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Abstract

Quenching is a thermal failure mechanism encountered with superconducting magnets. When
a section of conductor is driven normal by an external heat input, the magnet transport cur-
rent flows through a resistance, causing joule dissipation. If heat is not conducted away from
the normal region faster than it is dissipated, the normal region will grow and the tempera-
ture will increase indefinitely. Growth of the normal region is commonly refered to as normal
zone propagation(NZP). A reliable NZP model is necessarry for designing protection systems
because a quench may cause irreparable damage if a section of the winding is over-heated.

This thesis develops a numerical NZP model for a three dimensional, dry-wound, BSSCO-
2223 superconducting magnet. The test magnet operates under quasi-adiabatic conditions
at 20 K and above, in zero background field. It is contained in a stainless steel cryo-
stat and cooled by a Daikin cryocooler. The NZP model is based on the two-dimensional
transient heat diffusion equation. Quenches are simulated by a numerical code using the
finite-cifference method. Agreement between voltage traces obtained in the test magnet
during heater-induced quenching events and those computed by the numerical NZP model
is reasonable. The model indicates that thermal contact resistance has a dominant effect on
propagation in the azimuthal direction(across layers).

The model is also used to simulate quenching in persistent-mode magnets similar in
construction with the test magnet. Specifically studied were effects of magnet inductance,
for a given set of operating current and temperature, on the maximum temperature reached
in one full turn of the conductor located at the magnet outermost laver driven normal
with a heater. The simulation demonstrates that there is an operating current limit for
a given magnet inductance and operating temperature below which the magnet can be
considered self-protecting. The simulation also demonstrates that shunted subdivision lowers
the maximum temperature.

Thesis Supervisor: Dr. Yukikazu Iwasa
Title: Research Professor, Francis Bitter Magnet Laboratory, and Senior Lecturer, Depart-
ment of Mechanical Engineering. MIT
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Chapter 1

Introduction

1.1 Superconductivity

1.1.1 Discovery of Superconductivity

The electrical resistivity of some materials becomes zero at low temperatures, defining a state
known as superconductivity. In 1911, a Dutch physicist, Kamerlingh Onnes, discovered this
condition when he cooled mercury to 4.2 K (the boiling point of liquid helium at atmospheric
pressure) and detected no measurable resistance. He later discovered that several other
metals, such as lead and tin, also exhibited the same change of state. However, these
early superconductors did not promise any practical advantage because they could not carry
significant current densities while maintaining their superconducting state. Superconducting
materials with maximum current densities(or critical current densities) high enough to permit
design improvements over the use of normal conductive metals, such as copper, were not

discovered for several decades.

1.1.2 Type II Superconductors

In the early 1950s, Nb3Sn and NbTi were found to exhibit superior current-carrying perfor-
mance even at high magnetic-fields. Their critical current densities are greater than those

of copper conductors in well-designed water-cooled copper magnets. These superconductors
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Figure 1-1: Ciritical surfaces for NbTi and BSCCO-2223 [1]

are classified as Type II. The Type I classification applies to the monatomic metals with
relatively low critical currents that Onnes discovered. Type I and Type II superconductors
also differ in their response to external magnetic field. Below a critical field, H,,, a body
of either type will completely exclude the field from its interior while it is superconducting,
a behavior known as the Meissner effect. The magnitude of H,, varies with material and
temperature. Above H., Type I superconductors become nonsuperconducting; Type II ma-
terials allow field penetration throughout the body while remaining superconducting until
the field reaches H,y, which is several orders of magnitude greater than H.,,.

The critical current density of Type II superconductors varies with temperature and
magnetic field. There is a maximum temperature, T, as there is a maximum field strength,
He, and within these limits the materials are in the superconducting state. Figure 1-1
shows three-dimensional plots defining the critical surfaces for NbTi and a high-temperature
superconductor(HTS) compound of bismuth(Bi), lead(Pb), strontium(Sr), calcium(Ca), cop-
per(Cu), and oxygen(O) -- BiPbSrCaCuO - often known by BSCCO-2223(1].

[\



1.2 High Field Superconducting Magnets

High field magnets wound with Type II superconductor pose several advantages over copper
magnets. To begin with, they require less power to operate. Most of the required power is
used for refrigeration to maintain the magnet at its operating temperature. There is little
heat dissipation as a result of the operating current because the conductor has negligible
resistance. On the other hand, the electrical resistance of copper magnets requires higher
power for driving current through them. For example, a 15-T, 5-cm bore DC superconducting
magnet system requires a few hundred watts, while an equivalent copper magnet requires
several megawatts[2]. The second advantage of high-field superconducting magnets is they

can produce the same field as copper magnets while using a smaller volume of conductor.

1.3 High-Temperature Superconductors

In 1986, Karl Alex Muller and Johann Georg Bendnorz of the Zurich IBM Research Lab-
oratory reported an alloy of Ba-La-Cu-O as having a critical temperature of 35 K, over
10 K above the highest critical temperature known at that time. The discovery started a
worldwide effort pursuing superconductors with even higher critical temperatures. Within
a few years, materials with critical temperatures in excess of 100 K were produced. Many
of these “high-Tc¢” materials have critical current densities at liquid nitrogen temperatures
that compare to the current densities of copper conductors in water-cooled magnets. The
ability to produce high fields at liquid nitrogen temperatures is a key advantage over mate-
rials which must be cooled by liquid helium(low-temperature superconductors or LTS), as
cryogenics is more efficient at higher operating temperatures. Therefore, HTS magnets offer
better cryogenic efficiencies over LTS magnets.

The disadvantages to high-temperature superconductors lies in their manufacturing com-
plexity and mechanical properties. Most are ceramic and very brittle. Their maximum strain
is smaller and more care must be taken in designing high field magnets, where the conductor
is inevitably stressed under high Lorentz forces. Strain cycling will also cause the critical cur-

rent to suffer. In terms of manufacturing, many high-Tc materials contain more than four



constituents, making it difficult to reduce defects and maintain a consistent quality. The
critical current often varies along the conductor. Finally, manufacturing difficulties makes

them far more expensive than low-Tc¢ materials.

1.4 Thermal Stability of Superconductors

A superconducting magnet must operate at a low enough temperature so that the critical
current(which is also determined by the operating field) is larger than the operating current.
Operating below the critical current does not guarantee stable operation in the supercon-
ducting state. There is inevitably random points of localized heat dissipation throughout a
superconductor when it is carrying current. These may heat small regions into the normal
state. Heat dissipated by the normal region will spread and drive adjacent conductor normal.
In essence, the normal region grows. We call this event normal zone propagation(NZP), or
quench propagation. It is the main thermal behavior of a superconducting magnet driven
normal. We can protect against random disturbances by embedding the superconductor in
a conductive metallic matrix, referred to as sheathing. This allows current to flow around
2 small normal region with only a small increase in voltage. Also, the high thermal con-
ductivity of the metal will conduct heat away from a normal region and bring it back into
the superconducting state. However, sheathing the superconductor cannot prevent magnets
from quenching for all sources of heat dissipation. For example, mechanical disturbances,
such as epoxy cracking under changing stress, can cause a large enough thermal power input
to propagate a quench in a sheathed conductor. We require a theoretical basis for designing
superconducting magnets that will ensure stable operation. Stekly first proposed a concept
in the mid-1960s, known as cryostability, where normal-state(all current flows through the
matrix) Joule heating is balanced with convective cooling by a liquid cryogen, making NZP
impossible. However, the cryostability criterion is the extreme of conservative design. All
superconducting magnets may be operated stably with higher current densities.

In this thesis we study the stability of an HTS magnet operated dry, meaning there is
no cryogen in contact with the conductor and the magnet operation is essentially adiabatic.

If we were to use cryostability as the basis for design, the magnet would carry no current



because the cooling term is zero. In practice, adiabatic magnets operate at higher overall
current densities than cryostzble magnets due to the absence of cooling channels within the
wind. The trade-off to improved current density is susceptibility to damage during a quench
event. Therefore, we require an NZP model which will allow us to predict the transient
thermal response to particular heat inputs. Specifically, an NZP model should help answer

the following questions:

1. Will the magnet quench by a specific heat dissipation, considering its magnitude and

location(s)?

2. What type of protection system is required to ensure that the magnet will never be

damaged?

3. What voltage magnitude across a specific length of conductor indicates a nonrecovering

guench that will propagate and potentially damage the magnet?

Reliable NZP models have been developed for low-temperature superconducting magnets
using analytical methods. Numerical methods have also been developed, showing some
improvement in accuracy over the analytical methods. However, as is described in Chapter 2,
the accuracy of analytical models suffers substantially when applied to high-temperature
superconducting magnets. For coils wound with BSCCO-2223, the most common high-
Tc superconductor currently wound into coils, the modeling of NZP is not yet complete.
Almost all past work has been limited to one-dimensional propagation, along the length of
the conductor. Lim(3] has modeled NZP in a single pancake two-dimensionally by using a
numerical technique. But many, if not most magnets consist of multiple turns per layer.
It is the intent of this project to model NZP in a three-dimensional coil using numerical

techniques.

1.5 Overview

The purpose of this thesis is to develop a quench propagation model that may be used for

designing the protection of a dry HTS magnet operating above 20 K. The model is based



upon the two-dimensional form of the heat equation and is implemented by a numerical
code using the finite difference method. The code predicts voltage rise and temperature
profiles in the outer layers over time. The results of the model are compared with voltage
traces recorded during quench events in a 360-turn BSCCO-2223 test magnet. Much work
remains before high-temperature superconducting magnets will become practical components
of larger systems. It is hoped that the model demonstrated in this work will contribute to
the effort by providing insight into the means of protecting these magnets against damaging

quenches.



Chapter 2

Experimental Techniques—

Apparatus and Procedure

Results of a normal zone propagation code developed in this thesis for a layer-wound BSCCO-
2223 test coil were compared with experimental results obtained with a 360-turn BSCCO-
2223 coil constructed by Sumitomo Electric. The voltages across individual turns were
recorded during quench events, each event induced with a heat pulse applied to a section of

the winding.

2.1 Overall Operation

The experimental apparatus used to quench the test magnet is shown in Figure 2-1. The
test magnet is maintained at 20 K or above with a Daikin cryocooler. The test magnet is
contained within a stainless steel cryostat that is linked to the cryocooler with a stainless
steel flange. Both cryostat vacuum chambers, the sample space and the vacuum space,
" are evacuated with a diffusion pump to less than 107° torr, minimizing convective heat
transfer. Thirty layers of superinsulation are wrapped around the system to reduce radiation
heat transfer. Liquid nitrogen is used to cool the nitrogen space wall thereby reducing
radiation into the sample space wall and the test magnet. A copper extension rod couples

the second stage of the cryocooler to the coil form, maintaining their temperature within a
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1 K difference. Temperature of the sample is adjusted with a heater enfolding the second
stage of the cryocooler. The temperature is measured with a calibrated GaAlAs thermodiode
that is located at the bottom of the copper coil form. Difference in temperature between the
conductor and the coil form is measured with a type E thermocouple.

Current is supplied to the test magnet by two Hewlett Packard power supplies operating
in parallel. The supply leads are clamped to the current lead outlets, which extend from the
flange that joins the cryocooler with the cryostat. Copper cable connects the current lead
outlets to HTS leads at the top of the copper extension rod. The HTS leads, consisting of
BSCCO0-2223 tape, travel the length of the copper extension rod to join the aluminum mesh
leads of the sample magnet.

Each quench is initiated with a stainless steel heater that is in contact over approxi-
mately one full turn of the outermost layer. The propagation is revealed through voltage
measurements across taps placed around regions of the coil expected to show sigﬁiﬁcant
voltage rise. Leads from the taps travel to a 32-pin connector extending from the top flange.
A digital computer with Labview software samples the tap voltages, transport current, and

the thermodiode voltage. Keithley voltmeters are used to monitor the voltages in real time.

2.2 Thermal Systems

2.2.1 Cryostat/Cryocooler Assembly

The cryostat consists of two sealed spaces, the vacuum space and the sample space. The
vacuum space encompasses a nitrogen space as shown in Figure 2-1. When the vacuum
space is evacuated, convective heat transfer into the nitrogen space and the sample space is
minimized. A vacuum valve allows the diffusion pump to be disconnected from the vacuum
space while a vacuum is still maintained. A vacuum flange at the top of the sample space
permits continuous pumping. Pressure is measured with a discharge gauge located just
upstream of the diffusion pump.

The vacuum space walls are constructed with stainless steel sheets. The nitrogen space

is open to the atmosphere. Its stainless steel inner wall faces the aluminized copper wall of



the sample space. When the nitrogen space is filled with liquid nitrogen, radiation to the
sample space wall is reduced. In turn, the wall of the sample space cools and radiation heat
transfer into the system decreases. We observed that if nitrogen is not used to cool the wall,
the temperature difference between the thermodiode and the bottom outside turns of the
test magnet may be greater than 30 K. The temperature gradient is caused by radiation
transfer and separation from a good thermal sink by approximately 500 cm of conductor.
A flange at the top of the sample space is constructed from 3/16 inch stainless steel.
The cryocooler and the cryostat flange are joined by bolts to an intermediate 1/2 inch thick
stainless steel flange. Silicon greased Parker O-rings sit in canals on top of each flange for a

vacuum tight seal. The cryocooler is a Daikin model U104CWZ.

2.2.2 Copper Extension Rod

The copper extension rod serves to thermally connect the test magnet to the cryocooler
second stage while keeping the cryocooler away from the magnetic fields produced by the
test magnet. The cryocooler contains a permanent magnet stepper motor that drives a piston
for conducting the helium flow. Too high a magnetic field will cause the motor to saturate.

