
MIT Open Access Articles

Hardware-aware motion estimation search algorithm 
development for high-efficiency video coding (HEVC) standard

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Sinangil, Mahmut E., Anantha P. Chandrakasan, Vivienne Sze, and Minhua Zhou. 
“Hardware-Aware Motion Estimation Search Algorithm Development for High-Efficiency Video 
Coding (HEVC) Standard.” 2012 19th IEEE International Conference on Image Processing 
(September 2012).

As Published: http://dx.doi.org/10.1109/ICIP.2012.6467163

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: http://hdl.handle.net/1721.1/95987

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/95987
http://creativecommons.org/licenses/by-nc-sa/4.0/


HARDWARE-AWARE MOTION ESTIMATION SEARCH ALGORITHM DEVELO PMENT
FOR HIGH-EFFICIENCY VIDEO CODING (HEVC) STANDARD

Mahmut E. Sinangil∗

Anantha P. Chandrakasan
Massachusetts Institute of Technology

Cambridge MA

Vivienne Sze
Minhua Zhou

Texas Instruments Inc.
Dallas TX

ABSTRACT

This work presents a hardware-aware search algorithm for
HEVC motion estimation. Implications of several decisions
in search algorithm are considered with respect to their hard-
ware implementation costs (in terms of area and bandwidth).
Proposed algorithm provides 3X logic area in integer motion
estimation, 16% on-chip reference buffer area and 47X max-
imum off-chip bandwidth savings when compared to HM-3.0
fast search algorithm.

Index Terms— HEVC, motion estimation, hardware-
aware, motion search algorithm

1. INTRODUCTION

High-Efficiency Video Coding (HEVC) is a new video com-
pression standard being standardized by the JCT-VC (joint
collaborative team on video coding) established by ISO/IEO
MPEG and ITU-T [1]. HEVC has a design goal of achieving
50% coding gain over AVC/H.264 High Profile. For this pur-
pose, several coding efficiency enhancement tools have been
proposed to this new standard.

Motion estimation is one of the most critical blocks in
video encoding. Search algorithm performed in motion
estimation determines coding efficiency as well as power
consumption through number of computations and on-chip
and off-chip bandwidths. Searching among a larger num-
ber of candidates leads to finding better motion vectors and
improves coding efficiency. However, larger number of can-
didates often results in more switching activity and data
bandwidth and hence more active power consumption. More-
over, for a fixed cycle budget, searching through a larger
number of candidates require a higher level of parallelism
and results in larger hardware area. It is also important to
note that searching strategy can have multiple stages where
the output of the previous stage can affect where and how
the next stages will be performed. This can also limit the
throughput for a fixed cycle budget and is not desirable for
hardware implementation. Hence, search algorithm develop-
ment should consider its coding efficiency impact as well as

∗Funding provided by Texas Instruments Inc.

its implications on hardware implementation.
Among many new tools in HEVC, coding quad-tree struc-

ture is designed for providing a modular coding structure. In
HEVC, a frame is divided into LCUs (largest coding units)
and an LCU is further divided into CUs (coding units) in a
quad-tree structure. Currently, LCU size can be as large as
64x64 pixels and SCU (smallest coding unit) size can be as
small as 8x8. If a CU is not divided into smaller CUs, it is
predicted with one of several PU (prediction unit) types.

For inter prediction, PU types can be 2Nx2N, 2NxN,
Nx2N or NxN where 2Nx2N corresponds to the size of the
CU. If asymmetric motion partitions (AMP) are used, non-
square PUs for inter also include 2NxnU, 2NxnD, nLx2N and
nRx2N. NxN is only allowed at the SCU level not to present
redundancy.

This paper presents a HEVC motion estimation search al-
gorithm suitable for hardware implementation. First, a search
pattern consisting of two parallel stages is implemented toen-
able parallel evaluation of candidates. Secondly, a schemeal-
lowing a single shared search range across parallel engines
is proposed to reduce on- and off-chip bandwidth. Lastly,
a pre-fetch scheme is implemented to offset the latency of
the off-chip memory holding reference frame data. The rest
of this paper is organized as follows: Section 2 provides an
overview of the motion estimation architecture suitable for
HEVC and its quad-tree structure. Section 3 presents the par-
allelized search strategy and its implementation. Section4
focuses on the search range sharing between engines and sec-
tion 5 talks about the pre-fetching strategy to offset latency of
the off-chip memory. Finally, section 6 summarizes the ben-
efits of the proposed search algorithm in terms of hardware
area and data bandwidth and the cost in terms of coding loss.

