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SUMMARY
The Cancer Genome Atlas Network recently cataloged recurrent genomic abnormalities in glioblastoma
multiforme (GBM). We describe a robust gene expression-based molecular classification of GBM into Pro-
neural, Neural, Classical, and Mesenchymal subtypes and integrate multidimensional genomic data to estab-
lish patterns of somatic mutations and DNA copy number. Aberrations and gene expression of EGFR, NF1,
and PDGFRA/IDH1 each define the Classical, Mesenchymal, and Proneural subtypes, respectively. Gene
signatures of normal brain cell types show a strong relationship between subtypes and different neural line-
ages. Additionally, response to aggressive therapy differs by subtype, with the greatest benefit in the Clas-
sical subtype and no benefit in the Proneural subtype. We provide a framework that unifies transcriptomic
and genomic dimensions for GBM molecular stratification with important implications for future studies.
SIGNIFICANCE

This work expands on previous glioblastoma classification studies by associating known subtypes with specific alterations
in NF1 and PDGFRA/IDH1 and by identifying two additional subtypes, one of which is characterized by EGFR abnormalities
and wild-type p53. In addition, the subtypes have specific differentiation characteristics that, combined with data from
recent mouse studies, suggest a link to alternative cells of origin. Together, these data provide a framework for investigation
of targeted therapies. Temozolomide and radiation, a common treatment for glioblastoma, has demonstrated a significant
increase in survival. Our analysis illustrates that a survival advantage in heavily treated patients varies by subtype, with Clas-
sical or Mesenchymal subtypes having significantly delayed mortality that was not observed in the Proneural subtype.
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INTRODUCTION

Glioblastoma multiforme (GBM) is the most common form of

malignant brain cancer in adults. Patients with GBM have

a uniformly poor prognosis, with a median survival of one year

(Ohgaki and Kleihues, 2005); thus, advances on all scientific

and clinical fronts are needed. In an attempt to better understand

glioblastoma, many groups have turned to high-dimensional

profiling studies. Several examples include studies examining

copy number alterations (Beroukhim et al., 2007; Ruano et al.,

2006) and gene expression profiling studies identifying gene

signatures associated with EGFR overexpression, clinical

features, and survival (Freije et al., 2004; Liang et al., 2005; Mis-

chel et al., 2003; Murat et al., 2008; Nutt et al., 2003; Phillips et al.,

2006; Shai et al., 2003; Tso et al., 2006).

The Cancer Genome Atlas (TCGA) Research Network has

been established to generate the comprehensive catalog of

genomic abnormalities driving tumorigenesis. TCGA provided

a detailed view of the genomic changes in a large GBM cohort

containing 206 patient samples. Sequence data of 91 patients

and 601 genes were used to describe the mutational spectrum

of GBM, confirming previously reported TP53 and RB1 muta-

tions and identifying GBM-associated mutations in such genes

as PIK3R1, NF1, and ERBB2. Projecting copy number and

mutation data on the TP53, RB, and receptor tyrosine kinase

pathways showed that the majority of GBM tumors harbor

abnormalities in all of these pathways, suggesting that this is

a core requirement for GBM pathogenesis.

Currently, only a few molecular factors show promise for prog-

nosis or prediction of response to therapy (Curran et al., 1993;

Kreth et al., 1999; Scott et al., 1998). An emerging prognostic

factor is the methylation status of the MGMT promoter (Hegi

et al., 2005). The TCGA GBM study (Cancer Genome Atlas

Research Network, 2008) suggested that MGMT methylation

shifts the GBM mutation spectrum in context of alkylating treat-

ment, a finding with potential clinical implications. The inability to

define different patient outcomes on the basis of histopatholog-

ical features illustrates a larger problem in our understanding of

the classification of GBM.

In the current study, we leverage the full scope of TCGA data

to paint a coherent portrait of the molecular subclasses of GBM.

RESULTS

Consensus Clustering Identifies Four Subtypes of GBM
Factor analysis, a robust method to reduce dimensionality, was

used to integrate data from 200 GBM and two normal brain

samples assayed on three gene expression platforms (Affymetrix

HuEx array, Affymetrix U133A array, and Agilent 244K array) into

a single, unified data set. Using the unified data set, we filtered

the data to 1740 genes with consistent but highly variable

expression across the platforms. Consensus average linkage

hierarchical clustering (Monti et al., 2003) of 202 samples and

1740 genes identified four robust clusters, with clustering

stability increasing for k = 2 to k = 4, but not for k > 4 (Figures

1A and 1B). Cluster significance was evaluated using SigClust

(Liu et al., 2008), and all class boundaries were statistically signif-

icant (Figure 1C). Samples most representative of the clusters,

hereby called ‘‘core samples’’ (n = 173 of 202), were identified
on the basis of their positive silhouette width (Rousseeuw,

1987), indicating higher similarity to their own class than to any

other class member (Figure 1D). Genes correlated with each

subtype were selected using SAM and ROC methods. ClaNC,

a nearest centroid-based classifier that balances the number

of genes per class, identified signature genes for all four

subtypes (Dabney, 2006). An 840 gene signature (210 genes

per class) was established from the smallest gene set with the

lowest cross-validation (CV) and prediction error. Each of the

signatures was highly distinctive (Figure 2A). Signatures and

gene lists for all analyses are available at http://tcga-data.nci.

nih.gov/docs/publications/gbm_exp/.

These analyses were repeated on the three individual data

sets, demonstrating that unifying the data improved CV error

rates (see Figures S1A–S1E, available with this article online).

Limiting the analysis to core samples reduced the CV error rate

from 8.9% to 4.6%, validating their use as most representative

of the cluster (Figures S1A and S1B). Importantly, our findings

did not correlate with confounding factors well known to interfere

with gene expression analysis, such as batch, sample purity, or

sample quality (Table 1 and Figure S2). An exception was the

sample collection center. However, the collection centers drew

from different patient populations, and the relationship to

subtype is largely the result of strong clinical differences in their

patients, most notably age, as discussed below.