The rod is 50-cm long, and has a square cross-section with 28-mm sides. Apiezon-N
grease is applied at both end surfaces to improve the thermal connection. Two pairs of
BSCCO-2223 tape strips are adhered to opposite sides of the rod to act as current leads.
Sensor leads are wrapped multiple times around it to reduce conductive heat input into the

sample and prevent significant temperature variation at tap connections.

2.3 Electrical Systems

Figure 2-2 is a schematic of the electrical systems.

2.3.1 Current Source and Copper Leads

Current is supplied by two Hewlett Packard 6260B 100 A, 10 V power supplies operating in

parallel. A 200 p2 shunt placed in series with the output allows the current to be measured

10
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from the voltage across the shunt. Current is controlled by a resistance across a pair of
supply inputs. Shorting the inputs forces the current to zero. To protect the test magnet
from thermal damage, a latching relay shorts the supply inputs when the voltage across the
heated turn reaches a preset value. The relay is controlled by a variable amplifier. Prior to
each trial a shut-off voltage value, V,;y, corresponding to one turn at room temperature is
calculated. The variable amplifier is adjusted to trip the protection relay when the heated

turn reaches V., calculated with the following equation:

PAg,300!
off = =7 2.1
Voss TagA (2.1)

where [ is the length of the heater. A is the area of the conductor, x4, is the fraction of silver
in the conductor, I, is the transport current, and psg 3o is the resistivity of silver at 300 K.

The supply leads are clamped to the current lead outlets extending from the flange that
joins the cryocooler with the cryostat. The outlets are 1/4 inch diameter copper pins. They
are electrically isolated from the stainless steel flange and sealed with epoxy. Inside the
cryostat, copper cable connects the current lead outlets with the HTS leads. The cable is

wrapped several times around the cryocooler to reduce heat conduction into the HTS leads.

2.3.2 HTS Current Leads

Two pairs of silver-sheathed BSCCO-2223 tape strips carry the current from the copper cable
to the test magnet’s aluminum mesh leads. The use of HTS tapes, as opposed to copper
cables, reduces heat dissipation. The HTS tape strips are adhered flush against opposite
sides of the copper extension rod. The conductor is manufactured by Sumitomo Electric and
rated 42 A at 77 K.

Before attaching the leads, 20 um thick Kapton tape is placed over the copper extension
rod to electrically insulate the HTS leads. The HTS tape is adhered to the Kapton with
Stycast epoxy, providing a good thermal contact. A second layer of Kapton covers the HT'S

leads to prevent shorts.
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Table 2.1: Test magnet dimensions.

| Inner Coil | Outer Coil ||

Inside Diameter [mm] 100.0 105.8
Outside Diameter [mm)| 104.6 111.6
Wind Height [mm)] 76.0 76.0
Total Turns 160 200
Layers 8 10
Turns/Layer 20 20
Conductor Length [m] 52 69
Self Inductance [mH] 2.14 3.55
Mutual Inductance [mH] 2.57 2.57
Center Field @100A [T] 0.16 0.19
Peak Field @100A [T] 0.20 0.25
AJ @100A [A/m?] 9.21x107 | 8.98x107

Table 2.2: Conductor specifications.

[ Inner Coil | Outer Coil ||

Conductor Width [mm] 3.5 3.5
Conductor Thickness [mm] 0.23 0.23
.77 K, 0 T) [A] 23.5 19.9
Silver Fraction 0.70 0.70

*criterion of E, = 0.1uV/cin.

2.3.3 Construction Details of the Test Magnet

A detailed drawing of the test magnet, manufactured by Sumitomo Electric, and its heat lead
connection is shown in Figure 2-3. The magnet consists of two concentric coils of equal height
and the same wind direction. The outer and inner coil conductors have different critical
currents(different quality), but the same cross-section. The coils were wound dry(without
epoxy) on a copper coil form. Tension in the conductor is maintained by double stick
pads applied to the conductor at the end of each layer. The conductor is wrapped once in
25 pm thick Kapton insulation, as depicted in Figure 2-4. There effectively are three layers
of Kapton between each layer of conductor. Dimensions of the test magnet are listed in

Table 2.1. Conductor specifications are given in Table 2.2.
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3: Coil Form

1: Heat Lead

2nd Stage of
Cryocooler

Outer Colil

Inner Coil

Coil Form

Figure 2-3: Detailed drawing of the test magnet coupled to the heat lead. Parts 1, 2, and 3
are all made of copper, facilitating thermal coupling between the 2nd stage of the cryocooler
and the test magnet coil form.
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Figure 2-4: Detail of insulation. Dimensions in mm.

15



Soldesign, a solenoid design computer program, is used to calculate the field profile and
inductances. For a transport current of 100 A, the test magnet generates a centerline field
of 0.35 T, and a peak field of 0.45 T.

As may be inferred from Figure 2-3, the test magnet coil form material and parts that
connect the coil form and the second stage of the cryocooler are all made of copper, facili-
tating thermal coupling of the test magnet to the cooling source. Additionally, the copper’s
high thermal conductivity helps maintain a constant temperature throughout the winding.

The ends of the conductor extend through the top of the coil to G-10 anchors, where they
are soldered to aluminum mesh that is connected to the HTS leads, as shown in Figure 2-1.
The quench heater is attached over a single turn of the outer coil’s outermost layer, extending
about 6.0 cm less than a full turn. Figure 2-5 is a schematic drawing of the outermost layer,
indicating the locations of the heater and voltage taps attached. Taps are placed to measure
voltages across the following regions, as shown in Figure 2-5: 1. the heated turn; 2. one turn
above the heated turn; 3. one turn below the heated turn; 4. the entire second layer (20
turns); 5. the entire outermost layer (20 turns) including those 3 individually monitored
turns; 6. between lower end of heater and lower heated turn tap; 7. between upper end of

heater and upper heated turn tap; 8. outer coil (160 turns); 9. inner coil(200 turns).

2.3.4 Voltage Taps

Each voltage tap is a 3-mm wide strip of copper shim, slipped beneath the Kapton insulation.
The contact is secured using BIPAX silver epoxy; an epoxy, instead of solder, is used to avoid
excessive heating that may damage the conductor. Copper leads from the 32-pin connector
are soldered to the free end of the copper shim strip. The leads are wrapped around the

cryocooler and the copper extension rod to reduce conductive heat transfer.

2.3.5 Quench Heater

The quench heater is a 3.4 mm wide(same as the conductor) by 33 cm long strip of 13pm
thick stainless steel shim. The Kapton insulation is removed from the heated turn and

replaced by a single strip of 3.5 mm wide Kapton. Care is taken not to allow contact with
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Figure 2-5: Heater and tap positions. 1) heated turn; 2) one turn above the heated turn;
3) one turn below the heated turn; 4) the entire second layer; 5) the entire outermost layer;
6) between lower end of heater and lower heated turn tap; 7) between upper end of heater
and upper heated turn tap.
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Figure 2-6: Location of the heater and the thermocouple.

adjacent turns in order to isolate the heating to one turn. Apiezon-N grease is applied to
the conductor to provide a good thermal contact and hold the Kapton strip in place. The
quench heater is fixed in place with a layer of Apiezon-N grease that is applied to the outer
surface of the Kapton strip, as shown in Figure 2-4. A thin layer of solder is applied over
2 cm of each end, isolating the heating within 3.0 cm of each end of the heated turn, as
shown in Figure 2-5. The thermal grease beneath the nonresistive regions of the heater ends
is removed. A tiny amount of Stycast epoxy is applied at the heater ends to hold them flat
and maintain slight tension in the heater.

Two lead pairs are attached to each end of the heater, one of each pair carries current, the
other is used to measure the voltage. The current leads consist of a twisted pair of 22-gauge
wire extending to the heater supply via the 32-pin connector. The heater power supply is
rated 3A at 15 V. A pulse is produced using a relay placed in series with the quench heater.

The relay is controlled by a pulse generator as depicted in Figure 2-2.
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2.3.6 Temperature Control Heater

A heater for controlling the temperature of the test magnet enfolds the second stage of the
cryocooler. It consists of 20 turns of manganin wire, wrapped into a layer of Apiezon-N
thermal grease. At 20 K, the heater has a resistance of 19.9 Q. A power supply outputs
3.1 W to the heater to achieve a coil form temperature of 20 K, 6.1 W for 30 K, and 7.7 W
for 40 K.

2.3.7 Temperature Measurement

Temperature of the coil form is measured with a calibrated Lakeshore Cryogenics GaAlAs
thermodiode. The diode sits in a 2.0 mm diameter by 1.5 mm deep recess, at the bottom of
the copper coil form. The recess is filled with Apiezon-N thermal grease. A pair of leads are
connected to each diode contact, one to carry current, the other to measure voltage. Control
current is supplied by a calibrated Lakeshore Cryogenics current source.

A type E thermocouple extends between the conductor and the coil form, near the ther-
modiode, measuring their temperature difference. The reference contacts are located on the
coil form. They are separated from the metal by a strip of Mylar tape to keep them electri-
cally isplated. The measurement contact is located l} turns below the heated turn as shown
in Figure 2-6. It is inserted beneath the conductor insulation and in direct contact with the
conductor. Apiezon-N grease is applied to the contact region at all thermocouple ends.

Before determining the conductor operating temperature, the thermodiode and thermo-
couple output are allowed to reach steady state. We begin calculating the temperature by
assuming that the thermocouple reference end and the thermodiode are at the same tem-
perature. Using a calibration table to find the thermodiode temperature, an eguivalent
voltage is assigned from a thermocouple reference table. The thermocouple measurement
end temperature is then determined by adding this voltage to the reference end voltage and

converting with the reference table.
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2.3.8 Instrumentation

Voltage measurements are sampled with Labview Software on a Macintosh digital computer.
The computer receives inputs from a National Instruments A/D converter. Amplifiers and
filters are built into the A/D converter. We used amplification in the range 1-1000, and
10 kHz filtering. Voltage tap outputs, thermodiode voltage, quench heater voltage, and
transport current are sampled using a rate of 100 Hz for each trial. Voltages are monitored

in real time using Keithley 175, 191, and 197 voltmeters.

2.4 Procedure

After the cryocooler is turned on and the test magnet reaches a steady state temperature,
the nitrogen space is filled with liquid nitrogen. The second stage heater power supply is
then set to the appropriate voitage for the desired operating trmperature. The heater power
must be adjusted periodirally over a 6 hour period while allowing the temperature gradient
between the conductor and the coil form to subside. Typically, there is a 6 K temperature
difference between the conductor and the coil form at steady state.

The following steps illustrate how each trial is conducted:

1. The variable amplifier is set to trip the protection relay at V,y, calculated from Equa-

tion 2.1.

2. The heater supply is momentarily discor:nected from the heater. The pulse is sampled

to check its duration and magnitude.
3. The transport current is ramped slowly up to its desired value.
4. Output sampling is initiated. After 4 seconds, the heater is pulsed.

5. Current may be shut off manually or by the protection relay. The next trial does not

begin for at least 120 minutes.

Operating parameters for each trial are listed in Table 2.3. Parameters are chosen to

illustrate the radical difference in response caused by changing the operating temperature or
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Table 2.3: Operating parameters for each trial

[Trial [ T, (K] [ 7, (AL ]

1 23.8 80
2 23.6 100
3 33.5 60
4 33.5 80
] 49.4 50
6 50.0 60

operating current. A heater pulse of approximately 18 W for 0.5 s is used for every trial.
Figures 2-7 and 2-8 are two examples of voltage traces for different transport current and
operating temperatures: (a) 100 A at 23.6 K, and (b) 80 A at 23.8 K. The first example
trace depicts a quench, while the second depicts a recovery. The entire set of voltage traces
corresponding to the trials listed in Table 2.3 are shown in Chapter 4. In all trials, the inner
coil voltage remains constant. Judging by the small voltage rise in the second layer, the
quench never reaches the third layer. It is also observed that the quench never reaches the

turns in the outermost layer that are adjacent to the heated turn.
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Figure 2-7: Voltage trace for J, = 100 A and T, = 23.6 K (trial 2). Regions 6 and 7 refer to
the small conductor lengths just outside the heated region, depicted in Figure 2-5(pg.17).
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Chapter 3

Numerical Model

3.1 Normal Zone Propagation

Typical conductor consists of superconducting filaments embedded in a conductive metal
matrix. The matrix serves multiple purposes: it provides a conductive path when the su-
perconductor is normal, helps maintain a uniform temperature across the conductor cross-
section, and promotes thermal diffusion along its length. When a superconducting magnet
operates below its critical current, I;, the transport current flows entirely through the su-
perconducting filaments, creating minimal heat dissipation. However, if an external energy
source causes additional dissipation in a localized region, the temperature in that region will
rise and the critical current decreases. Given a large enough heat input, the temperature will
enter the current sharing region, at T,;, when the critical current is less than the operating
current. At this point, the operating current redistributes itself. The current in excess of the
critical current flows through the metal matrix. Current flow through the resistive matrix
causes Joule dissipation which may continue to increase the temperature, and decrease the
critical current if the heat is not conducted away by the matrix fast enough. If the region
recools, the quench “recovered”. If the temperature of the heated region climbs indefinitely,
a normal region propagates into the superconducting region of the coil. Whether the quench
recovers or propagates depends on the size of the heated region, the initial heat input, thermal

properties of the conductor and insulation, and the operating conditions-transport current,
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temperature, and field. If it propagates, the conductor’s temperature can continue to rise
unless the current is shut off. Therefore, we require an accurate model of the normal zone
propagation(NZP) for designing the protection of superconducting systems. Specifically, a

model will help answer the following questions:

1. Will the magnet quench by a specific heat dissipation, considering its magnitude and

location(s)?

2. What type of protection system is required to ensure that the magnet will never be

damaged?

3. What voltage magnitude across a specific length of conductor indicates a nonrecovering

quench that will propagate and potentially damage the magnet?