2. OVERVIEW OF HEVC MOTION ESTIMATION
ARCHITECTURE

For maximum coding efficiency in motion estimation, all
the block sizes (CUs and PUs in CUs) should undergo in-
dependent motion searches sequentially as implemented in
the HEVC test model (HM) [2]. In hardware implementa-
tion, however, various simplifications have been discussed



for previous standards to allow search range and cost calcu-
lations to be shared between different block sizes [3, 4, 5].
These changes cause motion vector predictor calculations to
be based on estimations rather than correct motion vectors
and cost coding efficiency degradation.

In this work, an architecture suitable for HEVC motion
estimation allowing sequential processing of blocks is con-
sidered to provide highest coding efficiency. Search algo-
rithm development in this work focuses on reducing num-
ber of computations and data bandwidth. However, proposed
modifications do not require a change in sequential process-
ing of blocks and AMVP (advanced motion vector predictor)
calculations continue to be exact.

Since cost calculations and motion search for different
blocks are separate and independent, separate and indepen-
dent engines for different block sizes are necessary in imple-
mentation. Then, to find the best combination of CU sizes and
PU types, output of each engine can be combined to make size
and type decisions starting at smallest CU and then going to
larger CU sizes. Fig. 1 shows the architecture of the HEVC
motion estimation module considered in this work. It consists
of four parallel CU engines supporting only 2Nx2N PU type.
Hence, supported block sizes are 64x64, 32x32, 16x16 and
8x8. This architecture can be generalized to support different
PU types and consequently different block sizes as well.

Fig. 1. Architecture of the HEVC motion estimation module
considered in this work. Four parallel CU engines from 64x64
down to 8x8 are included with only 2Nx2N PU type.

3. SEARCH STRATEGY

Fast search strategy used in HM-3.0 starts the search around
the best AMVP and involves many inter-dependent stages in
integer motion estimation (IME). For example, the result of
the initial diamond search determines if a sub-sampled raster
search is performed or not. In hardware implementation, this
dependency increases complexity and often results in extra

cycles or extra hardware to account for the worst-case con-
ditions. For, fractional motion estimation (FME) refinement,
best integer motion vector is taken as search center and then
half and quarter pixel refinements are performed respectively.

Recent work focused on search algorithms that can be par-
allelized in hardware implementation [6, 7]. In this work, a
two-stage search strategy is used for IME where each stage
can be independently performed in parallel. Fig. 2 shows
IME search patterns used in each of the stages. First, search
center is decided by comparing AMVP list entries (up to three
entries) and [0,0]. During this comparison, SAD (sum of ab-
solute differences) cost is used. After search center is deter-
mined, two stage search is started.

8px

±64

±6
4

±64

±6
4

4px

Compare 
Costs

Determine 
Search 
Center

Final 
MV

AMVP 
List

[0,0]

3

Fig. 2. Two stage search approach used in this work. Stages
are independent of each other and can be performed in parallel
in hardware.

The first stage consists of a coarse search covering±64

by checking every 8th candidate in each direction. This stage
can capture a change in motion or irregular motion patterns
that cannot be tracked by AMVP. The second stage performs
a more localized three step search around the±7 window of
the search center. This stage can capture regular motion. It
is important to note that the AMVP calculation for all blocks
uses exact motion vectors of the neighbors and AMVP is ac-
curate and hence can track motion well in most cases.

The proposed IME search strategy checks a total of 285
candidates for each block as opposed to up to 850 candidates
that are checked in fast search strategy in HM-3.0. This re-
sults in roughly 3X hardware area reduction in IME for the
same throughput constraint. Actual savings might be larger
in implementation because of the additional complexity due
to inter-dependent stages of HM-3.0 algorithm.

Lastly, for FME, search strategy of HM is used where re-
finement is performed around the best integer motion vector.



Separate Buf.
(4 x 1R1W)

Shared Buf.
(1 x 4R1W)

Memory Size 109.2KB 39KB
Est. Array Area 0.75mm

2 0.61mm
2

Est. Perip. Area 0.5mm
2 0.44mm

2

Est. Total Area 1.25mm
2 1.05mm

2

Table 1. Area comparison of shared and separate reference
buffers. Estimates are based on a generic 65nm CMOS tech-
nology.