Validation of Subtypes in an Independent Data Set
An independent set of 260 GBM expression profiles was

compiled from the public domain to assess subtype reproduc-

ibility (Beroukhim et al., 2007; Murat et al., 2008; Phillips et al.,

2006; Sun et al., 2006). The subtype of TCGA samples was

predicted using ClaNC, and data were visualized using the 840

classifying gene list (Figure 2A). Applying a similar ordering in

the validation set clearly recapitulated the gene sample groups

(Figure 2B). Importantly, the four subtypes were similarly pro-

portioned in the validation and TCGA data set, as well as in all

four individual validation data set cohorts (Figures S2G–S2L).

Accounting for differences in sample size and analytic tech-

niques, obvious concordance was seen between our classifica-

tion and the results from earlier studies (Supplemental Experi-

mental Procedures and Figure S3). To relate tumor subtype to a

relevant model system, we obtained gene expression data from

a collection of xenografts. The xenografts were established by

direct implant of patient surgical specimens in athymic null/null

mice (Hodgson et al., 2009). Proneural, Classical, and Mesen-

chymalsubtypeswerealso reflected in the xenografts (Figure2C).

In contrast, attempts to detect comparable transcriptional

subtypes in immortalized cell lines were uninformative (data not

shown).

Functional Annotation of Subtypes
Subtype names were chosen on the basis of prior naming and

the expression of signature genes: Proneural, Neural, Classical,

and Mesenchymal. To get insight into the genomic events differ-

entiating the subtypes, we used copy number data of 170 core

samples that were recently described by the Cancer Genome

Atlas Research Network (2008). Sequence data were available

for 601 genes on 116 core samples; 73 samples were previously

described. Fourteen amplifications and seven homozygous or
Cancer Cell 17, 98–110, January 19, 2010 ª2010 Elsevier Inc. 99
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Figure 1. Identification of Four GBM Subtypes

(A) Consensus clustering matrix of 202 TCGA samples for k = 2 to k = 5.

(B) Consensus clustering CDF for k = 2 to k = 10.

(C) SigClust p values for all pairwise comparisons of clusters.

(D) Silhouette plot for identification of core samples. Also see Figure S1.
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hemizygous deletion events, both broad and focal, were found to

be significant by the GISTIC method, of which 12 events showed

subtype associations (Table 2 and Figure S4). Several mutations

correlated with subtype (Table 3).

Classical

Chromosome 7 amplification paired with chromosome 10 loss is

a highly frequent event in GBM and was seen in 100% of the

Classical subtype (Table 2). Although chromosome 7 amplifica-

tion was seen in tumors of other classes, high-level EGFR ampli-

fication was observed in 97% of the Classical subtype and

infrequently in other subtypes (p < 0.01, adjusted two-sided

Fisher’s exact test; Table S1, Table 2, and Figure 3). A corre-

sponding and statistically significant four-fold increase in

EGFR expression was observed, compared with the remainder

of the samples (p < 0.01, two-sided Student’s t test). Twelve of

twenty-two Classical samples contained a point or vIII EGFR

mutation (Table 3 and Figure 3). Although alterations of EGFR

are likely important in many GBMs, the Classical subtype

demonstrates a focused predilection for genomic alteration of

the gene as revealed by the integrated analysis. In tandem with

high rates of EGFR alteration, there was a distinct lack of TP53
100 Cancer Cell 17, 98–110, January 19, 2010 ª2010 Elsevier Inc.
mutations in the subset of Classical samples sequenced

(p = 0.04, adjusted two-sided Fisher’s exact test; Table S2),

even though TP53 is the most frequently mutated gene in GBM

(Cancer Genome Atlas Research Network, 2008). Focal 9p21.3

homozygous deletion, targeting CDKN2A (encoding for both

p16INK4A and p14ARF), was a frequent and significantly associ-

ated event in the Classical subclass (p < 0.01, adjusted two-

sided Fisher’s exact test; Table S1 and Table 2), co-occurring

with EGFR amplification in 94% of the Classical subtype

(Figure 3). Homozygous 9p21.3 deletion was almost mutually

exclusive with aberrations of other RB pathway components,

such as RB1, CDK4, and CCDN2. This finding suggests that, in

samples with focal EGFR amplification, the RB pathway is

almost exclusively affected through CDKN2A deletion. Neural

precursor and stem cell marker NES, as well as Notch (NOTCH3,

JAG1, and LFNG) and Sonic hedgehog (SMO, GAS1, and GLI2)

signaling pathways were highly expressed in the Classical

subtype (Table S3A).

Mesenchymal

Focal hemizygous deletions of a region at 17q11.2, containing

the gene NF1, predominantly occurred in the Mesenchymal
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Figure 2. Gene Expression Data Identify Four Gene Expression Subtypes

(A) Using the predictive 840 gene list, samples were ordered on the basis of subtype predictions, and genes were clustered using the core set of 173 TCGA GBM

samples.

(B) Gene order from the TCGA samples was maintained in the validation data set (n = 260), which comprises GBMs from four previously published data sets.

(C) Ordered gene expression for 24 xenograft samples. Samples are ordered on the basis of their predicted identity using the 840 gene list. Selected genes are

displayed for each gene expression subtype. Also see Figure S3 and Table S3.
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subtype (p < 0.01, adjusted two-sided Fisher’s exact test; Table

S1 and Table 2), and the majority of samples had lower NF1

expression levels (p < 0.01, two-sided Student’s t test; Figure 3).

Although methylation profiles were available, no methylation

probes were present in or adjacent to the NF1 locus. NF1 muta-

tions were found in 20 samples, 14 of which were classified as

Mesenchymal, adding up to 53% of samples with NF1 abnormal-

ities in this class. Six of seven comutations of NF1 and PTEN,

both intersecting with the AKT pathway, were observed in the

Mesenchymal subtype (Table S4). The Mesenchymal subtype

displayed expression of mesenchymal markers, such as

CHI3L1 (also known as YKL40) and MET, as described else-

where (Phillips et al., 2006). The combination of higher activity

of mesenchymal and astrocytic markers (CD44 and MERTK) is

reminiscent of a epithelial-to-mesenchymal transition that has

been linked to dedifferentiated and transdifferentiated tumors

(Thiery, 2002). Genes in the tumor necrosis factor super family

pathway and NF-kB pathway, such as TRADD, RELB, and

TNFRSF1A, are highly expressed in this subtype, potentially

as a consequence of higher overall necrosis and associated

inflammatory infiltrates in the Mesenchymal class (Table 1 and

Table S3B).

