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ABSTRACT

Recent millimeter-VLBI observations of Sagittarius A* (Sgr A*) have, for the first time, directly probed distances
comparable to the horizon scale of a black hole. This provides unprecedented access to the environment
immediately around the horizon of an accreting black hole. We leverage both existing spectral and polarization
measurements and our present understanding of accretion theory to produce a suite of generic radiatively inefficient
accretion flow (RIAF) models of Sgr A*, which we then fit to these recent millimeter-VLBI observations.
We find that if the accretion flow onto Sgr A* is well described by an RIAF model, the orientation and
magnitude of the black hole’s spin are constrained to a two-dimensional surface in the spin, inclination, position
angle parameter space. For each of these, we find the likeliest values and their 1σ and 2σ errors to be
a = 0+0.4+0.7, θ = 50◦+10◦+30◦

−10◦−10◦ , and ξ = −20◦+31◦+107◦
−16◦−29◦ , when the resulting probability distribution is marginalized

over the others. The most probable combination is a = 0+0.2+0.4, θ = 90◦−40◦−50◦ , and ξ = −14◦+7◦+11◦
−7◦−11◦ ,

though the uncertainties on these are very strongly correlated, and high probability configurations exist for
a variety of inclination angles above 30◦ and spins below 0.99. Nevertheless, this demonstrates the ability
millimeter-VLBI observations, even with only a few stations, to significantly constrain the properties of Sgr A*.

Key words: accretion, accretion disks – black hole physics – Galaxy: center – submillimeter – techniques:
interferometric
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1. INTRODUCTION

Understanding the structure and dynamics of black hole ac-
cretion flows has remained a central problem in astrophysics.
Only in the past decade have sufficient numerical resources
existed to perform self-consistent, three-dimensional magne-
tohydrodynamic (MHD) simulations capable of resolving the
magnetorotational instability, believed to be responsible for
angular-momentum transport in black hole accretion flows.
However, a true ab initio computation is still well beyond reach,
resulting in the need for a variety of simplifying assumptions
(e.g., the suitability of MHD, importance of electron-ion cou-
pling, properties of accelerated electrons, etc.). As a result, the
number of applicable models has rapidly proliferated, many
of which are capable of describing the variety of phenomena
observed. This is due in large part to the inability of current
observations to resolve horizon scales. Unfortunately, the com-
pact nature of black holes makes it very difficult to access the
inner-edge of black hole accretion flows.

Sagittarius A* (Sgr A*), the bright radio point source coin-
cident with the center of the Milky Way, is presently the best
studied known black hole candidate. Observations of orbiting
OB stars, the closest of which passes within 45 AU of Sgr A*,
have produced a measured mass of (4.5 ± 0.4) × 106 M� and
an Earth–Sgr A* distance4 of 8.4 ± 0.4 kpc (Ghez et al. 2009;
Gillessen et al. 2009). Already, there is strong evidence for
the existence of horizon in this source (Broderick & Narayan
2006; Broderick et al. 2009). However, in many ways, Sgr A* is
very different than the supermassive black holes in active galac-
tic nuclei (AGNs). Unlike its active brethren, Sgr A* is vastly

4 The mass and distance measurements are strongly correlated, with mass
scaling roughly as M ∝ D1.8.

underluminous, with a luminosity many orders of magnitude
smaller than the Eddington luminosity. As a result, it is widely
expected that Sgr A*’s accretion flow is quite different from
those in AGNs, though perhaps more indicative of the roughly
90% of supermassive black holes that are not presently in an
active phase.

Even when strong gravitational lensing is accounted for, the
apparent angular size of Sgr A*’s horizon is only 55 ± 2 μas,
a factor of 2 larger than the next largest black hole (M87)
and orders of magnitude larger than any other known black
hole (including all stellar-mass black holes). Nevertheless, de-
spite its tiny angular size, recent millimeter-VLBI experiments
have successfully resolved this scale (Doeleman et al. 2008).
Since only three telescopes were involved with these observa-
tions, the resulting u–v coverage of the measured visibilities
is very sparse. As a result, only two simple models of Sgr
A*’s image, a Gaussian and an annulus, were fit to the data by
Doeleman et al. (2008).

However, we have a great deal of additional information
about Sgr A*, including its spectral and polarization proper-
ties. We may also require physical consistency in any model
(which would likely rule out an annulus, for example). Further-
more, we would like to evaluate the ability of, and optimize
for this purpose, future millimeter- and submillimeter-VLBI
experiments to constrain fundamental properties of the accre-
tion flow in Sgr A*. This paper demonstrates the fitting and
parameter estimation procedure for a simple radiatively inef-
ficient accretion disk model (RIAF). In particular, we show
that even from very sparse baseline coverage it is possible
to robustly extract interesting parameters of a generic RIAF.
A study that considers how future high-frequency VLBI ob-
servations can extend this work will be presented elsewhere
(Fish et al. 2008).
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In the analysis presented here, we make full use of all the ob-
servations described in Doeleman et al. (2008). These include
2 days of VLBI observations at 230 GHz that targeted Sgr A*
using an array consisting of the James Clerk Maxwell Tele-
scope (JCMT) on Mauna Kea, the Arizona Radio Observatory
Submillimeter Telescope (SMTO) on Mt. Graham in Arizona,
and one 10 m dish of the Coordinated Array for Research in
Millimeter-wave Astronomy (CARMA) in California. Robust
detections of Sgr A* and correlated flux density measurements
were obtained on the CARMA-SMTO and JCMT-SMTO base-
lines. No detections were found on the CARMA-JCMT baseline
resulting in upper limits on the correlated flux density. In ad-
dition, contemporaneous total flux density measurements at the
same frequency were obtained by using the full CARMA ar-
ray operating as a stand-alone instrument. Full details of the
observations, calibration, and data processing can be found in
Doeleman et al. (2008).

