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SUMMARY

We easily recognize objects and faces across a
myriad of retinal images produced by each object.
One hypothesis is that this tolerance (a.k.a. ‘‘invari-
ance’’) is learned by relying on the fact that object
identities are temporally stable. While we previously
found neuronal evidence supporting this idea at the
top of the nonhuman primate ventral visual stream
(inferior temporal cortex, or IT), we here test if this
is a general tolerance learning mechanism. First, we
found that the same type of unsupervised experience
that reshaped IT position tolerance also predictably
reshaped IT size tolerance, and the magnitude of
reshaping was quantitatively similar. Second, this
tolerance reshaping can be induced under naturally
occurring dynamic visual experience, even without
eye movements. Third, unsupervised temporal con-
tiguous experience can build new neuronal toler-
ance. These results suggest that the ventral visual
stream uses a general unsupervised tolerance
learning algorithm to build its invariant object repre-
sentation.

INTRODUCTION

Our ability to recognize objects and faces is remarkably tolerant

to variation in the retinal images produced by each object. That

is, we can easily recognize each object even though it can

appear in different positions, sizes, poses, etc. In the primate

brain, the solution to this ‘‘invariance’’ problem is thought to be

achieved through a series of transformations along the ventral

visual stream. At the highest stage of this stream, the inferior

temporal cortex (IT), a tolerant object representation is obtained

in which individual IT neurons have a preference for some

objects (‘‘selectivity’’) over others, and this rank-order prefer-

ence is largely maintained across identity-preserving image

transformations (Ito et al., 1995; Logothetis and Sheinberg,

1996; Tanaka, 1996; Vogels and Orban, 1996). Though most IT

neurons are not strictly ‘‘invariant’’ (DiCarlo and Maunsell,

2003; Ito et al., 1995; Logothetis and Sheinberg, 1996; Vogels
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and Orban, 1996), reasonably sized populations of these so-

called ‘‘tolerant’’ neurons can support object recognition tasks

(Afraz et al., 2006; Hung et al., 2005; Li et al., 2009). However,

we do not yet understand how IT neurons construct this tolerant

response phenomenology.

One potentially powerful idea is that time can act as an implicit

teacher, in that the temporal contiguity of object features during

natural visual experience can instruct the learning of tolerance,

potentially in an unsupervised manner (Foldiak, 1991; Masque-

lier et al., 2007; Masquelier and Thorpe, 2007; Sprekeler et al.,

2007; Stryker, 1991; Wiskott and Sejnowski, 2002; Wyss et al.,

2006). The overarching logic is as follows: during natural visual

experience, objects tend to remain present for seconds or

more, while object motion or viewer motion (e.g., eye move-

ments) tend to cause rapid changes in the retinal image cast

by each object over shorter time intervals (hundreds of ms). In

theory, the ventral stream could construct a tolerant object

representation by taking advantage of this natural tendency for

temporally contiguous retinal images to belong to the same

object, thus yielding tolerant object selectivity in IT cortex. A

recent experimental result in adult nonhuman primate IT has

provided some neuronal support for this temporal contiguity

hypothesis (Li and DiCarlo, 2008). Specifically, we found that

alterations of unsupervised experience of temporally contiguous

object image changes across saccadic eye movements can

induce rapid reshaping (within hours) of IT neuronal position

tolerance (i.e., a reshaping of each IT neuron’s ability to respond

with consistent object selectivity across the retina). This IT

neuronal learning likely has perceptual consequences because

similar temporal contiguity manipulations of eye-movement-

driven position experience can produce qualitatively similar

changes in the position tolerance of human object perception

(Cox et al., 2005).

However, these previous studies have two key limitations.

First, they only uncovered evidence for temporal contiguity

learning under a very restricted set of conditions: they showed

learning effects only in the context of eye movements, and

they only tested one type of tolerance—position tolerance.

Because eye movements drive a great deal of the image statis-

tics relevant only to position tolerance (temporally contiguous

image translations), the previous results could reflect only a

special case of tolerance learning. Second, the previous studies

did not directly show that temporally contiguous image statistics

can build new tolerance, but only showed that alterations of
.
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Figure 1. Experimental Design and Prediction

(A) IT selectivity was tested in the Test Phases whereas animals received experience in the altered visual world in the Exposure Phases.

(B) The chart shows the full exposure design for a single IT site in Experiment I. Arrows show the temporal contiguity experience of retinal images (arrow heads

point to the retinal images occurring later in time, e.g., A). Each arrow shows a particular exposure event type (i.e., temporally linked images shown to the animal),

and all eight exposure event types were shown equally often (randomly interleaved) in each Exposure Phase.

(C) Prediction for IT responses collected in the Test Phase: if the visual system builds size tolerance using temporal contiguity, the swap exposure should cause

incorrect grouping of two different object images (P and N). The qualitative prediction is a decrease in object selectivity at the swap size (images and data points

outlined in red) that grows stronger with increasing exposure (in the limit, reversing object preference as illustrated schematically here), and little or no change in

object selectivity at the non-swap size. The experiment makes no quantitative prediction for the selectivity at the medium size (gray oval, see text).
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those statistics can disrupt normal tolerance. Because of these

limitations, we do not know if the naive ventral stream uses

a general, temporal contiguity-driven learning mechanism to

construct its tolerance to all types of image variation.