Proneural

Two major features of the Proneural class were alterations of

PDGFRA and point mutations in IDH1. Focal amplifications of

the locus at 4q12 harboring PDGFRA were seen in all subtypes

of GBM but at a much higher rate in Proneural samples

(p = 0.01, adjusted two-sided Fisher’s exact test; Table S1 and

Table 2). The characteristic signature of PDGFRA in Proneural
samples, however, is best described as the concomitant focal

amplification in conjunction with high levels of PDGFRA gene

expression, which is seen almost exclusively in this tumor type

(p < 0.01, two-sided Student’s t test; Figure 3). Four of the

Proneural samples amplifying PDGFRA also harbor a PDGFRA

mutation. Although a rare in-frame deletion of the Ig-domain of

PDGFRA has been described in GBM (Kumabe et al., 1992;

Rand et al., 2005), the multiple PDGFRA point mutations

observed here were in the Ig-domain, potentially disrupting

ligand interaction (Figure S5). Interestingly, 11 of 12 mutations

in the isocitrate dehydrogenase 1 gene, IDH1, were found in

this class (p < 0.01, adjusted two-sided Fisher’s exact test; Table

S2 and Table 2), most of which did not have a PDGFRA abnor-

mality (Figure 3). TP53 mutations and loss of heterozygosity

were frequent events in this subtype (Table 3 and Figure 3).

The majority of the TP53 mutations (20 of 36; p = 0.1, adjusted

two-sided Fisher’s exact test; Table S2), as well as TP53 LOH

(10 of 15) were located in Proneural samples. The classic GBM

event, chromosome 7 amplification paired with chromosome

10 loss, was distinctly less prevalent and occurred in only 54%

of Proneural samples (chromosome 7, p < 0.01; chromosome

10, p = 0.02, adjusted two-sided Fisher’s exact test; Table S1

and Table 2). The Proneural group showed high expression of oli-

godendrocytic development genes, such as PDGFRA, NKX2-2,

and OLIG2 (Noble et al., 2004), underlining its status as an atyp-

ical GBM subtype. High expression of OLIG2 has shown to be

able to down-regulate the tumor suppressor p21 (CDKN1A),

thereby increasing proliferation (Ligon et al., 2007), and CDKN1A

expression is indeed lower in this class (data not shown). Ten of
Cancer Cell 17, 98–110, January 19, 2010 ª2010 Elsevier Inc. 101



Table 1. Clinical and Phenotypical Characteristics of TCGA and Validation Data Sets

Proneural Neural Classical Mesenchymal Totals (Core) Totals (All)

No. of Patients

All 57 33 54 58 202

Core 54 27 37 55 173

TCGA Patient Phenotype (Core Samples)

Age, yearsa

Median (LQ, UQ) 51.8(34.3, 66.0) 63.8(51.7, 68.2) 55.7(49.7, 67.5) 57.7(52.8, 66.7) 57.2(48.0, 66.5) 57.1(47.2, 66.4)

No. %40 years old 18 1 3 2 24 30

Survival (in months)

Medianb (CI) 11.3(9.3–14.7) 13.1(9.80–18.0) 12.2(11.08–18.0) 11.8(9.57–15.4) 12.2(11.1–14.0) 12.2(11.1–14.1)

Karnofsky scorec

100 8 4 3 7 22 25

90 12 4 5 10 31 36

70–80 7 3 5 10 25 30

<70 1 6 0 1 8 10

Sex

Female 21 8 19 15 63 74

Male 33 16 18 40 107 124

TCGA Tumor Characteristics (Core Samples)

MGMT methylatedc

Yes 15 8 12 11 46 50

No 36 19 23 42 120 143

Nonprimary tumors

Recurrent 4 3 2 2 11 14

Secondary 3 0 1 0 4 5

Tumor nuclei, %

Median 98.8 97.5 100.0 97.0 97.5 97.5

Mean 95.8 92.3 96.6 94.9 95.2 95.2

Necrosis, %a

Median (LQ, UQ) 7.5 (5.0, 12.5) 5.0 (1.3, 8.8) 7.5 (5.0, 15.0) 15.0 (7.5, 20.0) 7.5 (5.0, 15.0) 7.5 (5.0, 15.0)

Collection Centera,d

MD Anderson 28 5 18 21 72 84

Henry Ford 14 18 8 23 63 67

UCSF 10 4 11 9 34 42

Validation Samples

No. of Patients

69 40 63 74 246e

Study

Beroukhim et al. 10 7 9 18 44

Murat et al. 19 9 20 22 70

Phillips et al. 19 12 8 17 56

Sun et al. 21 12 26 17 76

Age,yearsa

Median (LQ, UQ) 48.5 (37, 57) 55 (46.5, 63) 57(49, 62) 53 (44.25, 59) 53 (44, 61)

No. %40 23 5 3 8 39

Survival (in months)

Medianb (CI) 16.2 (14.3, 22.4) 15.0 (12.2, 21.9) 12.2 (10.5, 15.0) 15.0 (13.6, 20.4) 15 (14,16)

Sex

Female 18 14 14 15 61

Male 37 21 30 45 133

Cancer Cell
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Table 2. Copy Number Alterations Correlate with GBM Subtype

Type of Event, ROI

Proneural

(n = 54)

Neural

(n = 24)

Classical

(n = 37)

Mesenchymal

(n = 55)