In Section 2, we present the simple accretion flow model that
we employ. Sections 3 and 4 discuss the data-fitting procedure,
including the Bayesian method by which we do the parameter
estimation, and the generic constraints placed by the current
VLBI results. Section 5 details how we define our uncertainties
and presents our parameter estimates. Finally, we conclude in
Section 6.

2. RIAF VISIBILITY MODELING

2.1. Accretion Flow Modeling

Sgr A* transitions from an inverted, optically thick spectrum
to a optically thin spectrum near millimeter wavelengths. This
implies that Sgr A* is only becoming optically thin at 1.3 mm.
Due to relativistic effects, this transition does not occur isotropi-
cally for orbiting gas (e.g., Broderick & Loeb 2006a), becoming
optically thin on the receding side at longer wavelengths than
the approaching side of the accretion flows orbit. As a conse-
quence, the opacity of the underlying accretion flow is crucial
to imaging Sgr A*’s accretion flow.

Despite being diminutive in comparison to the Eddington lu-
minosity for a 4.5×106 M� black hole, Sgr A* is still consider-
ably bright, emitting a bolometric luminosity of approximately
1036 erg s−1. Thus, it has been widely accepted that Sgr A* must
be accretion powered, implying a minimum accretion rate of at
least 10−10 M�yr−1. It is presently unclear how this emission is
produced. This is evident by the variety of models that have been
proposed to explain the emission characteristics of Sgr A* (e.g.,
Narayan et al. 1998; Blandford & Begelman 1999; Falcke &
Markoff 2000; Yuan et al. 2002, 2003; Loeb & Waxman 2007).
Models in which the emission arises directly from the accreting
material have been subsumed into the general class of RIAFs,
defined by the generally weak coupling between the electrons,
which radiate rapidly, and the ions, which efficiently convert
gravitational potential energy into heat (Narayan et al. 1998).
This coupling may be sufficiently weak to allow accretion flows
substantially in excess of the 10−10 M�yr−1 required to explain
the observed luminosity with a canonical radiative efficiency.

Nevertheless, the detection of polarization from Sgr A* above
100 GHz (Aitken et al. 2000; Bower et al. 2001, 2003; Marrone
et al. 2006), and subsequent measurements of the Faraday
rotation measure (Macquart et al. 2006; Marrone et al. 2007), has
implied that the accretion rate near the black hole is significantly
less than the Bondi rate, requiring the existence large-scale
outflows (Agol 2000; Quataert & Gruzinov 2000). Therefore, in
the absence of an unambiguous theory, we adopt a simple, self-

similar model for the underlying accretion flow, which includes
substantial mass loss.

For concreteness, as in Broderick & Loeb (2006a), we follow
Yuan et al. (2003), and employ a model in which the accretion
flow has a Keplerian velocity distribution, a population of
thermal electrons with density and temperature

ne,th = n0
e,th

(
r

rS

)−1.1

e−z2/2ρ2
(1)

and

Te = T 0
e

(
r

rS

)−0.84

, (2)

respectively, a population of nonthermal electrons

ne,nth = n0
e,nth

(
r

rS

)−2.9

e−z2/2ρ2
, (3)

and a toroidal magnetic field in approximate (β = 10) equipar-
tition with the ions (which produce the majority of the pressure),
i.e.,

B2

8π
= β−1ne,th

mpc2rS

12r
. (4)

In all of these, rs = 2GM/c2 is the Schwarschild radius, ρ is
the cylindrical radius and z is the vertical coordinate. Inside of
the innermost-stable circular orbit (ISCO) we assume the gas is
plunging upon ballistic trajectories. In all of these expressions,
the radial structure was taken directly from Yuan et al. (2003)
and the vertical structure was determined by assuming the disk
height is comparable to ρ. Given a choice for the coefficients and
a radiative transfer model, images may then be produced using
the fully relativistic ray-tracing and radiative transfer schemes
described in Broderick & Loeb (2006a, 2006b) and Broderick
(2006).

The primary emission mechanism is synchrotron, arising
from both the thermal and nonthermal electrons. We model
the emission from the thermal electrons using the emissivity
described in Yuan et al. (2003), appropriately altered to ac-
count for relativistic effects (see, e.g., Broderick & Blandford
2004). Since we perform polarized radiative transfer via the
entire complement of Stokes parameters, we employ the po-
larization fraction for thermal synchrotron as derived in Pet-
rosian & McTiernan (1983). In doing so, we have implicitly
assumed that the emission due to thermal electrons is isotropic,
which while generally not the case is unlikely to change our
results significantly. For the nonthermal electrons, we follow
Jones & O’Dell (1977) for a power-law electron distribution,
cutting the electron distribution off below a Lorentz factor of
102 and corresponding to a spectral index of αdisk = 1.25,
both roughly in agreement with the assumptions in Yuan et al.
(2003). For both the thermal and nonthermal electrons, the ab-
sorption coefficients are to be determined directly via Kirchoff’s
law.

