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Abstract

In this thesis we describe the design and implementation of a rotary fast tool servo
(RFTS) in a machine tool for turning ophthalmic lenses. To machine nonrotationally
symmetric lenses, the cutting tool on the RFTS must move synchronously with the
spindle rotation. Therefore. to cut a lens at high spindle speeds, the cutting tool must
be capable of extremely high accelerations. In our design we mount the cutting tool
at the end of a rotary arm. This allows us to achieve higher accelerations and lower
vibrations than conventional fast tool servos. This thesis describes the development
of the RF'TS, including component selection and testing. We also detail the design
and fabrication of the RFTS that is installed in a prototype turning machine.
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Chapter 1

Introduction

The focus of this thesis is the design and implementation of a Rotary Fast Tool Servo
(RFTS) axis for diamond turning of nonrotationally symmetric ophthalmic lenses.
Over the last two years, we have built a novel prototype turning machine which places
the cutting tool at the end of a rotating arm. A single point cutter on a rotary axis
has several advantages over a conventional linear axis design. First, it permits much
higher tool accelerations than previous ophthalmic lens turning machines. Second,
reaction forces from accelerating the tool are kept low because the rotary inertia of the
tool arm is low relative to the rest of the machine. Third, the axis is also a direct-drive
system and is simpler to control because its dynamics are cleaner than a tool driven
by a linear mechanism such as a ball screw. The research has taken place in Professor
David Trumper’s Precision Motion Control Laboratory at the Massachussets Institute
of Technology, from the fall of 1997 to the spring of 1998. The research group also
includes Stephen Ludwick, a Ph.D student at MIT, David Chargin, a S.M. student at
MIT, and Yuka Miyake, an undergraduate student. The design and implementation
of the RFTS axis has been a two-stage process. The first stage was to build a testbed
that allowed us to test the performance of individual elements. In the second stage,
we used the experience gained from building the testbed to design the RFTS axis for
the prototype machine. A large portion of this thesis describes the criteria used for
selecting the components during the design phase of the RFTS axis, along with the

procedures for testing the hardware.
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1.1 Motivation for the Research

Current methods for manufacturing ophthalmic lenses include grinding, turning, and
milling. An overview of conventional lens manufacturing teéhniques is provided in
[11] and [19]. Regardless of the specific process, all of the current manufacturing
processes do not directly produce lenses that meet the required surface finish and
form accuracy specifications. Therefore, all of the lenses undergo a lapping process to
reach an optically clear surface finish and to reduce form error. The lapping procedure
is a multi-stage process. In the first stages of the lapping process, water is injected
between the cut lens and a hard lap with an abrasive pad. The hard lap, which is
premachined to have the inverse shape of the lens’s desired shape, and the lens are
then osciliated with respect to one another to remove machining errors. These first
stages remove approximately 150 um of material. The final stages use a felt pad
between the hard lap and the lens. This lapping process imparts the required surface

finish, removing approximately 10 - 50 gm of material.

However, the lapping process itself may introduce form errors into the lenses. This
is especially true of toric lenses, which are nonrotationally symmetric. An example of
a toric lens is shown in Figure 1-1. When lapping lenses with nonspherical contours,
material is inaccurately removed. This is because the geometric surface imparted
by the relative motion of the lap and the lens does not match the lens’s desired
contour. Another disadvantage of the process is that a different hard lap is required
for each possible lens prescription. This requires making, maintaining, and storing of

thousands of laps at every production facility.

Ideally, a machining process would produce a lens with small enough form error
to eliminate the need for a hard lap. The first advantage of such a machine would be
to also eliminate storing and maintaining the hard laps, which would reduce the cost
and size of the operation. In addition, any improvement in the lens’s form error and
surface finish during the initial machining reduces process time. Finally, lenses could

be produced more accurately by avoiding the nondeterministic lapping process.

In considering the three manufacturing processes mentioned above, grinding is
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Figure 1-1: Contour of a toric lens.

usually feasible only for glass lenses. Currently, most of the ophthalmic industry
has moved to using plastics such as CR39 and polycarbonate for making lenses. Of
the two remaining processes, milling and turning, we decided to focus on turning for
the new design. Theoretically, single point turning should produce a better surface
finish and give better contouring accuracy than milling. Turning ophthalmic lenses is
especially challenging because nonrotationally symmetric lenses need to be machined.
This requires a fast axis with high bandwidth, often called a fast tool servo (FTS). The
challenge in designing the F'TS is that the axis’s motion is required to be synchronous
with spindle position [4]. Therefore, turning at high spindle speeds requires high

accelerations from the FTS.

A picture of a lens turning machine is shown in Figure 1-2. Turning ophthalmic
lenses requires three servo-controlled axes, a spindle, a cross slide, and a fast tool
servo. The axes are laid out in a T configuration with the spindle mounted on a

cross slide. In the picture, the spindle is bolted onto a carriage traveling on linear
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Spindie Cutting Tool on FTS

Cross slide

Figure 1-2: Picture of a Diamond Turning Machine.
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guides, which is driven by a motor and ball screw. As in any turning operation, the
spindie holds the workpiece, a plastic lens blank. The purpose of the cross slide is to
move the spindle such that the cutting tool on the fast tool servo axis can cut along
the face of the workpiece. The fast axis, which contours the lens, is another carriage
riding on linear guides, driven by a ball screw and motor. A cutting tool is mounted
on the front of the carriage. In the case of a linear FTS axis, the cross slide moves

the spindle in a direction that is orthogonal with respect to the motion of the FTS.

A fast axis is an essential requirement for turning nonrotationally symmetric parts.
For lenses that are spherical and rotationally symmetric, the contour height of the
lens z depends only on the radial position 7 on the lens. However, for a toric surface
the contour height z depends on r and the angular position 8, as shown Figure 1-
1. Thus, the position of the cutting tool has to be synchronized to #. As the tool
cuts the lens, it oscillates with a fundamental frequency that is twice the spindle
frequency. As an example, for a spindle speed of 3000 RPM, the tool oscillates at
a fundamental frequency of 100 Hz. This high frequency trajectory leads to high

acceleration requirements on the F'TS.

There are many prior instances of using diamond turning to accurately turn optics.
Among the most notable are the DTM’s developed at Lawrence Livermore National
Laboratory, including the LODTM and the BODTM, which machine mirrors for
telescope optics [6] [20]. However, these machines target a different area of interest
than our research. The LODTM has a machining accuracy of 28 nm (1.1 microinches),
whereas our desired accuracies are on the order of 1 um. Although not needed to
achieve those accuracies, the high bandwidth FTS developed for the LODTM is a
piezoelectric actuator. Its range of motion is &+ 2.5 um (£100 microinches). However,
to turn ophthalmic lenses a FTS must have a range of approximately 20 to 30 mm.
Closer to our particular application is the turning of contact lenses. For example,
Rank Pneumo also uses a piezoelectric FTS, with a range of 0.2 mm, to turn contact
lenses [4]. The common theme for these piezoelectric actuators is that they have high
stiffnesses and high natural frequencies, which allow them to attain high bandwidths.

At the same time, they also suffer from limited travel capabilities. If a longer range of
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travel is desired, then another type of actuator has to be employed. Another example
of a FTS is one designed at the Frauhofer-Institut fur Produktionstechnologie, IPT,
in Aachen, Germany [23]. The fast tool servo is driven by a linear motor traveling
on air bearings. The carriage mass is only 0.65 kg and is kept low by using synthetic
fiber for the frame. It has a travel of 1.6 mm, an acceleration capability of 45 g, and
servo bandwidth of 100 Hz. However, at that acceleration the reaction forces from
the tool’s acceleration become very significant, and leads to significant vibration in

the machine base.

1.1.1 Design Parameters of our New Machine

The requirements of the new machine are that it should be able to:
1. Cut blanks up to 100 mm in diameter and 30 mm thick. -

2. Form a toric surface described by,

z(z,y) = Ry — \/[Rb - R, + /(R — y?)|*> — =2, (1.1)

where, R, = 26.5 mm, R, = 17.6 mm, and z% + y? < 2500 mm?

3. Achieve a form accuracy of 1 um over 10 mm of the toric surface described by
the second requirement.

4. Achieve a surface roughness of R; = 0.2 to 0.3 pm.

5. Cut the blank in less than 1 minute.

6. Have a tool cost to prepare each lens of less than § 0.02 per lens.

When designing the RFTS, several strategies to actuate the fast axis are possible
[14]. A typical fast tool servo is driven by a mechanism such as a ball screw. Another
option is a direct-drive fast axis in which the tool is driven directly by an actuator
such as a linear motor. The advantage of the ball screw is that it is an established
technology and inherently provides stiffness to the axis. However, it also complicates
the dynamics of the system, which is now a mass being driven through a spring,
representing the compliances of the bearings, the ball screw, the ball nut. The result,

is that the system may have a low resonant frequency that limits the bandwidth of
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the fast axis. The advantage of a direct-drive axis is that it is cleaner dynamically,
eliminating the mass-spring system. We would also eliminate the flexing of the ball
screw, stiction in the mechanism, and the noise due to the recirculating balls in the
nut. However, in going to a direct-drive solution, we would lose the stiffness inherently
provided by the ball screw and must then rely on the servo loop to provide all the

stiffness and disturbance rejection in the drive.

Another design consideration is whether to make a rotary fast tool servo or a
linear fast tool servo. The machine described previously is an example of a linear
fast tool servo. Whether driving a mechanism or directly driving the load, the motor
has to move a carriage with significant mass. This severely limits the acceleration
because of the amount of force the motor has to exert to accelerate the carriage.
Also, the acceleration rating for most rolling element linear bearings is limited to 5
g. If we instead mount the tool on an arm driven by a rotary motor, most of the
mass is placed near the axis of rotation. Now, the arm is lightest at the arm tip,
where the high tangential accelerations are required. Also, the ratio of the carriage
mass to machine mass is much greater than the ratio of the rotary inertia of the arm
to the rotary inertia of the machine. This is because rotary inertia increases as the
fourth power of radius of the rotating element. Therefore, reaction forces due to the
tool’s acceleration are also decreased, thereby decreasing the vibration of the machine

during operation.

The drawback of the rotary actuator is that we must carefully design the can-
tilevered arm to be stiff as well as low in inertia. In addition, metrology is more
difficult for the rotary axis. The essential angular position to be measured is the
angular position of the tool mounted on the tip of the arm. However, for ease of
mounting and to minimize the rotary inertia of the sensor, the sensor is most conve-
niently placed in line with the tool arm shaft. Therefore, we are actually measuring
the rotation of the tool arm shaft, whose angular position does not necessarily corre-
spond to that of the tool. Resolution is another issue. It is much easier to measure a
one purad rotation at the end of a 100 mm arm than at the base of the arm. Finally,

toolpath generation for a linear fast tool servo is straightforward compared to the
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toolpath generation for a rotary arm.

1.2 Summary of the Research

The design and implementation of the RFTS axis was a two-stage process. The first
stage was to build a testbed to give us a physical system that closely represented the
fast axis in the prototype machine. This allowed us to address the broader issues of
the design. For example, would precision ball bearings have the necessary resolution
and stiffness or would we have to use air bearings or hydrostatic bearings for the
. prototype machine? What would be the limitations in the mechanical design? For
example, in what range of frequencies would the mechanical resonances lie? What
type of control architecture should we implement? The testbed allowed us to test
the performance of different components such as the bearings, the flexible coupling
between the motor shaft and tool arm, and different arm designs. The primary
reason for first building a testbed rather than implementing these ideas directly in
a prototype machine is that it allowed us to decouple selecting the best components

from packaging considerations.

Using the experience gained from working on the testbed, we then designed the
RFTS axis for the prototype machine. During this stage of the design, the main issues
were packaging the components and designing and fabricating the bearing structure.
For the testbed, we wanted flexibility in locating the components relative to one
another, in case we had to change parts. However, for the final design we wanted to
integrate the separate components into one structure, which would help us locate and
reference components. We also wanted to insure that the final design was siructurally
solid, which lead us to casting the structure rather than using a bolted structure or

weldment.
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1.3 Layout of the Thesis

The remainder of the thesis is structured as follows. Chapter 2 gives a brief back-
ground on ophthalmics and an overview of the prototype turning machine. Chapter
3 details the criteria for selecting the servo motor, the flexible coupling, the bear-
ings for the RFTS axis, and the rotary sensor. We also describe the benchmarking
tests performed on the hardware selected. Chapter 4 describes measuring the error in
current ophthalmic lenses to determine the accuracy requirements of the prototype
machine. In Chapter 5, we detail the different control algorithms implemented on
the RFTS. Finally, in Chapter 6 we discuss the current status of the RFTS axis and

make suggestions for future work.
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Chapter 2

Overview of the Diamond Turning

Machine

In order to better understand the lens fabrication process, we begin this chapter with
a short description of ophthalmic lens design terminology. This gives us the context
to understand the functional requirements for turning ophthalmic lenses. We then

give a general overview of the RFTS and the prototype lens turning machine.

2.1 Ophthalmic Lenses

A number of references cover the topic of ophthalmic lens design more thoroughly,
(15] in particular, and also in [11] [19]. Here, we provide some basics to understand
the terminology in the ophthalmic industry to motivate the design of the prototype
machine. Figure 2-1 shows an example of a lens designed to correct myopia, commonly
known as nearsightedness. If the eye lens is working properly, it focuses rays from a
distant object coming into the eye on the retina to form a clear image. The distance
from the eye lens to the retina is known as the focal length of the eye lens. The inverse
of the focal length is known as the power of the lens. Optical power is measured in
units of diopters (—I::_l) For example, a lens with a focal length of 0.5 m has an optical
power of 2 diopters. When a person has myopia, the eye lens has too much positive

power and focuses the rays in front of the retina, which blurs the image. To correct
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Figure 2-1: Correcting myopia, adapted from [11].

this, a negative power lens is placed in front of the eye. The negative power lens
diverges the rays and cancels the excess positive power of the eye lens, as shown in
Figure 2-1.

The important parameter to decide is the focal length f of the ophthalmic lens.
The definition of the focal point of a lens is the point on the optical axis where rays
coming from infinity intersect the optical axis. In Figure 2-1, the point of intersection
is actually in front of the lens. Thus, the lens has a negative power. The definition
of the focal length is the distance from the principal plane to the focal point. The
principal plane is the plane where the extensions of the rays entering the lens and
the rays emerging from the lens intersect. Since the distance from the eye lens to
the ophthalmic lens is small, we can ignore it for our discussion. If the eye cannot
focus an object farther than f, also known as the far point of the eye, then the focal
length of the negative power lens should be the same distance. For example, if a eye
could not focus on an object past 0.25 m, then a -4 diopter lens would be required to
correct the nearsightedness of the eye.

The power of a ophthalinic lens P, the inverse of f, is a function of the thickness

of the lens, the index of refraction of the lens N, which depends on the material of
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the lens, and the radius of curvature R. For one surface the power P is

N-1
P="— (2.1)

To standardize lens manufacturing, the opthalmic industry has adopted a standard
called tool power. The standard assumes a certain index of refraction and defines
a radius of curvature R, given only the power of the lens which is desired 1. This
relation is given by

R =530/P, (2.2)

where R is in millimeters. If we neglect the thickness of the lens, valid for a thin lens,

the power of the lens is approximated by
P=P1+P2, (23)

where P, and P, are the two surface powers of a single lens. The surface powers P,
and P, have corresponding radii of curvature R; and R, found by eq. 2.2. For our
application, the front curve R, is molded, and the back curve R; is cut to the desired
surface power.

Another eye defect that ophthalmic lenses correct is astigmatism. In this case,
the cornea is nonrotationally symmetric and a toric lens with two radii of curvature
is required to correct the defect. The fact that the lers is nonrotationally symmetric
complicates the manufacturing of the lens. Hence, toric lenses are difficult to rinake

quickly and accurately. The mathematical description for a toric is,

22,9) = Ry~ \[[Ro — Re +\/(RE — ) - 22, (24)

where R, is the base curve and R, is the cross curve. A toric lens with R, = 26.5 mm,

R, = 17.6 mm, and z2 + 32 < 2500 mm? is the test lens the turning machine must

be able to cut. Figure 2-2 shows a toric surface for a 1 X 6 diopter lens with an

1 ANSI standard 780.1-1995
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Rc = 6 diopters

2 coordinate (mm)
ya

y coordinate (mm) x coordinate (mm)

Figure 2-2: Contour of a 1X6 toric lens.

80 mm diameter. Clearly the surface is nonrotationally symmetric. The variation
in height, for a given radius, increases as the difference between the cross and base
powers increases. Toric lenses are often defined by their cylinder power, the difference

between the cross and base powers, P, — P,.

2.1.1 Functional Requirements of the Lens Turning Machine.

Depending on the contour of the lens to be cut, a number of roughing passes are first
done to machine the blank close to the desired shape. Then, one or two finishing
passes are done to remove surface damage from the roughing passes and to decrease
the form error. To further reduce form error, after machining the lens is typically
lapped with a hard lap, which is the inverse shape of the lens. First, the lap is covered
with an abrasive pad. Next, it is rotated over the lens with an abrasive siurry flooding
the lap and the lens. To achieve an optically clear surface finish, the hard lap is fitted

with a felt pad and the lapping process is repeated with a finer abrasive slurry.
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L‘(‘)ne key goal of the new turning machine is to cut the lenses with enough accuracy
to eliminate the need for hard laps. The target for form accuracy is to cut within 1
pm of the desired contour over 10 mm. In addition, we want a final surface finish of
0.2 to 0.3 um R,. 2 With the increase in cutting accuracy, it is possible that the hard
laps could be replaced with a conformable or soft lap. Currently, a different hard lap
is needed for each prescription. This leads to the high cost of storing and maintaining
thousands of hard laps. A conformable lap could be used on all the lenses because it
would take the shape of the lens that it is lapping. Another requirement is to start
and finish the lens-making process on a blank in under one minute. Cutting closer to
the final shape will also aid this goal by reducing the overail polishing time.

Turning a nonrotationally symmetric lens at high spindle speeds places strict
performance requirements on the motor that actuates the rotary arm of the RFTS.
As discussed earlier, the height variation at a given radius on a toric lens increases
as the cylinder power increases. This implies cutting most lenses requires extremely
high tool accelerations. An original assumption was that a significant number of
lenses being cut were high cylinder power lenses. However, detailed analysis of the
cutting paths and the accelerations required to cut the entire spectrum of ophthalmic
lenses showed that this is not the case [14]. For a large number of prescriptions, the
RFTS’s required acceleration is relatively modest. For example, with a 3000 RPM
maximum spindle speed, 2 20 g machine can cut 90% of the lenses at the maximum
spindle speed. This is because the majority of lenses being cut are under two diopters
of cylinder power. According to (7], approximately 90% of lens prescriptions are
under 2 diopters. Table 2.1 shows the profile height z of a lens with a given power
at a variable radius R. For an 8X10 toric lens at a radius R = 50 mm, z = 22.8 and
35.4 along the base and cross curves, respectively. Therefore, the variation in height
Az = 12.6 mm. This is also the distance that a small radius tool on 2 linear axis
must travel.