4. SHARED SEARCH RANGE ACROSS PARALLEL
ENGINES

As explained in Section 2, for maximum coding efficiency,
each engine in Fig. 1 is running independently and has sep-
arate reference buffers holding pixels for independent search
windows. This approach is expensive in terms of area and
external memory bandwidth. Sharing the on-chip reference
buffer across parallel engines can be significantly more effi-
cient for practical implementations. This section will focus
on benefits and cost of sharing search range across parallel
engines.

4.1. Area Impact of Reference Buffers

In the case of separate reference buffers with±64 search
range for each engine, the implementation in Fig. 1 requires
four 1R1W port memories with 39KB, 27.5KB, 22.5KB and
20.2KB sizes for 64x64, 32x32, 16x16 and 8x8 engines re-
spectively. The sizes of these memories are determined by
the block size, search range and the extra pixels at the edges
of the search range for FME. In practical implementations, a
larger size for each buffer might be used to allow data sharing
between consecutive blocks. Total area consumed by these
four memories will be roughly1.25mm

2 in a 65nm CMOS
technology as shown in Table 1. It should be noted that this
area is for storing the pixels on the chip for a single direction
and single reference frame.

In the case of a shared reference buffer with±64 search
range, the size is determined by the largest block size. In
this case a single 39KB memory is needed with 4R1W ports.
Although the bit-cell area and some peripheral components
need to be expanded to support multiple read ports, the overall
area can be smaller as shown in Table 1. Hence, shared search
range across parallel engines result in 16% area savings for
the implementation considered in Fig. 1.

4.2. Data Bandwidth Impact of Reference Buffers

With independent motion searches, each engine might have
different search centers and consequently access different
parts of the reference frame as the search window. Table 2
shows maximum and average off-chip bandwidth for 64x64,

Block Size Max. Off-Chip BW Avg. Off-Chip BW
64x64 2.2GB/s 1.49GB/s
32x32 6.4GB/s 3.64GB/s
16x16 20.9GB/s 7.62GB/s
8x8 75.6GB/s 17.47GB/s
Total 105.1GB/s 30.22GB/s

Table 2. Maximum and average off-chip bandwidth require-
ment for different block sizes (search range is±64).

32x32, 16x16 and 8x8 engines. The upper limit on the
bandwidth is calculated by assuming that the entire on-chip
reference buffer needs to be updated between consecutive
blocks and hence no data re-use is possible. The total maxi-
mum off-chip bandwidth is 112 GB/s for supporting 4Kx2K
resolution at 30fps assuming a search range of±64. Aver-
age bandwidth number assumes close to 100% data re-use
between consecutive LCUs. However, it should be noted that
100% data re-use is not possible due to sequential processing
of the blocks.

In the case of a shared reference window across engines,
the maximum bandwidth is equal to the maximum bandwidth
of the 64x64 block since the size of the shared search window
is determined by the largest block size. Hence, sharing the
search window provides 47X and 20X savings in terms of the
maximum and average bandwidth requirements.

4.3. Strategy for Sharing Search Window

In order to minimize the coding efficiency impact of sharing
search window across engines, a good representative should
be selected for the motion of the LCU and CUs within the
LCU. AMVP of the LCU is observed to provide a good center
point for the shared search window. Fig. 3 shows the density
map for the relative location of the pixels from best matching
blocks with respect to the AMVP of the LCU for two dif-
ferent sequences. Best matching blocks are calculated with
the original HM-3.0 search algorithm and the search range is
±64 pixels in each direction. For both sequences, more than
99% of the best matching pixels lie in the±64 vicinity of the
AMVP of the LCU. This indicates that AMVP of the LCU
can be used as the search window center without introducing
significant coding efficiency loss.

For smaller blocks that have different AMVPs and conse-
quently different search centers, the search window is modi-
fied to fit in the shared window. It is important to note that
although the search window is modified, original AMVP of
the block is used in cost calculations. Moreover, total num-
ber of candidates for smaller blocks stay the same regardless
of the search window being modified or not. This provides
simplicity in hardware implementation.



Dist. from AMVP of LCU in x-dir

D
is

t.
 f

ro
m

 A
M

V
P

 o
f 

LC
U

 i
n

 y
-d

ir 99.4% lies 

within ±64

(a) PeopleOnStreet

Dist. from AMVP of LCU in x-dir
D

is
t.

 f
ro

m
 A

M
V

P
 o

f 
LC

U
 i

n
 y

-d
ir 99.9% lies 

within ±64

(b) Traffic

Fig. 3. Density maps for the relative location of pixels from
best-matching blocks with respect to the AMVP of the LCU.
More than 99% of the pixels lie within±64 of the AMVP
of the LCU (2560x1600 sequences with QP=22 in random-
access configuration).