Normal zone propagation is a thermal event that may be modeled using the transient
heat conduction equation. Thorough work has been performed over the last three decades to
model NZP in low-temperature superconducting magnets. For these magnets, the operating
temperature, Ty, is typically only a few kelvins below the critical temperature, T,. The small
superconducting to normal transition permits us to represent the NZP by propagation speeds
of a boundary between superconducting and normal regions, as shown in Figure 3-1. Two
commonly specified are the longitudinal velocity(along the tape axis), U, and the azimuthal
velocity(along the radius of the coil), U,. There are two important consequences of the small

superconducting to normal temperature difference that enables this simple modeling:

1. Thermal properties, which are strongly a function of temperature, do not vary signifi-

cantly in the region of interest.

2. The current sharing region, where the conductor is still superconducting, but the oper-
ating current exceeds the critical current, exists in a very small region of space. Hence,

the boundary between superconducting and normal regions is well defined.

High-Tc superconductors typically do not meet these conditions, as described below.
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Figure 3-1: Model for low-Tc NZP.

3.1.1 Current Sharing Region

Critical current density, J., is shown as a function of temperature and magnetic field in
Figure 1-1 for BSCCO-2223 and NbTi. During the beginning of a quench for the high-Tc case,
heat dissipation is caused by current sharing. Current sharing begins at the temperature,
T.,, where the transport current, I, is equal to the critical current, I.. As the temperature
increases from T, through T, dissipation increases as I, decreases and more current flows
through the matrix. The difference between T,, and T is typically on the order of tens
of kelvins. Eventvally, when T, is surpassed, the rate of heat dissipation depends only on
transport current density, natrix resistivity, and the matrix cross-sectional area.

As stated above, for low-Tc, the temperature difference between T, and T, is only a
few kelvins. A relatively small amount of heat will drive the conductor completely normal,
with negligible time spent in the current sharing region. This allows the simpler model
of separating the conductor into two regions as depicted in Figure 3-1 for one-dimensional
NZP in which the normal-to-superconducting boundary propagates along the conductor
length. The boundary between the normal and superconducting regions moves into the
superconducting region as the quench progresses. This basic model has been verified to
be applicable even in a Nb-Ti solenoidal system in which normal zone propagation can be

three-dimensional.[4]

3.1.2 Temperatﬁre Dependent Properties

The electrical and thermal properties of silver, the matrix metal of the conductor used in

this experiment, are strongly temperature dependent. Between 20 K and 100 K electrical

26



resistivity, thermal conductivity, and heat capacity all change by a factor of ten or greater(see
Figures 3-6,3-8,3-9). In modeling a high-Tc quench, the change in properties are important
because the conductor is not completely normal until it reaches approximately 100 K. Our
modeling task is complicated by this as the coeflicients of the heat equation and the heat
dissipation term vary nonlinearly. Therefore, the ODE describing the thermal event cannot

be solved analytically.

3.2 Quench Velocity Estimation

Despite the nonlinear temperature dependence of the conductor’s thermal properties, we
can still make an order of magnitude estimate of the longitudinal quench velocity. We use
an equivalent method to the one used for low-Tc predictions. The method begins with the
one-dimensional form of the heat equation:

OT(z,1) _

8t oz [k e t)]

T,z) (3.1)

where T is temperature, c is specific heat capacity, k is thermal conductivity, and g is internal
heat dissipation density. The left-side term is the rate of change in thermal energy density at
a point a distance, z, along the conductor. The first term in the right-hand side represents
the local thermal conduction density.

Internal heat generation is the result of the transport current flowing down a voltage
gradient, 0V /0z:

ov
o(T,2) = L5, (32

When the critical current is larger or equal to the operating current, there is theoretically
no voltage gradient and ¢(T', z) is zero. During current sharing, the voltage gradient is given
by the product of the current flowing in the matrix and the matrix resistance per length:

oV _, _Pm
0z TznAm

(3.3)

where A4 is the total cross-sectional area of the conductor, z,,A.4 is the cross-sectional area
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of the matrix material, p,, is the matrix resistivity, and /I,, is the current flowing through the

matrix. I, is the difference between the transport current and the critical current, I, — .

Therefore,
v _ Pm
o (I, °)x,,, m (3.4)
Using Equation 3.2, we have:
9(T,z) = I(I, - 1) =22 (3.5)
TmAcd

In the normal state, all of the current flows through the matrix, assuming the resistivity of
the normal superconductor is much larger than the resistivity of the matrix. Replacing I,
with zero in Equation 3.5, we have:

72 Pm
oT, ) = o (3.6)

For this simple approximation, we will ignore the current sharing region. The conductor
is separated into two distinct regions in z, one superconducting and one normal as shown in
Figure 3-1. We begin solving for velocity by introducing a change of variables, z = z — Ujt,
where z is the position relative to the superconducting to normal boundary. Positive 2z
extends into the superconducting region. Two ordinary differential equations are obtained

by substituting the transform into the heat equation. The first applies to the superconducting

region:
d’T  dk, (dT\? dT
,F + ﬁ(a) + chlE =0 (3.7)
For the normal region:
T  dk, (dT\? daT
vgz tar (@) ol tala) =0 (38)

where s and n denote superconducting and normal regions, respectively. An approximate
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solution for U; was obtained by Cherry and Gittleman(5) as:

_ g [Pk
U=1J C.C.AT (3.9)

where p is the resistivity in the normal state, J is the current density, and AT is equal to
the difference in critical and operating temperature, T, — T,,.

Equation 3.9 assumes constant properties and no matrix. In this experiment, we used
silver-sheathed BSCCO-2223 conductor that is approximately 70% silver by volume; 73% is
used in the simulation. It has a critical temperature of approximately 110 K; however, the
critical current is negligible around 90 K. Below, we estimate the propagation velocity for
T, equal to 20 K, and J equal to 12.4x10° A/cm?. For a rough approximation, we may
use average property values between 7, and T,. The following is a list of the appropriate

property values and their justifications for T, equal to 20 K:

e p: The resistivity of BSCCO-2223 is larger than that of silver by 3 orders of magnitude.
Since the superconductor and the matrix conduct in parallel, the average resistivity, o
is approximately the resistivity of silver divided by the volume fraction that is silver,

Tag. Between T, and T¢, p = pag/Tag = 9.32 nQcm.

e k,: The thermal conductivity of silver is 2 orders of magnitude larger than for BSCCO-
2223. They conduct in parallel, so k; is very close to the average thermal conductivity

of silver multiplied by z 44, ks = zAQIEAg = 14.5 W/cmK.

e C,, C,: The heat capacity of BSCCO-2223 is on the same order of magnitude as
silver’s. We will use the average heat capacity of silver because the conductor is mostly
silver. There is no significant difference between the superconducting and normal

states. C,, = C; = C’Ag =0.2 J/em3K.
e AT: The effective T, is approximately 90 K. For T, =20 K, AT =90K - 20K =70K.

Inserting these values into Equation 3.9, we find that U, is approximately 2.7 cm/s. This
is 3 orders of magnitude smaller than a low-Tc propagation velocity, typically on the order

of 10-100 m/s. The slower velocity indicates smaller temperature gradients and we cannot
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assume the current sharing region to be negligibly small in space. However, the simulation
used to model the experimental results presented in Chapter 4 predicts U; to be 1.7 cm/s,
which is not too far off from the value calculated by Equation 3.9.

A similar analysis yields an approximate quench velocity in the transverse direction
(normal to the conductor), U,. Typically, there is electrical insulation between the layers,
causing a much slower propagation velocity. The following expression may be used for U,[6]:

Uy = Im [Pmkided (3.10)

C.aV 26;AT

where C.4 is the mean heat capacity of the conductor between T, and T, k; is the thermal
conductivity of the insulation, and 6.4 and 4; are the thicknesses of the conductor and
ihsulation, respectively. The insulation heat capacity does not appear because the heat
capacity of conductive metals is much larger than that of organic materials. Likewise, the
conductor thermal conductivity does not appear because the insulation provides a much
larger conduction resistance than the conductive metals. Thermal property data for Kapton
insulation is unavailable. However, the thermal conductivity of organic materials does not
greatly vary and we may estimate k; to be 0.003 W/cmK. §; and d.4 are 75 um and 230um,
respectively. Using these values, we estimate U, to be 0.05 cm/s. This velocity is greatly
overestimated because we have neglected the significant contact resistances associated with

dry wound magnets, described in Section 4.2.

3.2.1 Minimum Quench Heat

Stekly has derived an expression for estimating the minimum quench heater power, g,[7}:
87 1/3
g = ?(kzkykz) ThAT (3.11)

where k;, k,, and k, are the thermal conductivities along cartesian axes, and r, is the radius

of the heated region. Since we are dealing with a two-dimensional model for tape conductor,
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this equation may be modified to[3]:

where, k, and kp are the thermal conductivities in the transverse and azimuthal directions
respectively, and w is the conductor width. Using ks = k4, and k, = k; at 20 K, w = 3.5 mm,
we estimate g, to be, 5.3 W. This is a little over one third of the heater power used in this
experiment. It is apparent that high-Tc conductors are far more thermally stable than

low-Tc, where g, values are on the order of microwatts.

3.3 Numerical Model

Even for low-Tc superconductors, numerical modeling of NZP shows significant improve-
ment over analytical methods, as demonstrated by Kadambi and Dorri[8] and Eckert et
al[9, 10]. For the high-Tc case, the wide temperature span of the current sharing region
and the large variation of the thermal properties over this region make numerical meth-
ods essential. One-dimensional numerical analysis have been performed for high-Tc tapes
using the finite difference method. In particular, Bellis and Iwasajl1] have developed a
one-dimensional finite difference code for silver-sheathed BSCCO-2223 tapes. Lim[3] has de-
veloped a two-dimensional code for single-pancake coils, and obtained results that agree well
with experimental results. Here we develop a two-dimensional code for a three-dimensional

coil.

3.3.1 Finite Difference Method

Modeling the spatial variation of an implicit property across an object involves representing
the object by a fine nodal mesh. Each node, corresponding to a small region(finite element) of
~the object, has relevant properties and at least one control variable associated with it. In our
case, the control variable is temperature. The simulation proceeds through sufficiently small
time steps. For each time step, the value of the control variable at each node is calculated for

the next time step based upon property and control variable values of the surrounding nodes.
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Various finite-difference algorithms are available. However, when used properly, each
should yield identical results. The algorithms are classified into two categories. The implicit
method (backward-difference) uses the control variable values at both the present and next
time step to calculate the value for the next time step. The explicit method (forward-
difference) requires only the present property and control variable values to calculate the
value for the next time step. The implicit method requires much more computation per
iteration, causing it to be time-consuming. Therefore, we will use the explicit method.
However, we must pay special attention to the mesh sizes and the time step. The main
disadvantage to the explicit method is its tendency to be unstable or yield faulty results

when the mesh size or time step is too large.

3.3.2 Mesh Geometry

Although the coil construction is three-dimensional, there is a gap between successive turns,
preventing heat conduction in the axial direction. Therefore, we will base the simulation on
a two-dimensional form of the heat conduction equation. We model the heated region by
individual linear strips sandwiched together as shown in Figure 3-2. The layers of conductor
correspond to different layers of the coil. The wind construction, as shown in Figure 2-4,
requires us to place 3 layers of insulation between layers of conductor, and 2 layers separating
the heater from the outermost conductor layer.

There are three key conditions that allow us to represent the quench region using this

geometry:

1. There are many turns between successive layers in the affected region. Simulation
reveals that throughout the quench, there is negligible temperature change less than a
turn away from the heated turn. Therefore, heat conduction along the tape and into

successive layers can be neglected.

2. The thickness of the conductor and insulation is much smaller than the radius of the

coil. Althcugh the coil is solenoidal, local geometry is effectively linear.

3. Temperature gradients along the conductor in the second layer is much smaller than the
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Figure 3-2: Model of heated region used in the simulation.
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gradients between the outer two conductor layers. Although the successive layers are
actually criss-crossing helixes, our model still calculates the heat conduction between
the layers properly. However, the distribution of the flux requires some correction (see

Section 3.3.3).

We actually model just half of the heated region because there is a line of symmetry at the
midpoint of the heater. Figure 3-3 depicts a mesh for numerically modeling the arrangement
shown in Figure 3-2. The resistance elements represent contact resistance between different
layers. Each node is given a coordinate, (m,n), where m increases in the longitudinal (z)

direction and n increases in the azimuthal (y) direction.

3.3.3 Layer-to-Layer Heat Conduction

Successive layers are not aligned on top of each other as the model implies (Figure 3-2),
but are actually criss-crossing helixes. According to the simulation, thermal gradients are
small in the inside layers. Therefore, heat flux from the outermost layer into the winding
(y-direction) is calculated with reasonable accuracy. However, its distribution across the
second layer may be in error.

If the outer two layers are cut along a vertical line and unwound on a flat surface, the
turns will be arranged as in Figure 3-4. There is one turn in the second layer that shares
half of its surface area with the heated turn. More importantly, the hottest portion of the
heated turn lies in this shared area. The second layer turns that are adjacent to the turn
that lies below the heated turn do not give a voltage contribution just as the first layer turns
adjacent to the heated turn do not. Furthermore, heat conduction into these turns is at
significant distance from the affected region. For the purpose of calculating voltage rise in
the second layer, we need only be concerned with heat conduction from the heated turn to
the second layer turn directly below it. The algorithm may be improved by accounting for
the reduction in shared surface area between the two turns as m increases.

The area shared, Ay, between two nodes of the same m value, one corresponding to the

inside insulation of the heated turn (n=3) and the other the outside insulation of the second
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Figure 3-3: Mesh used in the simulation to represent the heated region.
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layer (n=4), is given by:
m

M trn

Agp = And(l - ),m < My (313)

where A,  is the radial surface area of a single node and M,,, is the total number of nodes

per turn. Heat flux across the layer is corrected by multiplying by the area ratio, A,x/Ang.