Total No. of

Samples Altered

Known Cancer

Gene in Region

Low- and High-Level Amplified Events

7p11.2 29 (54%)a 23 (96%) 37 (100%) 52 (95%) 141 EGFR

7q21.2 25 (46%)a 23 (96%) 34 (92%) 49 (89%) 131 CDK6

7q31.2 29 (54%)a 22 (92%) 32 (86%) 50 (91%) 133 MET

7q34 28 (52%)a 22 (92%) 32 (86%) 50 (91%) 132

High Level Amplification Events

7p11.2 9 (17%)a 16 (67%) 35 (95%)a 16 (29%) 76 EGFR

4q12 19 (35%)a 3 (13%) 2 (5%) 5 (9%) 29 PDGFRAb

Homozygous and Hemizygous Deletion Events

17q11.2 3 (6%) 4 (17%) 2 (5%) 21 (38%)a 30 NF1

10q23 37 (69%) 23 (96%) 37 (100%) 48 (87%) 145 PTEN

9p21.3 30 (56%) 17 (71%) 35 (95%) 37 (67%) 119 CDKN2A/CDKN2B

13q14 28 (52%) 11 (46%) 6 (16%) 29 (53%) 74 RB1

Homozygous Deletion Events

9p21.3 22 (41%) 13 (54%) 34 (92%)a 29 (53%) 98 CDKN2A/CDKN2B

ROI, region of interest. Significance of the difference in number of events between subtypes and remainder of the subtypes was tested using a two-

sided Fisher’s exact test, corrected for multiple testing using a Familywise Error Rate. Bold type indicates p values significant at 0.1 level. Also see

Figure S4 and Table S1.
a p value significant at 0.01 level.
b The peak of the amplification is adjacent to PDGFRA.
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16 PIK3CA/PIK3R1 mutations identified were found in the Pro-

neural subtype and were mostly observed in samples with

no PDGFRA abnormalities. The Proneural signature further con-

tained several proneural development genes, such as SOX

genes, as well as DCX, DLL3, ASCL1, and TCF4 (Phillips et al.,

2006). Gene ontology (GO) categories identified for the Proneural

subtype involved developmental processes and a previously

identified cell cycle/proliferation signature (Whitfield et al.,

2002) (Table S3C).

Neural

The Neural subtype was typified by the expression of neuron

markers, such as NEFL, GABRA1, SYT1, and SLC12A5. GO cate-

gories associated with the Neural subtype included neuron projec-

tion and axon and synaptic transmission (Table S3D). The two

normal brain tissue samples used in this data set were both clas-

sified as the Neural subtype. The majority (25 of 33) of the Neural

samples contained few normal cells on two pathology slides.

Pathology slides for three samples of each subtype were reviewed

again, and the diagnosis of GBM was confirmed (Figure S6).

Glioblastoma Subtypes Are Reminiscent

of Distinct Neural Cell Types

To gain insight into the biological meaning of the subtypes, we

used data from the brain transcriptome database presented by
LQ, lower quartile; UQ, upper quartile; and CI, confidence interval. Also see
a Indicates statistically significant relationship between cluster category and

samples, only the core samples were used for significance testing.
b Median survival and corresponding confidence intervals were estimated f
c Indicates categories with large amounts of missing data. Only 101 patients

patients) had methylation data available.
d Five samples from Duke are not itemized here to protect patient confiden
e Normal and recurrent patients were excluded from the analysis.
Cahoy et al. (2008) to define gene sets associated with neurons,

oligodendrocytes, astrocytes, and cultured astroglial cells. These

mature cells may be of interest both for their primary associations

with tumor subtypes, as well as inherent signatures retained from

progenitor cells. Using these four gene sets, a single-sample

GSEA enrichment score was calculated for all samples (Figure 4)

(Barbie et al., 2009). The enrichment score indicates how closely

the expression in a sample reflects the expected expression

pattern of the gene set. In this exploratory analysis, we observed

a number of patterns associating each subtype with expression

patterns frompurified murineneuralcell types.The Proneural class

was highly enriched with the oligodendrocytic signature but not

the astrocytic signature, whereas the Classical group is strongly

associated with the murine astrocytic signature. The Neural class

shows association with oligodendrocytic and astrocytic differenti-

ation but also had a strong enrichment for genes differentially ex-

pressed by neurons. The Mesenchymal class was strongly associ-

ated with the cultured astroglial signature. Interestingly, the

majority of immortalized cell lines evaluated also demonstrated

expression patterns most similar to the Mesenchymal subtype

(data not shown). Additionally, well-described microglia markers,

such as CD68, PTPRC, and TNF, are highly expressed in the

Mesenchymal class and the set of murine astroglial samples.
Figure S2 and Tables S5 and S7.

phenotype at a 0.10 level (see text and Table S10 for details). For TCGA

rom Kaplan-Meier curve using the survival package in R.

(86 core patients) had a Karnofsky score, and only 193 patients (166 core

tiality.
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Table 3. Distribution of Frequently Mutated Genes across GBM

Subtypes

Gene

Proneural

(n = 37)

Neural

(n = 19)

Classical

(n = 22)

Mesenchymal

(n = 38)

Total No. of

Mutations

TP53 20 (54%) 4 (21%) 0 (0%) 12 (32%) 36

PTEN 6 (16%) 4 (21%) 5 (23%) 12 (32%) 27

NF1 2 (5%) 3 (16%) 1 (5%) 14 (37%) 20

EGFR 6 (16%) 5 (26%) 7 (32%) 2 (5%) 20

IDH1 11 (30%)a 1 (5%) 0 (0%) 0 (0%) 12

PIK3R1 7 (19%) 2 (11%) 1 (5%) 0 (0%) 10

RB1 1 (3%) 1 (5%) 0 (0%) 5 (13%) 7

ERBB2 2 (5%) 3 (16%) 1 (5%) 1 (3%) 7

EGFRvIII 1 (3%) 0 (0%) 5 (23%) 1 (3%) 7

PIK3CA 3 (8%) 1 (5%) 1 (5%) 1 (3%) 6

PDGFRA 4 (11%) 0 (0%) 0 (0%) 0 (0%) 4

Significance of the difference in number of events between subtypes and

remainder of the subtypes was determined using a two-sided Fisher’s

exact test, corrected for multiple testing using a Familywise Error Rate.

Bold type indicates p values significant at an 0.1 level. Also see

Figure S5 and Tables S2, S4, and S6.
a p value significant at 0.01 level.
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Subtypes and Clinical Correlations

We analyzed the associations between the subtypes and clin-

ical and tumor characteristics for the core samples (Table 1

and Table S5). Median survival was 12 months for TCGA

patients and 15 months for the validation set, representative
-2 20
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of surgical case series. Karnofsky performance score (KPS)

was high in the TCGA data set with a median value of 90.