In terms of cutting forces, the tangential and infeed cutting forces differ depending

on the type of material being cut [14]. Two types of plastics typically used are

2The surface finish represented by R, is the RMS average.
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Diopter | Curvature (mm) | Profile Height @ Radius of (mm)
10 |20 |30 |40 | 50

2.0 265.0 0208 |17 |30 |48

4.0 132.5 04 [ 15 |34 |62 |98

6.0 88.3 06|23 |53 |96 | 155

8.0 66.3 08 [3.1 |72 | 134 228

10.0 53.0 1.0 (3.9 |93 |182 | 35.4

12.0 44.2 1.1 | 48 | 11.8 | 25.4

14.0 37.9 1.3 ] 57 | 148

16.0 33.1 1.5 | 6.7 | 19.1

18.0 20.4 1.8 ] 7.8

19.0 27.9 1.9 | 8.4

20.0 26.5 20 9.1

22.0 241 2.2 | 10.7

24.0 22.1 2.4 | 12.7

26.0 20.4 26 | 164

28.0 8.9 2.9

30.0 17.7 3.1

Table 2.1: Profile height of lens for a given radius.

CR39 and polycarbonate. Cutting forces are lighter when turning CR39 because the
material is more brittle and fractures when cut. A cutting depth of 1 mm in CR39
produces a cutting force of approximately 10 N in the tangential (downward) direction
on the tool. Polycarbonate lenses are tougher and have a higher index of refraction,
which make them better for lightweight lenses. However, one of the disadvantages
of manufacturing polycarbonate lenses is that the cutting forces during machining
are higher. For a 2 mm depth of cut and a feedrate of 400um/rev, cutting force
studies show that forces reach 200 N and 25 N in the tangential and infeed directions,
respectively. A 2 mm cut is considered to be a roughing pass, where the primary
objective is to quickly machine the lens close to the final shape. For finishing passes,
we are more concerned with cutting accuracy and tool deflection becomes more of
a concern. Therefore, to reduce the cutting forces we can move the cross slide at a

slower feedrate or turn the spindle faster.
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Figure 2-3: Picture of the rotary fast tool servo axis testbed.

2.2 Description of the DTM

2.2.1 Rotary Fast Tool Servo Testbed

Figure 2-3 shows a picture of the testbed. To provide a sense of scale, the tapped
holes on the optical table are spaced 1” apart. The main elements of the testbed are
the servo motor, the flexible coupling which connects the motor to the rotary tool
arm shaft, the bearing housing, the tool arm, and the rotary sensor. The servo motor
is an Aerotech BM 1400, 3.1 hp, 9.6 Nm continuous torque, DC Brushless motor
mounted on a cast iron angle bracket3. The power amplifier is an Aerotech BA 30,
15 Amp continuous current, 4080 Watt servo amplifier. The tool arm shaft driven
by the motor is a surface-hardened steel shaft, approximately 10 inches long, with
a nominal diameter of 20 mm. The tool arm, onto which the cutting tool is bolted,

clamps onto the shaft. A Zero-Max SC-050 flexible coupling joins the tool arm shaft

3 Aerotech, Inc., 101-T Zeta Dr., Pittsburgh, PA 15238-2897, (412)963-7470

31



to the motor shaft 4. A cast iron bearing block houses two duplex sets of Barden
204HDL, angular contact, ABEC-9, ball bearings, which are the bearings for the tool
arm shaft . Angular position feedback of the shaft is provided by a JDK Controls
6015-2004-30 potentiometer, which is mounted on a second cast iron angle 6. Another
flexible coupling, a Renbrandt R20, connects the tool arm shaft to the potentiometer
shaft, 7.

The digital control algorithm is implemented by a Tiger 31/IP DSP from DSP
Research 8. The processor is a 48 MHz, Texas Instruments TMS320C31 processor.
The I/0 is handled by Industry Packs, IP’s, which are selected separately and added
onto the DSP board. A Greenspring IP-DAC provides six, 12 bit Digital-to-Analog
converters, and a Greenspring IP-HiRes provides four, 16 bit Analog-to-Digital Con-
verters 9. The host computer is a 50 MHz, Gateway 2000, 486DX2.

Essentially, the testbed has all the components of the rotary fast tool servo axis.
However, the advantage of first building the testbed is that we do not have to be
extremely careful with packaging while we benchmark the components. Laying the
testbed down on an optical table also gives us flexibility to replace parts such as the
flexible coupling and the sensor. In addition, it allows us to test control algorithms and
control hardware, such as the DSP board, in an environment that closely resembles
the final RF'TS axis. In chapter 3, we describe the tests to benchmark the components

in the testbed.

2.2.2 Description of the Prototype RFTS Axis

Figure 2-4 shows a drawing of the second-generation prototype RFTS axis. The
second-generation design integrates the function of the testbed’s main elements into

one structure. The monolithic bearing structure is a casting with the bearing bores

4Zero-Max Inc., 13200 Sixth Ave., N., Minneapolis, MN 55441-5509, (800)533-1731
5The Barden Corporation, 200-T Park Ave., Danbury, CT 06813, (203)744-2211
8JDK Controls Inc., 424-T Crown Point Cir., Grass Valley, CA 95945 (530)273-4608
"Renbrandt Inc., 659 Massachusetts Ave., Boston, MA 02118 USA (781)370-3539
8DSP Research, Inc., 1095 East Duane Ave., Sunnyvale, CA 94086, (408) 773-1042
9Greenspring Computers, 1204 O'Brien Drive, Menlo Park, CA 94025, (415)327-1200
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machined directly into it. Rather than being mounted on a separate angle iron as in
the testbed, the servo motor now bolts directly into the bearing structure. In terms
of functionality, it is similar to the original design. However, in certain aspects, the
second-generation design is a significant improvement over the testbed design. One
improvement is that we can grind datum planes onto the bearing structure and then
reference all the features with respect to these datums. In Figure 2-4, the three datum
plans A, B, and C are shown. Now, we can specify to what tolerance the tcol arm
shaft is to be square with respect to the machine base. In this case, using a surface
plate provided by Moore Tool as a machine base is a tremendous aid, because we
can be sure that the base is flat to a high degree of precision. Another advantage is
that the bearing structure is a monolithic piece. Structurally, it should be stiffer and
better damped that the previous bearing structure, which was bolted together. In
addition, all of the alignments in the structure are set and will not creep over time.
In chapter 4, we describe the mechanical design in further detail.

As before, the bearings are duplex ABEC-9 bearings mounted back-to-back inside
each bore. One difference is that the new bearings have a slightly larger inner bore
diameter, 25 min, to accommodate a slightly larger tool shaft diameter. This should
increase the system'’s torsional stiffness. In chapter 3, we address the issue of torsional
stiffness in the context of dealing with system resonances. The duplex set of bearings
in the lower housing act as the thrust bearing for the tool arm shaft. A shoulder in
the lower bearing housing axially constrains the bearings’ outer races on one side,
and a clamp on the underside of the housing constrains the thrust bearings on the
opposite side. In the upper bearing housing, the fit on the bearings’ outer races is
looser. This allows the bearings to “float”, permitting thermal expansion of the shaft.
The bearing design is also explained in more detail in chapter 3. Figure 2-5 shows a

picture of the RFTS axis before being bolted to the machine base.

2.2.3 Description of the Prototype DTM

Figures 2-6 and 2-7 show a picture of the prototype DTM and a drawing of the

machine’s layout, respectively.  The spindle, cross slide, and the RFTS axis are
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Figure 2-5: Picture of the second-generation rotary fast tool servo axis.
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Figure 2-6: Picture of the prototype Diamond Turning Machine.
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Figure 2-7: Drawing of the prototype Diamond Turning Machine.
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bolted down to a modified surface plate supplied by Moore Tool Company °. The
spindle is a 4R Twinmount air bearing spindle from Professional Instruments !'!. It
has a maximum speed of 10,000 RPM and error motions in the radial and axial
directions of less than 25 nm (1 microinch). Spindle position is measured by a 10,000
count encoder. The cross slide is a porous graphite air bearing cross slide made
by New Way Machine components 2. An Anorad LEB-S4 linear motor drives the
cross slide carriage !3. A Sony SH-10, glass-scale linear encoder with a resolution

of 0.1 um measures the position of the cross slide .

The spindle and cross slide
for the prototype machine have extremely low error motions, which make them over-
designed for our prototype machine. However, it makes sense to make these two axes
as “perfect” as possible, because the bulk of the research will take place on the third
axis, the RFTS axis. Therefore, we want the other two axes to be more than good

enough so that we can readily determine the errors in the RFTS axis.

10Moore Tool Company, 800 Union Ave., PO Box 4088, Bridgeport, CT 06607-0088, (203) 367-
0418

1 Professional Instruments Co., Inc., 4605 Hwy. 7, Minneapolis, MN 55416, (612)933-1222

12New Way Machine Components, Inc., 4009-1 Market Street, Aston, PA 19014, (800)394-1046.

13 Anorad Corp., 110 Oser Ave., Hauppauge, NY 11788, (516)231-1995

14Sony Magnescale Inc, Toyo Building, 9-17, Nishigotanda 3-chome, Shinagawa-ku, Tokyo, 141
Japan, Phone: 81-3-3490-9841
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Chapter 3

Mechanical Design and Component

Selection

In this chapter we lay out the design criteria and other factors for chocsing the dif-
ferent components of the rotary fast tool servo axis. We also describe the tests done
to benchmark the components, verifying their performance. The components to be
tested are the servo motor, the tool arm shaft bearings, and the flexible coupling be-
tween the servo motor and the tool arm shaft. In addition, we compare commercially
available rotary sensors and describe the laser encoder chosen. With the data from

working on the testbed, we are then able to finalize the design for the RFTS axis.

3.1 Motor Selection

3.1.1 Functional Requirements of the RFTS Axis Motor

The required torque output of the RFTS motor depends on many factors, including
maximum speed of the spindle, the feedrate of the cross slide, the tool’s depth of cut,
and the system inertia. With all these parameters variable depending on the final
machine configuration, we try to lay out a general methodology for selecting a rotary

motor to drive the RFTS. The important parameters for selecting the motor are,

e Adequate torque to accelerate the tool when following cutting path trajecto-
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ries in the presence of cutting forces. For a 100 mm tool arm, the estimated

acceleration required is 20 g at the tool tip.

® The voltage and power requirements to drive the RFTS should not surpass the

ratings of the motor or amplifier.

Simulated cutting paths have shown that, assuming a maximum spindle speed of
3000 RPM, a RFTS with an acceleration of 20 g (200 m/s?) can cut 90% of all the
prescriptions at the maximum spindle speed. A 40 g (400 m/s?) machine can cut 95%
of all the prescriptions at the same maximum spindle speed [14]. To select a motor
for the rotary fast tool servo axis, we begin by calculating the required torque output
of the motor. In these calculations we assume that the radial length r from the tool
arm axis to the tool edge is 100 mm. The inertia of the system Jr is the sum of the
motor armature, the tool arm shaft, the flexible coupling, and the tool arm inertias.
For ease of calculation, we assume a system inertia of 2 x 10~2 kg-m2. The estimated
inertia of the current RFTS axis is somewhat less than this, 1.67 x 10~3 kg-m?, but is
also expected to increase as we modify the tool arm design. As an estimate, 2 x 1073
kg-m? is a reasonable prediction for the final tool arm design. The motor’s required
torque T includes the acceleration torque T4 and also the load torque caused by the

infeed cutting forces T},

T=T4+T.. (31)

The necessary angular acceleration a to produce a tangential acceleration a at the

tool is simply
a 200

- == 2, 2
- =01 2000 rad/s (3.2)

o =

With a system inertia Jr of 2 x 10~3 kg-m?2, the torque T4 necessary to accelerate it
at 2000 rad/s? is
Ta=Jra=2x10"3 -2000 =4 Nm. (3.3)

To estimate the load torque of the motor, we take the example discussed earlier of

turning polycarbonate at a cutting depth of 2 mm. The infeed cutting force F¢ in
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Torque requirements for given acceleration of the tool.
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Figure 3-1: Torque requirement for given acceleration.

that case is 25 N, and the load torque T, is thus
T, =rF.,=01-25=25N. (3.4)

This yields a total torque requirement of 4 + 2.5 = 6.5 Nm. Figure 3-1 shows the
motor’s required torque output, calculated for a range of accelerations, with and

without a 25 N infeed cutting force.

Currently, we are using an Aerotech BM1400, DC brushless motor, which was
selected at the beginning of the project. The motor has performed well in our tests
and we plan to continue using it to drive the RFTS. The BM1400 has a power rating
of 3 Hp (2200 Watts), and a continuous torque rating of 9.6 Nm. As found earlier, a 20
g machine requires a torque output of only 6.5 Nm, but the continuous torque rating
of the Aerotech motor is much higher. Thus this motor has the torque capability to
accelerate the tool at almost 50 g without cutting forces, and 35 g assuming a heavy
infeed cutting force of 25 N. Although the current motor may be oversized, some

degree of over-design in the prototype RFTS axis is necessary to be conservative in
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meeting our requirements. Using a higher-rated motor also gives us the option of
cutting a higher percentage of prescriptions at the maximum spindle speed, which

decreases process time.

3.1.2 Selecting a Motor

Before selecting the Aerotech motor, we conducted a survey of motors from commer-
cial vendors. Since it is difficult to review all the motor manufacturers, we select
some of the well-known companies and outline a methodology to choose between
their motors. Servomotors we consider for this application are DC brushless motors,
DC brushed motors, and direct drive torquer motors. Choosing a suitable motor is
nontrivial because of the unusual requirements of the RFTS axis. The oscillatory tra-
jectory of the tool requires high accelerations when cutting a toric lens, but relatively
low rotational speed of the tool arm, on the order of 10.5 rad/s (100 RPM).

One of the motor’s primary requirements is to have enough torque capacity to
accelerate the tool. At first, direct-drive torquers seem to be a reasonable choice to
meet our requirements. Compumotor makes high-performance direct-drive motors
with continuous torque ratings of up to 200 Nm . Some systems also have encoder
feedback with resolutions of 1,024,000 counts/revolution, which is ideal for a direct-
drive system with the tool arm shaft integrated into the motor. However, in terms
of torque-to-inertia ratio, their acceleration capabilities are much lower than DC
brushless motors. For example, the armature inertia of the Aerotech BM 1400 is
5.6 x 1074 kg-m?. This gives a torque-to-inertia ratio, i.e. the angular acceleration of
the rotor inertia by the continuous torque rating of the motor, of 17777 rad/s?. The
Compumotor DR 1015B has a continuous torque rating of 10 Nm and a rotor incrtia
of 2.1 x 1072 kg-m?. This gives a torque-to-inertia ratio of only 476 rad/s?. Also,
direct-drive torquers are speed limited. The DR 1015B has a rated speed of only 2
rad/s (19 RPM), which is too slow for our application.

In Figure 3-2 we plot the continuous torque rating as a function of armature

!Compumotor Div. Parker Hannifin Corp., 5500-T Business Park Dr., Rohnert Park, CA 94928-
7902, (800)358-9070

42



Torque Ratings of Motors va. Rotor inertia
14 o

Aerotech BM (Brushlesa)
Aerotech (Brushed)
Kolimorgen B

ServoDisc JR
Electrocraft H a
Cuatom

12t

x O DODO =

=
°

x®

Torgue Rating (Nm)
o
o
©
o]

4 o
L]
K o a
g o

2w

N o
° 1. 1 | — i 1 3

() 05 1 1.5 2 25 3 a5

Rotor Inerta (kgm 2) x10’

Figure 3-2: Comparison of torque-to-inertia ratio of motors from different manufac-
turers.

inertia for a range of DC brushless motors from Aerotech, Kollmorgen, Electrocraft
and Custom. For comparison, we also plot the torque-to-inertia ratio of Aerotech
brushed DC motors and Kollmorgen ServoDisc brushed motors 2 3 4. ServoDisc
motors have ironless armatures, and thus extremely low inductances, and higher
torque-to-inertia ratios than normal brushed DC motors. From Figure 3-2, we see that
because of their low rotor inertias, DC brushless motors have much higher acceleration
capabilities than brushed DC motors, including the ServoDisc motors. In general,
Kollmorgen motors have the highest continuous torque ratings for given rotor inertias.
Electrocraft motors have the lowest torque ratings for given inertias. Aerotech and
Custom DC brushless motors fall between the first two.