3.3.4 Boundary Conditions

We expect heat input from outside the test magnet to be small because the magnet is housed
in a high vacuum cryostat while liquid nitrogen is used to cool the sample space walls,
reducing radiation. Radiation is estimated to be on the order of milliwatts. Therefore,
the system has been modeled as adiabatic, where the outer surfaces of the outside nodes
of the mesh do not transfer heat. It is likely that some of the heater energy is conducted
away through the heater leads. Energy loss to the leads is estimated in Section 4.4 to
be approximately 5 mJ, assuming the leads remain at 7, throughout the trial. The total
dissipation in the heater is on the order of 9.5 J, which is much larger than conduction through
the heater ends. Therefore, the entire test magnet assembly is modeled as adiabatic.

We choose enough layers and nodes to permit the last layer and the end nodes farthest
from the heater to experience insignificant temperature change (less than 0.2 K) throughout
the trial. The outside surface of these nodes are adiabatic, as would be the case if the

temperature difference across them is negligible.

3.3.5 Numerical Form of the 2-D Heat Equation

The Cartesian form of the 2-D heat density equation applies to our model:

oT o*T o°T
CW = k(ﬁ + -b?) + g(x, Y, t) (314)

where c is the volumetric heat capacity, k is the thermal conductivity, g is the heat dissipation
term, and t is time. We can convert this partial differential equation into a numerically

usable form by substituting Taylor expansions for the partial differentials. The following
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Taylor expansions pertain:

oT T:n-',-ri - Trin,n

— 3.15
ot At (3.15)
azT ~ T:;1+l,n - 2T:.n,n + Trin—l,n
aZ (Ba)? (3.16)
o’T ~ Trin.n+l - 2Trin.n + Trl;:,n—l
i By (317

where At is the time step, Az and Ay are the mesh sizes in the longitudinal and azimuthal
directions respectively, i denotes which time step, and (m,n) is the nodal coordinate (see

Figure 3-3). Substituting Equations 3.15 — 3.17 into Equation 3.14, we obtain:

i T::,-rl - Trin,ﬂ _ ki Trin.+l,n - 2T:;|.1| + T:;l—l,'n Trin,n+1 - 2T1‘;1,'n + Trin,n—l] +

Cmn At = (Az) (By)? g . (3.18)

mn

We can convert this equation into a form for calculating the temperature of a node at
the next time step, i + 1, in terms of its present temperature, the present temperature of
the surrounding nodes, and the properties of those nodes. One way of making this con-
version simpler while obtaining a form that is easy to visualize is to combine the thermal
conductivities and spatial distances into thermal resistive elements. The resistances are given

by:

Az
Ay

where w is the conductor width, m &1 and n = 1 denote the resistance to longitudinally
and azimuthally adjacent nodes respectively, k; and k, are the thermal conductivities in the
longitudinal and azimuthal directions, respectively. Substituting Equations 3.19 and 3.20
into Equation 3.18 we obtain a simple power balance equation:
T A_tT’i"" =¥ T’?———]z;r-r’i"" (3.21)
7

J

where j represents the nodal coordinate of the adjacent nodes, (m + 1,n) and (m,n %+ 1).
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Figure 3-5: Junction of two nodes representing difterent materials

Solving for T‘ . yields the desired form that can easily be incorporated into a numerical code:

A
Ty = d (gmn + Z ) +Ton (3.22)

3.3.6 Thermal Resistance Between Nodes

When two adjacent nodes represent different materials, or have significantly different tem-
peratures, their thermal conductivities will be different. Additionally, nodes of different
material will typically have different mesh size. Calculation of the thermal resistance be-
tween the two nodes, R;, is performed simply by summing the resistance contribution of the
individual nodes. Figure 3-5 depicts a junction between a conductor node and an insulation
node. Calculation of the resistance between a node and the interface requires the thermal
conductivity, length, and cross-sectional area. The resistance between the conductor node

and the interface is given by:
Le AYe

.= = 3.23
R kA 2kwAz (3.23)
while the contribution from the insulation node is given by:
l; Ay;
> = = .24
ki kiA  2kzwAzx (3:24)
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where A is the cross-sectional area of the node, and the subscripts ¢ and ¢ denote conductor
and insulation, respectively. The factor of 2 enters because ! is one half the mesh size. Con-
tact resistances are usually significant and must be added into the total thermal resistance.

Summing Equations 3.23 and 3.24 while including a contact resistance, R, yields:

R;

1 (Ay. Ay
('y+y

= 2whAz k. ki ) + B (3:25)

3.3.7 Mesh Generation

The mesh depicted in Figure 3-3 is used in the simulation. Each layer of insulation and each
layer of conductor are thin enough to require only one node across their thickness. Since
this is a 2-D model, all nodes have the same depth.

The nodes have the following conditions associated with them, determined in the simu-

lation as described:

e material: either BSCCO-2223, Kapton, or stainless steel, determined from the n coor-

dinate.

e cross-sectional areas, longitudinal and azimuthal: depends on mesh size of the material

and depth.
e position: determined from the nodal coordinate (m,n) as described in Figure 3-3.
e neighboring nodes: also determined from the nodal coordinate.

e temperature: only present value is necessary. When a node is passed, temperature is

changed to the future value.

e thermal conductivity: function of temperature, material, and magnetic field for the

conductor nodes.
e heat capacity: function of temperature and material.
e resistivity of conductor nodes: function of temperature and magnetic field.

e critical current of conductor nodes: function of temperature and magnetic field.
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e voltage rise for conductor nodes: calculated from resistivity, critical current, operating

current, and longitudinal mesh size using Equation 3.4.
e contact resistance between next layer (n + 1): determined from the n coordinate.

Additionally, magnetic field, B, transport current, I;, and width, w are included in the
simulation. I; and w do not need to be assigned to each node because they do not vary.
Magnetic field varies only slightly because we are interested in two conductor layers out of
18. Magnetic field has a small impact on material properties because we are operating in a
small, self field.

We must choose sufficiently small time steps, At, and mesh sizes, Az and Ay, for the
simulation to converge. In determining their proper sizes, we begin with large mesh size and
reduce At by factors of 2 until the result no longer varies with At. We repeat this process
for smaller mesh sizes until the results are independent of both mesh size and time step.
Finally, we increase Az for nodes outside the heated region while proportionally decreasing
there number. Mesh sizes used in the final simulation are 0.23 mm for Ay,, 0.025 mm for
Ay;, and 0.0127 mm for the heater node thickness, Ay,. Az is set to 4.0 mm for all nodes.
A total of 300 nodes per layer is required to maintain a negligible temperature rise at the
far end from the heater.

The time step, At, is 500 us. The time step requirement for convergence is related to

mesh size by the following relationship:

Ci
At < mm(—&) (3.26

2,' 1/ R:n,n )
where R}, is a function of thermal conductivity and mesh size. In some cases, At, can
be increased or decreased during the simulation, as the value of Equation 3.26 changes, to
improve the efficiency of the code. However, for this simulation, we want the nodes farthest
from the heater to remain at T, throughout the simulation. Therefore, At can not change

throughout the simulation because the At calculated from Equation 3.26 is smallest at T,
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3.3.8 Finite Difference Algorithm

Each node starts with the same initial temperature, T,. For each time step, analysis begins
at the (0,0) node (see Figure 3-3). Heat generation, g, is calculated with Equation 3.5 or
3.6. Heat flux to adjacent nodes is calculated using the right side of Equations 3.21. A new
temperature is then assigned to the node using Equation 3.22. m is incremented to calculate
the temperature of the next node in the same layer (next m, same n). When the end of the
layer is reached, the next layer is begun at the top (m is set to 0, n is incremented). After
the last node of the entire mesh, the process repeats for the next time step, starting at (0,0).
Fluxes into and properties of adjacent nodes whose temperatures have not been updated
are stored in memory. This prevents repeated conductivity and flux calculations, and rids
the requirement of having to remember both present and future temperatures. Before the
simulation begins, properties are calculated for every multiple of 0.1 K between 20 K and
700 K and stored in memory. During the simulation, properties are determined from the
stored values by interpolation. The program terminates when a maximum voltage, 0.5 V,
for the outer conductor layer is reached, or when a maximum number of time steps has been
executed.
~ The simulation is carried out using the C programming language. We found that 7200
nodes are required for convergence (24 layers, each 300 nodes in length). A simulation
corresponding to 8 s real time required approximately 4 min. of running time on a Sun

SPARCstation 5 workstation. The simulation code is listed in Appendix A.

3.4 Material Properties

Once we have a working simulation code, the accuracy of its results depends largely on the
accuracy of the material properties as a function of temperature. It is not possible to know
these functions exactly, as they are strongly dependent upon their processing. Addition-
ally, previous attempts to tabulate thermophysical properties show limited accuracy, and
reports vary. We present below mathematical correlations of the properties relevant to this

experiment that have been successfully used in other attempts to model high-Tc normal
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Table 3.1: Correlation coefficients for resistivity of silver in 0 field [3].

Temperature Range my m my ms
[l (K] [4Qcm] | (uQem/K] | [uQem/K?] | [pQem/K?] |
" 4-70 0.069136 | -0.006714 0.00019844 [ -9.728x10~7 |]
|] 70-300 -0.34145 | 0.0094905 | -1.9905x10~° | 3.2803x10~° |]
Il 300-1000 1.6 0.005 0 0 |

zone propagation[3]. They include the thermal conductivities of stainless steel, Kapton in-
sulation, and silver, as well as the electrical resistivity of silver. All are strong functions of

temperature. For silver, magnetic field also effects resistivity and thermal conductivity.

3.4.1 Electrical Resistivity of Silver

Figure 3-6 shows the resistivity of silver as a function of temperature in zero background

field, pag0[12]. The data has been correlated into a piecewise 3rd degree polynomial:
Pago = My +mT + myT? + myT? (3.27)

where the coefficients, mg, m;, ms, and my are given in Table 3.1. It is important to note
that p4,0 increases by almost 2 orders of magnitude between 20 K and 100 K, as this is also
the current sharing region for BSCCO-2223. Our ability to create a successful model will

strongly depend on the accuracy of our pg0 correlation in this region.

3.4.2 Magnetoresistive Effect

The resistivity of silver has a strong dependence on magnetic field, known as the magnetore-

sistive effect. According to Kohler’s rule:

PAy(BaT) —PAg,o(T) _ [ B ]
pago(T) pago(T)

(3.28)

where p4,(B,T) is the resistivity of silver in a magnetic field B, and at temperature T

Figure 3-7 is a Kohler plot for pure silver(RRR = 700)(12], showing the relationship between

43



10

P agolH2 €M)
o

0.01

0.001

Electrical Resistivity: Silver

I P S o | T T
. S R B

= e
.
: e
Y
v
i i

T[K]

Figure 3-6: Electrical resistivity of silver in zero background field (3], [12].
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Figure 3-7: Kohler plot for silver(RRR = 700)[3], [12].
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Table 3.2: Correlation coefficients of the Kohler function for silver(3)].

[xRange [T][ m¢ | my |
[ 4-200 |0.00014736 | 1.5838 |

a normalized change in resistivity due to magnetic field(the left-hand side of Equation 3.28),

y, against the product of field and normalized zero field resistivity, x, given by:

Pago(273K)
T=Bx —/——— 3.29
pago(T) (3:29)

The curve is piece-wise approximated by the following equation:
y = mpz™ (3.30)

where the coefficients, mq and m,, are listed in Table 3.2 for z less than 200. We do not

expect = to be greater than 200 because the test magnet operates with zero background field.

3.4.3 Thermal Conductivity of Silver

Figure 3-8 shows the thermal conductivity of silver versus temperature in zero magnetic
field, kage. The data are taken from Bellis and Iwasa[12]. As is the case with resistivity, the
thermal conductivity of silver varies by more than an order of magnitude in the temperature

range 10-100 K. An exponential correlation that closely approximates the data is given by:
kago(T) = 4.0 + 3.2T2(40-%3) (3.31)

for the temperature range 10 K to 300 K. In Equation 3.31, kago(T) is in the unit of
W/cmK and T is in kelvin. Above 300 K, k4,0 is roughly constant at 4.0 W/cm K as shown
in Figure 3-8. The thermal conductivity of silver also varies strongly with magnetic field.

The thermal conductivity in nonzero field, k44, may be estimated using the Wiedmann-Franz
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Figure 3-8: Thermal conductivity of silver, kapton, and stainless steel in zero background
field.[3], [12], [13]
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law, which applies to normal metals:
kag(B,T)pag(B,T) = AT (3.32)

where A is the Lorentz number(2.45 x 10"®W/QK?). Replacing AT with resistivity and

thermal conductivity in zero field yields:
kag(B,T)pag(B,T) = kago(T)pago(T) (3.33)

and

pAg,O(T)
pAg(Bv T)

However, the Lorentz number increases with magnetic field at a rate of approximately 0.05

kag(B,T) = kago(T) (3.34)

per tesla. Therefore,

kag(B,T) = (1 + o.osB)kAg,o(T)% (3.35)

This relation applies reasonably to most conductive metals.