As in Broderick & Loeb (2006a), to correct for the fact that
Yuan et al. (2003) was a Newtonian study, the three coefficients
(n0

e,th, T 0
e , and n0

e,nth) were adjusted to fit the average radio, sub-
millimeter, and near-infrared spectrum of Sgr A*. However, our
procedure is different from that employed in Broderick & Loeb
(2006a) in two respects. First, we keep the radial index of the
nonthermal electrons fixed for all models. Second, the fitting
is performed systematically for a large number of positions in
the inclination–spin parameter space, yielding a tabulated set
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Figure 1. High-frequency radio data and the range of fitted model spectra. The
red circles are taken from Yuan et al. (2004, and references therein), the yellow
squares are from Marrone (2006), and the blue triangle is the single-dish flux
during the VLBI observations discussed here. Since all of the data points were
not taken coincidentally, errorbars on the radio data shown by the red circles
are indicative of the variability, not the intrinsic measurement errors (in contrast
to the yellow squares which were determined by coincident observations, and
the blue triangle not used in the fit). The gray regions show the envelope of the
model spectra, with the dark gray region showing a � 0.9, and the light gray
showing 0.9 < a � 0.998. Finally, the black line shows the spectrum for the
spin and inclination shown in Figure 2.

(A color version of this figure is available in the online journal.)

of coefficient values. For every inclination and black hole spin
presented here, this was possible with extraordinary accuracy
(reduce χ2 < 1 in all cases and � 0.2 for many), implying that
this model is presently significantly underconstrained by the
quiescent spectrum alone.5 Subsequently, we obtained the ap-
propriate model parameters for arbitrary spins and inclinations
via a high-order polynomial interpolation.

The range of spectra for the models we employ here is
presented in Figure 1, together with the radio and submillimeter
data that was used for the fitting procedure. The shown spectra
deviate from the fitted spectra much more significantly than
the scatter in the fitted spectra themselves. This is due almost
entirely to interpolation process, and is most extreme at high
spins, where the coefficient values begin to change rapidly
(and thus have larger interpolation errors). Nevertheless, these
do not produce substantially different images at 1.3 mm from
their tabulated counterparts, and it is important to note that the
associated error in the underlying RIAF model serves only to
favor very high spins (a � 0.99), since in these cases it results
in a larger accretion-flow photosphere and, as we shall see,
the small size of the photosphere of the high-spin models is
the primary reason they are excluded. Hence, in reality, such
models are more strongly disfavored than shown here. All of
these models are also capable of producing the Faraday rotation

5 Part of the reason for this is almost certainly the fact that many of the radio
fluxes were measured during different observational epochs, and thus the flux
uncertainties are indicative of the source variability, not the intrinsic
measurement error. For two of the data points in Figure 1 (the yellow squares),
this is not the case, having been measured coincidentally, and thus these play a
much more significant role in constraining the RIAF model parameters.

measures observed, and thus the polarimetric properties of
Sgr A*.

At the time that Sgr A* was being monitored by Doeleman
et al. (2008) it exhibited an anomalously low 1.3 mm flux of
2.4 ± 0.25 Jy, almost 40% below its average value (shown by
the blue triangle in Figure 1). To appropriately account for this,
we chose a “minimal” prescription for changing the model,
reducing all densities by a fixed factor (decreasing the magnetic
field such that β is fixed) until the observed flux was reproduced.
In a sense, this models the low flux as a low-mass accretion
period. These lower-density models do have noticeably smaller,
though qualitatively similar, images compared to those used in
the spectral fits.

An example image is shown in the left panel of Figure 2
for a moderate spin and viewing inclination. As seen in previous
efforts to image relativistic accretion flows, the flow appears as
a crescent associated with the approaching side of the accretion
disk (Broderick & Loeb 2006a, 2006b). The non-negligible
optical depth obscures the black hole “silhouette” on this side.
The receding side is all but invisible as a consequence of
the Doppler shift and Doppler beaming associated with the
relativistic orbital motion in the innermost portions of the
accretion flow. Images for θ > 90◦ are related by a reflection
(across a line perpendicular to the projected spin axis) to images
with an inclination 180◦ − θ . However, due to the approximate
reflection symmetry of the RIAF model images, the constraints
arising from spins pointed counter to and along the line of sight
are nearly identical. As a result, for clarity we restrict ourselves
to the latter range.

Using this model, we created a library of ideal-resolution
images, each with a flux of 2.4 Jy, having different spins and
viewing inclinations spanning all possible values.

2.2. Interstellar Electron Scattering

The existence of an interstellar scattering screen between
Earth and the Galactic center has been well known for some
time now. This has been carefully characterized empirically
by a number of authors; we use the recent model from Bower
et al. (2006). In this, the observed flux distribution is obtained by
convolving the ideal flux with an anisotropic Gaussian scattering
kernel. The anisotropic Gaussian is defined by the scattering
widths along major and minor axes (both ∝ λ2) and the position
angle of the minor axis (which is independent of λ). From Bower
et al. (2006), the associated full width at half-maximum for the
major and minor axes are

FWHMmaj = 1.309

(
λ

1 cm

)2

mas, (5)

FWHMmin = 0.64

(
λ

1 cm

)2

mas, (6)

with the major axis oriented 78◦ east of north. In practice, the
broadening was done in the u–v plane, where it reduces to a
multiplicative factor.