Table 3.1 compares the characteristics of brushless DC servomotors from the motor
manufacturers with comparable torque ratings and rotor inertias to the Aerotech

BM1400. Table 3.2 lists the torque-to-inertia ratios of the motors calculated by

2Kollmorgen Motion Technologies Group, 201 Rock Rd., Radford, VA 24141(800) 777-3786
3Custom Servo Motors Inc., 214 N. Valley, New Ulm, MN 56073, (507)354-1616
4Electro-Craft, 6950 Washington Ave. So., Eden Prairie, MN 55344, (800) 328-3983
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Motor Type Continuous Peak Torque | Power Km J L R

Torque (Nm) | (IIm) (Watts) | (Nm/amp (kg — m?) | (mH) | (ohms)
Aerotech BM1400 9.6 24 2330 0.74 (RMS) | 5.6 E-4 1.7 0.5
Aerotech 1960 6.8 31.7 1160 0.7 2.6 E-3 7.1 0.8
Kollmorgen B-404A 13.8 35.9 2000 2.31 (RMS) | 6.56E-4 102 4.1
Kollmorgen B-404C 13.9 35.3 5400 0.66 (RMS) | 6.56E-4 8.4 0.34
ServoDisc JR24M4CH | 10.2 82.3 2188 41 3.2E-3 045 0.31
Electrocraft H-4075 9.9 19.8 3110 0.74 6.8E-4 5.4 0.9
Custom 13.1 45.7 3400 0.71 8.3E-4 1.1 0.13
MPM1143FRM-A

Table 3.1: DC Servomotors

Motor Torque-to-Inertia Ratio (rad/s®)
Aerotech BM1400 17142
Aerotech 1960 2615
Kollmorgen B-404A 21036
Kollmorgen B-404C 21189
ServoDisc JR24M4CH 3187
Electrocraft H-4075 14558
Custom MPM1143FRM-A 15783

Table 3.2: Torque-to-inertia ratios

dividing the continuous torque rating by the rotor inertia. Notice that the brushed
DC motors have lower torque-to-inertia ratios compared to the brushless DC motors.
Among the brushless DC motors with similar rotor inertias, Kollmorgen has the
highest performance motor. The B-404C has the highest torque-to-inertia ratio, 21189
rad/s?, while the Electrocraft H-4075 has the lowest, 14558 rad/s?. To put this
difference into perspective, for a system inertia of 2.0 x 10~%kg-m? and a 100 mm tool
arm, a tool driven by the Kollmorgen motor would have a maximum acceleration of
65 g, while the Electrocraft motor could accelerate the same system at 50 g.
However, other factors need to be considered when selecting the motor. For ex-
ample, we must also analyze the voltage and power requirements to drive the motors.
Earlier, we estimated that to accelerate the RFTS at 20 g in the presence of cutting
forces requires a torque 7' = 6.5 Nm. Using this metric, we can compare the motors’
voltage and power requirements, as well as their heat dissipation. We first make the
assumption that all the DC brushless motors have approximately the same inertia.
Thus, the total inertia Jr and the torque output T are the same in all cases. Another

assumption is that the acceleration profile of the tool is perfectly sinusoidal when
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Figure 3-3: Three-phase circuit diagram for a WYE connected motor.

cutting a toric lens, and that the frequency is equal to twice the spindle frequency.
The true acceleration will have higher harmonics of the spindle frequency, but we
are interested only in the overall amplitude. A sinusoidal acceleration also implies a

sinusoidal current. Therefore, we assume the current to be
i = Asin(wt), (3.5)

where A = T'/K; is the amplitude of the current required to create a torque T. Here,
K is the torque sensitivity constant given in Nm/Amp. Note that some manufactur-

ers give their K; in terms of RMS Amps, where

Nm Nm

K, = = .
t Amppysv2  Amp

(3.6)

To find the voltage and power requirements of the DC brushless motors, we have to
consider the fact that the motors have three phases. Figure 3-3 shows the circuit
diagram for a three-phase wye connected motor. The three phases are labeled a, b,
and c. The phase-voltages are V,,, Vin, and V,,. Similarly, the phase currents are

In, Iy and I,. By inspection we can see that I, = I, Iy = Ipn, and I, = I,.
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Note that all voltages and currenst are RMS. The compiex impedance in each phase
is represented by Z. Taking phase a for example, the complex impedance can be

modeled as the phase resistance R, in series with the inductance L, of the phase
Zs = R, + jwL,. (3.7)

Table 3.1 lists the line-to-line resistance and inductance, which are twice the phase
resistance and inductance. Since the current profile is sinusoidal, we calculate the
voltage and power requirements of the motor by analyzing the motcr as a steady-
state AC circuit. A helpful, basic reference on AC circuits and three-phase circuits
is [17]. In order make this analysis, we make several assumptions. By assuming the
current profile is steady-state, we are taking a snapshot in time and modeling the
current as a perfect sinusoid with constant amplitude and frequency. In the real
case, the current profile is not a perfect sinusoid and the amplitude is changing as
the acceleration profile of tool changes. However, we are interested in the general
voltage and power requirements of the motor. Therefore, we make this assumption
to simplify our analysis. Also, the current through the three phases of the motor is
position dependent. As the rotor turns, the currents in the phases vary sinusoidally
and are 120° apart. Another assumption that we make in our snapshot is that rotor
is in a position where no current is in phase c¢. In this situation, the current I, is
equal and opposite to I,
T

I,=-I)= ——, 3.8
b Kt\/Q ( )

where we have divided the peak current by v/2 to obtain I, and I,, the RMS currents.
Since I, and I, are equal in magnitude, we can refer to the current in the two phases
as I. If the angular excursion of the arm is small, and our motor is operating ahout
this point, we assume that no current is in phase ¢ throughout the commutation. The
assumption is valid provided the angular excursion of the tool arm is small enough
that very little current is in phase ¢. This implies that the current given by eq. 3.5
runs entirely through phases a and b. Now, we are looking at a special case where

the three phase circuit can be modeled as phase a in series with phase b. While we
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make many assumptions in this analysis, the voltage and power requirements we find
should be indicative of the true voltage and power requirements. The line-to-line

voltage RMS V] to drive the motor is
Vi=12,. (3.9

where Z, is the magnitude of the complex line-to-line impedance given by

Z, = /R + (L), (3.10)

where R; and L; are the line-to-line resistances and inductances, respectively. The
effects of Back EMF is ignored here, but will be analyzed later. The power P in the
motor is

P =12, (3.11)

We should note that the power P is the complex power and includes active power and
reactive power. Reactive power is the power stored in the inductance of the circuit
and is not actually consumed. However, when sizing the power amplifier, reactive
power still needs to be considered. To distinguish it from power consumed, measured
in watts, we state the complex power in units of volt-amperes (VA). In addition,
we can see that the impedance wL from the inductance of the motor armature is a
large factor in determining the voltage and power requirements of the motor. For the

brushed DC motors, the analysis is the same because the motors are single phase.

To compare the motors, we can look at their capacity to follow high acceleration,
high frequency trajectories. Figure 3-4 shows the motors’ RMS voltage and power
requirements for a torque output of 6.5 Nm, as a function of tool frequency fr. We can
see there is significant variation in the voltage and power required to drive the motors.
This is primarily due to the differences in the motors’ inductances. Frequencies of
50, 100, and 200 Hz correspond to spindle speeds of 1500, 3000, and 6000 RPM,
respectively. For fr = 100 Hz, the Kollmorgen B-404A (KollA) requires a line-to-
line voltage V; = 178 V and a power output P = 500 VA to drive the motor. If
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Figure 3-4: Comparison of RMS voltage and power necessary to drive motors as a
function of tool frequency, at a torque output of 6.5 Nm.
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fr = 166Hz, then V; = 296 V and P = 826 VA. Therefore, for our application the
impedance of driving a motor with a high inductance can be the largest load on
the amplifier. For reference, the Aerotech BA 30 amplifier has 2 DC bus voltage of
230 V (RMS), a continuous current rating of 15 A, and a continuous power rating
of 4080 Watts. With V; = 206 V for fr = 166 Hz, the Kollmorgen motor would
already saturate the amplifier. On the other end of the spectrum, for fr = 100 Hz
the Custom servo motor requires V; = 5 V and P = 30 VA. If we increase fr to 166
Hz, the Custom servo motor still needs only V; = 8 V and P = 48 VA to drive the
motor. For the same tool frequencies, the Aerotech motor (Aero1400) also has low
voltage and power requirements. In this case, V; = 10 V and P = 89 VA, for fr = 100
Hz, and V; =16 V and P = 139 VA, for fr = 166 Hz.

To see what the voltage and power requirements are for higher accelerations, we
can reanalyze the motors at a higher torque output. The Aerotech BM1400 has a
continuous torque rating of 9.6 Nm. According to Figure 3-1, this corresponds to an
acceleration capability of 35 g in the presence of a 25 N cutting force. Figure 3-5
recalculates the motors’ voltage and power requirements for a torque output of 9.5
Nm. Again, at high tool frequencies, the power required by the Kollmorgen motors
can easily saturate the power amplifier. For fr = 200 Hz, V; = 522 V and P = 2125
VA, which also exceeds the continuous power rating of motor. The Custom and
Aerotech motors appear to be the best capable of handling high acceleration, high
frequency trajectories. For a spindle frequency of 6000 RPM (fr = 200 Hz), Vi = 13
V and P = 124 VA for the Custom servo motor. In the case of the Aerotech motor,

when fr =200 Hz, V; =28 V and P = 3b4 VA.

Heat dissipation is another issue in selecting a motor. In general, the less heat
generated by the motor during operation the better. The amount of power consumed
P¢ by the motor is given by

Pc = I*’R,, (3.12)

The consumed power is now given in units of watts to distinguish it from complex

power. Table 3.3 compares the motors’ power consumption P¢ for torque outputs of
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Motor Torque (Nm) | IZ5,,cRa | Torque (Nm) | 175, ,cRa

Aerotech BM1400 6.5 27.28 9.5 58.27
Kollmorgen B-404A 6.5 22.95 9.5 49.03
Kollmorgen B-404C 6.5 23.32 9.5 49.81

~Electrocraft H-4075 6.5 25.05 9.5 53.51
Custom 6.5 3.93 95 8.40

MPM1143FRM-A

Table 3.3: Power consumed by the motors.

6.5 Nm and 9.5 Nm. Most of the motors generate approximately the same amount of
heat; P = 22.95 W to 27.28 W for a torque output of 6.5 Nm. The exception is the
Custom servo motor, Pc = 3.93 W. This is because its resistance R; is only 0.13 Q.

Earlier, when we were looking at the torque-to-inertia ratio of the motors, the
Kollmorgen motors, which had the highest torque-to-inertia ratios, seemed like the
best choice of motors. However, after analyzing their voltage and power requirements,
we see that the high inductance of their motor armatures limits their ability to follow
high frequency trjectories. Primarily because of their low inductances, the Custom
and Aerotech motors are better candidates to drive the RFTS. In terms of having ex-
tremely low inductance and low winding resistance, the Custom Servo motor appears
to be the best choice of the motors reviewed. The Aerotech motor, which we have
already purchased, has relatively low inductance, but the heat it generates during
operation is not lower than that of the other motors. However, the Aerotech motor
has a higher torque-to-inertia ratio than the Custom motor, 17142 rad/s? compared
to 15783 rad/s?, and so is a compromise between high torque-to-inertia ratic and low
voltage and power requirements.

The one other voltage load that we have not yet considered is the back EMF
load. Considering the rotational speed of the tool arm when cutting a typical lens,
the load on the amplifier from the back EMF generated is small compared to the
inductive load of the motor. For example, consider again cutting an 8X10 lens, where
the height variation at a lens radius of 50 mm is 12.6 mm. The tool speed varies
throughout the cutting trajectory as it cuts along the radius of the lens, so we are
only approximating the tool speed. To estimate the tool speed, we again assume a

purely sinusoidal tool trajectory. In addition, we assume a linear axis, which is valid
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for small angle excursions. The position, velocity, and acceleration of the tool are

z = Bsin(wt), (3.13)
£ = Bwcos(wt), (3.14)
& = —Buw?sin(wt), (3.15)

where B is 6.32 mm for the 8x10 lens described above, and w is the tool frequency,
which corresponds to twice the spindle frequency. The peak velocities and peak accel-

erations are Bw and Bw?, respectively. For an RFTS with an acceleration capability

of 200 m/s?
/ 200
w= 0.00632 179 rad/s. (3.16)

Bw = 0.00632 - 179 = 1.1 m/s. (3.17)

The peak velocity is

For a 100 mm arm, this corresponds to a rotational speed of 105 RPM. The back
EMF constant Kp for the Aerotech BM1400 is 62 V/kRPM. Therefore, the voltage
load in this case is

62-0.105 =59V, (3.18)

and thus is insignificant.

3.2 Testing the Motor

To test if the motor can perform as predicted in the previous section, we do a simple
benchmarking of the motor by implementing analog position control. The goal of
this benchmarking is to test if the inductance of the motor limits our acceleration
capability during high frequency trajectories. A schematic of the test is shown in
Figure 3-6. The BA30 power amplifier performs two functions in velocity control
mode, commutating the motor’s three phases using hall effect sensorc and closing the
velocity loop. In the amplifier, the velocity signal is derived from motor’s encoder,

which has 1000 counts/revolution. Tuning the velocity loop requires changing the
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Figure 3-6: Setup used to benchmark the motor.
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- Ts+1 Js

Figure 3-7: Block diagram of the velocity loop.

gains of the potentiometers on the amplifier. Figure 3-7 shows a block diagram of
the velocity loop. This is a standard model of a motor under velocity control. The
first gain K is the adjustable potentiometer gain of the amplifier. In our test, we

are tuning the velocity loop solely by adjusting the potentiometer gain. The current

loo ]
p Ts +

motor, and J is the inertia cf the system. The commanded and actual velocities are

1 is modeled as a first-order lag. Also, K,, is the torque constant of the

64 and 6, respectively. Although the inductance of motor’s phases is hidden inside
the current loop and is not shown explicitly, it still determines the saturation point
of the motor and the amplifier and hence the torque limit. The motor is connected to
the position sensor, a JDK potentiometer, via a flexible coupling. The outer position

loop is closed by a simple analog controller.

As a first step towards designing the analog controller, we first model the velocity
loop closed by the power amplifier. To simplify the modeling process we can omit any

rotational damping B of the motor. The loop transmission transfer function G,(s) is

then
KK,,
o(s) = ——om 1
Gu(s) Js(Ts+1) (3.19)
The closed-loop transfer function for the velocity loop G, is then
. KK,
Gu( T
Guels) = L = . Gnt®) . (3.20)

éd_ 1+Gu(3) - 32+71_'3+%I§’11
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Closed-Loop Velocity Frequancy Response
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Figure 3-8: Measured frequency response of velocity loop after tuning.

We can now fit this to the generalized form of a second order system

wa

T2+ 2w, + w2

Goc(s) (3.21)

where w, is the natural frequency of the system and ( is the damping ratio. Figure
3-8 shows the measured frequency response of the velocity loop after tuning. The

bandwidth of the velocity loop is approximately 1900 rad/s (300 Hz).

3.2.1 Tuning the Analog Controller.

Once the velocity loop is tuned, we can fit a model to the system and design a
controller for the position loop. We use an analog controller for the initial testing
because it can be implemented quickly. Figure 3-9 shows a block diagram of the
position loop. G.(s) is the controller and 6, and 6 are the desired and actual positions,
respectively. The loop transmission transfer function for the position loop G,(s) is

simply
_ G(8)Gye(s) G(s)w?

Gi(s) 8 "~ 8(s? + 2¢wn + w?)’

(3.22)
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Figure 3-9: Block diagram of the position loop.
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Figure 3-10: Block diagram of equivalent position loop, showing the effect of the
summing junction used to break the position loop.

We are now treating the entire velocity loop G,.(s) as a separate block whose form
we derived earlier. To fit a model to this block we start by breaking the position
loop, building a summing junction, grounding the command input 64, and injecting
a disturbance as shown in Figure 3-9. When modeling the summing junction, we
assume that the output impedance of G.(s) is low and the input impedance of the
amplifier G, is high. The equivalent block diagram is shown in Figure 3-10. By
measuring the frequency response between points 1 and 2 as shown in Figure 3-9, we
now have the negative of the loop transmission response of the position loop Gp(s).

Our goal is to obtain a model of the loop transmission transfer function Gp(s)

which has the inner velocity loop G, inside it. To do this, several frequency responses
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of the position loop G,(s) are taken while the motor is under proportional control,
where G.(s) in eq. 3.22 is simply equal to a gain K,. By varying the gain K, we

are changing one Parameter in the position loop, the crossover point. The magnitude

response remains the same., Assuming Gp(s) is in the form given by eq. 3.22 we
can predict the frequency response of Gp(s) assuming G, = K,. The experimentally

measured points of G,(jw) are expressed as
Gy(jw) = Re(w) + jIm(w), (3.23)

where Re(w) and Im(w) are the real and imaginary parts of Gp(jw), respectively. The

magnitude of G, (jw) is

IGp(@)I* = (Re(w))? + (Im(w))2 (3.24)
The phase of ¢(w) is
?p(w) = tan™! IP:%;. (3.25)

The predicted frequency response Gp(jw)p can be found from eq. 3.22. For a fre-
quency w we can compare the predicted phase ¢p(w)p with the measured phase
#p(w)m. Then we can perform a Least Squares Fit by minimizing Y (tp(w)p —
$p(w)rm)?. Thus, we find the ¢ and w, that minimizes the sum of the squared er-
rors. For this, we write a routine in Matlab to conduct a simplex search to find ¢
and w,. Using proportional gains K. p 0f 0.5, 1 and 1.5, the average of the three Least
Squares Fits predicted w, and ¢ to be 305 Hz and 0.91, respectively. Note that w,
should be close to the bandwidth of the velocity loop found earlier to be approxi-
mately 300 Hz in Figure 3-8. A damping ratio of 0.9] indicates a fairly well-damped
system which is also consistent with Figure 3-8. Figure 3-11 shows predicted fre-
quency response of G,(s) plotted against the measured loop transmission frequency
response for a controller gain K, = 1. Note that the phase of the measured frequency

response has been shifted by 180° to take out the phase shift from the subtraction in
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Figure 3-11: Predicted and measured loop transmission frequency responses.

the summing junction.

After modeling the dynamics of the motor, we can now design a phase-lead com-
pensator to test the attainable bandwidth of the position loop. A standard reference

for designing a phase-lead compensator is [12]. For the phase-lead compensator, G(s)

in eq. 3.22 becomes
Tis+1

Gc(s) = KDaT.-s + 1'-

(3.26)

Here, —1/T; is the zero location of the phase-lead compensator and —1/aT; is the pole
location. Figure 3-12 shows the analog circuits used for the phase-lead compensation.
For the subtracter circuit, R} = Ry = R3 = Ry = 1kQ. For the lead compensation

. R _ R . . .
circuit, Kp = Rl_-I-LR;’ T; = R,C,and a = Rl_-i-LR; For the inverting amplifier we
set the gain to unity, Rp; = Rj.

Setting the crossover frequency of the loop transmission frequency response at 200
Hz, the uncompensated system would have a phase margin (PM) of 30°. If we want
the system to have a PM of 65°, the additional phase needed ®,,,, is 35° at the

crossover frequency. To obtain this phase margin the distance between the zero and

58



SUBTRACTOR R4

R1
V1 (8d)
Vi1.V2 {84-0d)
vz (6)
R2
R3
Cc
- RF «
R2
v R1 hs R3 » 0
IN Vour
o A%
ETW UNITY GAIN
LEADN ORK INVERTING AMP

Figure 3-12: Analog circuit for phase lead compensation.

the pole of the lead compensator, represented by « is

o= 1 — sin(Ppmaz)
T 1+ sin(Pmaz)

= 0.27.

The maximum phase lead will occur at

1
vaT;’

W =

response of the position loop.

99

(3.27)

(3.28)

This sets the break-point associated with the zero of the phase-lead compensator to
be at 668 rad/s (106 Hz) and the breakpoint associated with the pole to be at 2470
rad/s (393 Hz). With a gain Kp of 1.1, we expect the crossover frequency w, to
be at 1275 rad/s (203 Hz) with a PM of 61° . Implementing this controller on the
testbed, the position loop transmission frequency response crosses over at 1193 rad/s
(190 Hz) with a PM of 68° . The predicted and experimentally determined frequency

responses are plotted in Figure 3-13. Figure 3-14 shows the closed-loop frequency

The closed-loop frequency response, which shows the motor’s response to a swept-
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sine test, indicates how well the motor can follow high frequency trajectories. To ob-
tain the closed-loop frequency response, the motor is commanded to track a swept-sine
command whose amplitude corresponds to a given angular excursion of the scrvopot.
In this test, the motor is accelerating its own armature and the flexible coupling
connecting the motor shaft to the servopot. Therefore, the system inertia Jr is ap-
proximately 7 x 10~ kg-m2. The voltage output of the servopot is +5 V over 340°.
With a peak amplitude 5 mV, the sinewave commands a £+0.003 rad angular excur-
sion of the servopot. From Figure 3-14, we can see the bandwidth of the position
loop is better than 2000 rad/s {318 Hz). At 2000 rad/s, the magnitude of the fre-
quency response is approximately 1 dB. Although it is phase-shifted, the motor is
still tracking the commanded sinewave. To estimate the torque output and angular
acceleration of the motor, we assume that the motor is tracking a sinewave with an
amplitude of 0.003 rad and a frequency of 1885 rad/s (300 Hz.) Following an analysis

similar to eq. 3.15, the peak angular acceleration épeak is

Opeak = 0aw? = 0.003 - 1885 = 10, 660 rad/s. (3.29)

The torque to accelerate the system inertia T is

T = Jr - Opeax =7 x 1074 . 10660 = 7.5 Nm. (3.30)

Thus, the current supplied by the amplifier is

T 15
i= K =05 14.3 A, (3.31)

where K; = 0.52 Nm/Amp is the torque constant for the Aerotech motor. If we think
of the 300 Hz sinewave as a cutting trajectory, a fundamental tool frequency of 300
Hz corresponds to a spindle speed of 9000 RPM. Therefore, the test shows that the
inductance of the armature does not prevent large torque or current outputs at high

tool frequencies.
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3.3 Rotary Bearing Selection and Testing

For many rolling element bearing applications, the main design specifications are the
load ratings and the speed limit of the bearings. These factors determine the bearing’s
running life. However, as we showed in the previous section, the rotational speed of
the tool arm shaft during operation is relatively low compared to the rotational speeds
of typical machine tool spindles. Our operating speeds are on the order of 100 RPM,
while precision ball bearings are rated to run at 1000’s of RPM. Also, the highest
cutting forces in the vertical direction are 200 N, which is well under the load ratings
for a typical high performance bearing. For the bearings of the RFTS axis the main

criteria are,
e Submicron radial and axial error motions of the bearings.
e Submicron deflection of the bearings under cutting force loads.
e Capable of resolving rotations on the order of 1 urad.