The median age at diagnosis for both the TCGA samples (57

years) and the validation samples (53 years) was lower than

for United States population (64 years; http://www.cbtrus.

org), likely reflecting bias of surgical resections. All four tumor

subtypes were found in each of the public data sets used in

the validation set and were distributed at similar proportion

(Figure S2).

Three of four tumors known to be secondary GBMs were

found in the Proneural group, a finding consistent with the overall

younger age of this subtype. Recurrent tumors were found in all

subtypes, and in three of four paired primary-recurrent pairs from

the Murat data set (Murat et al., 2008), suggesting that tumors

did not change class at recurrence (data not shown). The trend

between prior treatment and a hypermutator phenotype, as

reported elsewhere (TCGA, 2008; Hunter et al., 2006), is re-

flected in the observation that four of seven hypermutated

samples, three of which were secondary GBMs, were classified

as Proneural. There was no association of subtype with the

percentage of tumor nuclei. The finding of genes associated

with inflammation in the Mesenchymal subtype was consistent

with a higher overall fraction of necrosis evident in these tumors

(Table 1 and Figure S2).

The most consistent clinical association for tumor subtypes

was age, with younger patients overrepresented in the Proneural

subtype (Figure S2). We note that the age distribution of patients

differed across TCGA collection centers, with MD Anderson

having younger patients (median, 53 years) and greater
WTmut

Mutation TP53 LOH EGFRvIII

Classical Mesenchymal

high level amplification
Copy Number

low level amplification
normal copy number
hemizygous deletion
homozygous deletion

s across Glioblastoma Subtypes

tion equal to 1) across the 202 data set; data are shown for the 116 samples with

l, a white pipe indicates loss of heterozygosity, and a yellow cell indicates the

ht green for homozygous deletions, green for hemizygous deletions, black for

l amplifications. A black cell indicates no detected alteration.

http://www.cbtrus.org
http://www.cbtrus.org
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Figure 4. Single Sample GSEA Scores of GBM Subtypes Show

a Relationship to Specific Cell Types

Gene expression signatures of oligodendrocytes, astrocytes, neurons, and

cultured astroglial cells were generated from murine brain cell types (Cahoy

et al., 2008). Single sample GSEA was used to project the four gene sets on

samples on the Proneural, Classical, Neural, and Mesenchymal subtypes.

A positive enrichment score indicates a positive correlation between genes

in the gene set and the tumor sample expression profile; a negative enrichment

score indicates the reverse. Also see Figure S6.
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representation in the Proneural subtype. Controlling for this con-

founding variable did not remove the link between age and

subtype in TCGA samples (Table S5). Furthermore, the trend

with age was confirmed in the validation samples, indicating

that the age-subtype relationship was not due to an artifact

introduced by the collection centers. Although not statistically

significant, there was a trend toward longer survival for patients

with a Proneural GBM in a combined analysis of TCGA and vali-

dation samples (HR > 1 for all subtypes relative to Proneural)

(Figure S7A). A significantly improved outcome for patients

with a Proneural classification was achieved when grade II

and III gliomas from two of the four validation data sets were

included in the analysis (Figure S7B) (Phillips et al., 2006; Sun

et al., 2006).

Treatment Efficacy Differs per Subtype

We examined the effect of more intensive treatment, defined as

concurrent chemo- and radiotherapy or more than three subse-

quent cycles of chemotherapy, on survival. Using the Murat

data (Murat et al., 2008) and TCGA data, intensively treated

patients were compared with patients undergoing nonconcur-

rent regimens or short chemotherapy regimens. Although

aggressive treatment significantly reduced mortality in Classical

(HR = 0.45; p = 0.02) and Mesenchymal (HR = 0.54; p = 0.02)

subtypes, and efficacy was suggested in Neural (HR = 0.56;

p = 0.1), it did not alter survival in the Proneural subtype (HR

= 0.8; p = 0.4; Figure 5). Dichotomous methylation status of

the DNA repair gene MGMT, which has been positively linked

to response to therapy (Hegi et al., 2005), was not associated

with subtype (Table 1).
DISCUSSION

Here, we show that genomic profiling defined four subtypes of

tumors with a common morphologic diagnosis of GBM. The

reproducibility of this classification was demonstrated in an

independent validation set, suggesting that it is highly unlikely

that these GBM tumor subtypes are a spurious finding due to

technical artifact, chance, or bias in TCGA sample qualification

criteria. The importance of detecting these subtypes lies in the

different therapeutic approaches that different subtypes may

require. Furthermore, it is possible that GBMs in specific

subtypes develop as the result of different causes or different

cells of origin. Studying GBMs in the light of subtypes therefore

may accelerate our understanding of GBM pathology. A larger

sample set might describe additional subtypes for which we

lack the power to detect. In addition, we provide the community

with the means to identify the tumor subtypes prospectively

(http://tcga-data.nci.nih.gov/docs/publications/gbm_exp/).

In addition to validating the subtype in other human GBM data

sets, we identified gene expression patterns of xenografts highly

comparable to Proneural, Classical, and Mesenchymal tumors.

However, identification of comparable cell line models was not

as easily achievable (data not shown). For example, there is

a relative lack of EGFR amplification and EGFRvIII mutants in

cell line models, potentially lost or selected against during the

culturing process. The identification of valid subtype counter-

parts in xenografts represents an important contribution toward

our ability to study GBM subtypes, in particular for modeling and

predicting therapeutic response.

One of the most important aspects of this work is the unprec-

edented ability to examine molecularly defined tumor subtypes

for correlations with both genomewide DNA copy number events

and sequence-based mutation detection for 601 genes.