3.4.4 Specific Heat of Silver

The specific heat of pure metals may be expressed with reasonable accuracy as the sum of
an electronic(Sommerfield) contribution, ¢,;, and a phonon (Debye) contribution, cy2. The

electronic contribution is a function of temperature given by:

T 3
Cot = 1944(6) (3.36)

where ¢, is given in J/mol K and © is the Debye temperature, equal to 220 K for silver[14).
The phonon contribution is a constant equal to the Dulong-Petit limit. This limit is ap-

proached above the Debye temperature and is given by:

¢y = 3R = 24.95 (3.37)
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where ¢, is given in J/molK and R is the universal gas constant. According to Dresner[14],

the two may be combined into a single equation, yielding a close approximation:
¢ = (e +ci3) " (3.38)

where n = 0.85, ¢,; = 17.75x107%72 J/cm3K, and c,2 = 2.426 J/cm?K for silver. Magnetic
field has minimal effect on the specific heat of silver, c4y. Therefore, we use the following

function to calculate c44 in the simulation:

cag = [(17.75 x 1075T%) 0% 4 (2.426)0%] /" (3.39)

3.4.5 Properties of BSCCO-2223

Thermal Conductivity There are few references that list the thermophysical properties
of BSCCO-2223. The thermal conductivities of undoped and silver doped BSCCO-2212,
reported by Matsokawa et. al.[15], are on the order of 0.001 W/cmK. By comparison to
Figure 3-8, we see that the thermal conductivity of silver is at least 2 orders of magnitude
larger than the thermal conductivity of BSCCO-2212. Therefore, we estimate the thermal
conductivity of the conductor, k.4, as the volumetric fraction of silver, z 44, multiplied by
the thermal conductivity of silver. This is a legitimate approximation because the two

components conduct heat in parallel.

Specific Heat Specific heat data for BSCCO-2223 is just as sparse as the thermal con-
ductivity data. Thermal properties given by Iwasa[6] for BSCCO-2223 and silver at 120 K
show that the volumetric specific heat of BSCCO-2223 is about half c4,. For a silver fraction

T4 = 0.70, we estimate the volumetric specific heat of the conductor, c.q, as 0.85c4,.

Critical Current The conductor critical current, I., is not correlated as a function of
temperature prior to winding the coil. Ideally, we would measure I, at various sections in
the region we intend to model. The best way is to produce voltage versus transport current

traces for each of these sections. Unfortunately, the heat dissipation in the long length of
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conductor exceeds the refrigeration capacity before the critical current is reached and the
temperature rises quickly. Therefore, I, is calculated by a linear approximation based on
manufacturer specifications.
The electric field, F, in a superconducting composite is related to transport cu-ient by
the following function: ;
t

E= EC(I—C)" (3.40)

where E. is the electric field that defines the critical current(typically 1 pV/cm), and n
is the index number. Sumitomo measured currents that produce electric fields of 0.1 and
1.0 uV/cm at 77 K to be 19.9 A and 23.7 A, respectively. I, vs. T data found in [6] indicates
the relation is approximately linear with a slope of -1.82 A/K, and (T-intercept) of 90 K.

Using the data supplied by Sumitomo, I, is determined as a function of T for E, =1 uV/cm.:
I. = —-182T + 163.8 (3.41)

By setting I, equal to zero, we estimate a T, to be 89.3 K.

The dissipation due to an electric field of 1 uV/cm is insignificant for the short trial
durations. The simulation uses a relationship based on E, = 22 pV/cm, n = 8, and a T, of
89.5 K:

I. = -3.12T + 279.2 (3.42)

3.4.6 Thermophysical Properties of Stainless Steel and Kapton

The volumetric specific heats and thermal conductivities of Kapton and stainless steel 310
are shown with silver in Figures 3-8[12],(13] and 3-9(6],[13],{16]. These plots are accurate to
within 1%. Property data are not actually available for Kapton, but the thermal properties
of organic materials do not vary significantly. Here, we use data for epoxy. Variations in the
thermophysical properties due to magnetic field are negligible for stainless steel and organic
materials.

The data are correlated by a piece-wise third-degree polynomial as is done for the zero

field resistivity of silver (see Equation 3.27). The correlation coefficients are given in Table 3.4
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Figure 3-9: Specific heats of silver, kapton, and stainless steel.3],(6],{13],[16]
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Table 3.3: Correlation coefficients for the thermophysical properties of stainless steel and
kapton(3].

Property | Temperature Range my m ma m3
K] [#Qcm] | [uQcm/K] | [pQem/K?] | [pQem/K°]
kss 20-300 -0.001877 [ 0.001260 |-3.3219x107° | 2.7041x10~°
ki 20-300 0.0015335 { 0.0000227 0 0
Css 20-300 -0.014096 | 0.005665 | 2.4600x10~° 0
Cr 20-300 -0.016000 | 0.002074 | 1.7738x10~* 0

for the range of 20 K to 300 K. Above 300 K, the properties are assumed constant. The

subscripts, k and ss, are used to denote kapton and stainless steel, respectively.

3.5 Power Dissipation Functions

3.5.1 Heat Dissipation in the Conductor

Equations 3.5 and 3.6 determine the power dissipation density, g, in the conductor as a
function of temperature. Substituting the appropriate variables yields the following piecewise

function: oA
—ry—=49
IL(I, - I.) -TAgAcd ifT < T,

r-—LtAs T > T,
-'L'AgAcd

9(T) = (3.43)
Dissipation in the current sharing region, T < T, is calculated by substitution of Equation

3.42 for I..

3.5.2 Heat Dissipation in the Heater

The heater pulse deviated slightly between trials. The heater pulse trace obtained during
the experiment is applied to the heater dissipation, gy, for the corresponding simulation.
The voltage trace is easily converted to power dissipation using Ohm’s Law and the heater
resistance, Fp,:

(V)2

G = Ry (3.44)
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where i denotes the time step. Rp, is measured to be 5.6 2 at 20K. From the simulation,
we see the maximum heater temperature is approximately 130K. If we assume the average
temperature of the heater to be approximately 77 K, data found in Iwasa[6] allows us to

convert the resistance at 20 K to a value corresponding to 77 K of 5.9 Q2.
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Chapter 4

Discussion of Results

4.1 Qualitative Aspects of the Experimental Results

Figure 4-1 is a voltage trace obtained for a propagating quench (trial 4). The heater pulse
is initiated at t = 0 s. The conductor temperature within the heated length surpasses the
current sharing temperature when a measurable voltage rise is observed, at approximately
0.5 s. The voltage rises somewhat sharply at first, then levels off as the heater and heated
region approach thermal equilibrium. At this point, Joule dissipation in the heated region,
caused by the transport current flowing through the resistive matrix, is larger than heat
conduction away from the heated region. Therefore, the voltage (and temperature) continue
to rise. The rate of rise increases as the critical current of the conductor decreases and
more current flows through the matrix. The increasing matrix resistivity also contributes
to the increasing voltage rise rate. Once the critical current is surpassed, change in voltage
becomes completely dependent on the changing resistivity. Conduction along the tape causes
the normal region to grow. The normal region passes the voltage taps at the ends of the
heater at approximately 7.5 s; when a sharp rise is observed in region 7(see Figure 2-5),
just outside the heated region. Difference in the time the normal region passes the upper
and lower ends of the heater is probably due to a subtle nonuniformity in the power balance
along the conductor.

Figure 4-2 is a voltage trace obtained for a quench recovery(trial 1) with the same trans-
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Figure 4-1: Experimental(solid) and simulated(dashed) voltage traces (trial 4). Re-
gion 7 refers to the small conductor length just outside the heated region, depicted in
Figure 2-5(pg.17). ‘
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Figure 4-2: Experimental(solid) and simulated(dashed) voltage traces (trial 1).



port current as the trial just discussed. Voltage rise in the heated region is first observed
at approximately 0.5 s, very similar to the propagation example. We expect these times to
be close because, although the magnet is operated 10 K lower for this trial, the enthalpy
difference between 23 K and 33 K is small compared with the enthalpy difference between
33 K and the current sharing temperature, estimated to be around 65 K, as can be inferred
from Figure 3-9. If only a small portion of the heater energy is used to quickly bring the
conductor temperature to 33 K, then the thermal interaction between the heater and the
conductor should be very similar in both trials as long as the conditions at the interface of
the hrater and the conductor are consistent. However, the small enthalpy difference between
23 K and 33 K becomes very significant after the heater and the conductor reach thermal
equilibrium at some temperature, T,,. In the previous example, T, was just large enough for
the Joule dissipation to exceed cooling of the heated region by conduction. In this recovery
example, T, is not quite high enough for Joule dissipation to exceed conduction cooling,
and the temperature and voltage drops after the equilibrium is reached.

For the 80-A trials shown in Figure 4-1 and Figure 4-2, 9.5 J is dissipated in the quench
heater in approximately 0.5 s for both cases. It is apparent that stability improves with
decreasing operating temperature as the same heat input that leads to a voltage recovery
at 23.8 K causes a propagating quench at 33.5 K. Figure 4-3 makes the same comparison
for a transport current of 60 A, showing the same difference in response with T, = 33.5 K
(trial 3) and T, = 50.0 K (trial 6). Reduction in stability due to increasing I; with similar T,
is illustrated in Figure 4-4 for T, =~ 50 K with a recovery at 50 A (trial 5) and a propagating
quench at 60 A (trial 6), and in Figure 4-5 for T, ~ 24 K with a recovery at 80 A (trial 1)
and a propagating quench at 100 A (trial 2).

4.2 Numerical Results

‘The trials are simulated using identical parameters except for operating current and tem-
perature. Also, the heater pulse trace sampled during the experiment is applied to the
corresponding simulation. Contact resistances and the critical current dependence on tem-

perature are chosen to make the best match between the simulation and the entire set of
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Figure 4-3: Experimental voltage traces for [, = 60 A showing a recovery at 33.5 K (trial
3) and a quench at 50.0 K (trial 6). The dashed curves shown for the 50.0 K trial are the
simulated traces.
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Figure 4-4: Experimental(solid) and simulated(dashed) voltage traces for T, ~ 50 K showing
a recovery at 50 A (trial 5) and a quench at 60 A (trial 6).
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Figure 4-5: Experimental(solid) and simulated(dashed) voltage traces for T, ~ 24 K showing
a recovery at 80 A (trial 1) and a quench at 100 A (trial 2).
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experimental traces. Between the heater and the conductor, a thermal resistance of 10
cm?K /W is assigned to each surface of the Kapton insulation. At all other radially normal
surfaces, a thermal resistance of 320 cm?2 K/W is assigned. The thermal grease applied to
the surfaces between the heater and the conductor, depicted in Figure 2-4, accounts for the
smaller thermal resistance.

- The critical current function is a line connecting 216.8 A at 20.0 K, and 0 A at 89.5 K.
Critical currents calculated using this function are larger than those based on an electric field
criterion of 1 pV/cm. Heat dissipation caused by a voltage rise of 1uV/cm is very small, at
least in terms of the time duration of the trials made. At 77 K, the critical current calculated
with the simulation function corresponds to an electric field of 22 xV /cm, according to the
data given in Section 3.4.5, and Equation 3.40 with an index number, n, of 8.

Figure 4-1 includes the simulated voltage traces for trial 4. The model closely predicts
the times at which a positive voltage is initially observed inside and outside of the heated
region. Additionally, the voltage rise in the heated region while the heater is in thermal
equilibrium with the conductor, between 0.6 s and 1.5 s, is also closely matched. However,
after 1.5 s, the simulated voltage trace deviates significantly from the actual because critical
current is approximated as a linear function of temperature, being zero at 89.5 K. In reality,
the critical temperature of BSCCO-2223 extends to 110 K. The critical current drops less
sharply at higher temperatures and reaches zero gradually, as may be inferred from Figure
1-1. Thus, in the simulation, as the conductor temperature goes above 85 K the voltage rise
is overestimated. Also, the simulated critical current is a piecewise function of temperature,
with a discontinuity in the slope at the critical temperature. In the simulated results there
is an abrupt change of slope as the temperature of the heated region crosses the critical
temperature, at approximately 3.3 s and 80 mV. Above this voltage, the rate of rise for the
simulated and experimental traces agree reasonably well.

Figure 4-2 includes the simulated voltage traces for trial 2, a recovery. Again, both
the time at which a positive voltage is initially observed and the voltage when the heater
and conductor are in thermal equilibrium are closely matched. However, the simulated
voltage trace drops off much more quickly than the experimental. Voltage is calculated using

Equation 3.4, where it is proportional to the difference in transport current and critical
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current. If the transport current is less than or equal to critical current, the voltage is

assumed zero:

av | o if1, < I,
8z | (L-1)=PA >, (1)
zAgAcd

When the conductor temperature drops just below the temperature that matches critical and
transport current, the voltage rise is calculated as zero. Realistically, rhe electric field in the
conductor is a smooth, not piecewise, function of transport current. When the conductor is
close to this temperature, a significant rise should still be observed, accounting for the slower
voltage drop-off rate in the experimental voltage traces. This also explains the discrepancy
in the voltage rise of the second layer for trial 1 (Figure 4-5). Experimental traces show
a rise of approximately 60 pV. The rise indicates that the current sharing temperature is
approached, but the temperature rise is too small to be accurately predicted by the piecewise
function. Additionally, in trial 3 (Figure 4-3), the simulation predicts no voltage rise while

the experimental traces show a small rise of approximately 1.3 mV.

4.3 Simulation Limitations

The model assumes the conductor layers to be aligned, but they are actually arranged as
criss-crossing helixes. Throughout mest of the coil, the conductor bridges two adjacent turns
in the next layer. As described in Section 3.3.3, a coefficient is used to adjust the conduction
between adjacent layers so that conduction into the warmer turn of the next layer is more
realistic, while heat conduction into the cooler turn, is simply unaccounted for. Towards
the end of the heated region, the portion of layer-to-layer conduction that is thrown out is
largest. Simulation reveals that past the middle of the heated region(which corresponds to
one quarter of the actual heated region), temperature rise is small in the second layer, less
than 3.3 K, prior to the heated turn reaching the critical temperature. Thus, discrepancy in
calculating heat conduction out of the heated region is small. However, in certain situations
temperature rise in the second layer may be significant. For example, a particular quench
event may last a relatively long time, on the order of minutes, or the thermal resistances

between layers may be very small. In such cases, the method described in Section 3.3.3
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would not be valid. The three-dimensional helix geometry would have to be fully accounted
for, leading to a more complicated model with significantly longer simulation times.