These design considerations all have implications on the cutting accuracy of the tool.
One unknown was whether or not conventional rolling element bearings could meet
the requirements for our application. To answer this question, we use rolling ele-
ment bearings in the RFTS testbed. The advantage of using rolling element bearings
is that they are a standard technology and have little development time associated
with them. If the bearings cannot meet the specifications, then the second-generation
RFTS has to be built with fluid-static bearings. Presumably, the design of fluid-static
bearings is more complex, more time-consuming and includes higher manufacturing
costs than purchasing off-the-shelf rolling element bearings. For example, the maker
of the motorized air bearing spindle used in the prototype machine, Professional In-
struments, sells a BLOCK-HEAD 4R Air Bearing Spindle. It has extremely small
error motions of less than 25 nm (1 microinch)in the axial and radial error direc-
tions. It is also stiff enough for our application with axial and radial stiffnesses of

120 N/pm and 360 N/um, respectively. However, this performance comes at a high

62



price. Also, this bearing has a significantly higher rotary inertia than the equivalent

rolling element solution.

3.3.1 Bearing selection and design.

There are many manufacturers of precision rolling element bearings including Torringtion-
Fafnir, Barden, NSK, and SKF 5 6 7 8, In selecting the bearings to use, Slocum'’s,
“Precision Machine Design” [16] and Harris’s “Rolling Bearing Analysis” (9] are very
informative. Of the bearing manufacturers, I find that NSK and Barden provide the
most complete application information. In addition, Barden usually has the desired
bearings in stock. As a generalization, rolling element bearings come in two forms,
ball bearings and roller bearings. Ball bearings are usually made more accurately
because it is easier to make a perfect sphere than a perfect cylinder. However, for
heavy loads roller bearings may be the only choice. For our application, the loads are
not high enough to require them.

Figure 3-15 shows a cross-section of the tool arm shaft bearings. The bearings
used are Barden 205HDL, which are angular contact ball bearings rated at ABEC 9
tolerances. These bearings have a contact angle of 15° and a light axial preload of
15 Ibs. Two bearings are mounted in a back-to-back arrangement on each end of the
tool arm shaft. In this arrangement, the contact lines converge outside the bearings.
Another arrangement is to mount them face-to-face, where the contact lines converge
inside the bearing. The back-to-back configuration is more common because it has
more stiffness against moments exerted by the shaft. At the shaft end coupled to
the servomotor, an axial clamp and a shoulder in the bearing bore constrain the
outer races of the bearings in the axial direction. Thus, this set of bearings also
act as the thrust bearings. On the other shaft end, the outer races of the bearings
are unconstrained in the axial direction, which allows for shaft deformation from

thermal effects. By letting one set of bearings “float”, the shaft is not overconstrained.

5The Barden Corporation, 200-T Park Ave., Danbury, CT 06813, (203)744-2211

8NSK Corp., 3861-A Research Park Dr., Ann Arbor, MI 48106, (734)761-9500

"Fafnir Bearings, The Torrington Co., P.O. Box 1008, Torrington, CT 06790-1008, (800) 854-0175.
8SKF Motion Technologies, 1530 Valley Center Pky., Bethlehem, PA 18017, (800)423-6874
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Figure 3-15: Cross-section of the bearing design.
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Bearing Bore | Bore Diameter | Raceway Radial | Squareness | Raceway Axial | Duplex Width | Parallelism
18-30 mm (+.0000 to ...) Runout of face Runout (+.000 to ...)
-.0002 .0001 .00005 .0001 -.01 .00005

Table 3.4: Inner ring tolerances of Series 200 ABEC 9 bearing, in thousandths of an
inch. (Barden)

Preloading of the bearings is accomplished by clamping the inner races against the
shoulders on the shaft by Bearhug locknuts, made by Whittet Higgins . These
locknuts are ground to ensure the squareness of the locknut face. Another feature
of the locknuts is that they are self-locking. The threads deform when tightened to
insure that they will not lose clamping force during operation.

In terms of load capacity, the Barden 205HDL bearings have radial, axial, and
dynamic load capacities of 9963 N (2214 Ibs), 9166 N (2037 lbs), and 14773 N (3283
1bs), respectively. Without preload and lubricated with grease, the bearings can
be run at a maximum speed of 32,000 RPM. With a light preload, the maximum
speed is 24,000 RPM. Preload increases the friction inside the bearing, decreasing the
maximum operating speed. However, as shown before, for our application the speed
of the tool arm shaft is on the order of 100 RPM. Also, the 100’s of Newton loads we
expect to see during cutting are much lower than the load ratings of the bearings.

Precision ball bearings are separated into different classes and given an ABEC
number depending on the accuracy of the bearing manufacture. The higher the ABEC
number, the more accurately the bearing’s components have been manufactured.
Typical machine tools use ABEC 5 bearings and precision spindles use ABEC 7 or
9 bearings. Table 3.4 shows ABMA Standard 4 and 20 and the ISO Standard 15
for an ABEC 9 bearing. Of particular interest to us are the tolerances for the radial
and axial runouts, which cause error motions as the shaft rotates. According to the
specifications, we should expect to see approximately 2.5 pym (0.0001 in) of error
motion in the radial and axial directions over one revolution of the shaft. At first

glance, these error motions appear to be too large to meet our requirement for sub-

9Whittet-Higgins Company, 35 Higginson Ave., P.O. Box 8, Central Falls, RI 02863, (800) 709-
8790
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micron error motions, especially considering that a fluid-static bearing could give us
error motions of less than 25 nm. However, the angular excursion of the tool arm
will be a small fraction of a full rotation. Therefore, the error motions within the
functional range of the arm should be acceptable. We will discuss this in greater

detail when we describe the testing of the bearings later in the chapter.

Back-to-back angular contact bearings are preloaded by clamping their inner races
together. In our design, this is accomplished by press-fitting the bearings flush with
the shoulders on the shaft and then tightening the locknuts. During manufacture,
some defined amount of the inner race is ground away so that there is a gap between
the inner races of the duplex set when the bearings are first assembled. The amount of
the inner race that is ground away sets the magnitude of the axial preload. When this
gap is closed by tightening the locknuts, the contact angle between the ball bearings
and the races is established. For the 205 HDL bearing, light, medium, and heavy
preloads for a 15° contact angle correspond to axial preloads of 67.5 N (15 lbs), 180
N (40 Ibs) , and 360 N (80 Ibs), respectively.

Preloading the bearings is extremely important because it closes radial and axial
play between the balls and the races, increases the bearings’ stiffness, and prevents
skidding under high acceleration. Accuracy and resolution increases initially with
preload for these reasons. However, as preload increases so does ball deflection,
which reduces accuracy. Friction also increases, which decreases resolution. Typi-
cally, medium to heavy preloads are used for machine tools, where the loads on the
bearings may be great enough that the bearings could easily lose preload. For our
application, the most important requirement is high accuracy during the finishing cut
of the lens, where we can take a shaliow depth of cut to keep the cutting forces low.
Therefore, we choose the lightest preload setting of the bearings, to insure any play
in the bearings is eliminated and that accuracy and resolution are not sacrificed more

than necessary.

Bearing fits are also extremely important. If the fit of the bearing inside the
bearing bore is too loose, then the play between the two will lead to error motions

during operation. Conversely, if there is too much interference between the bearing
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and the housing, then forcing the bearings into the bore may warp the outer race
and increase ball deformation and friction in the bearing. In extreme cases, excessive
interference fits lead to premature failure. As noted in Table 3.4, the tolerance on
the OD of the bearing bore is +0.0000 to -0.0002. Each bearing manufacturer will
have slightly different specifications for the bearing bore diameter, but the thrust
bearing should have a positive interference fit, and the floating bearing should have a
running fit to allow for the outer race to move axially, to allow for thermal expansion.
Neither bore should be so large that the outer race of the bearing will have clearance
to wobble inside the bore. The Barden 205HDL has an OD of 52 mm (2.0472”). For
the thrust bearing, we specify a fit of 2.0472 £ 0.0001”, and for the floating bearing
we specify a fit of 2.0475+0.0001”. A similar situation exists in the case of the shaft.
There should be slight interference fits between the inner race of the bearing and the
shaft to guarantee that there is no play between the two. Unlike the housing fits,
the shaft fit can be the same for the thrust and floating bearings, because we do not
desire any shaft movement with respect to the inner bearing race. The bore diameter
of the 205HDL is 25 mm or 0.9843”, and we specify fits of 0.9843 + 0.0001 for both

bearing seats.

3.3.2 Radial and Axial Error Motion of the Bearings

The techniques we use to measure the error motions of the bearings follow those
given for measuring the error motion in spindles [1], [8], [18]. One of the difficulties
of measuring the error motions of a rotary axis is separating the error motions of
the axis from imperfections of the target. This separation can be done by using a
technique called reversal. The basic procedure is shown in Figure 3-16. First, the
sensor is fixed on a target. Then, the spindle is rotated a number of times and the
runout of the spindle is recorded. The sensor measurement V;(#) contains the error

motions of the spindle E(8) plus the imperfections of the target I(8).

Vi(8) = 1(8) + E(6). (3.32)
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Figure 3-16: Demonstration of reversal, from [18].

Next, the target is rotated with respect to the spindle axis by 180° and the sensor is
placed on the other side of the spindle. Now, the sensor measurement V,() includes

the imperfections of the target 7(6) minus the error motion E(#) of the spindle
Va(6) = 1(6) — E(6). (3.33)

Subtracting V,(0) from V,(#) and dividing by two we obtain

Vi(6) — Va(6)

> = E(6), (3.34)

and we have separated the error motion of the rotary axis from the imperfections of
the target.

In our test, we use the toolholder shaft as the target for the sensor, an ADE
capacitance probe 2. The index pulse of an 1100 count encoder attached to one end
of the shaft marks the beginning and end of each revolution. After ten revolutions of
the shaft, the shaft is rotated 180° with respect to the encoder shaft. Then, the sensor
is placed on the opposite side, and the shaft is rotated another ten revolutions. Figure
3-17 shows a trace of the toolholder shaft’s radial error motion over ten revolutions,
after subtracting out the target error using eq. 3.34. Figure 3-18 shows the same
trace as a polar plot. The peak radial error motion is approximately 0.8 um. This is

well within Barden'’s 2.5 um specification for the radial error motion of the bearings.

1ADE Technologies Inc., 1525 McCandless Dr., Milpitas, CA 95035, (408) 935-4816
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Figure 3-18: Polar plot of the radial error motion, after subtracting target error.

69



Axia) Emor Motion

_3 1 1 1 1 1
0 2000 4000 6000 8000 10000 12000

Encoder Incroment

Figure 3-19: Trace of the axial error motion.

The sensor target for measuring the axial error motion of the bearings is a gageball
mounted on a wobble plate, attached to the end of the tool arm shaft. The wobble
plate is a kinematic mount for the gageball which clamps to the tool holder shaft
via a flange. By adjusting the wobble plate, the gageball’s axis of revolution can be
moved to coincide with the tool holder shaft’s axis of revolution. Figure 3-19 shows a
trace of the toolholder shaft’s axial error motion over ten revolutions, and Figure 3-20
shows the same trace as a polar plot. "T'he peak axial error motion is approximately
2.8 pm. This is slightly larger than Barden’s 2.5 um specification for the axial error
motion of the bearings. However, it is close enough to still be believable. While
the axial error motion appears to be worse than the radial error motion, both are
believc to be acceptable for our application. Consider again cutting an 8X10 toric
lens where the linear travel of the tip is 1.26 cm. For a 100 mm arm, the angular
travel is 0.126 rad, which corresponds to 2.0% of a full revolution. Thus, our working
range occupies a fraction of the error motion trace for one revolution. In this case,
2% of the peak-to-peak radial and axial error motions would be, 0.03 zm and 0.1 um,

respectively. In addition, for most lenses, the axial errors are not in a particularly
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Figure 3-20: Polar plot of the axial error motion

sensitive direction.

3.3.3 Stiffness of the Bearings

During cutting, there is a significant vertical force exerted on the tool arm bearings,
requiring the bearings to act as thrust bearings as well as radial bearings. As stated
earlier, a heavy cut in polycarbonate generates a 200 N of force in the vertical direc-
tion. As shown in Figure 3-15, the line of contact between the races and the balls
for an angular contact bearing is an angle ¢ from a plane orthogonal to the axis of
rotation. The contact angle can be varied depending on the application. The greater
the angle, the more thrust load the bearing can tolerate. For example, Barden an-
gular contact spindle bearings have contact angles of 15° or 25°. Ball screw support
bearings, which must handle large thrust loads, have a 45° contact angle.

The relation between bearing deflection and load is nonlinear because the contact
area of the ball bearings varies with load. Unloaded, the bearing has the lcast, stiffness
because only a small portion of the ball is supporting the load. As the load increases

and more of the ball bearing comes into contact with the races, the bearing’s stiffness
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also increases. To cbtain stiffness estimates, not many sources give information on
how to calculate the deflection of bearings as a function of load. In particular, bear-
ing manufacturers do not usually provide information on how to calculate bearing
stiffness. Again, [9] is very useful and we use the relations between bearing deflection

and load developed there.

For an angular contact bearing, the radial deflection 4, and axial deflection 4, in

millimeters, are

0.00044 (Q2\'? i
b = sin a (3) (3.35)
0.00044 [Q%\'? ,
5 = cos & (%) ' (3:36)

The rolling element loads from an axial load @, and a radial load Q, are

Fy
Qo = Zsina (3.37)
4.37F, .
@ = Zcosa (3.38)

F, Pure Axial Load

F. Pure Radial Load

D Nominal Rolling Element Diameter
o

Contact Angle
Z Number of balls

Note the nonlinear relationship between deflection and applied load, § oc Q%3.
Also, a pure axial force F, loads all the balls equally, and the inner race shift due to
the thrust load equals the deflection of the balls. However, a pure radial force loads
the balls in the bearing unequally. This leads to an uneven load distribution, and
the deflection of each ball bearing depends on its angular position from the applied
radial load. To find the maximum rolling element load exerted requires an integral
solution that sums all the rolling element loads. This is also covered in [9]. An easier

rule of thumb as given in eq. 3.38, valid for pure radial loads and zero clearance
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Figure 3-21: Effect of a thrust load on preloaded angular contact bearings.

between the bearing outer race and the bearing bore, is used. These relations for
bearing deflections are approximate because under actual loading conditions, the
contact angle changes as a function of load. However, they are sufficient to give us an
estimate of the bearing stiffnesses. Figure 3-21 shows the effect of preloading angular
contact bearings and then lcading them with a thrust force. An axial preload F,
(not shown in the figure) on the bearings, causes a preload deflection 6, of the ball
bearings. This can be thought of as the new equilibrium point of the ball bearings.
Now, we need to calculate 4, the deflection on both bearings from an additional load

F,. From geometry, the deflections §; and J, of bearing 1 and bearing 2 are

6 = 0p+0da, (3.39)
b2 = 0p— b, (3.40)

A thrust force in the direction shown in Figure 3-21 further loads bearing 1 and at

the same time acts to unload bearing 2. Balancing the forces, we see that
Fa = Fl - F2, (341)

where F} and F; are the load forces on bearing 1 and bearing 2, respectively. To find
d, resulting from F, we follow these steps:

1. Find the deflection d, from the preload force F, from eqs. 3.35 and 3.37.

2. We assume a value for 4§, and from eqs. 3.39 and 3.40 find 4, and 6.
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3. Combining egs. 3.35 and 3.37, we can solve for the load force F; on the bearing

when it is deformed by an amount J;,

5\
_ DY27(in 0)5/2 i _ _
F;, = D'/*Z(sina) (0.00044) (3.42)

With eq. 3.42 we can solve for F; and F5.
4. Finally, from eq. 3.41 we can solve for the axial load force Fj.

Radial loads do not act to unload the preload of the bearings. Also, both the
thrust and floating bearings act to resist radial loads. Thereiore, any applied radial
loads F; will be divided by four, the number of angular contact bearings. To calculate

the deflection 4, from a pure radial force we follow these steps:

1. We again start from the equilibrium where the balls are preloaded, and the
rolling element load from eq. 3.37 is ;. The radial deflection 4, from the

preload can be found from eq. 3.36.

2. From eq. 3.38 the rolling element load @, from a radial load force F; can be

found.

3. The total rolling element load is now @, + @, and eq. 3.36 can be used to find
the total deflection.

3.3.4 Testing bearing stiffness

Bearing catalogs typically show a plot of axial and radial deflection versus load for
one of their bearings. To see how accurately we can predict bearing deflection as a
function of force, we compare the actual deflections found by the bearing manufac-
turer and compare them to the deflections we predict using the procedure detailed
in the previous section. Barden gives the deflection vs. load curve for their 114HDB
bearings. These are ball bearings with a 15° contact angle, a bore size of 70 mm, and

a ball complement of 18, 12.5 mm diameter balls. Light, medium, and heavy preloads
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Figure 3-22: Axial deflection of the HDB114 bearings.

are 65, 160, and 320 lbs., respectively. Figures 3-22 and 3-23 shows the actual deflec-
tions from axial and radial loads of 450 (100), 900 (200), 1350 ( 300), and 1800 N (400
Ibs), for back-to-back bearings with medium preload, taken from the Barden’s exper-
imentally determined stiffness curves. Also shown are the deflections predicted from
the techniques outlined in the previous section. Keeping in mind that we are using
equations that approximate bearing deflections and comparing them to experimental

data, the agreement between the predicted and actual deflections is fairly good. The

Table 3.5: Comparison of actual and predicted deflection for the Barden 114HDB

bearing.