Although a mechanistic explanation of subtype is beyond the

scope of this manuscript, our cross-platform analyses highlight

a number of important characteristics of each subtype and hint

at cell of origin. For example, the Proneural subtype was associ-

ated with younger age, PDGFRA abnormalities, and IDH1 and

TP53 mutations, all of which have previously been associated

with secondary GBM (Arjona et al., 2006; Furnari et al., 2007;

Kleihues and Ohgaki, 1999; Watanabe et al., 1996; Yan et al.,

2009). Most known secondary GBMs were classified as Proneu-

ral (Table 1). In a previous study, most grade III gliomas as well as

75% of lower grade gliomas from the validation sets were clas-

sified as Proneural or Neural (Phillips et al., 2006). Although it is

outside the scope of the current article to establish the etiology

of the classes, the Proneural TCGA class was enriched both

for secondary GBM established by prior lower-grade histology

and for IDH1 mutations, which are known to be prevalent in

secondary GBM. Other tumors in this class that appear to be

clinically de novo (primary) may share common pathogenesis

with secondary GBM and might arise from lower grade lesions

that are clinically silent. Alternatively, Proneural GBM tumors may

arise from a progenitor or neural stem cell that can also give

rise to oligodendrogliomas, thereby sharing similar characteris-

tics. High similarity with a purified oligodendrocytic signature

and previous work identifying high expression of PDGFRA in

cells of the SVZ give credence to this hypothesis (Jackson

et al., 2006).
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Figure 5. Survival by Treatment Type and

Tumor Subtype

Patients from TCGA and Murat (Murat et al., 2008)

were classified by therapy regimen. Red denotes

more intensive therapy, which includes concurrent

chemotherapy and radiation or greater than four

cycles of chemotherapy. Black denotes less inten-

sive therapy, which includes nonconcurrent

chemotherapy and radiation or less than four

cycles of chemotherapy. Also see Figure S7 and

Table S7.
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The identity of the Classical subtype is defined by the constel-

lation of the most common genomic aberrations seen in GBM,

with 93% of samples harboring chromosome 7 amplifications

and 10 deletions, 95% showing EGFR amplification, and 95%

showing homozygous deletion spanning the Ink4a/ARF locus.

This class also shows a distinct lack of additional abnormalities

in TP53, NF1, PDGFRA, or IDH1.

In the present study, we also confirm the presence of a Mesen-

chymal subtype characterized by high expression of CHI3L1 and

MET (Phillips et al., 2006). A striking characteristic of this class

was the strong association with the recently reported high

frequency of NF1 mutation/deletion and low levels of NF1

mRNA expression overall. Inherited NF1 mutations are associ-

ated with a variety of tumors, including neurofibromas, which

reportedly have a Schwann cell–like origin (Zhu et al., 2002).

Although Schwann cells are not present in the central nervous

system, the Mesenchymal class expresses Schwann cell

markers, such as the family S100A, as well as microglial markers.

The higher percentage necrosis and associated inflammation

present in these samples is potentially linked to the mesen-

chymal phenotype through an expression signature including

genes from wound healing and NF-kB signaling.

Samples in the Neural subtype are unequivocally GBMs by

morphology, according to light microscopy, and contain mutation

and DNA copy number alterations. Their expression patterns are

recognizable as the most similar to samples derived from normal

brain tissue, and their signature is suggestive of a cell with a differ-

entiated phenotype. This is confirmed by the association with

neural, astrocytic, and oligodendrocytic gene signatures.
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Cellular organization and differentiation in

the brain has been intensively investi-

gated, yet there is much to be discovered.

It is therefore striking to find the clear rela-

tionships between subtypes of GBM and

cellular lineages as demonstrated here

(Figure 4). It is possible that a common

cell of origin, such as the previously

proposed neural stem cell (Galli et al.,

2004), exists for all GBMs and that the

classes presented here result from

distinct differentiation paths. However,

the presence of precursor cells with self-

replicating ability in the brain, such as

cells expressing stem cell markers and

PDGFRA or EGFR (Jackson et al., 2006)
suggests that multiple stem cell-like populations exist. Although

there is a clear need for conclusive evidence supporting this

hypothesis, it is at least striking to find the same genes as

markers of two of the four classes lending support for a difference

in cell of origin. This finding is further supported by the specific

characteristics of the Mesenchymal and Neural classes. Estab-

lishing the cell of origin of GBM is critical for establishing effective

treatment regimens (Sanai et al., 2005).

Given the set of characteristic subtype abnormalities, we

deem it unlikely that patients transition between subtypes during

different stages of their disease. This is substantiated by severa

samples in the Murat data set (Murat et al., 2008) that did no

switch between subtype after recurrence.

An association was observed between the Proneural subtype

and age and a trend toward longer survival. Furthermore, ou

data suggest that Proneural samples do not have a surviva

advantage from aggressive treatment protocols. Importantly, a

clear treatment effect was observed in the Classical and Mesen-

chymal subtypes. Profiling-based classification may therefore

have highest clinical relevance in suggesting different thera-

peutic strategies. It appears that the simple classification into

these four subtypes carries a rich set of associations for which

there is no existing diagnostic test. We envision that the nex

generation of biomarker assays for GBM could include a molec-

ular test for subtype and linked molecular genetics for key

genetic events, including NF1 and PTEN loss, IDH1 and PI3K

mutation, PDGFRA and EGFR amplification (i.e., genetic events

that are best assayed on the DNA level), and MGMT methylation

status. In addition, early evidence suggests that subclasses
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differ measurably by signal transduction pathways such that

protein biomarkers might be easily measured (Brennan et al.,

2009). Future studies should further elucidate the intricate rela-

tionship between tumor subtypes, treatment sensitivity, and

MGMT methylation status.

GBM is one of the most feared of all of human diseases both

for its near uniformly fatal prognosis and associated loss of

cognitive function as part of the disease process. For those

facing the diagnosis, there are few biomarkers of favorable prog-

nosis and, accordingly, few therapies strongly influencing

disease outcome. This comprehensive genomic- and genetic-

based classification of GBM should lay the groundwork for an

improved molecular understanding of GBM pathway signaling

that could ultimately result in personalized therapies for groups

of patients with GBM.
EXPERIMENTAL PROCEDURES

Patients and Tumor Samples

Glioblastomas and normal brain samples were collected and processed

through the TCGA Biospecimens Core Resource at the International

Genomics Consortium (Phoenix, AZ), as described elsewhere (TCGA, 2008).