2.3. Visibility Modeling

Visibilities are then defined in the normal way:

V (u, v) =
∫∫

dx dy e−2πi(xu+yv)/λI (x, y), (7)
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Figure 2. Left: example image of the radiatively inefficient accretion flow around Sgr A* at 230 GHz, centered on the black hole, viewed at 60◦ from the black hole
spin axis, which is oriented toward north (ξ = 0), for a moderately rotating (a = 0.5) black hole. The image appears as an crescent due primarily to the Doppler
beaming and shifting associated with the relativistic orbital velocities. The color scheme is normalized such that red is bright, blue corresponds to vanishing intensity,
and the total flux from the image is 2.4 Jy. Middle: visibility magnitudes associated with the image shown on top. For reference, the positions of the observations in the
u–v plane are also show by the white points (the circle, diamonds, and squares correspond to the single-dish, SMTO-CARMA, and JCMT-SMTO detections, and the
triangle corresponds to the CARMA-JCMT upper limit). Right: scatter broadened visibility magnitudes. Again the u–v positions of the VLBI observations are shown.

(A color version of this figure is available in the online journal.)

where I(x, y) are the intensities on the image plane, with x
aligned east–west and y north–south. Because changing the
position angle, ξ (vanishing at north and increasing toward
the east), corresponds simply to a coordinate rotation, the
images were originally computed only for a single position
angle, namely ξ = 0. The visibilities associated with the ideal-
resolution images were then computed, and subsequently rotated
to the desired ξ . In practice, the visibilities were calculated
via a fast Fourier transform, which was padded sufficiently to
resolve the shortest baseline (SMTO-CARMA). We also vary
the total flux, or equivalently V0 ≡ V (0, 0). For sufficiently
different values a new image must be produced. However, for
small variations around our canonical value of 2.4 Jy (within
0.5 Jy) simply renormalizing the visibilities produces a good
approximation. Finally, the interstellar-scatter broadening was
effected by multiplying the visibilities in the u–v plane by the
Fourier-transformed scattering kernel.

Since Sgr A* was detected on only two of the three VLBI
stations, there was insufficient observational data to determine
the individual baseline visibility phases. Thus, henceforth, by
visibility (and V) we shall, more properly, refer to the visibility
magnitudes. These are necessarily a function of position in the
u–v plane, black hole spin (a), spin inclination (θ ), position
angle of the projected spin vector (ξ ), and flux normalization
(V0). That is, for a particular realization of the RIAF model, we
have computed V (u, v; a, θ, ξ, V0).

The ideal and broadened visibilities are shown in the center
and right panels of Figure 2, respectively. In both of these,
the positions of the observed visibilities are shown by the white
points. As expected, associated with the narrow axis of the image
crescent is a correspondingly broad feature in the visibilities. On
the maximum scale of interest (the JCMT-SMTO baseline), the
power is not substantially reduced by the interstellar electron
scattering. At the same time, along the long axis of the image
crescent the visibilities drop off rapidly. Thus, we may expect
that, at the very least, the VLBI observations will constrain ξ .
This turns out to be correct.

3. BAYESIAN DATA ANALYSIS

We follow a Bayesian scheme to compute the probability that
given the measured visibilities, a given set of model parameters

(a,θ ,ξ ) are correct. This is, of course, predicated upon the
assumption that our simplistic RIAF model is appropriate for
Sgr A*. Indeed, this is the primary uncertainty in our reported
constraints upon a, θ , and ξ . While we can address this model
dependence somewhat by comparing the results from different
black hole masses, at this point we can only hope that our
results are characteristic of generic RIAF models. This is not
unreasonable given that the primary physics responsible for
the structure of our images, the Keplerian velocity profile, is a
common theme among RIAF models. Nevertheless, it remains
to be proven.

Assuming the observational errors are Gaussian, the proba-
bility of measuring a visibility Vi given a particular set of model
parameters (a, θ, ξ, V0) is

Pi(Vi |a, θ, ξ, V0) =
1√

2πΔVi

exp

{
− [Vi − V (ui, vi; a, θ, ξ, V0)]2

2ΔV 2
i

}
dVi . (8)

This is appropriate for detections, i.e., along the SMTO-
CARMA and JCMT-SMTO baselines. However, for the non-
detection associated with the CARMA-JCMT baseline this is
not the case. As discussed in the Appendix, the probability of a
nondetection given a measurement threshold of Vi and intrinsic
uncertainty of ΔVi and expected value V (ui, vi; a, θ, ξ, V0) is

Pi(< Vi |a, θ, ξ, V0) =
1

2

{
1 + erf

[
Vi − V (ui, vi; a, θ, ξ, V0)√

2ΔVi

]}
. (9)

Therefore, the probability of observing the measured set of
independent visibilities given a particular RIAF model is

P ({Vi}|a, θ, ξ, V0) =
∏

i=SC, JS

Pi(Vi |a, θ, ξ, V0)

×
∏

j=CJ

Pj (< Vj |a, θ, ξ, V0) , (10)

where the first product is over the detections on the SMTO-
CARMA (SC) and JCMT-SMTO (JS) baselines, and the second
is over the nondetections on the CARMA-JCMT (CJ).
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Figure 3. Effective reduced χ2 for the best fit models in ξ and V0 as a function
of inclination and spin. For reference, white lines on the color bar show the
minimum χ2 (solid), minimum χ2 + 1 (dashed), and minimum χ2 + 2 (dot-
dashed). We were able to find a good fit for nearly all inclinations above 40◦.
Models with lower inclinations are too large at all ξ to produce the observed flux
on the JCMT-SMTO baseline. Conversely, models with large inclinations and
high spins were overpredict the fluxes on the SMTO-CARMA and CARMA-
JCMT baselines.