Axial Load (Ib.) | Predicted (in.) | Barden (in.) | Error %% Error
100 0.00016 0.00015 0.00001 | 7

200 0.00036 0.0003 0.00006 | 20

300 0.00052 0.00045 0.00007 | 16

400 .00072 0.0006 0.00012 | 20
Radial Load Predicted (in.) | Barden (in.) | Error % Error
100 0.00005 0.00003 0.00002 | 67

200 0.00009 0.00006 0.00003 | 50

300 0.00013 0.0001 0.00003 | 30

400 0.00017 0.00013 0.00004 | 31
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Figure 3-23: Radial deflection of the HDB114 bearings.

error between the actual and predicted deflections for axial loading is no greater than
20%. For radial loading, the largest error is higher, 67%, because overall deflections
are much lower. More importantly, the slopes of the curves, which correspond to
bearing stiffness, are very close. In other words, we are able to predict how much the
bearing will deflect after the initial preload. As a quick means of estimating bearing

deflection and stiffness, the method outlined above appears to be valid.

To determine whether ball bearings had the required stiffness for our application,
the axial stiffness of the testbed bearings, Barden 204HDL, were tested. These are
angular contact bearings with a contact angle of 15° and 10, 5/16" diameter balls.
The preload levels are 67.5 (15), 40 (180), and 360 N (80 lbs.). Figure 3-24 shows the
calculated deflection of the thrust bearings as a function of applied axial load. When
one of the bearings in the back-to-back arrangement loses preload, the other bearing
resists all of the thrust load. The deflection curve then has the same characteristics as
an unpreloaded bearing. A general rule of thumb is that the bearing will lose preload
when the applied axial load is three times greater than the preload. This metric is

cited in Barden’s bearing catalog, and is also found to be true in our calculations.
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Figure 3-24: Axial deflection vs. load force.

The point of unloading for each level of preloading can be seen in Figure 3-24.
The deflection curve for the unpreloaded bearing starts very steeply as an axial load
is applied. As we mentioned before, this is because the contact area between the ball
bearings and the races is very small. As more load is applied, the deflection curve
levels off and additional loading causes less deflection. Hence, one of the benefits of
preloading is that the initial deformation of the ball bearings loads the balls such that
their deflection curve starts past the initial knee, where the balls are extremely com-
pliant. Although the relationship between deflection and load is nonlinear, after the
bearings are preloaded, the relationship between deflection and load has a reasonably

constant slope, until one of the bearings loses preload.

Figure 3-25 shows the deflection curve of the thrust bearing over a smaller range of
loads. As mentioned previously, we expect the largest vertical forces in our application
to be approximately 200 N. From this graph, we can more easily extrapolate the
expected stiffness of the thrust bearing in its operating range. Over a range of 0 to
100 N, the approximate axial stiffness of a bearing with no, light, medium, and heavy

preloads is 10, 25, 36, 50 N/um, respectively. We have specified a light preload, but
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Barden 204HDL Axal Deflection of Two Bearings Back-to-Back .

’

’ ———  NoPreload

- - = Preload 15 (68 N)
-------- Preload 40 ib (180 N)
‘=== Preload 80 Ib (360 N)

L 1 W 1 1 L J
200 250 300 350 400 450 500
Thrust Force (N)

Figure 3-25: Axial deflection vs. load force, closeup.

interference fits will probably increase the preload.

Figure 3-26 shows the deflection curves for a radial load. In the range of 0 to
100 N, the approximate radial stiffness of the bearings with no, light, medium, and
heavy preloads is 140, 210, 260, and 310 N/um, respectively. The radial stiffness of
the bearings is much higher for two reasons. First, the contact angle of the bearing
is only 15°. Thus, the line of contact running through the bearings is more aligned
to resist radial loads. Second, all four bearings are contributing to the stiffness of the

system.

To test the axial stiffness of the bearings, we mount the bearing housing vertically
and load the bearings by placing weights on one end of the shaft. The other end
of shaft, with the wobble plate attached to it, is used as the target for an ADE
capacitance probe, which records the displacement of the shaft from the load. For
loads of 22.5 N (5 lbs.), 45 N (10 lbs.), and 67.5 N (15 lbs.) the axial displacement
is shown in Figure 3-27. In the range of our load forces, which correspond to loads
seen from light roughing passes in polycarbonate, the static stiffness of the bearings

is approximately 90 N/um. Finishing passes will load the bearings more lightly. For
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Barden 204HDL Radial Deflection of Four Bearings Back-to-Ba ck.
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Figure 3-26: Radial deflection vs. load force.

Axial Defisction of Barden 204HDL bearing.
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Figure 3-27: Experimenta! axial deflections from static loading.



light and medium preloaded bearings, we predicted axial stiffnesses of 25 and 36
N/pm. As mentioned before, while we have specified a light preload, we also expect
the interference fits on the tool arm shaft and bearing housing to increase the preload
of the bearings. However, the actual stiffness is still approximately twice the axial
stiffness for medium preloaded bearings. One reason for this might be that the loading
is light enough that the fit on the floating bearings keeps them in place for thrust
loads. Thus, they share in carrying the load in this experiment.

3.3.5 Resolution of the Bearings

The resolution limit of the rotary fast tool servo is a combination of many factors,
including static friction in the bearings, positioning noise as a result of A/D, and D/A
quantization, and other system noise. Therefore, a test of the achievable resolution of
the bearings is not a test of the positioning resolution of the fast tool servo. However,
it is an indication of whether the bearings will be the limiting factor of achievable
resolution. To determine the resolution of the bearings used in the testbed, we have
the tool arm shaft track a square wave under closed-loop control. As we decrease
the amplitude of the square wave, at a certain point the torque commanded by the
controller is not enough to overcome static friction in the bearings. To close the
luop, an analog phase-lead controller with a bandwidth of 60 Hz is used. By using
an analog controller, we eliminate A/D and D/A quantization. The input to the
system, a square wave with a frequency of 4 Hz, is supplied by a function generator.
When measuring the angular position of the toolholder shaft, the signal given by
the servopot is prefiltered by a 5 Hz lowpass filter and then amplified by a Tektronix
differential amplifier !*. Figure 3-28 shows a series of 20 urad steps, which corresponds
to 2 pum of linear motion at the end of a 100 mm arm. The deviation in position is
on the order of 2.5 prad, which corresponds to 0.25 pm at the tooltip. Currently, the
limiting factor of this test appears to be the resolution of the servopot, which should

be improved when we install a high resolution encoder.

17Tektronix Inc., P.O. Box 500, Mail Stop 63-814, Beaverton, OR 97077, (503) 627-7111
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Figure 3-28: Output of servopot showing 20 ;rad steps.

3.4 Flexible Coupling Selection

Finding a suitable flexible coupling to join the motor and the tool arm shaft has been

more difficult than expected. The requirements for the coupling are,
e Place the torsional mode of resonance in the axis above 1 kHz.
e Allow minor misalignment of the tool arm shaft with respect to the motor shaft.

The second requirement is obvious for the fiexible coupling. The bearings for the
tool arm shaft are much stiffer than the bearings for the motor shaft, and a solid
coupling between the motor and tool arm shafts would be impose an overconstraint
and eventually cause the motor bearings to fail. The first requirement is much more
difficult to satisfy. Many of the commercial flexible couplings surveyed do not have
adequate torsional stiffness for our application. Typical couplings include one piece
helical couplings, couplings with bellows, and couplings with rigid pieces joined by
flexible springs. In general, one piece helical couplings are the least stiff, while tor-

sional stiffnesses quoted for bellows couplings are the highest. As we hope to achieve
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Figure 3-29: Model of the distributed compliances in the RFTS axis.

very high bandwidths on the RFTS axis, resonances at low frequencies have to be

avoided.

Figure 3-29 shows a model of the distributed compliances in the system. In
essence, we are modeling the system as two rotational inertias coupled by three tor-
sional springs in series. In Figure 3-29, Jys and J, are the inertias of the motor and
the load, respectively. The load inertia includes the inertias of the coupling, the tool
arm shaft, and the tool arm. The three torsional springs are Ky g, K¢, and Krg, the
stiffnesses of the motor shaft, the flexible coupling, and the tool shaft, respectively.
The compliance of the motor shaft comes from the free length of the shafi starting
from the motor armature and ending at the flexible coupling. Since we cannot mea-
sure this directly, we assume a length of 1 inch. Likewise, the compliance of the tool
arm shaft starts at the flexible coupling and ends where the tool arm is clamped to
the shaft. This length is approximately 2 inches. The stiffness, the inverse of the

compliance, of a uniform shaft in Nm/rad is

| N
&.

where J = %r“, is the rotary inertia of the free length L, and G is the shear modulus
of the material, which is approximately 80 GPa for steel. The total equivalent stiffness

K7 can be found by

1 1 1 1
= + — 4+ —. 3.44
Kr Kys Ke Krs ( )
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Now, the resonant frequency of the axis f,, in Hz is

fa= 51;\/ ﬁ%’;—m (3.45)

While working on the testbed, we are using a ZeroMax SC-050 flexible coupling
with a stiffness K¢ of 20,000 Nm/rad and an inertia of 1.42E-4 kg-m? 2. ZeroMax
couplings are basically three aluminum cylinders separated by metal discs. The two
shafts to be joined fit into the two outer cylinders. The metal discs flex to allow
some misalignment of the shafts, but are rigid in torsion. The Aerotech motor shaft
has a 0.75” diameter. Assuming a free length of 17, Kys = 40,296 Nm/rad. For
the testbed, the tool arm shaft has a diameter of 0.75”. Assuming a free length
of 2”, Krs = 20148 Nm/rad. Substituting into eq. 3.44, Kr = 8035 Nm/rad.
In our series of tests, the load was the tool arm shaft and the flexible couplings,
including the coupling joiring the tool arm shaft to the servopot. The estimated
load inertia J, = 3 x 10~? kg-m2. From Table 3.1, the Aerotech motor has an inertia
Ju = 5.6x1074. Therefore from eq. 3.45, f, = 1018 Hz. However, f, is also expected
to drop to 807 Hz when we add the tool arm, which adds an inertia of 4.14 x 10~
kg-m? to Jy.

This expected resonance is lower than what was specified in our design parameters
for the coupling, because at first we underestimated the compliance of the motor shaft
and tool arm shaft. Even still, when measured the stiffness of the ZeroMax coupling
is much less than what is quoted. Figure 3-30 shows the power spectral density of the
tool arm position when the torsional mode of resonance is excited. The frequency of
the resonance is 482 Hz, which is significantly lower than our prediction of 1018 Hz.
To increase the stifiness of the coupling we remove the middle cylinder, effectively
leaving just the two cylinders into which the shafts are inserted and the metal discs
in between. This appeared to help significantly and our resonance is moved up to 826
Hz, as shown in Figure 3-31. However, the coupling still does not perform as well as

expected.

12Zero-Max, Inc., 13200 Sixth Ave., N., Minneapolis, MN 55441-5509, (800)533-1731
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Figure 3-30: Power Spectral Density of tool arm positior showing resonance at 482
Hz with ZeroMax coupling.

Torsional Mode of Resonance, 826 Hz
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Figure 3-31: Power Spectral Density of tool arm position showing resonance at 826
Hz with modified ZeroMax coupling.
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For the prototype RFTS axis, we are using a bellows-type coupling, the KR-65
from Gam Jakob 3. Currently, it is installed on the prototype machine with the
testbed bearings. The KR-65 is a one piece coupling, unlike the Zero-Max coupling,.
There is a single corrugation, essentially a fold in the coupling that allows it to bend,
at each end of the coupling. The bellows allow for lateral and angular misalignments
of 0.006” and 1°, respectively. In general, these couplings, while more expensive, have
much higher torsional stiffnesses. They differ from the spring disc couplings in that the
torsional rigidity comes from the entire coupling rather than from metal spring discs.
The KR-65 has a quoted torsional stiffness Kc = 48000 Nm/rad. Again, assuming
Kpys = 40,296 Nm/rad and Krs = 20,148 Nm/rad, K+ = 10434 Nm/rad and the
resulting f, = 921 Hz. This prediction agrees well with the resonant frequency of
910 Hz that we measure on the prototype machine. Once the new bearing structure
is installed and the tool arm shaft’s diameter increases to 1”, which increases Krg to
60392 Nm/rad, f, is expected to increase to approximately 1141 Hz.

Part of the work on the testbed involves trying to damp the torsional mode of
resonance by adding damping to the Zero-Max coupling. To damp the flexing of the
metal discs, we place Isodamp, a damping material from EAR, between the metal
discs . This helps damp the resonance, but separating the discs with the Isodamp
material also makes them buckle under high torsional loads, such as when the tool arm
is driven at high frequencies. Filling the coupling with either silicone or Moretight
does not help appreciably. Moretight is commonly used as insulation around windows
in houses. It also seems to be a good damping material, but we believe that it does
not flex with the metal discs and thus does not damp the torsional mode of resonance.

Since the Gam Jakob coupling is a one piece coupling and the torsional rigidity
comes from the middle shell, damping the Gam Jakob coupling by means of a con-
strained layer damping might be mcre effective. An example of this would be adding
damping material inside a sheet of metal shim around the coupling. This would be

the equivalent of adding damping material between the metal discs of the Zero-Max

13Gam Enterprises, Inc., 7333 W. Wilson Ave., Chicago, IL 60656,(800)841-1293
1E-A-R Specialty Composites, 7911 Zionsville Rd., Indianapolis, IN 46268-1650, (317) 692-1111
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coupling, but in this case it should not affect the mechanical properties of the cou-
pling. Another option is to actively damp the coupling, which will be the topic of

future research on the testbed but is not covered in this thesis.

3.5 Overview of Rotary Sensors

One requirement of the RFTS is to find a high accuracy, high resolution, low inertia

rotary sensor. Specifically, the requirements for the rotary sersor are,

e Angular accuracy on the order of 10 urad. For a 100 mmi rotary arm, positioning
the tip to within 1 um accuracy corresponds to the sensor having an accuracy

of approximately 10 purad.

e Angular resolution an order of magnitude greater than the accuracy, approxi-

mately 1 urad.

At first, we considered using a rotary capacitive sensor for the RFTS axis. As an
example, General Scanning uses a rotary capacitive sensor in their galvanometers !°.
These are limited-range sensors used in optical scanning, an application where the
scanning motion is similar to the motion of the RFTS axis. The working principle of
this sensor is that it measures the change in capacitance between the sensor’s rotor
and stator. To accomplish this, the sensor’s rotor has a butterfly shape. Thus, as the
rotor rotates with respect to the stator, the capacitance between the rotor and stator
changes, giving us a means of measuring the angular position of the rotor. This type
of sensor seems particularly attractive because the end of the tool arm shaft can be
machined to the required shape. The sensor stator can then be a cap around the end
of the shaft. In addition, this would add little or no inertia to the RFTS. Initial tests
also showed that the sensor’s resolution is close to our needs. However, one worry is
whether we are be limited by a 16 bit A/D converter. As an example, over an angular

travel of 20°, 16 bits of resolution would give us 5 urad of resolution, which is most

1%General Scanning Inc., 500-T Arsenal St., P.O. Box 307, Watertown, MA 02272, (617) 924-1010
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likely too coarse for our application. Also, the sensor would not be an off-the-shelf
item. While, developing the sensor would not be extremely difficult, we decided it

would be easier to use a sensor with less development timne associated with it.

Companies that make encoders with resolutions high enough for our application
include, MicroE, Heidenhain, Hewlett-Packard, and Canon. Table 3.6 shows some
of the characteristics of high-resolution encoders from these companies. Heidenhain
makes standard optical encoders with a diffraction grating on the encoder disk. While
its resolution is adequate, the encoder disk has a diameter of 200 mm, which is obvi-
ously too large for our application. MicroE, Hewlett-Packard, and Canon make laser
encoders which also have diffraction gratings on the rotating disk. These encoders
take advantage of diffraction effects to achieve high resolution. The intensity of the
interference fringes, from passing a laser through the diffraction grating, modulate as
the disk is rotated. Sine and cosine outputs are generated and interpolated to give
the angular position of the disk. A more detailed explanation of laser encoders and

conventional optical encoders is provided in [16].

Currently we are installing a high resolution encoder donated by MicroE onto the

prototype machine. 16

. This work is primarily the work of another M.S. student,
David Chargin. The MicroE encoder’s diffraction grating has a 20 pm pitch, which
gives a fundamental resolution of approximately 15000 counts per revolution. The
sine and cosine waves can be used to interpolate the fundamental resolution by x4096
to give a final resolution of 0.1 urad. From its specifications, the MicroE encoder
appears to meet our requirements. The other encoders may also be suitable, but
we are evaluating the MicroE encoder primarily because it is available and free of
cost to the research project. The HP encoder is distinctive because the glass scale
is only a section of a full disk and must be mounted at a specified diameter. While
its resolution is excellent, 0.016 urad, it might be difficult to mount accurately. The

maximum speeds of all the high resolution encoders are low because of the time

required for interpolation, but we should be high enough for our application.

18MicroE Inc., 130 A Street, Needham Heights, MA 02194, (617)455-1414
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Encoder Diameter (mm) | Resolution (urad) | Max. Speed (RPM) | cost ($)
MicroE 50 0.1 289 3000
Heidenhain RON 800 | 200 .89 67 5900
HP E1710A NA 0.016 212 5346
Canon X-1M 36 7 180 19000

Table 3.6: Comparison commercial high-resolution encoders.

Max. Speed (RPM)
360

cost
7000

Diameter (mm)
300

Resolution (urad
5

Inductosyn

Table 3.7: High-resolution inductosyn made by Farrand.

Inductosyns, made by Farrand, are another type of rotary sensor. Also noncontact
sensors, they use inductive coupling between two windings to generate a sinusoidal
signal !”. The signal can be used to find angular position in a manner similar to
optical encoders. The windings are printed onto the stator and rotor of the sensor
much like circuits patterns are printed on printed circuit boards. The pitch of the
windings determines the fundamental resolution of the Inductosyn. An AC excitation
in one winding will induces a voltage in the second winding. The amplitude and
phase of the induced voltage changes sinusoidaiy as the windings are rotated relative
to one another. A second winding, 90° out of phase with the first winding, gives a
cosine signal. Also similar to optical encoders, the sine and cosine signals can then
be interpolated for finer angular resolution. One advantage of Inductosyns is that
they are extremely rugged and resistant to harsh conditions such as dust and oil.
Inductosyns are also covered in [16]. A disadvantage of Inductosyns is that to obtain
high resolution requires a large rotor diameter, which leads to having a large rotary
inertia. Presumably, this limitation comes from how small the pitch of the winding
can be made. The high-resolution inductosyn we show in Table 3.7 has a diameter

of 300 mm. Hence, for now it appears the best choice of rotary sensors are laser

encoders such as the MicroE encoder that we will be using in the project.