The linear approximation used for the critical current temperature dependency may
not suffice in modeling situations where voltage rise or local heat dissipation is of critical
importance. Unfortunately, a very accurate relationship between electric field, current, and

temperature are presently unavailable.

4.4 Model Variations

When calculating the simulated layer-to-layer heat conduction as described in Section 3.3.3,
it is assumed that the middle of the quench heater is aligned symmetrically with the crossing
of the turns of the outer two layers. An alternate relationship was tried that shifted the

middle of the heater one quarter turn relative to the wind:

1 m
Ash - And (1 - 5 - A/[trn

) (4.2)

This function has a value of 1/2 at the middle of the heater, indicating that the heat con-
duction from the middle of the turn is shared by two turns. At one quarter of a turn from
the heater middle the turns coincide and Equation 4.2 has a value of one. At the end of the
turn, it is equal to one half. The adjustment causes visible differences, but are insignificant
compared to the overall discrepancy between experimental and simulated results. The ad-
justment may become necessary in situations where the contact resistances at the insulation
surfaces are smaller.

The ends of the heater are assumed as adiabatic. Simulations were executed with the
heater ends modeled as isothermal where they remain at 7, throughout the trial, producing
a very slight difference. The heater conducts heat slowly, even under large temperature
gradients because it is very thin and the thermal conductivity of the heater material, stainless
steel, is low. We can estimate a maximum possible heat conduction through the ends by

analyzing the node at the heater end. Conduction out of the node through the end, gepnq, is
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given by: _

end = %(Tend — Tout)tpts (4.3)
where T,,4 is the temperature of the end node, T,,, is the temperature just outside the
heater end, ¢, is the heater pulse duration, Az is the longitudinal mesh size, Ay, is the
cross-sectional area of the heater, and k is the average thermal conductivity of the heater
material between T,,4 and T,,;. The maximum possible g.,q for any given trial is estimated
by assuming T, is equal to the operating temperature, and T, is set equal to the maximum
temperature observed in the heater during the simulation. 7,4 is approximately 113 K, while
Tou: is set to the lowest operating temperature used, about 20 K. Using actual values for
the other variables yields a value of 5 mJ, negligible compared with the total heater pulse

energy of approximately 9.5 J.

4.5 Estimation of Quench Propagation Temperature

As discussed in Section 4.1, propagation of a normal zone results when the conductor reaches
a high enough temperature for Joule dissipation to exceed conductive cooling, T,,. An
equation for estimating T;, is derived here.

Figure 4-6 shows simulated temperature profiles along one half of the heated conductor
for trial 4 at various times after the initiation of the heater pulse. Before Joule dissipation
begins to dramatically increase the temperature and voltage rise, the temperature profiles
we,ll inside the heated region are almost flat. Therefore, at the center of the heated region
where the conductor temperature is the highest, we expect heat conduction along the tape
to be small compared with layer-to-layer conduction. To justify this claim, we calculate heat
conduction along the conductor from the node corresponding to the middle of the heated

region, ¢q;, at 1.0 s using the simulated temperature profiles. The following equation applies:

_kAIT _ kAu
©= T8z T Az

(To - T1) (4.4)

where k is the thermal conductivity of the conductor, Az is the mesh size in the longitudinal

direction(along the conductor), A4 is the conductor cross-sectional area, and Tp and T; are
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Figure 4-6: Simulated temperature profiles for trial 4 (see Figure 4-1).

the temperatures of the first and second nodes from the midpoint of the heated region in
the longitudinal direction. Using a value for & corresponding to the simulated conductor
temperature yields a value for q; of 8.3 p:W.

Layer-to-layer heat conduction per unit length, ¢_, is given by:

W
" T Rn

(T2 = Thr) (4.5)

where T5 and T}, are the temperatures of the second layer and the heated region, respectively,

and Y Ry, are the thermal resistances given by:

‘Sins
kins

Z Ry = 4R + 3 (4.6)

R, is the contact resistance, d;,, is the insulation thickness, and k;,s is the thermal conduc-



tivity of the insulation. The factors of 4 and 3 appear because there are 4 interfaces and 3
layers of insulation between each conductor layer. We may estimate layer-to-layer conduc-
tion By first assuming that the second layer temperature has not yet increased significantly
from its initial temperature, T,. At 1.0 s, the simulation calculates a temperature rise in the
second layer of less than 1.5 K. For k;,,, we use an average value of kins = 2.0 mW /cmK
as the thermal conductivity of organic materials does not change very much with tempera-
ture. The value for R, used i the simulation is 320 cm?K/W. Setting T equal to T, and
assigning T}, its simulated value yields a value for q.. Multiplication by Az indicates a heat
conduction from the node at the middle of the heated region equal to 3.8 mW, which is over
2 orders of magnitude larger than conduction along the conductor.

Having verified that layer-to-layer conduction is substantially larger than conduction
along the conductor, we can derive an equation to estimate the minimum conductor temper-
ature that will lead to a quench propagation by equating Joule dissipation with layer-to-layer

conduction. Joule dissipation per unit length is given by Equation 3.5:

g(Tv .'E) = It(It - Ic)ﬁ‘c; (47)

Setting the right-hand-sides of Equations 4.5 and 4.7 equal and rearranging, we have:

— pmlt(ll. - Ic)

qu Tm Ach

(sins
(4R¢¢ + 3m) (4'8)

When solving for T, we may have to iterate using different values for p and /, because their
values change dramatically in the temperature range 20-100 K. Once we have estimated a
value for T, energy dissipation per unit length necessary to propagate a quench may be
estimated from the enthalpy change in the conductor between T, and T;,. It is interesting to
note that reducing the contact resistances increases the energy dissipation density required
to cause a quench. However, this equation fails to apply when the contact resistance is so
low that the second layer temperature rises closely behind the temperature of the heated

region.
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Chapter 5

Application: Maximum Temperature
During a Quench Event in an HTS
Magnet

During a quench in an HTS magnet, the energy that raises the conductor temperature
through Joule dissipation originates from the magnetic energy that is stored prior to the
quench. Therefore, by conservation of energy we expect the conductor will reach some maxi-
mum temperature that depends strongly on the initial stored energy(a function of operating
current and inductance) as well as conductor attributes, wind geometry, operating temper-
ature, and how the quench is initiated. If the maximum temperature is low enough not to
damage the conductor, the magnet may not require any protection. Using a simulation that
is tailored according to the design parameters, we can predict the maximum temperature
attained during a quench as a function of operating current and inductance, and to a lesser
degree operating temperature.

Because there are many possible operating conditions, magnet designs, and initial size
of the normal zone, we cannot determine a relationship between maximum temperature
and initial stored energy that applies to all situations. However, results from a simulation
that is set up for a very specific design may still reveal trends that will be important to

understand when considering designs for future magnets. In the following section, we modify
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the numerical code to simulate a reasonably applicable design in producing a maximum
temperature versus stored energy relationship at various operating currents and operating

temperatures.

5.1 Simulation for Modeling Magnets of Various In-

ductances

5.1.1 Calculation of Transport Current

In Chapter 3, we developed a simulation code that models constant transport current oper-
ation. For the magnet under consideration, persistent or driven with a voltage-mode power
supply, the transport current will decrease at a rate determined by the magnet inductance
and the voltage rise. Figure 5-1 is a simple circuit schematic representing the magnet circuit
after the quench has been initiated. The inductance, L, has a value equal to the magnet
inductance, which is constant. The resistance component, R(t), varies over time and is de-
pendent upon the temperature profiiz within the winding as well as the winding parameters.

Using Kirchoff’s Law, we obtain the following relationship for the transport curreat, I,(t):

an(e) _

LR + L—

0. (5.1)

R(t) may be obtained indirectly from the voltage across the normal region in the coil, V(t),
which is calculated by the simulation using the method described in Chapter 3. R(t) relates

to V(t) and I,(t) simply as:

R(t) = —,"—g—; (5.2)

Substitution of Equation 5.2 into Equation 5.1 with some rearrangement of the variables

yields:
dh(t) V()

dt L (5:3)
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R(t)

Figure 5-1: Circuit schematic modeling a quench event in a magnet, persistent or driven by
a voltage-mode supply.

Equation 5.3 is easily converted into a numerically usable form by substituting in the appro-
priate Taylor expansion, Equation 3.15 with T,, , replaced by I,, which gives us:

- v

A7 I (5.4)

where ¢ denotes the time step number. The transport current for the next time step, Iit1

is solved for explicitly by rearranging Equation 5.4:
. . Vi
It =r- fAt (5.5)

In the simulation, transport current is calculated for the next time step after V; has been

calculated and just before ¢ is incremented. I is set equal to the operating current.

5.1.2 Magnet Parameter Assumptions

In order to compare maximum temperatures resulting from various inductances, we must
make several assumptions concerning the quench initiation and the magnet characteristics
that are related to inductance. The following list states important assumptions and compares
this simulation to that used in reproducing the experimental voltage traces described in

Chapter 3. Significant changes are justified.
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e The conductor parameters and wind technique do not change. The number of insula-
tion layers between turns and the contact resistances remain the same and are equal

to those used in simulating the test magnet.

o The heated region is assumed to be instantaneously brought to the critical temper-
ature(driven normal). The simulation begins with the heated region at the critical

temperature, while all other nodes are at the operating temperature.

e The heated region is the length of one full turn. A smaller normal region will result
in a higher maximum temperature because the magnetic energy is dissipated in a
smaller volume. However, unlike LTS magnets where epoxy cracking can cause enough
dissipation to initiate a quench, localized sources of heat have not been encountered
with HTS magnets because of their large minimum quench power density, calculated

in Section 3.2.1.

e The heated region is in the outermost layer. This will result in a higher final tempera-
ture than an internal quench because heat is conducted away from the normal region

through only one radially normal surface.

e For simplicity the self-field is assumed to have negligible effect on critical current and

matrix resistivity, as is the case with the test magnet.

e The outer diameter of the wind varies with inductance according to a relationship

derived below.

For a solenoidal magnet, its inductance, L, is approximated by the following relationship:
L = a,6(a, B)N? (5.6)

where a; is the inner wind radius, and N is the total number of turns. © is a function

dependent on geometric parameters, & and 3 given by:

202
= — 5.7
a=o (5.7)
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p=2 (5.8)

2a,
where a, is the wind outer radius and 2b is the wind height. It is reasonable to model
geometrically similar magnets where the geometric parameters, o and 3, remain constant
while the size and inductance vary. This makes solving for the wind diameter simpler because
© will also remain constant.
N is the quotient of half the area intersected by an axial-section through the wind, Aynd,
and the overall cross-sectional area of a single turn(includes insulation and void space), Ap.

Aumd = ((12 - a1)2b (59)
and for N:
Apna (a2 —a1)2b
N = = ) 5.10
Atrn Atrn ( )

Substituting Equation 5.10 into Equation 5.6:

L=a,0(a,p) [(a2 A:ﬂ‘)%] (5.11)

Using Equations 5.7 and 5.8 we can solve L in terms of ©, Ay, a1, and the dimensionless

geometric parameters, o and :

? x e(ar .B)(a — 1)24132 (512)

L — Alrn

The outer radius, a,, is required in :erms of inductance, L, because the quench is initiated in
the outermost turn. We obtain a solution for a; by substituting a;/o for a; and rearranging:

2/5
aAtrn

_11/5
ay = L'/> x 41750(a, B)5(a — 1)2/5 325

(5.13)

Geometric parameters equal to those of the outer coil of the test magnet are used in this
simulation: & = 1.055, 8 = 0.718, O(a, 8) = 1.676x 10~® H/cm, and A, = 0.0110 cm?.

Substituting these values into Equation 5.13 yields a simple relation for a, [given in cm] in
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terms of L [in henry]:
ap = 17.22 x L'/3 (5.14)

This value for a, is used to determine the length of a single turn, 27a,, which is used for the
length of the heated region and effects layer-to-layer conduction, as described in Section 3.3.3.
The same contact resistance used in simulating the test magnct, 320 cm?K/W, is applied

radially between nodes.

5.2 Simulation Analysis

We are interested in the maximum temperature, Ty,,:, reached in the wind over the entire
quench event for determining if the coil will be damaged by a quench caused under the
specified conditions. The highest temperature at any given time corresponds to the middle of
the heated region, where the most dissipation and least conductive cooling occurs throughout
the quench event.

Figure 5-2 shows the simulated response of total resistive voltage, temperature at the
middle of the heated region, and current decay in a 100-mH magnet(approximately the
inductance of the test magnet) operating at 100 A and 20 K. The simulation begins with
the heated region at the critical temperature, T;, and the rest of the coil at the operating
temperature, T,. Current flow through the matrix of the heated region results in an initial
resistive voltage. The current immediately begins to drop at a rate proportional to the
voltage. After the voltage reaches a maximum, both current and voltage asymptotically
approach zero along with Joule dissipation, which is given by their product. When Joule
dissipation in the heated region becomes smaller than conductive cooling by the surrounding

cool region, the highest temperature in the coil begins to decrease.

5.2.1 Simulation Results

Maximum temperature, T,,z, versus cbil inductance, L is plotted in Figure 5-3 for operating
currents between 15 A and 120 A, and operating temperatures of 20 K(solid lines) and

60 K(dashed lines). For a combination of 15 A and 20 K, no temperature rise is observed
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Figure 5-2: Simulated voltage, temperature at the middle of the heated region, and transport
current response for a 100-mH magnet operating at 100 A and 20 K.
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Figure 5-3: Maximum temperature, T,,,z, versus coil inductance, L, for various operating
currents and temperatures. Solid lines are for an operating temperature of 20 K, and dashed
lines are for an operating temperature of 60 K.
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because conduction cooling exceeds dissipation at low currents. However, for the same
current at 60 K, the heated region temperature does increase, though even slower, because
there is less conduction out of the heated region.