(A color version of this figure is available in the online journal.)

In order to assess the quality of the modeling at each spin and
inclination, we appeal to the Bayesian Information Criterion
(BIC). Specifically,

BIC = −2 ln

[
P ({Vi}|a, θ, ξ, V0)

]
+ k ln n (11)

where k = 4 is the number of parameters and n = 20 is the
number of data points. In the absence of the nondetection, this
reduces to the normal definition of χ2, up to an additive constant,
and thus comparing models with similar numbers of parameters
reduces to the normal χ2 minimization. Since this latter statistic
is commonly used, and its properties generally well known,
solely for the purpose of assessing the quality of the fits we
define an effective χ2:

χ2 = − 2 ln

[
P ({Vi}|a, θ, ξ, V0)

]
+ ln

(∏
i

2πΔV 2
i

)
(12)

= BIC + const.

Note that since only one of the visibility measurements is an
upper limit, we may expect that this definition of χ2 will behave
very similarly to the standard definition in our case. The reduced
effective χ2 is shown as a function of spin and inclination in
Figure 3 for the best fit V0 and ξ . For nearly all inclinations
above 35◦ a good fit can be found (indeed, χ2/ν � 0.4!). The
exception is at very high spins and high inclinations (where the
disk is edge on).6

While Equation (10) gives the probability that the observed
visibilities come from a given model, what we would like to
know is somewhat different: the probability of a set of model
parameters given the observed visibilities. That is, we would like
the probability density p(a, θ, ξ, V0|{Vi}). With an appropriate

6 Note that in this procedure we have ignored the statistics associated with
fitting the spectrum, choosing to break up these two components of the fitting
process to stress the implications of the new millimeter-VLBI observations.

choice of priors on a, θ , ξ , and V0, we may construct the desired
probabilities via Bayes’ theorem. As such, we now turn to the
problem of choosing these priors.

A natural choice for the prior upon θ and ξ comes from
the assumption that Sgr A*’s spin orientation probability is
isotropic, i.e., we have no other information regarding its
direction. This results in ℘(θ, ξ ) = sin θ . In the absence of
a complete theoretical understanding of the spin evolution of
supermassive black holes, we choose the prior on a to be
uniform, i.e., ℘(a) = 1. Finally, we set the prior on V0 to
be uniform as well. Since the allowed range of variation in V0
is small, and the prior probability is expected to vary smoothly,
this is not a significant oversight. Therefore, Bayes’ theorem
gives

p(a, θ, ξ, V0|{Vi})
= P ({Vi}|a, θ, ξ, V0)℘(a)℘(θ, ξ )℘(V0)∫

dadθdξdV0 P ({Vi}|a, θ, ξ, V0)℘(a)℘(θ, ξ )℘(V0)

= P ({Vi}|a, θ, ξ, V0) sin θ∫
dadθdξdV0 P ({Vi}|a, θ, ξ, V0) sin θ

. (13)

This is necessarily a probability density in a four-dimensional
parameter space, and thus is quite difficult to visualize directly.
Furthermore, some of these parameters are physically more
interesting than others. Therefore, we construct a variety of
marginalized probabilities from this for presentation and analy-
sis. The most general is simply marginalized over V0:

p(a, θ, ξ ) =
∫

dV0 p(a, θ, ξ, V0|{Vi}) . (14)

This probability distribution is shown explicitly in Figure 6. We
construct a pair of two-dimensional marginalized probability
densities as well:

p(a, θ ) =
∫

dξdV0 p(a, θ, ξ, V0|{Vi}) (15)

and

p(θ, ξ ) =
∫

dadV0 p(a, θ, ξ, V0|{Vi}). (16)

These are plotted in Figures 4 and 5. Alternatively, we could
choose the most likely values of either V0 or ξ . For some of the
panels in Figure 4, we choose a hybrid probability: marginalized
over ξ but the most likely in V0. Finally, for the purpose
of identifying the probability distribution of each parameter
separately, we also construct the marginalized one-dimensional
probability densities:

p(a) =
∫

dθdξdV0 p(a, θ, ξ, V0|{Vi}), (17)

p(θ ) =
∫

dadξdV0 p(a, θ, ξ, V0|{Vi}), (18)

p(ξ ) =
∫

dadθdV0 p(a, θ, ξ, V0|{Vi}) . (19)

These are shown in Figure 7.
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Figure 4. Probability densities of a given inclination and black hole spin for our canonical Sgr A* model. The top-left, top-right, and bottom-left panels show the
contribution to p(a, θ ) from the SMTO-CARMA, JCMT-SMTO, and CARMA-JCMT baselines, after being marginalized over ξ and at the most-likely V0. The
combined implied p(a, θ ), marginalized over ξ and V0 is shown in the bottom right (islands of high probability in the right panels are an artifact of undersampling the
probability peak in inclination). In each, p(a, θ ) is normalized such that the average is unity, providing a clear sense of the significance of the variations in probability.
Note that the color scale is different in each panel. While the JCMT-SMTO measurement is clearly the most constraining, the other baselines are critical to eliminating
high-inclination, high-spin solutions.