""Farrand Controls, Div. Of Ruhle Companies Inc., 99 Wall St., Valhalla, NY 10595, (914) 761-
2600
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Chapter 4

Second-Generation Bearing

Structure Design

In this chapter we describe the design and fabrication of the second-generation RFTS
bearing structure. For the second-generation design, our goal is to bring all the
components from the RFTS testbed and fix their location on the prototype machine.
In the following sections, we first describe the second-generation design. Afterwards,
we detail the fabrication of the second-generation bearing structure. The experience
gained from building the bearing structure is useful when evaluating the design for a

production machine.

4.1 Design of the Second-Generation Bearing Struc-
ture
The criteria of the bearing structure are,
e Allow for the kinematics of cutting a lens.

e Minimize the effect of machining and misalignment errors on the cutting accu-

racy of the RFTS, by properly referencing features on the bearing structure.

e Be structurally stiff and well-damped.
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e Be easy to manufacture.

In terms of kinematics, the design of the bearing structure must allow the tool arm
sufficient travel to cut all of the lens prescriptions. Minimizing machining and mis-
alignment errors is also critical. Whereas in the testbed we wanted flexibility in
locating the components of the RFTS, for the second-generation design we want all
the components to be referenced accurately. In other words, we want to be able to
place the components deterministically. For example, since the squareness of the tool
arm shaft with respect to the machine base is important, we want that alignment to
be within a specified geometric tolerance. In order for the structure to be stiff and
well-damped, we want to insure the bearing housings are well-supported. This lead
us to design the structure to be one piece, or monolithic. A monolithic structure
also aids us in referencing features on the bearing structure. Ease of fabrication is
also an issue. Since we want the bearing structure to be buildable within a reason-
able time frame, we want to avoid a complex design that is difficult to manufacture.
This also has implications on the future of the prototype machine. The simpler we
make the design now, in terms of manufacturability, the more useful it becomes when
evaluating the prototype machine’s future as a production machine.

Figure 4-1 shows the second-generation bearing structure. Functionally, it is very
similar to the testbed bearing structure. One major improvement is that the bearing
housings are supported on two sides rather than being cantilevered as in the testbed
bearing structure. In a conservative analysis, modeling each bearing housing as a
beam, both sides of the housings are simply supported rather than being cantilevered.
This makes the entire structure much stiffer. As described previously, two sets of back-
to-back ABEC 9 bearings are housed in the top and middle levels of the structure.
The servomotor, attached to a faceplate, bolts onto the ledges near the bottom level of
the structure. Datum planes A,B,C, which are ground surfaces, are used to reference
all of the machined features on the bearing structure. Datum A mates with the
machine base and defines the squareness of all the structure’s features, with respect
to the Moore Tool surface plate. Datum B is the side datum plane and Datum C is

the front datum plane. A relief is specified on Datum B such that the surface grinder
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that grinds the datum can clear the structure’s feet.

Figure 4-2 shows the bottom view of the structure. The primary feature we show
in this view is the bearing bore for the thrust bearings which has a diameter of
2.0472 £ 0.0001”. As mentioned in the previous chapter, this is a slight interference
fit on the outer races of the bearings. The axial clamp for the thrust bearings bolts
into the eight, 1/4-20 tapped holes located on a 2.5” circle around the bore. Six,
10-32 tapped holes on a 3.5” circle around the bore can be used attach seals for
the bearings. Should it become necessary, a fluid damper to damp vibrations in the
vertical direction can be built. Ope possibility is to use the holes to bolt on a flat
surface to be used as part of a squeeze film damper. The opposing part of the fluid
damper would be attached to the tool arm shaft. Unfortunately, the holes were not
actually machined by the machine shop. To compensate for this, we may epoxy a
plate around the bearing bore with tapped holes to give us this extra functionality.
The motor’s faceplate bolts into the eight, 1/4-20 tapped holes on the ledges near the
structure’s feet. Dowel pins, press-fitted into the motor faceplate, slide into the two
0.251” reamed holes. This accurately locates the motor with respect to the tool arm
shaft. The flexible coupling between the two compensates for minor misalignments.
Figure 4-3 shows the axial clamp which helps constrain the thrust bearings in the
vertical direction by clamping against the bearings’ outer races. Buttonhead screws
are used to bolt on the axial clamp. The heads of the screws are countersunk to

reduce chance of interference with the flexible coupling.

Figure 4-4 shows the top view of the structure. This view shows the bearing
bore for the floating bearings, which has a diameter of 2.0475 4 0.0001”. Since we
want these bearings to be able to move within the bearing housing, the fit within
the housing is looser than what is specified for the thrust bearings. Tapped holes
on top of the bearing structure allow for components of a rotational sensor, such as
the MicroE encoder readhead, to be bolted directly onto the structure. The entire
structure bolts onto the Moore Tool surface plate via the five through holes on each

foot.

Figure 4-5 shows cross-section of the structure. In this view we show the design of
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Figure 4-2: Bottom view of the bearing structure.
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Figure 4-3: Drawing of the axial clamp for the thrust bearings.

94



\ul—z_ cm . O u._<W— HS NI 4
XELFTERLEL . OW P'ADQ g warao WiyILvN
€ $23YS aJn4dn 14 Bu1inag g, o

[NET F)

LY0LY¥OGV1 TO¥iNO) ROILICK NOISIJING LIN

“J¥v SIMY¥Il0L
SIHM! NI 1YV SHOISNINIQ
AU IS0 SN

§aYdU10JIIW Ul YySIul) 33D)INg

K3IA dOlL
-m-
— \
——— 0676 mNWv
om.ll% e} ——— *
= 051 = 0L
NYH1 _:sl\O _oc 005 ¥ = O %
S04 01 1V 0 @
o) ¢ o) 06
o
) %
A ° ° 00"y
0s°¢ b < ° ° O|||$»
om.mﬁ o ° o o 4 062
oc | ﬁ 1000 F5L70°2 & RN Olllwﬂ
i3 3 P i ]
_-u-_‘_
. 001
: 301S HOYI S210H 9 d@ 0670 X 2€-01 dvl
dd G°0 ¢€-01 dvl NYHL 11140 06°€@ vo dS 103 S2I0H 9

dd GL° X S?I9H 8
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Figure 4-5: Cross-section of the bearing structure.
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the bearing housings and their geometric tolerances. These tolerances can be found
in a manufacturer’s catalog, i.e. Barden. The shoulder inside the thrust bearing
housing locates the entire bearing and tool arm shaft assembly with respect to the
machine base. To aid in meeting the concentricity specification of 100 microinches, we
counterbore the bearing housings in one operation. Therefore, the concentricity of the
two bores is determined by the straightness of the jig borer’s axes. For referencing and
fixturing the structure during machining, we use the structure’s datum planes. This is
required in order to meet the squareness and parallelism tolerances of 40 microinches,
because we specify the tolerances relative to the datum planes. The other tolerance

specified is the roundness of the bearing bores, which is 40 microinches.

Figure 4-6 shows the front view of the structure. Six, 10-32 tapped holes on
the front of the structure allow us to seal the bottom half of the bearing structure
by bolting on a plate. Figure 4-7 shows the back view of the structure. The 2.5”
diameter hole in the back plate allows us to insert a vacuum cleaner next to the tool
arm to remove chips and dust during cutting. The rectangular hole near the bottom
of the back plate gives us access to components inside of the structure, such as the
flexible coupling, after the structure has been bolted onto the machine base. Both of
these holes can be sealed by plates bolting into the 10-32 tapped holes. Figure 4-7
shows a side view of the structure. Two 1/2-13 screws protruding from each side of
the bearing structure provide a means to easily move the structure. These screws are
removed when the structure is fixtured to the base. The eight, 1/4-20 tapped holes
on the side of the bearing structure are general-purpose holes. One possibility is to
attach a LVDT sensor to the side of the structure as a probe for the lenses that we
cut. The sensor can used to calibrate the position of the lens blank with respect to
the REF'TS, and to measure the lens after the cutting process. Eventually, the RFTS
could also be programmed to perform these tasks. Then, it may be useful to have

the LVLCT as an independent verification of the measurements taken by the RFTS.

Figure 4-9 shows a drawing of the tool arm shaft. The important features are the
bearing seats which have a diameter of 0.9843+0.0001”. As mentioned in the previous

chapter, both bearing seats are intended to have a slight interference fit with the
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Figure 4-6: Front view of the bearing structure.
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Figure 4-8: Side view of the bearing structure.
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Drawing of the tool arm shaft.

Figure 4-9
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bearings. Since we do not desire relative motion between the shaft and the bearings,
they have the same specified fits as the outer races of the thrust bearings. As the
bearings are mounted, they are press-fitted against the 1.28” diameter shoulders on
the shaft. Thus, the squareness of the shoulders is an important geometric tolerance,
which we specify tc be square to within 40 microinches. The tolerance on the tool arm
shaft’s shoulders is equivalent to the tolerance on the shoulder in the thrust bearing
bore. In terms of concentricity, roundness, and parallelism, the bearing seats have the
same tolerances as the bearing bores. Next to the bearing bores, the tool arm shaft
is threaded for a locknut. The locknut clamps the inner races of the bearings against
the shoulder on the shaft. This clamping action by the locknut preloads the bearings.
There is a slight undercut between the bearing seat and the threaded section of the
shaft. This allows the face of the bearing to slightly protrude past the bearing seat,
and to allow the locknut to be tightened against the bearing. The shaft end with a
0.625” diameter inserts into the flexible coupling, connecting the tool arm shaft to
the servomotor. On the other end, features are added to fit the MicroE encoder onto
the shaft. The entire shaft is heat-treated to surface harden the shaft to a Rockwell
C hardness of 45-50.

Figure 4-1/) shows a drawing of the motor face-plate, to which the motor is bolted.
A flange on the motor’s face inserts into the 2.187 +0.001” diameter hole. The motor
bolts into the face-plate via the four, 1/4-20 tapped holes on a 3.50” square around
the hole for the motor flange. Two, 0.25” diameter dowel pins are press-fitted into
the 0.249” diameter reamed holes. As mentioned before, the dowel pins give the

face-plate locational accuracy when it is bolted onto the bearing structure.

4.2 Bearing Structure Fabrication

With the design of the bearing structure finalized, the next issue is how to fabricate
it. For this we consider three options: a bolted structure, a weldment, and a casting.
Figures 4-11 and 4-12 show the form of the bearing structure before machining. It is

clear that the structure could be fabricated by bolting individual plates together,
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Figure 4-10
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welding the plates, or by casting the entire structure as one piece. The first-
generation bearing structure, used for the testbed, is bolted together. While it works
well for testing the bearings, there are some concerns with bolting together the second-
generation bearing structure. First, while unlikely, if the structure is ever unbolted,
the concentricity of the bores is lost. Also, it is possible that over time the pieces
of the structure can creep and shift with respect to one another. Finally, in order
to insure that the joints are well-constructed, all the matings surfaces of the pieces
would have to be ground flat and to the same dimensions before being assembled.
This requires many secondary machining operations. The second option, a weldment,
is a better candidate. After being welded together, the structure can be considered
monolithic, and its components are less likely to creep over time. The individual
pieces still have to be machined, but with less precision because the welding insures
the joining of the individual pieces. However, in an evolutionary sense, a weldment, is
the step between a bolted structure and a casting which is by definition, monolithic.

The question becomes whether a casting is economically feasible.

As a baseline, the MIT Central Machine Shop quoted the materials and labor
for a weldment to be $1000. For casting the structure, a couple of options are lost
foam casting and sand casting. In lost foam casting, a pattern of the structure is
machined from polystyrene. Then, sand is packed around the pattern, and molten
metal is pcured in, vaporizing the polystyrene and leaving the metal casting. For sand
casting a permanent model is made. For our purposes, a wood pattern is sufficient
because we do not expect to cast many pieces. In the case of sand casting, the
pattern is removed before the metal is poured into the sand mold. According to
information from various foundries, lost foam casting apparently produces castings
with slightly better dimensional accuracy and better surface finish. We were quoted
1/16" accuracy over one foot for lost foam casting, versus 1/8” accuracy over one
foot for sand casting. However, one disadvantage with lost foam casting is that the
pattern is lost during the casting. With conventional sand casting, many castings can

be made from one wood model.

In the end, casting the structure is a surprisingly economical method of fabrication.

104



31va J1V)S
mc_ *wov oN1avaG OI U_ >OO 10 Ravag
| }993ys burysod i

YK 1501498V)

ASOLYHOBY1 TOUINOD NOILOM NOISIJIdd LIN

ale 0

Y1831

10" F11°

“J4Y SIMVEINL
__SIHINI K] 34y SHOISHINIG

ERLN

(I

Figure 4-11: Form of the bearing structure before machining.
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Quotes from two different foundries for lost foam casting were $306 and $600. For
sand casting, the lowest quote was $460 for the pattern and $155 for each casting from
Charlotte Brothers Foundry !. Compared to paying $1000 for the weldment, casting
is a better design option and less expensive. Because cf a chorter lead time and the
ability to make additional castings quickly and cheaply, we decided to sandcast the

bearing structure.

In Figure 4-12, we can see tha! all the inside corners of the structure have 0.25”
radii fillets. While unnecessary for welded and bolted structures, they are required
in castings to avoid sharp corners, which can become points of stress concentration.
Also, additional material was specified on the outer dimensions of the casting so
that we could machine the entire structure down to the indicated dimensions. The
material for the casting is gray cast iron Class 30. Gray cast iron is typically used
for machine tools because it has high natural damping. The Class 30 refers to the
minimum tensile strength of the metal, in this case 30,000 psi/in?. After casting, the
structure then heat-treated to be stress-relieved.

Brookfield Machine undertook the machining of the casting. Their quote was
$4305 for machining the bearing housing, the motorplate, the shaft, and installation
of the bearings 2. Finding a machine shop willing to machine the casting was difficult.
Quotes ranged from Brookfield’s quote of $4305 with a six week delivery time, to
$8000 and a fourteen week delivery time from another shop. Some shops were simply
unwilling to quote the job. In terms of the design of the bearing structure, the only
difficult feature to machine is the counterboring of the bearing bores, which have a
dimensional tolerance of £0.0001”. Many of the shops we approached were unwilling
to commit to hitting that tolerance. Another difficulty is that they must be done
in one operation to insure the bores are as concentric as possible. The analogous
dimensional tolerance on the shaft is much easier to hit via cylindrical grinding. We
may be able to assume that once fixtures designed for the production machine are

developed, machining the bearing bores will become more efficient.

1Charlette Foundry, 74 Mill River St., Blackstone MA, (508) 883-8850.
2Brookfield Machine, 62 Central St., West Brookfield MA 01585, (508) 867-3200
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Another idea, suggested by Prof. Slocum, which may be considered in the future
as an option for production, is to replicate the bearing bores 3. In replication, the
bearings and the shaft are cast into place with a no-shrink polymer. In order to
do this, the grinding of the shaft and the installation of the bearings onto the shaft
remains the same. However, instead of counterboring the bores to the dimensions of
the bearings’ outer races, the hores are machined slightly larger, by approximately
0.050”. Then, the rotational axis of the shaft and the bearings is aligned square with
Datum A. The axis also has to be aligned concentric with the axis of the oversize
bores. Finally, the polymer is injected around the bearings and allowed to set. The
advantage of this process is that the polymer takes the shape of the bearings and
the bores around them. Therefore, not as much accuracy is needed when machining
the bores around the bearings. Devitt Machinery, the company which built our air
bearing linear slide, has significant experience in this. They replicate their bearing
pads for their air bearings with a metal-filled epoxy, such as DWH 310FL 4. It is also
not difficult to test this process on a scaled down model, which would include a well-
ground shaft, some inexpensive bearings, and a bearing housing with the oversized

bearing bores machined into it.

4.3 Cost Breakdown for the RFTS Axis

Since the prototype may at some point may become a production machine, it is
important to look at the cost so far in building the RFTS Axis. Clearly, the highest
cost has been machining the bearing structure. However, in production this cost
should decreasing significantly. Developing specialized fixtures might also increase
the efficiency of the operation. Still, considering the accuracy and care required to

machine the bores, replicating the bearings remains an attractive option.

3Professor Alexander Slocum is a Professor at MIT.
4Devitt Machinery Co., 4009-G Market St., Aston PA 19014, (610) 494-2900
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Component

Cost (%)

Servo Motor

960

Power Amplifier | 800
Motor Cables 400
Flexible Coupling | 652
Bearings 428
Casting 615
Machining 4305
Encoder 3000
Tool 170
Total 11330
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Chapter 5

Measuring Lens Form Error

A quantitative assessment of the form error in ophthalmic lenses currently produced
is important for estimating the necessary cutting accuracy required of the prototype
turning machine. Five cut and polished, -8 diopter lenses, spherical lenses with no
cylinder power, have been measured with a Coordinate Measuring Machine (CMM)
to determine the magnitude of the form error in the lenses after the lapping process.
In addition, one cut but unlapped -8 diopter lens has also been measured to determine
the magnitude of the form errors after the turning process. For each lens, the mea-
sured points on each lens can be fit with two different algorithms, a best-fit algorithm
and a known-radius algorithm. For the best-fit algorithm, a Least Squares Fit is done
allowing the radius of curvature of the predicted sphere to vary. For the known-radius
algorithm, the measured points are fit to a sphere with a set radius predetermined by
the desired optical power of the lens. A detailed survey of using Coordinate Measur-
ing Machines for metrology is given in [10]. Some additional sources that cover using

CMM’s in coordinate metrology are [13] [3].

After the Least Squares Fit, the best-fit radii of curvature of the five lenses have
a corresponding optical power range of £ 0.07 diopters. Fitting the data points to a
sphere with a set radius is also useful, because it allows us to see the actual errors
which occur in the lapping process. A similar analysis of the unpolished lens allows

us to see the form errors due to machining inaccuracies.
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5.1 Lens Measurement Procedure

5.1.1 Description of the coordinate measuring machine.

The CMM, from Brown and Sharpe, is basically a ruby-tipped probe positioned by
3 motorized axes traveling on air bearings !. When the probe tip is deflected upon
touching the surface of the lens, the z, y, and z coordinates are registered by the
computer. By taking a series of points, we can obtain a measurement of the lens
shape. In our tests, we take a 4 cm x 4 cm grid of points spaced 4 mm apart, for a
total of 121 points. The grid of the sample points is approximately centered on the

vertex of the lens.

5.1.2 Lens fitting algorithm.

All of the lenses we measured have a power of eight diopters. For a spherical lens,

the georretry of the lens is given by
R® = (I - 30)2 + (y - '!/0)2 + (z - 20)21 (5'1)

where R is the radius of curveture, z, y, and z are the coordinates of a point on
the surface of the sphere, and z,, y,, and z, are the coordinates of the center of the

sphere.

As we described in Chapter 2, the power of a ophthalmic lens is a function of the
thickness of the lens, the Index of Refraction of the lens material, and the radius of
curvature R. Therefore, there is not an exact relation between the radius of curvature
of a lens and its optical power. The opthalmic industry has adopted a standard called
tool power P. This standard allows us to assume a certain Index of Refraction and

thickness of the lens, and then cut a radius of curvature R knowing only the power

'Brown & Sharpe Mfg. Co., Precision Park, 200 Frenchtown Rd., North Kingstown, RI 02852,
(800) 648-4640
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of the lens which is desired. This relation is given by
R = 530/P, (5.2)

where R is in millimeters.