5. PRE-FETCHING STRATEGY

For a practical hardware implementation, it is necessary to
request the data from off-chip memories in advance as the
latency of these memories can be on the order of thousands of
cycles. To address this, a pre-fetching strategy is developed
for the search algorithm proposed in this work.

AMVP of the LCU is used to open the shared search
range. However, AMVP calculation for current LCU depends
on its left neighbor’s motion data and cannot start until left
neighbor’s motion search is finalized. In this work, top (T),
top-right (TR) and top-left (TL) neighbors of the current LCU
are used to predict current LCU’s AMVP and pre-fetch cor-
responding data from the off-chip memory. The procedure to
predict current LCU’s AMVP is as follows:

• If none of the neighbors is available, data is pre-fetched
from [0,0] location.

• If only one of the neighbors is available, AMVP of the
available neighboring LCU is used to pre-fetch data.

• If two of the neighbors are available, AMVP of one
of the available neighboring LCUs is used to pre-fetch
data in the following precedence order:T > TR > TL

• If all neighbors are available, median of the AMVPs of
three neighbors is calculated and used to pre-fetch data.

With this strategy, request can be sent to an off-chip mem-
ory as soon as the motion search ofTR neighbor is completed.

6. SIMULATION RESULTS

Proposed changes in search algorithm are implemented in
HM-3.0 and simulations are performed under common test
conditions defined by JCT-VC [1]. Table 3 shows coding

LD LDP RA Avg Max Min
HM-3.0 Anchor 0 0 0 0 0 0

Prop. Search 0.6 0.8 1.6 1.0 3.1 0.1
Prop. Search

&
Shared Window

0.6 1.0 2.9 1.5 7.4 0.2

Prop. Search
&

Shared Window
&

Pre-fetch

0.9 1.0 2.9 1.6 7.3 0.2

Table 3. Simulation results of the coding efficiency change
with the proposed changes with respect to HM-3.0.

efficiency change with respect to the HM-3.0 fast search al-
gorithm after each of the algorithm modifications proposed
in this work. ColumnsLD, LDP andRA stands for low-delay,
low-delay with P and random-access test conditions as de-
fined by JCT-VC [1].Avg column is the average ofLD, LDP
andRA. Lastly,Max andMin columns are the maximum and
minimum rate change for all tested sequences respectively.

The average rate increase due to the proposed changes is
1.6%. Random-access test conditions result in the largest cod-
ing efficiency degradation as the distance between the refer-
ence frame and the coded frame is longer.

7. SUMMARY AND CONCLUSIONS

This work presents a search algorithm for HEVC motion esti-
mation. Search patterns, shared search window and pre-fetch
schemes are designed to minimize hardware costs. Proposed
changes provide 3X IME logic area, 16% on-chip memory
area and 47X maximum off-chip bandwidth savings at the
expense of 1.6% average bit-rate increase when compared to
HM-3.0 fast search algorithm.

8. REFERENCES

[1] “Joint Call for Proposals on Video Compression Technology,” ITU-T
SG16/Q6, 39th VCEG Meeting: Kyoto, 17-22 Jan. 2010, Doc. VCEG-
AM91.

[2] “JCT-VC Reference Software HM-3.0,” ISO/IEO MPEG and ITU-T.

[3] Yu-Wen Huang et al., “Hardware Architecture Design for Variable Block
Size Motion Estimation in MPEG-4 AVC/JVT/ITU-T H.264,” inISCAS,
May 2003, vol. 2, pp. II–796 – II–799.

[4] Swee Yeow Yap et al., “A VLSI Architecture for Variable Block Size
Video Motion Estimation,” Circuits and Systems II: Express Briefs,
IEEE Tran. on, vol. 51, no. 7, pp. 384 – 389, July 2004.

[5] M. Haller et al., “Robust global motion estimation usingmotion vectors
of variable size blocks and automatic motion model selection,” in IEEE
ICIP, Sept. 2010, pp. 737 –740.

[6] Chia-Chun Lin et al., “PMRME: A Parallel Multi-Resolution Motion
Estimation Algorithm and Architecture for HDTV Sized H.264Video
Coding,” in IEEE ICASSP, April 2007, vol. 2, pp. II–385 –II–388.

[7] Hsiu-Cheng Chang et al., “A 7mW-to-183mW Dynamic Quality-
Scalable H.264 Video Encoder Chip,” inIEEE ISSCC, Feb. 2007, pp.
280 –603.