Two hundred GBMs and two normal samples were selected by following the

subsequent criteria: (1) an average percentage of necrosis less than 40% on

top and bottom slides, (2) microarray quality controls within standards, and

(3) high-quality data on each of the three gene expression platforms used.

All specimens were collected using institutional review board–approved

protocols and were deidentified to ensure patient confidentiality. Patient

characteristics are described in Table 1 and Table S7. In the TCGA data set,

each sample represents a unique case. The two normal samples were from

patients with epilepsy.

Microarray Experiments

Each specimen was assayed on three different microarray platforms: Affyme-

trix Human Exon 1.0 ST GeneChips, Affymetrix HT-HG-U133A GeneChips,

and custom designed Agilent 244,000 feature gene expression microarrays.

Microarray labeling and hybridization protocols and quality control measures

for each platform were performed as described elsewhere (TCGA, 2008).

Probes on all three platforms were aligned to a transcript database consisting

of RefSeq (36.1) and complete coding sequences from GenBank (v.161).

Gene-centric expression values were generated for every gene with at least

five perfect-match probes (Affymetrix). On the Agilent platform, a minimum

of three probes (60 mer) per gene was required (each unique probe was

spotted in triplicate). This resulted in expression values for 12,042 (HT-HG-

U133A), 18,632 (Exon), and 18,623 (Agilent) genes. Affymetrix HT-HG-

U133A and Exon platforms were normalized and summarized using robust

multichip average (RMA). Agilent data were lowess normalized and log trans-

formed, and the mean was used to calculate gene level summaries. All data

are MAGE-TAB compliant, with all raw and processed data, investigation

description files, sample data relationship files, and array description files

available through the TCGA Data Portal at http://tcga-data.nci.nih.gov. For

a detailed description of the data see the TCGA Data Primer, available at

http://tcga-data.nci.nih.gov/docs/TCGA_Data_Primer.pdf, as well as supple-

mentary methods from the Cancer Genome Atlas (TCGA) Research Network

(2008).

Integrating Gene Expression Platforms

Each microarray platform provides an estimate of the gene expression; taking

advantage of this, we used factor analysis to integrate these measurements

together into a single estimate of the relative gene expression that is more

robust than any single platform-based measurement (Mardia et al., 1979). All

data were log transformed and median centered for analysis. To ensure

consistency in measurements of gene expression, probes for all platforms

were mapped to the same transcript database, and gene-centric probe sets

were created as described elsewhere (TCGA, 2008). Data from each platform
were normalized and summarized separately, resulting in gene expression

estimates for each sample and gene on each platform; relative gene expres-

sion values were calculated per platform by subtracting from the gene esti-

mate the mean expression value across patients and then dividing it by its

standard deviation across patients. We verified that the three data sets were

generally detecting similar transcript levels. The factor analysis model

assumes that, for each gene, the relative gene expression measured on each

platform has an unknown linear relationship with the true relative gene expres-

sion with platform-dependent error; this relationship is assumed to be the

same for every sample. Factor analysis then calculates estimates of this true

relative gene expression for each sample. We applied factor analysis to genes

present on all three platforms; this resulted in a unified gene estimate for each

sample for 11,861 genes (Supplemental Experimental Procedures).

The factor analysis provided estimates only of relative gene expression

scaled to have the same underlying variation among patients for all genes.

We rescaled the unified gene expression of each gene by estimates of the

standard deviation across patients. To obtain a single estimate of standard

deviation per gene, we took the median absolute deviation (MAD) for each plat-

form and then averaged these estimates, restricting to those platforms with

high correlation to the unified gene estimates (Supplemental Experimental

Procedures). This gave a single estimate of variation per gene that we then

used to rescale the unified gene estimates.

Data Filtering

Several filters were applied to eliminate unreliably measured genes and to limit

the clustering to relevant genes. The first filter removed genes that had poor

unified gene measurements by keeping only genes in which at least two of

the three platforms’ original measurements had correlation with the unified

gene estimate of at least 0.7, resulting in 9,255 genes. The second filter elim-

inated genes with low variability across patients; 1,903 variably expressed

genes were retained by selecting genes with a MAD on each original platform

(restricting to platforms with high correlation to the unified estimate) higher

than 0.5. The final filter excluded genes by comparing the MAD on each indi-

vidual platform and the combined estimate of variation described above and

rejecting genes for which these measures differed by more than a factor of

1.5 for any platform, again restricting to platforms with high correlation with

the unified estimate. Implementation of these three filters resulted in 1,740

genes (Supplemental Experimental Procedures). All data, including the indi-

vidual gene expression estimates, unified estimates, and filtered data sets,

can be found at http://tcga-data.nci.nih.gov/docs/publications/gbm_exp/.

Identification of Gene Expression-Based Subtypes

We applied hierarchical clustering with agglomerative average linkage as our

basis for consensus clustering, to detect robust clusters (Monti et al., 2003).

The distance metric was 1 minus the Pearson’s correlation coefficient, and

the procedure was run over 1000 iterations and a subsampling ratio of 0.8, using

the 200 GBM samples and two normal samples and 1,740 reliably expressed

genes. SigClust was performed to establish the significance of the clusters in

a pairwise fashion (Liu et al., 2008). Because we cannot know the true number

of classes and because it is possible that some samples do not accurately

represent their pathogenic class, we identified the ‘‘core’’ members of each

subtype by calculating silhouette width values for all samples (Rousseeuw,

1987). Silhouette width is defined as the ratio of each sample’s average distance

to samples in the same cluster to the smallest distance to samples not in the

same cluster. Only samples with positive silhouette values were retained for

further analysis as they best represented each subtype (R-package: Silhouette).

Signature Gene Identification and Class Prediction

We applied significance analysis of microarrays (SAM) and receiver operating

characteristic (ROC) curves methods to identify marker genes of each subtype

(Tusher et al., 2001). Each class was compared to the other three classes

combined, and each class was compared to the other three individual classes

in a pairwise manner (Supplemental Experimental Procedures). We provide

both rank order and test statistic for all of these analyses to allow independent

confirmation of our findings on future analyses and data sets. ClaNC, a nearest

centroid-based classification algorithm, was used to find signatures of each

class, to assess class cross validation error, and to predict subtype in the vali-

dation set (Dabney, 2006).
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Association with Gene Ontology

Gene ontology was assessed for each subtype using the Database for Anno-

tation, Visualization, and Integrated Discovery (Dennis et al., 2003). For each

subtype, highly expressed genes per class were compared to the background

gene list (n = 11,861 genes) to discover enriched GO terms.