(A color version of this figure is available in the online journal.)
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Figure 5. Top: probability densities of a given inclination and black hole spin assuming that MSgrA∗ = 2.25, 4.5, and 9.0 × 106 M� (note that the best current estimate
is 4.5 ± 0.4 × 106 M�). Bottom: probability densities of a given inclination and position angle for the same masses. Note that the orientation of the accretion disk,
and hence the black hole spin, is strongly constrained for all cases to lay in a taco-shell-shaped two-dimensional surface within the inclination-spin-position angle
parameter space. Regardless of mass, lower spins and moderate inclinations are preferred by the recent VLBI observations. A position angle of 0◦ corresponds to the
projected spin vector being oriented north–south, and increases toward east.

(A color version of this figure is available in the online journal.)
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4. THE NATURE OF THE VLBI CONSTRAINTS

The relative importance of the three different baselines is
shown in Figure 4. To make a direct comparison of the contri-
butions from different baselines possible, the top-left, top-right,
and bottom-left panels of Figure 4 show the probability after
setting V0 to the most likely value and marginalizing over ξ
(justified by the fact that the probability distributions in ξ are
quite similar, while those in V0 were not). Both the SMTO-
CARMA detections and the CARMA-JCMT upper limit ex-
clude the high-spin, high-inclination portion of the parameter
space. This is primarily because high-spin RIAF models result
in images that are sufficiently compact to substantially over-
predict the flux observed on both of these baselines. Due to its
considerably longer baseline length, the CARMA-JCMT nonde-
tection is more constraining than the multiple SMTO-CARMA
detections, despite only representing an upper limit.

As anticipated, most constraining are the visibilities mea-
sured on the JCMT-SMTO baseline. This baseline convincingly
excludes low inclinations (face-on disks). This may be easily
understood, qualitatively, in terms of the RIAF images them-
selves. As inclination increases, the RIAF image becomes more
asymmetric, and increasingly dominated by a thin crescent (e.g.,
the left panel of Figure 2). It is generally the direction across
the minor axis of the crescent that has the shortest scale inten-
sity variations, and consequently determines the long-baseline
visibilities. Below a critical inclination, the crescent grows suf-
ficiently fat that it is resolved out by the JCMT-SMTO baseline.

At large inclinations, the crescent becomes too thin, requiring
the JCMT-SMTO baseline to be oriented obliquely relative to
the spin axis of Sgr A*. This restricts the available values of
ξ to an increasingly limited range, as may be seen explicitly
in the bottom-center panel of Figure 5. Thus, while it is nearly
always possible to obtain a satisfactory fit, the reduced range
in position angle makes such a configuration unlikely. Hence
we find that the long-baseline visibilities strongly constrain the
possible values of inclination and spin to a narrow band near
θ � 50◦ and generally favoring moderate a. We note that the
appearance of islands of high probability in the top-right panel
of Figure 4 is almost certainly due to undersampling in θ near
this critical region, and not indicative of a bifurcation in the
allowed parameter space.

This behavior is clearly visible in the combined p(a, θ ),
which closely resembles that from the JCMT-SMTO baseline
alone. In this case, we have marginalized over V0 as well
as ξ (i.e., p(a, θ ) as defined by Equation (15)), though the
difference had we chosen the most likely value of V0 would
have been less than 10% everywhere. The shorter baselines
have effectively removed a small high-spin, high-inclination
island that persisted in the JCMT-SMTO probability distribution
alone. Additionally, they have further restricted the spin to low-
to-moderate levels. The combined result, however, is to restrict
the spin and inclination to a narrow strip.

In a similar fashion, p(θ, ξ ) appears to limit RIAF models
to a narrow band of orientations. Due to the approximate up-
down symmetry of the image (parallel to the projected spin
axis), the corresponding band has a characteristic “U” shape,
corresponding to something akin to a taco shell in the a, θ , ξ
parameter space (note that we do not plot ξ over the entire 360◦
range due to the symmetry of the visibilities under reflection).

In order to ascertain how the present uncertainty in the mass
of Sgr A* effects our conclusions, we repeated the analysis for
black hole masses of 4.1 × 106 M� and 4.9 × 106 M�. Since
the mass uncertainty is strongly correlated with the distance to

Sgr A* (MD−1.8 is very well determined by stellar orbits, Ghez
et al. 2009; Gillessen et al. 2009), we altered the distance to
the Galactic center accordingly. As a consequence, the roughly
10% change in the mass results in a 4% change in the angular
scale of the RIAF images. A correspondingly small change was
seen in the resulting probability distributions, implying that,
apart from the RIAF modeling, the paucity of millimeter-VLBI
observations is the dominant obstacle to constraining the black
hole spin properties.

