based lasers suffer from a common problem:

most (or at least half) of the radiation come towards the high-index substrates

instead of the air side. This leads to additional complicated and delicate designs

for the bottom of these lasers to reflect this radiation with a specific phase shift.

However, if we break the up-down mirror symmetry and design a system where

the topological charge of polarization vector is much smaller on the air side than

on the substrate side, then the radiation will naturally mostly towards the air

side and therefore of great advantage.

3. To relate embedded eigenvalue problems to other seemingly related topics, like

embedded solitons.
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