We have written a routine using Matlab to perform the Least Squares Fits of
the lenses. For the best-fit algorithm, we use a starting vector [Ry;: Z, ¥, 2,) which
represents the “guesses” of the true radius of curvature and center of the sphere.
Using eq. 5.1, a test radius Ry, is generated for each CMM data point assuming the
coordinates of the center of the sphere to be z,, y,, and 2,. Therefore, the error €
is (Rjit — Riest), and the squared error €® is (Ryi — Riest)®>. Matlab then performs
a simplex search to minimize €2 by varying Rjit, To, Yo, 2. For the known-radius
algorithm, the procedure is the same as for the best-fit sphere algorithm, except that

Ry, is a constant given by eq. 5.2.

5.1.3 CMM accuracy and repeatability

The CMM has a total measuring volume of 457 x 508 x 406 mm, with a stated
repeatability of 3 um, a volumetric accuracy of 10 um, a linear accuracy of 5 um, and
a resolution of 1 um. Some of the possible sources of inaccuracies in our measuring
process include mechanical tolerances of the CMM, probe tip deflection inaccuracy,
thermal effects from a uncontrolied temperature environment, and the data fitting
algorithm. We can test the accuracy and noise level of the CMM by performing
the Least Squares Fitting algorithm described above on a “perfect” gage ball with a
known diameter of 19.0490 mm (0.75”). The gage ball is used to calibrate the CMM
probe tip diameter and is perfect in the sense that variations in its form and surface
finish are good enough to be undetectable by the CMM. Thus, any error in calculating
the radius of curvature of the gage ball is assumed to be due to limitations of the
fitting algorithm and the inaccuracies of the CMM. The variance cf the residual errors
from the Least Square Fit of the gage ball should be the variance of the errors in the

measurement process o%. If we assume that the errors in the system are random,
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the variance of the residual errors from the Least Squares Fit of the lens o% is a
linear combination of actual form error variance ¢4 and ¢% [5]. After measuring the
variance of the error in the system 0%, by measuring the gage ball, the actual variance
of the form error 0% is

o2 = 0% —0%. (5.3)

This gives us a sense of whether or not the CMM’s resolution and accuracy limits it
from measuring the form error in our lenses. If 0% is the same magnitude as 5%, then
we cannot be certain if the error we are measuring is due to form error of the lens or
inaccuracies in our measuring process.

We can also test the repeatability of the measuring process by taking a grid of
sample points on a lens three times over the same sample space, and then comparing

the results from the three Least Squares Fits with each other.

5.2 Results

To measure the accuracy of our procedure, we took 195 sample points of the gage ball
with a known radius of curvature of 9.5245 mm. Ideally the probe tip diameter would
be known before measuring the gage ball. However, the only method of establishing
the probe tip diameter currently is to calibrate it with the same gage ball. The best-
fit algorithm found the radius of curvature to be 9.5224 mm, a difference of 2.1 um.
The standard deviation oy was 1.1 um. Now that we have a measurement of the
inaccuracies in the system, we can find o4 of the lenses with eq. 5.3.

The table below lists the Least Squares Fit radii and the corresponding powers
for the six lenses after fitting the CMM data using the best-fit sphere algorithm. Also
listed are the standard deviations o and o4. Lens 6 is the unpolished -8 diopter lens.
We can see that when trying to produce an -8 diopter lens with R = 66.25 mm, the
powers of lenses actually produced range from -7.962 to -8.067 diopters. o4 ranges
from 2.6 pm to 3.8 pm. One interesting note is that lens 6, the unpolished lens, has
a best-fit radius of curvature that is in the same range as the polished lenses. To see

if this holds true for all unpolished lenses, more test lenses would have to be made.
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Comparing o4 and og, we see that the difference between them is only 0.2um. The
inaccuracies in the system appear to be insignificant compared to the magnitude of
the errors in the lenses. Therefore, we can be reasonably confident that the error we

are measuring represents actual form error in the lenses.

Lens number | Radius of Curvature (mm) | Diopters | og (¢m) | 04 (#m)
1 65.6928 8.067 4.0 3.8
2 66.5658 7.962 4.0 3.8
3 66.5031 7.969 3.2 3.0
4 66.4921 7.971 2.8 2.6
5 66.4912 7.971 3.9 3.7
6 65.9655 8.035 2.9 2.7

We also list below or and o4 from fitting the CMM data using the known-radius
algorithm. From the table, we see that o4 ranges from 6.8 um to 9.4 um. Again,
after subtracting the inaccuracies in the measuring process, the standard deviation

of the residual errors decreases only slightly, in this case by only 0.1 pm.

Lens number | op (um) | 04 (pm)
1 8.3 8.2
2 9.5 9.4
3 7.2 7.3
4 6.9 6.8
5 7.3 7.2
6 8.0 7.9

To test the repeatability of our measurements, we measure a lens with a power

of -6.25 diopters three times over the same sample-space and fit the data with the
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Figure 5-1: Lens surface and residual error plot for lens 1.

best-fit algorithm. Their o04’s, shown below, and are within 0.4 pum of each other,
which is small enough to be attributable to the inaccuracies in the system. Therefore,

the measurements appear to be very repeatable.

Trial number | o (pm)

1 1.8
2 2.1
3 2.2

5.2.1 Plots of the lens’ surfaces and form errors.

Figure 5-1 shows a plot of the lens surface. Also shown is the error in the z direction
for lens 1, after fitting the CMM data with the known-radius algorithm. To more
clearly see the errors, we show a top view gray-scale of the error plot in Figure 5-2.
A linear interpolation has been done to fill in the spaces between the sample points.

Figure 5-3 shows the lens surface and the errors in the z direction for lens 6, the
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Figure 5-2: Top view of gray-scale error plot for lens 1. (cut and polished lens)

unpolished lens. Again, to more clearly see the errors, Figure 5-4 shows a top view
gray-scale of the error plot. The plots are useful because they show the errors present
after trying to make a lens with a radius of curvature R = 66.25 mm. The plots
shown for lens 1, one of the polished lenses, are typical of the other four polished
lenses. Lens 6 is the unpolished lens, and its error plot is clearly different from lens

1.

These plots show the type of form error in the lenses due to the lapping process
in the case of lens 1, and the turning process, in the case of lens 6. We can see that
for lens 1, the form error is very consistent. More material is being removed from
the vertex of the lens, and the amount of material removed decreases away from the
vertex. This may be due to the slurry in the lapping process being more concentrated
at the vertex of the lens. Also, the errors seem to be fairly symmetric about the axis of
rotation of the lens. During the lapping process, the relative motion between the lap
and the lens is removing material equally around the lens’s center. The magnitude of
the error around the vertex of the lenses is on the order of 15 — 20 pm. The distance

from the center of the lenses to the edge of the error plots is approximately 20 mm.
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Figure 5-3: Lens surface and residual error plot for lens 6.
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Figure 5-4: Top view of gray-scale error plot for lens 6. (cut lens without polishing
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Over this distance, the magnitude of the error is typically 30 um to 40 pm, for lenses
1-5. Therefore, the error gradient is approximately 1.5 to 2 um/mm.

For lens 6, we can see that the form error is not as symmetric as the form error in
the polished lenses. In fact, we can infer some information about the machining error
from the error profile [14]. Referring to Steve Ludwick’s work on error budgeting, a
constant error in the position of the cross slide will lead to a rotationally symmetric
error, and cross slide error at the spindle frequency will lead to asymmetric errors.
The error profile shown in lens 6 appears to be a combination of the two. Higher
frequency errors are more difficult to detect and would require taking more sample
points at smaller intervals on the lens surface. At the very least, it appears we can
detect errors which occur at the spindle frequency. It is also interesting to note that
the magnitude of the errors in lens 6 are on the same order as thé errors in lens
1. At certain points, the form error in lens 6 reaches 20 pm. This implies that the
lapping process is not necessarily decreasing the magnitude of the form error, but is
smoothing out the error and making the lens more uniform.

As noted in Chapter 1, the target accuracy of the prototype turning machine
is 1 um over 10 mm. Given that we are seeing an error gradients of at least 1.5
to 2 pm/mm over the finished lenses that we measured, this specification should be
adequate for producnng a lens that could be conformably lapped to the final shape

and surface ﬁmsh eliminating the need for a hard lap.
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Chapter 6

Control Implementation

In this chapter we describe some of the different control algorithms implemented on
the RFTS testbed and the prototype machine. Some of the requirements of the RFTS

that we address are,

e High servo bandwidth to cut nonrotationally symmetric lenses at high spindle

speeds.
e High dynamic stiffness to reject disturbances such as cutting forces.

e Low tracking error during trajectory following to minimize cutting error.

The first requirement, a high servo bandwidth, comes from the need to cut toric
lenses at high spindle speeds. To test the attainable bandwidth of the RFTS, PID
control has been implemented with a bandwidth of 130 Hz. Currently, the bandwidth
is limited by a torsional mode of resonance due to the compliances of the flexible
coupling, the tool arm shaft, and the motor shaft between the motor armature and
the tool arm. As discussed before, to cut a toric lens at a spindle speed of 3000 RPM,
the fundamental frequency of the RFTS’s trajectory is 100 Hz. Therefore, the servo
bandwidth needs to be at least twice the spindle frequency in order for it to follow
cutting trajectories. Since the cutting trajectory also contains higher harmonics of
the fundamental frequency, we actually want a higher bandwidth to be conservative.

Furthermore, we have shown in Chapter 3 that the RFTS’s acceleration capability
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is able to handle much higher frequency trajectories. Therefore, if we can set the
RFTS’s bandwidth high enough, cutting with spindle speeds of 4000 to 5000 RPM
should be attainable.

During cutting, the RFTS encounters disturbance forces occurring at harmonics of
the spindle frequency. These disturbance forces affect the attainable cutting accuracy
and surface finish of the RF'TS. In order to meet the second requirement stated above,
high dynamic stiffness, we are experimenting with loop-shaping techniques to increase
the dynamic stiffness of the servo loop. In our test case, the RFTS was approximately
50 times stiffer at a certain frequency with loop-shaping than without loop-shaping.

Feedforward control has also been implemented to reduce phase lag of the servo
loop while following high frequency trajectories. Phase lag results in following error
of the tool as it tracks a commanded trajectory. Initial results show that feedforward
control has decreased following error of the RFTS by a factor of 4, at a spindle speed
of approximately 1000 RPM. Initial tests for closing the PID loop and loop shaping
have been done on the RFTS testbed, and feedforward control has been implemented
on the prototype machine. As discussed in Chapter 2, the control algorithms are im-
plemented by a DSP board from DSP Research, and the host computer is a Gateway
2000, 50 MHz 486 computer.

6.1 System Modeling

We are able to model the testbed system with reasonable accuracy if we assume the
system is a lumped inertia, consisting of the inertias of the motor armiature, the
toolholder arm and shaft, and the two flexible couplings. The system gains are given

below.

J =150 x 10~* Rotational inertia of the system (kg-m?).

Ks =5.06 Gain of the potentiometer (Volts/rad).
Ka=3 Gain of the power amplifier (Amp/Volt).
Ky =0.74 Motor constant (Nm/Ampguys).

G.(s) Controller Transfer Function.
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Figure 6-1: Block diagram of servo loop.
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Figure 6-2: Simplified block diagram of servo loop.

The power amplifier is in torque mode rather than velocity mode, as it was in
Chapter 3. Now, a voltage command to the amplifier results in a known current
command and hence a known torque command. This is a cleaner utilization of the
amplifier. It eliminates the velocity loop, which is closed by deriving velocity from the
encoder feedback on the motor. It also makes modeling the system simpler, because
now we can assume we are controlling an inertia, or double integrator. Figure 6-1
shows the block diagram of our model, which can be simplified as shown in Figure

6-2, where G.(s) = PID(s)KaKuyKs. Now our plant is

1 _ 667

Js2 g2’ (6.1)

and we can design a controller based on this model. At various points in time we will
be breaking the position loop to inject disturbances and to implement feedforward
control. Therefore, it helps to separate the inertia term from the other terms to help
us keep track of the gains in the system. Figure 6-3 shows a schematic of the testbed
layout for implementing the control algorithms.

To verify our model of the plant, we first measure the open-loop frequency response
of the system. Figure 6-4 shows the open-loop frequency response, without feedback

and the PID controller. For comparison, the predicted response of the system is also
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Figure 6-3: Schematic of the testbed.

shown. At low frequencies, the plant does not follow the commanded signals well
and the output is much lower than predicted. This is believed to be due to frictional
effects, because the system responds more accurately to higher amplitude commands
where the velocities are higher and stiction has less of an effect. Another possibility
is that the motor cogging, where the permanent magnets in the rotor are aligning

with iron in the stator, is acting like a spring to pull the rotor to certain positions.

6.2 PID Control

To give us DC stiffness and bandwidth, we implement integral control with a phase-

lead compensator G, which has the following form in the continuous-time domain

_ Kis+1 Kps+1
Gc(s)—Kp( s )(aKDs+1) (62)

In this case, the controller gains are K, = 9200 Nm/rad, K; = 0.01 sec/rad, Kp =
0.01 sec/rad, and o = 0.05. The difference equation for implementation in the discrete

time domain can be found by a Zero Order Hold approximation with a sampling time
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Figure 6-4: Open loop frequency response of the system.

T, of 0.0001 seconds. This gives a discrete time cortroller G.(z7!) of

1836 — 363821 + 180222
-1y __
G(z) = 1-—1.8192-1 4 0.81872~2 (6:3)

Figure 6-5 shows the predicted loop transmission frequency response with the PID
controller. The crossover frequency w, is predicted to be 608 rad/s {96 Hz) and the
phase margin PM at crossover is predicted to be 54°. With the PID controller de-
signed above, the predicted and measured closed-loop frequency responses are shown
in Figure 6-6. As shown, the closed-loop bandwidth is approximately 130 Hz. The
torsional mode of resonance can be seen at approximately 5020 rad/s (800 Hz). In
general, there are several approaches to dealing with the resonance in the system.
Perhaps the most effective is to increase the damping in the system. As discussed in
Chapter 3, previous efforts to damp the first coupling used, the Zero-Max SC-050,
were unsuccessful. However, a constrained layer damper may be more effective with
the Gam Jakob coupling. Another approach is transmission loop-shaping either by

a notch filter or by placing poles before the resonance to attenuate the frequency
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Figure 6-5: Loop transmission of plant wich PID control.

response near the resonant frequency. In the prototype machine, we will continue to

address this issue, but not as part of this thesis.

6.3 Loop-shaping to Increase Dynamic Stiffness

6.3.1 The Loop-shaping Controller

The dynamic compliance of the servo loop is the angular displacement 6 of the shaft as
a result of some disturbance torque D(s). Typically with PID control, the integrator
gives the servo loop a high degree of DC stiffness, and the dynamic stiffness within the
bandwidth of the system is determined by the controller. At frequencies above the
bandwidth of the servo loop, the dynamic stiffness is high because the inertia of the
system acts as a low-pass filter, i.e. the response of the system to high frequencies is
small. During operation, we know that most of the disturbances to the system will be
from cutting forces and will come at harmonics of the spindle frequency. Therefore,
while we desire high dynarmic stiffness or low dynamic compliance at all frequencies,

it is critical that the servo loop be stiff at certain known frequencies. In this section,
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Fiigure 6-6: Closed loop frequency response with PID control.

we detail a method of increasing the servo loop’s dynamic stiffness by shaping the

loop transmission frequency response.

In our experiments, we inject a disturbance voltage D(s) with a variable frequency
between the output of the D/A and the power amplifier. In a biock diagram, this
is equivalent to introducing a disturbance between the control algorithm and K4
in Figure 6-7. In essence, the disturbance voltage becomes a torque disturbance

after passing through the power amplifier and is a fair simulation of the effect of

KsKuKs
Js?

G.(s) = (PD with LoopShaping), then with the feedback shown in the block diagram,

6(s) is

cutting forces on the servo loop. If G(s) is and the control algorithm is

0 = G(s) [-D(s) — 6(s)Gc(s)], (6.4)

Rearranging, the transfer function between 6(s) and D(s), the dynamic compliance,

is then
-0(s) _  G(s)
D(s) ~ 1+ C.()G()’ (6:5)

This is actually the negative dynamic compliance, but we will assume we are work-
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Figure 6-7: Block diagram of disturbance input.

ing with just the dynamic compliance and phase shift our experimentally measured
frequency responses accordingly.

To stabilize the plant and to give us bandwidth in order to implement the loop-
shaping, we first implement a phase lead compensator PD(s) which has the following

form in the continuous time domain

Kps+1

PD(s) = Ko o v1

(6.6)

In this case, the controller gains are K, = 67 Nm/rad, Kp = 0.01 sec/rad, and
a = 0.05.

For the loop-shaping, we add in series a controller G, which has the form

82 + 2k, (wy + w?
Guls) = $2 + 2Cw, + w,?r '

(6.7)

GL(s) can be thought of as a resonant pole pair at w, and a more strongly damped
resonant zero pair at the same frequency. Here, w, corresponds to the expected
frequency of the disturbances. We can get a stronger intuitive feeling for the effect of
the controller by looking at the poles and zeros plotted on the Im(s) and Re(s) axis
in Figure 6-8. Referring to Figure 6-8, we can see that increasing k, forces the zeros
to be more strongly damped. Decreasing ( decreases the real part of the pole pair.
Next, we look at the effects of varying k, and (.

Design with the controller can be thought of as loop-shaping, and it is helpful to
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Figure 6-8: Plot of poles and zeros of loop shaping controller

consider the effects of changing the parameters of the controller on the loop transmis-
sion frequency response as well as the dynamic compliance. To begin, we simulate the
loop transmission frequency response of the plant with the phase-lead compensator
PD(s) designed previously. The crossover frequency is predicted to be 550 rad/s (88
Hz), and the phase margin is 64°. Next, we select the loop-shaping controller gains to
be, w, = 126 rad/s (20 Hz) and { = 0.05. Then, we analyze the effect of increasing k,
from 10 to 50 in increments of 10. The loop transmission frequency response is shown
in Figure 6-9, and the effect on the dynamic compliance is shown in Figure 6-10. The
system’s loop transmission frequency response and dynamic compliance with only
phase-lead compensation are also plotted as a reference. Referring to Figure 6-10,
increasing k, decreases the dynamic compliance at w,. Specifically, k, = 10 attenu-
ates a disturbance by an additional 20 dB, while k, = 50 attenuates a disturbance
by an additional 34 dB. However, Figure 6-9 shows that we also quickly lose phase

margin at w, as we increase k,, which drives the system towards instability.