Tne: increases with inductance faster for higher operating currents because the stored
magnetic energy, Ey, is proportional to the square of the current: E; = 1/2LI%. We can
estimate T, simply by assuming all of the magnetic energy is dissipated in the heated
region with only a negligible amount of heat conducted away. Dividing E};, by the volume of
the heated region yields a volumetric enthalpy difference, AH. If the heated region begins

at the critical temperature, T, we have:

E; LI?

wolyn  2whlyn

AH = H(Tmaa:) - H(Tc) = (515)

where H(T,,.:) and H(T,) are the conductor volumetric enthalpics at the maximum and
critical temperatures respectively, w is the conductor width, § is the conductor thickness,
and [, is the length of a single turn, equal to the length of the heated region. To solve for

Tinez, We rearrange Equation 5.15:

LI?
211)61"-"

H(Tmaz) = H(Tc) + (5'16)

Trnaz is interpolated from H(T,,,.) using values for the enthalpy of silver that are tabulated
against temperature in [17]. The tabulated values are adjusted by a factor of 0.85 to account
for the fraction of BSSCO-2223 in the conductor. A similar modification is made to the
specific heat of silver as described in Section 3.4.5.

Equation 5.16 gives a reasonable approximation only when T}, is reached in a very short
time; otherwise, net conduction away from the normal turn during long durations becomes
significant compared with E;. Trial durations are generally shorter for larger currents and
smaller inductance. Table 5.1 compares values for T}, that are simulated and estimated
using Equation 5.16 for various values of inductance and operating currents of 100 A and

20 A.
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Table 5.1: Comparison of Maximum Temperatures

| I(0) [A] | L [H] | Simulation | Equation 5.16 ||

20 0.010 90 93
0.100 90 111
1.000 127 212
10.00 293 773
100 0.010 156 169
0.030 238 269
0.070 363 429
0.100 438 533

5.2.2 Effect of Changing Thermal Resistance

A smaller thermal resistance will also reduce the maximum temperature reached when op-
erating above I, not only because heat is removed from the heated region faster as its
temperature climbs, but because more adjacent layers may become resistive, causing the
riagnetic energy to be dissipated over a larger volume. Figure 5-4 compares simulated
traces of the temperature at the middle of the heated region for two 100-mH magnets with
different R, but are otherwise identical. In this case, decreasing the contact resistance by

a factor of 10 reduces the temperature rise by almost 50%.

5.2.3 Effect of Changing Operating Temperature

and Critical Current

Figure 5-3 reveals that increasing T, actually reduces the maximum temperature observed
during a quench event, more noticeably at higher values of T},,,. For higher T}, less heat
is required to drive a section of conductor normal. Therefore, conduction out of the heated
region drives adjacent conductor normal sooner, causing the magnetic energy to be dissipated
over a larger volume, and resulting in a lower T},,,. However, increasing T, does decrease
the current required to cause a temperature rise because there is less conduction away from
the heated region.

Similar arguments apply to conductor with lower critical current. The lower current
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Figure 5-4: Simulated voltage and temperature response for two 100-mH magnets with
contact resistances, 320 Kcm?/W(solid) and 32 Kcm?/W (dashed).
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sharing temperature leads to a smaller enthalpy change required to cause resistive dissipation.
But, the difference in maximum temperature associated with varying the critical current

tends to be very small.

5.2.4 Effect of Changing Heated Region Parameters

Decreasing the initial temperature of the heated region should not produce any surprisingly
different results as long as the temperature is high enough for Joule dissipation to drive the
conductor normal. Some of the magnetic energy will be used in bringing the conductor to
the normal state, resulting in a situation similar to the conditions simulated for creating
Figure 5-3, but with the stored magnetic energy effectively lower.

Changing the heated length can cause severe difference in maximum temperature. When
the heated region is larger, the same stored magnetic energy is dissipated in a larger volume,
leading to a lower maximum temperature. Figure 5-5 shows simulated voltage and temper-
ature response for identical 100-mH magnets and operating conditions, but different heated
lengths. For this particular situation, doubling the heated length reduces the temperature
rise by 45%. Therefore, in order to apply this model, we must have a good estimate of the

size of the heated region that would likely cause a quench.

5.2.5 Minimum Transport Current to Cause Temperature Rise

Below a particular transport current, I, Joule dissipation may be balanced by conduction
immediately after the quench is initiated. Ty, is then independent of both magnet induc-
tance, as is seen in Figure 5-3 for an operating current of 15 A, as well as the length of
the heated region. We may estimate the minimum current required for Joule dissipation to
cause temperature to increase, by comparing heat conduction out of a small section in the
middle of the heated region to Joule dissipation within that section. Simulation reveals that
layer-to-layer conduction is more significant than longitudinal conduction at the middle of
the heated region. If we assume the second layer temperature is T,, we can solve for the
minimum current by equating Joule dissipation to radial conduction. Below this current,

the temperature in the heated region will decrease immediately after it is driven normal.
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Figure 5-5: Simulated voltage and temperature response for two 100-mH magnets with
different heated lengths, 43.0 cm(solid) and 86.0 cm(dashed).



For conductor at the critical temperature, Joule dissipation per unit length, ¢(7), is given

by Equation 3.6:

9(T) = 2L (5.17)

T Acd

Conduction in the radial direction per unit length conductor, g,, is given by:

qr = Z RM (T2 - Th,.) (5.18)

where T, and T}, are the temperatures of the second layer and heated region, respectively,

and 3" Ry, are the thermal resistances given by:

S Ru=4R, + 3,‘:""’

(5.19)

mns

R, is the contact resistance, d;,, is the insulation thickness, and &;,,, is the thermal conduc-
tivity of the insulation. The factors of 4 and 3 appear because there are 4 interfaces and 3
layers of insulation between each conductor layer.

Equating Equation 5.17 with Equation 5.18 and substituting in Equation 5.19 gives us a

solution for I,,:

I \’z,,.Ach (T. - T,) (5.20)

Pm  4Rey + 36ins/king
where we have set T}, equal to T, and T; equal to T,. The thermal conductivity of organic
materials does not vary much with temperature, so for k;,, we use an average value of
kins = 2.0 mW /emK. Assigning appropriate values to the right hand side variables yields
an estimate for I,, = 16 A. According to Equation 5.20, I, can be increased by reducing
the thermal resistance between layers. Decreasing the thermal resistance allows heat to flow

from the heated region faster, permitting a larger Joule dissipation to be balanced.

9.3 Addition of Shunt

Two or more shunts placed across approximately equal portions of the magnet will further

reduce T,,,; in the conductor during a quench event. Vo.tage rise across the heated region
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Figure 5-6: Circuit schematic modeling a quench event in a two-coil magnet with each coil
shunted.

diverts some of the current to flow through the shunt it is in parallel with, reducing the rate of
dissipation and permitting a lower temperature at which conduction will match dissipation.
Also, slower dissipation allows the normal region to spread further and increase the volume
the energy is dissipated in. Here, we simulate the thermal response of shunted magnets of

various inductance when one turn in the outermost layer is driven normal.

5.3.1 Circuit Equations

Figure 5-6 is a circuit schematic representing a magnet consisting of two concentric coils
like the magnet tested, with each coil shunted by resistors of equal value, R,. R(t) denotes
the time-dependent electrical resistance across the heated region and may be derived from
the voltage rise calulcated by the simulation, V'(t), by dividing by the current in the outer
coil, I;,(t). L; and L, are the self-inductances of the inner and outer coils, respectively, and
M is their mutual inductance. Using Kirchoff’s laws, the time differentials of the transport
current in the outer coil, dI,,(t)/dt, and the current through the shunt resistors, dI(t)/dt,
may be solved in terms of V(t), L;, L,, M, R,, and I(t). The current through the shunt
resistors are equal and opposite because the voltages across each coil-shunt pair must sum

to zero. Using a sign convention with positive current in the direction of the arrows shown
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in Figure 5-6 results in the following equations for dI,,(t)/dt and dI,(t)/dt:

dl(t) 1
dt  LL,— M?

[(Lz + M)RsIs(t) - sz(t)] (5'21)

dl,(t) 1
—E_"‘ﬂLJw—Aﬁﬂ(

Li +2M + Lo)R,I,(t) — (L; + M)V {t)] (5.22)

Equations 5.21 and 5.22 are easily converted into a numerically usable form by substituting

in the appropriate Taylor expansions:

At

EFTHﬂg+Mm£—MW] (5.23)

I =1, +

it =r— 2(L,~L,,At— Mz)[(L.- +2M + L,)R, I} — (L; + M)V'] (5.24)
where the superscript ¢ denotes which time step. In the simulation, I, is calculated for the
next time step after V' has been calculated and just before t is incremented. The coil and
shunt currents have the initial conditions I, = I,, and I? = 0.

The current through the inside coil, I;;(t), is determined by equating with the other three

currents leaving the node that corresponds to the magnet’s intermediate current port:
Li(t) = Lo(t) + Is(t) + I,(t) = Io(t) + 21,(2) (5.25)

or in numerical form:

Ii =1, +2I (5.26)

5.3.2 Magnet Parameter Assumptions

The simulation determines T,,,, based on the total magnet inductance, L;;,. The other
necessary parameters- L;, L,, M, and the outer diameter 2a3, may be derived from L, , as
follows. The simulated magnet is assumed geometrically similar to itself, having geometric
parameters close to that of the test magnet. Scaling the magnet varies its inductances. The
coils of the simulated magnet are indistinguishable, except by the position of intermediate

current port. In other words, the two coils combined are equivalent to one larger coil. The
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Figure 5-7: Coi) configuration used for simulating a quench event in a two-coil magnet with
each coil shunted.

arrangement is depicted in Figure 5-7, where 2aj is the outer diameter of the outer coil, 2a; is
the inner diameter of the outer coil and the outer diameter of the inner coil, 2a; is the inner
diameter of the inner coil, and 2b is the height, identical for both coils. The dimensionless
geometric parameters, a and 3, of both coils and the coil resulting from combining the
individual coils do not vary with inductance since we are assuming geometric similarity.
Viewing the system as a single coil, the outer diameter is given by modifying Equation 5.13:

2/5

1/5 ai+oAtrn =
Ay = Li X (0.27)
*e 4l/56)(al'+o, ﬁi+o)l/s(ai+o - 1)2/5@‘2-{‘2

where the subscript, i + o, denotes the entire magnet(both coils combined). The self-

inductance of the inner and outer coils are given by Equation 5.12:

_(a3)®  Olen B = 1)48
L(,— (ao) % A?rn (528)
(e \*_ O(ei i) (s — )46
Ll - (O!oai> X A'frn (529)

where the subscripts, i and o, denote the inner and outer coils respectively. Table 5.2 lists

the parameters used to obtain the following solutions for a; [in cm], L,, and L; in terms of
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Table 5.2: Geometric Parameters of the Simulated Coil.

[ Coil [ a | B| O [H/cm] | Ay [em?] |
[ inner 1.046 | 0.760 | 1.648 x 10~° 0.0110
| outer 1.055 [ 0.727 [ 1.698 x 10~° 0.0110
[ combined | 1.104 | 0.760 | 1.676 x 10~° 0.0110

Li+, [in henry]:

a3 = 13.65 x L;> (5.30)
L, =0.3254 x Li,, (5.31)
L,’ =0.1924 x Li+o (532)

The mutual-inductance of the coils is derived from the total magnet self-inductance and the

self-inductances of the componeut coils:

M= (L,-+,, — L, - L,-) (5.33)

DN | =

5.3.3 Simulation Results

Figure 5-8 shows simulated maximum temperature traces for a 300-mH magnet operating
at 20K and 80 A. Each trace is for a different shunt resistance, R,: 1.0 m§ (solid), 10 mQ2
(dashed), and infinity(dash-dot). An infinite shunt resistance is equivalent to the case where
no shunts are used. It is clear that shunted subdivision lowers the maximum temperature.
Voltage and temperature response differs from the shuntless case with respect to an initial
sharp change in voltage and current as the outer coil current is diverted into its shunt because
of the sudden voltage rise across the heated turn. Thereafter, the response is much like a
shuntless magnet. The voltage and currents gradually decay as the temperature reaches a
maximum. It is important to note that I);(¢) first jumps above its initial value, equal to the

operating current. If I;;(t) exceeds the conductor critical current at any point, the entire
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Figure 5-8: Simulated temperature traces for a 300-mH magnet operating at 20 K and 80 A.
Each trace is for a different shunt resistance, R;: 1.0 mQ (solid), 10 mQ (dashed), and
infinity(dash-dot). An infinite shunt resistance is equivalent to the case where no shunts are

used.
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inner coil will quench. Such a response may be advantageous as the magnetic energy is
dissipated over a relatively enormous volume, substantially reducing T;5,.