Altering the angular scale of the images also provides a proxy,
albeit a poor one, for considering different Sgr A* models,
corresponding to different disk scale lengths. p(a, θ ) and p(θ, ξ )
for a black holes of mass 2.25 × 106 M� and 9.0 × 106 M�
are compared to those determined using the estimated value
of 4.5 × 106 M� in Figure 5. These extreme mass changes
correspond to a 30% change in the angular scales of the images,
and can make a substantial difference to the resulting probability
distributions. Nevertheless, high inclinations and low spins are
still generally preferred, though less so for large images.

Finally, because Sgr A* is an inherently dynamical environ-
ment, exhibiting substantial variations in the millimeter flux on
30 minute timescales, we may not be justified in assuming that
the image of Sgr A* was stationary during the entire time that
observations were made. Indeed, searching for variations in the
VLBI closure quantities has been suggested as a way to directly
probe the existence of hot spots in Sgr A*’s accretion flow
(Doeleman et al. 2009). Therefore, to check this, we repeated
this analysis for the 2 days over which the observations were
performed separately, finding no significant difference. This im-
plies that either Sgr A* was quiescent during this time or that
the individual 3.5 hr observation windows were sufficiently long
to average out this activity. The anomalously low 1.3 mm flux
suggests the former interpretation is correct.

5. PARAMETER ESTIMATION

It is evident from the previous section that the allowed
parameter space is highly non-Gaussian. As such, we must
take special care in how we extract values and their attendant
uncertainties for the fitting parameters. In all cases, these values
will be highly correlated, and the systematic uncertainties due to
the choice of a particular RIAF model will dominate the errors
(and thus will not be reviewed again in this section).

In order to determine 1σ and 2σ error surfaces, we first define
a cumulative probability

P (> p) =
∫

p(x)�p

p(x) dx (20)

where x are the parameters of the total probability distribution.
That is, P (> p) is simply the probability associated with the
region of the parameter space that has probability density above
p. This is necessarily a monotonic function of p, which may
then be inverted to find p as a function of P (> p). We then
define the 1σ contour to be that associated with the p for which
P (> p) = 0.683. Similarly, we define the 2σ contour by
P (> p) = 0.954. While these satisfy the normal definition
of 1σ and 2σ errors, it is important to remember that in our case
the errors are strongly non-Gaussian.

Figure 6 shows the probability density in the full three-
dimensional parameter space as a sequence of constant-ξ slices.
The most likely parameter combination is a = 0+0.2+0.4, θ =
90◦−40◦−50◦ , and ξ = −14◦+7◦+11◦

−7◦−11◦ . However, as remarked in the
previous section, there are acceptable solutions for a wide range
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(A color version of this figure is available in the online journal.)

Figure 7. From left to right: p(a), p(θ ), and p(ξ ), all marginalized over all other parameters. In all cases, the probability distribution is highly non-Gaussian. The
dark and light shaded regions denote the 1σ and 2σ regions, as defined in the text, respectively. It is important to keep in mind that parameter estimates from these
distributions are strongly correlated.

(A color version of this figure is available in the online journal.)

of a, θ , and ξ . The primary effect of the VLBI measurements is
to restrict these parameters to a band around a two-dimensional
surface, resembling a taco shell with its sides around ξ � −20◦

and ξ � 63◦, the highest probability densities clustered on the
former. Generally, we see a preference for low spins and can
rule out inclinations below 30◦.
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More diagnostic for single parameters are the fully marginal-
ized probability distributions shown in Figure 7. It must be re-
membered, however, that these parameter estimates are strongly
correlated, and thus these estimates should be used with caution.
Again we use the cumulative probability, P (> p) to define the
1σ and 2σ surfaces, shown in the panels of Figure 7 as the dark
and light shaded regions, respectively.

From the left panel of Figure 7, the most likely spin is
a = 0+0.4+0.7. While we can rule out very high spins (a � 0.99)
at the 2σ level for our particular RIAF model, the spin is
otherwise weakly constrained. Moreover, it appears to have
a small high-spin island, at the 1σ level, around a = 0.9.
The presence of this island is limited by the CARMA-JCMT
nondetection, and therefore can be directly probed via future
observations.

In contrast, the inclination is fairly robustly limited. The most
likely inclination is θ = 50◦+10◦+30◦

−10◦−10◦ , where the lopsided errors
are due to the lopsided nature of the probability distribution. It is
very clear in the center panel of Figure 7 that face-on geometries
(θ � 30◦) are convincingly ruled out. However, there is a tail
extending to higher inclinations.7

The distribution of position angles is more complicated than
either spin or inclination. In the right panel of Figure 7, we see
the taco-shell geometry most clearly in terms of the bimodal
distribution of likely ξ . The most probable position angle is
ξ = −20◦+31◦+107◦

−16◦−29◦ . However, a second solution does exist at
ξ = 63◦+9◦+24◦

−17◦−112◦ , though containing only 38% of the probability
(under the 1σ peak) of the more likely solution.