Validation Data Set

To verify class signatures in independent samples, expression profiles of GBM

samples from 260 patients were collected from four published studies that

used the HG-U133A or HG-U133plus2 GeneChip platforms (Beroukhim

et al., 2007; Murat et al., 2008; Phillips et al., 2006; Sun et al., 2006). Probes

on these platforms were mapped to the transcript database, as used for

TCGA samples, and the data were combined (Liu et al., 2007). The 260

samples were normalized together using quantile normalization and the

matchprobes package (Huber and Gentleman, 2004). Probe intensities were

summarized as expression levels using RMA (Irizarry et al., 2003). We then

used ClaNC to predict the subtype of the samples in this public validation

data set. To confirm copy number events related to the subtypes, we used

copy number data available for 43 samples in the validation set (Beroukhim

et al., 2007). Copy number profiles for these 43 samples were generated using

Affymetrix 100K arrays and were processed analogous to the TCGA data set.

Correlation with Copy Number Events

Copy number data were available for 170 of the 173 core GBM samples and

were examined for correlations with subtype. Genomewide copy number

was estimated using four data sets representing three platforms, as described

elsewhere (TCGA, 2008). Briefly, the circular binary segmentation algorithm

(Olshen et al., 2004) was used to estimate raw copy number for genomic

segments. Thresholds derived from the amount of noise in each platform

were then applied to identify broad, low-level copy number events. High-level

gains and homozygous deletions were assessed using sample specific thresh-

olds, based on the maximum and minimum of medians observed for each

chromosome arm, plus a small buffer. The GISTIC algorithm was then applied

to thresholds to detect regions of shared copy number aberration (Beroukhim

et al., 2007). Copy number alterations were considered to be present when

identified on at least two of four data sets.

Mutation Analyses

Exon sequence data were available for 601 genes and for 116 of 173 core

samples through the TCGA web portal (http://tcga-data.nci.nih.gov/).

Sequence data were used from the following archives: hgsc.bcm.edu_GB-

M.ABI.1.23.0, 2008-31-10; broad.mit.edu_GBM.ABI.1.29.0, 2008-10-31; and

genome.wustl.edu_GBM.ABI.53.10.0, 2008-10-31. Somatic mutations were

assessed analogous to the TCGA Network article (TCGA, 2008), and only vali-

dated or verified mutations, by at least one additional technique, were consid-

ered. Gene coverage per sample is in Table S6.

Statistical Analysis of Copy Number and Mutations

Association of copy number alterations or mutations was determined by

comparing each subtype versus the rest using a two-tailed Fisher’s exact

test correcting for multiple testing using the Hochberg method implemented

in p.adjust (R Development Core Team, 2008) for controlling the Family-wise

Error rate. For mutation analysis, only mutations found in at least four samples

were tested. Detailed table with p values and all copy number regions analyzed

and mutations are in Tables S1 and S2.

Gene Sets and Single Sample GSEA

Gene sets were generated using the transcriptome database presented in

Cahoy et al. (2008) (GEO ID GSE9566). Expression values for 17,021 murine

genes were generated using gene centric probe set definitions (Liu et al.,

2007). Hierarchical clustering of 38 normal murine brain samples in this data

set resulted in four clusters, associated with the four different sample types

described. SAM analysis resulted in signatures of four neural differentiation

stages, which were translated to human signatures through mapping gene

names to Ensembl IDs.

For a given GBM sample, gene expression values were rank-normalized and

rank-ordered. The empirical cumulative distribution functions (ECDF) of the

genes in the signature and the remaining genes were calculated. A statistic
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was calculated by an integration of the difference between the ECDFs, which

is similar to the one used in Gene Set Enrichment Analysis but based on abso-

lute expression rather than differential expression (Barbie et al., 2009).

The details of the procedure are as follows: for a given signature G of size NG

and single sample S, of the data set of N genes, the genes are replaced by their

ranks according to their absolute expression L = {r1, r2, r3,.,rN} and rank

ordered. An enrichment score ES(G, S) is obtained by a weighted sum (integra-

tion) of the difference between the ECDF of the genes in the signature PG and

the ECDF of the remaining genes PNG:

ESðG;SÞ=
X

i

½PGðG;S; iÞ � PNGðG;S; iÞ�

PGðG;S; iÞ=
XN

rj ˛G&j%i

jrj j1=4

PN

rj ˛G

jrj1=4
; PNGðG;S; iÞ=

XN

rj ;G&j%i

1

ðN� NGÞ

This calculation was repeated for the four signatures and each sample in the

dataset. Notice that this quantity is signed and that the exponent 1/4 adds

a slight weight proportional to the rank.

Statistical Analysis of Clinical Parameters

All analyses were done in R (R Development Core Team, 2008). Statistical

significance of differential representation of sequence mutations and copy

number alterations in the four genomically defined subtypes was calculated

using c2 analysis and Fisher’s exact test. For the continuous variables, age

and Karnofsky score, we used ANOVA to assess differences among subtypes.

Possible effects due to the specimen collection center were controlled by

including both collection center and subtype identification in a two-way

ANOVA. Sun et al. (2006) categorized time-dependent variables in five-year

bins, which for comparability were transformed to median values of the

interval, with ‘‘ >60’’ being coded as censored for survival data. We determined

whether these variables were significant in predicting subtype by using a multi-

nomial generalized linear model. For the categorical variables—sex, collection

center, TCGA batch, and tumor type (primary versus secondary or recurrent)—

the c2 test of independence was used to assess their relationship to subtype.

For the pathological data on the tumors, the results from the bottom and top

slides were averaged to get the percentage of necrosis and percentage of

tumor nuclei in the sample. Their association to subtype was assessed using

a two-way ANOVA after logit transformation while controlling for collection

center. To assess the relationship of survival to subtype, we performed the

Mantel-Haenszel test implemented in the package survival in R.
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