Figure 5-9 shows T}, for an operating temperature of 20 K, total inductances larger
than 10 mH, operating currents of 20 A and 100 A, and shunt resistances of 1 m(2 (solid), 10
mS? (dashed), and infinity (dash-dot). Decreasing the shunt resistance always reduces Ti,z,

more noticeably for higher inductance.
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Figure 5-9: Maximum temperature, T,,;, versus coil inductance, L, for operating currents of
20 A and 100 A with shunt resistance of 1 m§(solid), 10 mQ(dashed), and infinity(dash-dot).
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An infinite shunt resistance is equivalent to the case where no shunts are used.
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Chapter 6

Conclusions

Heater-induced normal zone propagation in a three-dimensional, dry, quasi-adiabatic, high
temperature superconducting coil was studied, experimentally and through numerical sim-
ulation. Results from the simulation were compared against voltage traces obtained ex-
perimentally with a magnet wound with silver-sheathed BSCCO-2223 tape. Although the
numeri.al results show similar change in response for different operating parameters, a better
knowledge of the critical current temperature dependency and the contact resistances would
produce a much improved simulation. Nonetheless, we have demonstrated that our model
closely predicts whether a quench will propagate or recover for various operating conditions.
Additionally, we have verified the usefulness of this model by demonstrating that below a
certain operating current, a quench in a magnet similar in winding characteristics to the one

studied here will cause the current to fully decay before the conductor is thermally damaged.
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Appendix A

Simulation Code Listing

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

Fdefine
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#tdefine
F#define
#define
##define
#define
#define
##define

DX 04
W .35
THC .023
THI (.0025)
THH .00127
MTOT 300
NTOT 24
IT  100.00
TO 23.50
DT  0.0003
STOP 30000
RMC 0.73
HTP 2520
HTL 35
VSTP 1.50
RHT 10
RCT 320
B 03
TTOT 8000

/ * longitudinal mesh size */
/* conductor width */
| * conductor azimuthal mesh size */
/* insulation azimuthal mesh size */
| * heater azimuthal mesh size */
/ * total number of nodes/layer */ 10
/ * total number of layers */
/ * transport current */
/¥ operating termperature */
/ * time step */
/¥ time limit */
/ ¥ volumetric fraction silver */
/ * size of heater data */
/ * nodal heater length */
/ * voltage simulation terminates */
[ * thermal resistance beneath heater */ 20
/¥ thermal resistances for other layers */
/ * magnetic field */
| * # points jor property interpolation */
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##define IC 216.8 /¥ critical current at 20 K */
##define TC 89.5 /¥ critical temperature */
#define TRI 3 / * which heater pulse data */

#tdefine ICM (IC / (20.0 — TC)) /* critical current slope */

#define ICB ((-ICM) * TC) /¥ critical current slope I-intercept */

#define TSKIP (TO + 0.001) | * temperature rise to add new layer */ 30
ftdefine VMAX (VSTP/2) / * half termination voltage */

#define AC (W * THC) | * z—section area of conductor */

#define AI (W * THI) / * z—section area of insulation */

##define CXF (2* W) / * various constants used in heat */

#define CR (W * DX) /* conduction, dissipation, */

#define CQ (IT * DX /(RMC * AC)) /* temperature change, and */
#define CV (DX / (RMC * AC)) /* voltage calculations */
#define CT (DT /(W * DX))

#define LAL (17.5/DX) / * nodes per single half—turn */

40

main()
{
char mtrl[NTOT], mend[NTOT][MTOT];
char heat, inside, newl;
int m, n, time, stop2, outp;
char mat, mat2;

int t;

double T[NTOT][MTOT]; 50
float ktab[TTOT][3], ctab[TTOT][3];

float th[NTOT], hpls[(int) (HTP/10)], hpdat[(int) (HTP/10)][6];

float kx1, kx2, fx1, £x2, q, rho, Ic, c;

float icl, kr2[MTOT), frl, fr2[MTOT], rth[NTOT];

float thi, thi2, ff;

float opv1[NTOT], opv2, opvold;

/ * functions for calculating props */
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float kcalc(float T, char mtrl);
float rhocalc(float T);
float ccalc(float T, char mtrl);

FILE *ofp, *ifp;

| * initialize output file */
ofp = fopen("vout12e.dat", “w");
fprintf(ofp, "");
fclose(ofp);

[ * assign material to layers */
mtrl[0] = 2;
mtrl[2] = mtrl[6] = mtrl[10] = 0;
mtrl[14] = mtri[18] = 0;
mtrl[22] = 0;
mtrl{1] = mtrl{3] = mtrl[4] = mtrl[5] = mtrlf7] = 1;
mtrl[8] = mtrl[9] = mtrl[11] = 1;
mtrl[12] = mtrl[13] = 1;
mtrl[15] = 1,
mtrl{16] = 1;
mtrl(17] = mtrl[19] = 1;
mtrl[20] = mtrl[21] = mtrl[23] = 1;

[ * assign thermal contact resistances */

for(n = 0; n < NTOT; ++n){
if(ln <=1)
rth[n] = RHT,;
else if(n < (NTOT - 1))
rth{n] = RCT;
else x"th[n] =0

}

/ * read heater pulse voltage data */

ifp = fopen("htpls.dat", "x");
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for(time = I; time <= ((int) (HTP/20)); ++time)
forn = 0; n < 7; ++n)

fscanf(ifp, "% » &(hpdat[time][n]));
fclose(ifp);

/* assign heater dissipation to time steps */
for(time = 1; time <= ((int) (HTP/20)); +-+time)

hpls[time] = (hpdat[time][(TRI——l)]

* hpdat[time][(TRI—1)])/(5.9 *2* HTL);

stop2 = STOP;

/* initialize temperature and layer end indicator(mend) */

for(m = 0;m < MTOT; ++m)
forn = 0; n < NTOT; ++n){

T{n]fm] = TO;

mend[n][m] = 0;

if((n == 0) &¢& (m == (HTL — 1)) 110

mend|n][m] = 2;
if(m == (MTOT - 1))

mend|[n][m] = 1;

/* create interpolation tables for properties ¥/
foi:(n =0;n<3; ++n){

for(t = 0; t < 200, ++t)
ktab|t][n] = ctabft][n] = 0.0;

for(t = 200; t < (TTOT); ++t){ 120
ktab(t][n] = kealc(((float)t/ 10), n);

ctab[t][n] = ccale(((float)t/10), n);
}
}

/* assign thermal conductivity to first layer, */

/¥ set azimuthal conduction to zero (adiabatic surface) */
form =0;m < MTOT; ++m){
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kr2[m] = ktab[(int)(10*T[0][m])][mtrl[0]];
fr2[m] = 0;
}

/ ¥ assign thicknesses to layers */
for(n = 0; n < NTOT; ++n){
switch(mtrl[n]){
case 0:
th{n] = THC;
break;
case 1:
th(n] = THI,
break;
case 2:
th(n] = THH;
}
}

printf("\n\n\n***»»");

| * assign thermal conductivity to first layer, */
/* set azimuthal conduction to zero (adiabatié surface) */
for(m = 0; m < MTOT; ++m){
kr2[m] = ktab[(int)(10*T[0][m])][mtr][0]};
fr2[m] = 0;
}

" for(time = 1; time < STOP; ++time){ /¥ time step loop */

| * whent outp > 0, outputs data to file this time step */
if((time%100) == 0){
outp = (time/100);
opvl(2] = opvl[6] = opv1[10] = 0; /¥ initialize voltage */

opv2 = 0; / * voltage outer turn/outside heater */
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else outp = 0;

for(n = 0; n < NTOT; ++n){

if(n < (NTOT -1)){
inside = 1;
mat2 = mtrl[n+1];
thi2 = th[n+1);

}
else inside = 0;
thi = th{n];

mat = mtrl{n];

if((time < HTP) && (!n))
heat = 1;
else heat = 0;

kx2 = ktab[(int)(10*T[n][0])][mat];

fx2 = 0;

if((n > 1) && (((n — 1) % 4) == 0))

newl = 1;

else newl = 0;

for(m = 0; m < MTOT; ++m){

kx1 = kx2;
fx1 = —fx2;
krl = kr2[m];

if(newl){
ifim < LAL)

/ * azimuthal loop */

/ * indicates conduction with nezt layer */
/ * next layer material quick lookup*/ 170

/ * next layer thickness quick lookup */

/ * indicates reached inside adiabatic surface */
/ * this layer material quick lookup */

/| * this layer thickness quick lookup */

/¥ heater dissipation apply to */
/ * this layer at this time? */

180
/* themal conductivity of */
| * first node in this layer */
/* no longitudinal conduction into first node(symmetry) */
/ * indicates new Conductor layer */
/ * longitudinal loop */
190

/[ * thermal conductivity of this node and conduction*/

/* from last node both calculated at last node */

/* if new conductor layer, adjust */

/ * layer—layer conduction from last layer */

fr1 = —fr2[m] * (1.0 — (((Aoat) m) / LAL));

else frl = 0;
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}

else frl = —fr2[m]; 200

if(mend[n][m]) /* if end of layer or heater, no long. conduction */

fx2 = kx2 = 0;
else { | * otherwise calculate conduction into next */
kx2 = kr2[m+1]; / ¥ longitudinal node */

fx2 = (T[n]m+1] — T[n][m]) * (CXF * thi) / (DX / kx1) + (DX / kx2));
}

if(inside){ /* if not last layer, calculate layer—to—nezxt layer */
kr2[m] = ktab[(int)(10*T[n+1][m])][mat2]; /* conduction */ 210
fr2[m) = (T[n+1][m] — T[n])[m]) * CR/(rth[n] + (thi/(2*kr1)) + (thi2/(2*kr2[m])));

}

else{ / * if last layer, assign thermal conductivity to */
fr2[m] = 0; /* heater nodes */
if(m < HTL)

kr2[m] = ktab[(int)(10*T[0][m])}[2];
else kr2[m] = ktab[(int)(10*T[1][m])][1];

}
¢ = ctab[(int)(10*T[n][m])][mat]; /¥ specific heat of this node */ 220
if('mat){ [ * if conductor node */
rho = rhocalc(T[n](m]); [/ * resistivity of silver for this node */
if(T[n][m] < TC) /* Ic of this node */
Ic = (ICM * T[n][m]) + ICB;
else Ic = 0; / * zero if above critical temperature */

if(IT > Ic){

q=CQ* (IT — Ic) * rho; [ * q of this node */ 230
if(outp){
if((n == 2) && (m > HTL)) / * if outside heater in outermost lyr*/

opv2 += (IT — Ic) * rho * CV;

97



else opvl[n] += (IT — Ic) * tho * CV; /* voltage contribution from this node */

}
}

else q = 0;

}

else q = rho = Ic = 0;

if(heat) / * dissipation in heater during heating time */
fx1 = hpls[(int) (time/20)];

/ * new temperature of this node */

T[n][m] += (CT * (q + fx1 + £x2 + frl + fr2[m]))/(c * thi);

if((T[n][m] > 500.0)){ / * stop if temperature exceeds 500 K '/
printf("\n %d %d %4 %f %f Y%f",time, m, n, T[n][m], q, c);
m = MTOT;
n = NTOT;
time = STOP;
}

/* if rest of grid at TO, go to nexzt layer */
if((((T[2)[m - 1)) <= (TSKIP)) && (n) && (m > 2)) || (mend[n][m] == 2))
m = MTOT;

if(outp){ / * voltage/ max temperature output */
printf("\n%f %f %f %f '%f", time*DT, 2*opvl[2], opv2, T[0][0], T[2](0]);
ofp = fopen("vout12e.dat", "a");
fprintf(ofp, "\n%f %f %f %f", (time*DT), 2 * opv1[2], opv2, 2*opvl[5));
fclose(ofp);

/ * terminates if marimum voltage exceeded */
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if((opvl[2] > VMAX) || ((opvl{2] == 0.0) && (opvold > 0.0))){

printf("\nxxx s £exes");
stop2 = time+1;
time = STOP;

}

opvold = opvl1[2];

if{time%1000 == 0){

ofp = fopen("Tout12e.dat", "u");
for(m = 0; m < MTOT; ++m){

fprintf(ofp, "\n");

for(n = 0; n < NTOT; ++n)
fprintf(ofp, "%f ", T[n][m]);

}
fclose(ofp);
}
}

printf("\n\nMARK\n");

ofp = fopen("Tout12e.dat", "u");
for(m = 0; m < MTOT; ++m){
fprintf(ofp, "\n");
for(n = 0; n < NTOT; ++n)
fprintf(ofp, "%t ", T[n][m]);
}
fclose(ofp);

/ * periodically save temperature profile */

float rhoOcalc(float T) /* zero field resistivity calculation for silver */

{

float m0, m1, m2, m3, rho0;
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if(T<70.0){

m0 = .069136;

ml = —.006714;

m2 = .00019844;

m3 = -9.728e—-7;
}

310

if{T>=70.0 && T<300.0){

m0 = —.34145;

ml = .0094905;

m2 = —1.9905e-5;

m3 = 3.2803e-8;
}
if(T<300.0)

thold =m0+ (m1 *T)+ (m2*T*T)+ (m3 *T*T*T)) * le-6;
else rho0 = ((2.6775 * logl0(T/300.0)) + 1.6) * le—6; 320
return rho0;

}

float rhocalc(float T) /* nonzero field resistivity calculation for silver*/

{

float m4, m5, rho0, rho;
float rhoOcalc(float T); 330

rho0 = rhoOcale(T);

if((B * (1.43338e~6)/rho0) < 200.0){
m4 = .00014736;
m5 = 1.5838;

}
else{
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md = .117;
md = .764N3; 340

rho = (rho0 * m4 * pow((B * {1.43338e—6)/rho0), m5)) + rho0;
return rho;

}

float kcalc(float T, char mirl) /* thermal conductivity for all materials */

{
float k, kO, rho, rho0; 350

float rhocalc(float T);
float rhoOcalc(float T);

if(mtrl == 0){
rho = rhocalc(T);
rho0 = rhoOcalc(T);

if{T<300)
k0 =40+ (3.2* T * T * pow(2.71828, (4.0 - T)/4.5));
else k0 = 4.0; 360

k = RMC * (1 + (0.05 * B)) * (ho0 / tho) * k0;
}

if(mtrl == 1)
k = (0.0015335 + (.0000227 * T));

if(mtrl == 2)
k = (—.001877 + (.001260 * T) + (~3.3219e—6 * T * T) + (2.7041e~9 * T * T * T));
370

return k;

}
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float ccalc(float T, char mtrl) /* heat capacity for all materials */

{

float c;

if(mtrl == 0)
¢ = ((1.0 + RMC)/2)*pow((pow((17.75¢—6 * T * T * T), —0.85) + 0.47081), —1.1765);
380
if(mtrl == 1)
¢ = (—.016 + (.002074 * T) + (1.7738e—4 * T * T));

if(mtrl == 2)
¢ = (—.014096 + (.005665 * T) + (2.46e—5 * T * T));

return c;

}
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