Loss in phase margin is minimized by decreasing ¢ in the loop-shaping controller

GL(s). As we decrease the real part of the resonant poles, we decrease the range
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Figure 6-9: Effect of increasing k, on the system’s loop transmission frequency re-
sponse.
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Figure 6-10: Effect of increasing k, on the systems dynamic compliance.
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Figure 6-11: Effect of increasing ¢, on the system’s loop transmission frequency re-
sponse.

of frequencies over which the phase change due to the controller resonance occurs.
This allows us to recover phase margin more quickly. To see the effect of varying
¢, we again set w, = 20 Hz and k., = 10. Then, we vary ¢ from 0.05 to 0.005
in 0.005 increments. The system’s loop transmission frequency response is shown
in Figure 6-11, and the effect on the dynamic compliance is shown in Figure 6-12.
Again, the system’s loop transmission frequency response and dynamic compliance
with only phase-lead compensation are also plotted as a reference. = Referring to
Figure 6-11, we can see that by decreasing ( we are able to limit the phase change
to a small range of frequencies. Thus, most of the phase margin has been recovered
at the point of crossover. The disadvantage in decreasing ( can be seen in Figure
6-12. As ¢ decreases, the range of frequencies over which the loop-shaping controller
attenuates disturbances is reduced. For our application, the range of frequencies
over which attenuation is needed is determined by how precisely the frequency of the

disturbance input is known.
Given that any direct-drive system will have a limited servo bandwidth, the chal-
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Figure 6-12: Effect of increasing (, on the systems dynamic compliance.

lenge is to design a loop-shaping controller that will provide as much dynamic stiffness
at a specified frequency as needed and maintain enough phase margin to keep the

system stable.

6.3.2 Loop-shaping Controlier Implementation
From the previous section, the controller G, is the combination of the phase-lead
compensator PD(s) and the loop shaping controller G(s)

Kps+1 s + 2k.(w, + w?
aKps+1 s?+2(w, + w?

Gc(s) = PD(3)GL(s) = Kp (6.8)

The phase-lead compensator is the same as in the previous section and the gains of
the loop-shaping controller are k., = 30, ¢ = 0.001, and w, = 251 rad/s (40 Hz).
The difference equation for implementation in the discrete time domain is found by

a Tustin approximation with a sampling time 7, of 0.0001 seconds and prewarped at
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Figure 6-13: Measured and predicted dynamic compliance with and without repetitive
controller.

wy. This gives a discrete time controller G.(z~!) of

C.(1) = 1225:15939 3660.66773z" + 3646.656612z2 — 1211.140572~3 (69)
are 1.0 — 2.81749z1 + 2.635732z-2 — 0.818132-3 SR

Figure 6-13 shows the measured and predicted dynamic compliance of the system
with and without the loop shaping controller. Figure 6-14 shows the same frequency
response over a much smaller frequency range, 39-41 Hz. The peak attenuation with
the loop-shaping controller is approximately 54 dB. It also coincides very closely to 40
Hz. Compared to the dynamic compliance without G (s), which has an atteruation
of approximately 20 dB at 40 Hz, the loop-shaping controller decreases the dynamic
compliance by an additional 34 dB. For a physical sense of the dynamic compliance,
we can estimate the amount of disturbance torque introduced and compare it to the
angular displacement measured through the potentiometer. Injecting a sinusoidal

disturbance with a peak voltage of Vp, the peak disturbance torque Tp (Nm) is

Tp = KaKuVo. (6.10)
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Figure 6-14: Measured and predicted dynamic compliance of loop-shaping controller
39-41 Hz.

The angular displacement 6 (rad) corresponding to a voltage output of the poten-

tiometer Vp is

_ Ve
0=1 (6.11)

Rearranging to find the dynamic compliance we obtain

0 1 Ve

Tp  KsKiKu Vo'

(6.12)

Therefore, we can estimate the dynamic compliance if we know the attenuation from
Vp to Vp. The dynamic compliance of the phase-lead compensator alone, which at-
tenuates a disturbance by approximately 20 dB (a factor of 10) at w,., is 8.9 mrad/Nm.
For a 100 mm arm, this corresponds to a compliance of 0.89 mm/Nm at the tool.
With the loop-shaping controller, which has an attenuation of 54 dB (a factor of 500)
at wy, the dynamic compliance is 0.18 mrad/Nm. In this case, for a 100 mm arm the
system has a dynamic compliance of 0.018 mm/Nm at the tool. The system with the

loop-shaping controller combined with the phase-lead compensator has a dynamic
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compliance approximately 50 times smaller than the system with only phase-lead
compensation. Recall that cutting forces reach 25 N, or 2.5 Nm on a 100 mm arm,
during a 2 mm cut in polycarbonate. During a roughing pass, this would result in a

deflection of 0.045 mm at the tool, with G (¢) added to the control algorithm.

6.4 Feedforward Control

6.4.1 The Feedforward Controller

When tracking a sinewave under PID control, the actual trajectory that the rotary
fast tool servo follows deviates from the desired trajectory by some amplitude error
and with a phase shift. In particular, the phase shift increases as the frequency of the
trajectory is increased. For trajectory following, particularly when cutting a toric lens,
feedforward control can be used to minimize the amplitude and phase shift errors.
The goal of feedforward control is to cancel the dynamics of a plant by multiplying
it by its inverse so that there is unity gain between the command to the RFTS and
the output. In the ideal case, there would also be no phase shift between the input
and the output. Two references that cover the basics of feedforward control are [2]
[12]. To simplify the trajectory following tests, we again make the assumption that
the tool will be following a perfect sinusoid during cutting. The results though, can

be applied to the actual cutting trajectories through Fourier analysis.

There are a number of different implementations of feedforward control, shown in
Figure 6-15. In Figure 6-15, % is the inertia of the plant, G. is the PID controller,
G rr is the feedforward controller, 6, is the desired output and 64 is the actual output.
In case a), the feedforward controller is designed as the inverse of the closed-loop plant,

and the block diagram reduces to

64 _ e
% =Crryayan (6.13)
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Figure 6-15: Implementation of feedforward control.
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In order for there to be unity gain between 84 and 6 we must have

Js? + G,

FF= "G (6.14)

where J is a model of the plant inertia. A digital implementation of this form,
called Zero Phase Error Tracking Control (ZPETC), has been studied for trajectory

following and noncircular turning in [21] [22].

2

In case b), the feedforward controller is Gs and 8,4 is
04=1(0.—0 +—j—8i0 —Gi (6.15)
A= d A Gc d J32’ .
which reduces to X
04 _ Js? + G,
0s Js*+G. (6.16)
In case c), the feedforward controller is Js? and 0,4 is
G, Js?
0,1 = T2 (04 - 0,4) + 0433, (6.17)
which reduces to R
04 Js? + G, ;
L. N
04 Js2 + G, (6 8)

We are still investigating the best implementation of feedforward control and how to

best tune parameters of the controller.

For the next section, the feedforward controller of case a) and c) are developed.
In the discrete-time domain, the feedforward controller in case a) is represented in
Figure 6-16. The closed-loop system is the plant under PID control, where %ﬁg—:—%
is the closed-loop transfer function with a time delay of z74. As described ecarlier,
the feedforward controller is the inverse of the closed loop system. The command
input O4(k + d) is d steps ahead because of the delay 2~¢ in the system. If there
were uncancellable poles in the system, roots of Ac(z"") outside the unit circle, then

the plant could not be stably inverted [21]. Now the control input to the closed-loop
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Figure 6-16: Discrete implementation of feedforward control.

transfer function becomes

Ac(z7h)
B.(271)

Or(k) = 8a(k + d). (6.19)

This form of feedforward control, when implemented, has been sensitive to modeling
errors of the plant. The original command 6,4(k + d) is lost, because the feedforward
filter is in series with the command. Therefore, the error that the feedback loop acts on
is Op —04. If there is any error in our model, the feedforward filter will not cancel the
plant perfectly, and the command to the plant g will not drive the system to position
04. In other words, there will be a steady-state error. Also, because of the placement
of Grr, the form of the feedforward filter depends on the feedback controller G.(s), as
seen in eq. 6.14. Thus, whenever the feedback controller’s parameters are adjusted,

the feedforward filter has to be changed as well.

In case c), the s? term in the feedforward term is difficult to implement because
it requires infinite gain at high frequencies, similar to the case of derivative control
without phase lead compensation in PID control. To attenuate the gain at high
frequencies, we can place additional poles in Grp such that their phase lags do not

effect the dynamics of the feedforward filter in the bandwidth of the system.
For our implementation, the feedforward filter Grg(s) is in the form

Js?

)= Wps 4

(6.20)

where J is our estimate of the system inertia, 1.67 x 103 kg-m?, Krr is the pole
location, and n is the number of poles. Since we are now working on the prototype

machine, the inertia of the system has changed slightly from the testbed system
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inertia. This is primarily because adding the Gam Jakob KR-65 coupling has slightly
increased the inertia of the system. Next, we select Kpr = 1.59 x 10~% and n = 8,
which places the eight poles at 6283 rad/s (1 kHz). The discrete-time feedforward
controller Grr(z~!) can be found by a ZOH approximation with a sampling time

T, = 0.0001 s,
a(z™!)
b(z-1)

Grr(z7!) = (6.21)

where

a(z™!) 2.439z7! +62.2327% + 40.7127% — 193.62~*

+11.82275 +68.727% + 7.672z"7 + 0.067427%;
b(z™') = 1-4.269z7' 47.97327% — 8.508z72 + 5.6752~*
—2.423275 + 0.646427% — 0.0985427 + 0.0065732 5.

While n = 8 may seem to be a large number of poles, the feedforward filter re-
quires significant attenuation at high frequencies. The predicted frequency response
of Grr(z7!) is shown in Figure 6-17. We can see that even with 8 poles at 6283
rad/s, the filter gain is still 15 dB at the Nyquist frequency 31400 rad/s (5 kHz). For
low frequencies, the feedforward filter’s frequency response looks like a inverted mass
Js?. Starting at 6282 rad/s, the attenuation is -120 dB/decade. If we desire a closed
loop bandwidth under PID control of 628 rad/s (100 Hz), we can see the phase shift

from the additional poles remains small for frequencies up to 628 rad/s.

6.4.2 Feedforward Control Implementation

Feedforward control has been implemented on the prototype turning machine. The
PID controller has the same form as in eq. 6.2. In this case, the gains are Kp = 6400
Nm/rad, Kp = 0.1, a = 0.05, and K; = 0.1. The only change from the PID controller
implemented on the testbed is that the proportional gain Kp has been lowered. This

is because the noise level in the RFTS axis has increased in the prototype machine’s
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Figure 6-17: Frequency response of the feedforward filter.

new environment. Currently, we are working on proper shielding and grounding of
the components. Figure 6-18 shows the predicted and measured closed-loop position
frequency response of the RFTS under PID control. The bandwidth of the frequency
response is approximately 628 rad/s (100 Hz). Figure 6-19 shows the predicted and
measured closed-loop position frequency response of the RFTS axis under PID and
feedforward control. For frequencies below 300 rad/s (48 Hz), the magnitude of the
frequency remains close to 0 dB, unity gain. At higher frequencies, the magnitude
begins to rise, up to 4.5 dB at 1000 rad/s (160 Hz). This may be due to modeling

. . 5 1
inaccuracies. If our plant model Js? does not exactly cancel the plant —, then

2
the error would be more noticeable at higher frequencies due to the s? te;'Irfx. After
preliminary tuning of the feedforward filter, we have adjusted the plant model to
J = 1.76 x 10~3 kg-m?. Figure 6-19 is the response for the adjusted J. Figure
6-20 compares the measured closed-loop position frequency responses of the RFTS,
with and without feedforward control. At 300 rad/s, the phase shift of the RFTS’s
trajectory with feedforward control is only —13°. Without feedforward control, the

RFTS’s trajectory lags by —47° at 300 rad/s.
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Figure 6-18: Measured and predicted closed-loop position frequency response under

PID control.
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Figure 6-19: Measured and predicted closed-loop position frequency response under

PID and feedforward control.
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Figure 6-20: Measured closed loop position frequency responses with and without
feedforward control.

Figure 6-21 shows the RFTS, without feedforward control, tracking a 30 Hz
sinewave with an amplitude of 0.01 rad. Figure 6-22 chows the RFTS tracking the
same trajectory with feedforward control added. A tool frequency of 30 Hz corre-
sponds to a spindle speed of 900 RPM. In Figure 6-21 we can see that the amplitude
error and the phase shift of the measured trajectory are significant. The peak error
is 4.1 mrad and the standard deviation of the error is 2.5 mrad. In Figure 6-22,
feedforward control has greatly reduced the amplitude error and the phase shift of
the measured trajectory. The peak error 1.4 mrad and the standard deviation of the
error is 0.70 mrad. Feedforward control has reduced the tracking error by a factor of
4.

For a 100 mm tool arm, an error of 1 mrad corresponds to 100 um. Most of this
tracking error seems to occur at the peak of the trajectory where the contour that the
RFTS traces seems to be asymmetric. This could be due to static friction, because at
the peak of the trajectory, the velocity of the tool is zero or very small as it reverses
direction. The largest error comes just after the reversal of direction. Along the

trajectory where the velocities are higher, the tool tracks the commanded trajectory
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very well. Therefore, to reduce the tracking error, friction compensation may have
to added in the future. The tracking error of the RFTS can also be decreased with a
more accurate model of the plant. As mentioned before, modeling inaccuracies start
affecting the amplitude error more at higher frequencies, because of the Js? term in
the feedforward filter. Some amount of preliminary tuning has been done to reduce
the tracking error. Although, we are finding that gross inaccuracies in modeling are

relatively easy to tune, however small inaccuracies are more difficult.
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Chapter 7

Conclusions and Suggestions for

Future Work

In this thesis we have described the design and implementation of a rotary fast tool
servo (RFTS) axis for an ophthalmic lens turning machine. My research these past
two years has focused specifically on selecting and benchmarking the performance
of different components on a testbed for the RFTS axis. This work then led to the
fabrication of a second-generation RFTS axis that will be installed on the prototype
turning machine. One of the underlying themes of this research is to try to predict
the performance of components and then testing them to verify their performance.
The strategy behind this approach is that we wanted to work through the details of
the mechanical design on a testbed, and have the design finalized before building the
second-generation RFTS axis.

In terms of individual components, we have discussed the selection of the servo
motor, the tool arm bearings, the flexible coupling, and the rotary sensor. After
comparing motors from various motor manufacturers, we have shown that motors
with high torque-to-inertia ratios and low armature inductance are needed to drive
the RFTS. In general, DC brushless motors have the highest torque-to-inertia ratios
of conveational servomotors. However, among the DC brushless motors we surveyed,
some have unacceptably large armature inductances. Driving these motors at high

accelerations and commanding high frequency trajectories risks saturating the power
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amplifier. By properly selecting the servo motor, the RFTS can be used to cut lenses
at high spindle speeds. For example, we have shown that the Aerotech DC brushless
motor is capable of high torque outputs at frequencies up to 300 Hz.

Future work on this subject includes integrating the tool arm shaft into the servo-
motor. This will eliminate the flexible coupling between the motor shaft and the tool
arm shaft. It will also eliminate the bearings in the motor, which are less accurate
than the ABEC-9 bearings. In the current project, if the motor bearings influence
the cutting accuracy of the RFTS, it may be necessary to replace the current motor
bearings with higher precision bearings.

Another issue is the selection of bearings for the tool arm shaft. In order to
meet the desired cutting accuracies, we require the bearings to have submicron error
motions and submicron deflections under cutting forces. We have shown that precision
ABEC-9 ball bearings have the necessary stiffness, accuracy, and resolution for our
application. ABEC-9 bearings are the highest accuracy bearings currently available
and are more expensive than typical precision ball bearings. However, when compared
to the cost and development time associated with designing and building custom air

or hydrostatic bearings, ABEC-9 bearings appear to be extremely economical.

One problem with the bearings that is still unresolved is the machining of the
bearing bores. In the current design, the bearing bores are the most difficult features
to make and hence the most costly. With the expertise of a company familiar with
mass production, fixtures and jigs may bring down the cost of machining the bores.
As mentioned before, replicating the bores is an attractive option because it would
make the bearing bores a relatively low accuracy feature. As a manufacturing process,
this idea still needs to be tested. Specifically, aligning the tool arm shaft and bearings

before casting them in may be difficult.

Selecting a proper flexible coupling has proven to be difficult. Currently we are
using a Gam Jakob, bellows-type, flexible coupling. For now, it appears to be the
best off-the-shelf solution available. The torsional mode of resonance will hopefully be
pushed above 1 kHz when all the components are installed on the prototype machine.

More work needs to be done to determine how to best damp the coupling whether by
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passive or active means.

As far as measuring the error in the lenses, a methodology has been established to
measure the form error in spherical lenses down to the micron level. When we come
close to meeting our target accuracy specifications, a methodology will be needed to
measure the lenses on a sub-micron scale. Also, a means to measure toric lenses,

where the form errors are the largest, needs to be found.

The control algorithms implemented so far have been the beginning of continuing
work on the RFTS. To achieve higher bandwidths, the torsional mode of resonance
needs to be moved higher and/or better damped. A high resolution encoder, donated
by MicroE, is being installed on the RFTS axis. This should aid us by reducing the
noise injected into the system through the servopot. We have also shown how the
dynamic stiffness of the servo loop can be increased by loop shaping techniques. In
our tests, the servo loop’s dynamic stiffness has been increased by a factor of 50 for
certain frequencies. Feedforward control has also been implemented to reduce the

phase lag of the RFTS while tracking high frequency trajectories.

In conclusion, we have shown that the rotary fast tool servo concept has the po-
tential to make significant contributions to the field of machining nonrotationally
symmetric parts, in this case ophthalmic lenses. First, in terms of acceleration capa-
bility, rotary fast tool servos are capable of much higher accelerations than linear fast
tool servos. The prototype RFTS has a tangential acceleration of approximately 50
g at the tool. Conventional linear fast tool servos, in machines used to cut eyeglass
lenses, have acceleration capabilities of well under 10 g. With higher acceleration
comes the capability to machine lenses at higher spindle speeds and feedrates to
increase throughput. Second, when we consider the negligible vibrations from the
reaction force of accelerating the tool during cutting, the RFTS has another signifi-
cant advantage over conventional linear fast tool servos. Third, in terms of cutting
accuracy, we have shown that with careful mechanical design we should be able to
meet the specified cutting accuracy of 1 pmm over 10 mm of the lens’s surface. Thus
far, we have carefully tested such components as the Learings in terms of accuracy

and stiffness. As we design new components, such as the new tool arm, stiffness and
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accuracy will continue to be benchmarked and verified. Eventually, cutting lenses
more accurately may eliminate the need to use a hard lap to polish the lenses. This
would significantly decrease the cost of making ophthalmic lenses by reducing process
time and reduce the size of the lens-making vperation. Finally, the end goal of the
project, is to build a machine that not only meets the target specifications, but is also
capable of becoming a production machine. Another promising aspect of the RFTS
is that the design is simple enough to be built using only off-the-shelf components.
Therefore, taking the prototype design and turning it into a production machine is a

straightforward path.
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