Our limits upon the inclination are in quite good agreement
with previous efforts. Huang et al. (2007) fit a qualitatively
different RIAF model, primarily neglecting orbital motion, at
3.5 mm and 7 mm. While these favor high inclinations, the fact
that the images are dominated by interstellar scattering pre-
vents a conclusive measurement. Similarly, efforts to fit Sgr
A*’s flares with hydrodynamic instabilities find an inclination
of roughly 77◦ ± 10◦, though the systematic uncertainty asso-
ciated with their model is unclear (Falanga et al. 2007). Fitting
a qualitatively different model to the long-wavelength obser-
vations, a hydrodynamic jet, Markoff et al. (2007) also favor
large inclinations (θ � 75◦). However, it is not obvious how
this qualitative agreement should be interpreted, given the very
different geometries involved.

Unlike the inclination, our position angle estimate disagrees
significantly with many previous efforts. The primary solution
is in good agreement with the 3.5 mm and 7 mm fits of RIAF
models by Huang et al. (2007), which imply −50◦ � ξ � 30◦.
While there is considerable uncertainty in their estimates (like
ours), we note that their result is not consistent with our second
solution at the 1σ level. In contrast, only our second solution
is in agreement with analyses of NIR polarization observations,
assuming a simplistic orbiting hot-spot model, which find 60◦ �
ξ � 105◦ (Meyer et al. 2007). This is not particularly surprising
given the difficulties in assessing the relationship between the
emitted polarization and the underlying plasma geometry. At
the 1σ level, none of our solutions are consistent with efforts to
fit jet models to Sgr A* at 7 mm, which find 80◦ � ξ � 120◦
(Markoff et al. 2007). This is also not unexpected given the
considerably different geometries involved. Between all of these
(even prior to our estimate), nearly all values of ξ have been
reported, suggesting that significant improvements in theoretical

7 Indeed, as mentioned above, the most likely overall set of parameters has
θ = 90◦.

understanding and additional observations are required before
this question can be settled.

Finally, note that our estimates imply that the X-ray feature
described in Muno et al. (2008) is not associated with a putative
jet, but simply another filamentary structure in the vicinity of Sgr
A*. However, interestingly, our primary position angle estimate
(and that of Huang et al. 2007) is similar to the orientation of the
compact, clockwise disk of massive stars orbiting the Galactic
center (Genzel et al. 2003). This is somewhat surprising given
the large radii (2 × 105GM/c2) of the stellar disk, though may
be natural if the observed stars are the remnants of an active
period in Sgr A*’s recent past.

6. CONCLUSIONS

Despite the sparse u–v coverage and the existence of a
detection on only one long baseline, we have been able to
significantly constrain the possible parameters of an accretion
flow onto Sgr A*. Within the context of a qualitative RIAF
model that fits the observed spectra of Sgr A*, we have been
able to substantially constrain the orientation of Sgr A*’s spin.
The magnitude of this spin is less well determined, though the
black hole cannot be maximally rotating. This result is relatively
insensitive to the black hole mass.

We have not ascertained the strength of our constraints’ de-
pendence upon the particular RIAF model, though our estimates
are consistent with earlier efforts comparing longer wavelength
observations to an alternative RIAF model. However, there are
two additional reasons to believe that our results will be generic
of RIAF models. The first is that the underlying physics that
limits the orientation is the Doppler beaming and boosting that
is dependent primarily upon the Keplerian velocity profile of
the accretion flow, a feature that is generic among RIAF mod-
els. The second is the weak dependence upon large variations
in mass, implying that changing the scale lengths of the accre-
tion model does little to alter our results. Thus, we expect the
qualitative form of our constraints to be a generic feature of
all RIAF models for Sgr A*, and our quantitative results to be
roughly correct. Of course, should the emission observed from
Sgr A* not arise in an accretion flow, our results could be quite
different.

As implied by the right panel of Figure 2, additional long-
baseline observations are sorely needed to unambiguously
determine both the applicability of RIAFs to Sgr A* and
constrain their parameters. In a companion paper, Fish et al.
(2008), we report upon an analysis of the ability of possible
millimeter-VLBI arrays to do so. Given the number of potential
radio telescopes that could be added to the current 1.3 mm
VLBI array (Doeleman et al. 2009), the prospects for making
significant progress in model parameter estimation are excellent.
Already, it is clear that with the advent of millimeter VLBI
we are now entering an era of precision black-hole accretion
physics.

APPENDIX

NONDETECTION PROBABILITY

Consider an observable y, with an expected value of y0 and
Gaussian random errors of amplitude Δy. Then, the probability
density of measuring a value y is

p(y) = e−(y−y0)2/2Δy2

√
2πΔy

. (A1)
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A nondetection, by definition, corresponds to a “measured”
value of y below some threshold Y. The probability of such
an event is simply

P (< Y ) =
∫ Y

−∞
p(y)dy = 1

2
+

∫ Y

y0

e−(y−y0)2/2Δy2

√
2πΔy

dy

= 1

2

[
1 + erf

(
Y − y0√

2Δy

)]
,

(A2)

where

erf(x) ≡
√

2

π

∫ x

0
e−t2

dt (A3)

is the standard error function. As expected, when Y = y0,
p(< y0) = 1/2 and when Y � y0, p(< y0) � 1. This procedure
is identical to that employed by Kelly (2007), Section 5.2, and
references therein. While in that work the primary interest was a
careful investigation of the ability of Bayesian techniques in the
context of linear regression, we are faced with a more general
fitting problem. Nevertheless, how nondetections, or “censored
data,” enter into the likelihood is identical, the distinctions
arising only later in the analysis.
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