Here, we set out to test the temporal contiguity hypothesis in

three ways. First, we reasoned that, if the ventral stream is using

temporal contiguity to drive a general tolerance-building mecha-

nism, alterations in that temporal contiguity should reshape other

types of tolerance (e.g., size tolerance, pose tolerance, illumina-

tion tolerance), and the magnitude of that reshaping should be

similar to that found for position tolerance. We decided to test

size tolerance, because normal size tolerance in IT ismuch better

described (Brincat and Connor, 2004; Ito et al., 1995; Logothetis

and Sheinberg, 1996; Vogels and Orban, 1996) than pose or

illumination tolerance. Our experimental logic follows our

previous work on position tolerance (Cox et al., 2005; Li and Di-

Carlo, 2008). Specifically, when an adult animal with a mature

(e.g., size-tolerant) object representation is exposed to an

altered visual world in which object identity is consistently swap-

ped across object size change, its visual system should learn

from those image statistics such that it predictably ‘‘breaks’’

the size tolerance of that mature object representation.

Assuming IT conveys this object representation (Afraz et al.,

2006; Hung et al., 2005; Logothetis and Sheinberg, 1996;

Tanaka, 1996), that learning should result in a specific change

in the size tolerance of mature IT neurons (Figure 1).

Second, many types of identity-preserving image transforma-

tions in natural vision do not involve intervening eye movements

(e.g., object motion producing a change in object image size). If
Neu
the ventral stream is using a general tolerance-building mecha-

nism, we should be able to find size tolerance reshaping even

without intervening eye movements, and we should also be

able to find size tolerance reshaping when the dynamics of the

image statistics mimic naturally occurring image dynamics.

Third, our previous studies (Cox et al., 2005; Li and DiCarlo,

2008) and our first two aims above use the breaking of naturally

occurring image statistics to try to break the normal tolerance

observed in IT (i.e., to weaken existing IT object selectivity in a

position- or size-specificmanner; Figure 1). Such results support

the inference that naturally occurring image statistics instruct the

‘‘building’’ of that tolerance in the naive ventral stream. However,

we also sought to test that inference more directly by looking for

evidence that temporally contiguous image statistics can build

new tolerance in IT neurons with immature tolerance (i.e., can

produce an increase in existing IT object selectivity in a position-

or size-specific manner).

Our results showed that targeted alterations in the temporal

contiguity of visual experience robustly and predictably re-

shaped IT neuronal size tolerance over a period of hours. This

change in size tolerance grew gradually stronger with increasing

visual experience, and the rate of reshaping was very similar to

previously reported position tolerance reshaping (Li and DiCarlo,

2008). Second, we found that the size tolerance reshaping

occurred without eye movements, and it occurred when the

dynamics of the image statistics mimicked naturally occurring

dynamics. Third, we found that exposure to ‘‘broken’’ temporal

contiguity image statistics could weaken and even reverse the

previously normal IT object selectivity at a specific position or
ron 67, 1062–1075, September 23, 2010 ª2010 Elsevier Inc. 1063
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size (i.e., exposure could break old correct tolerance and build

new ‘‘incorrect’’ tolerance), and that naturally occurring temporal

contiguity image statistics could build new, correct position or

size tolerance. Taken together with previous work, these results

argue that the ventral stream uses unsupervised, natural visual

experience and a common learning mechanism (a.k.a. unsuper-

vised temporal tolerance learning, or UTL) to build and maintain

its tolerant (invariant) object representation.

RESULTS

In three separate experiments (Experiments I, II, III), two

unsupervised nonhuman primates (Rhesus monkeys, Macaca

mulatta) were exposed to altered visual worlds in which we

manipulated the temporal contiguity statistics of the animals’

visual experience with object size (Figure 1A, Exposure Phases).

In each experiment, we recorded multiunit activity (MUA) in an

unbiased sample of recording sites in the anterior region of IT

to monitor any experience-induced change (Figure 1A, Test

Phases). Specifically, for each IT site, a preferred object (P)

and a less-preferred object (N) were chosen based on testing

of a set of 96 objects (Figure 1B). We thenmeasured the baseline

IT neuronal selectivity for P and N at three retinal sizes (1.5�, 4.5�,
and 9�) in a Test Phase (�10 min) by presenting the object

images in a rapid but naturally paced sequence (5 images/s)

on the animals’ center of gaze. For all the results below, we

report selectivity values determined from these Test Phases,

which we conducted both before and after experience manipu-

lations. Thus, all response data shown in the results below

were collected during orthogonal behavioral tasks in which

object identity and size were irrelevant (Supplemental Experi-

mental Procedures available online).

Consistent with previous reports (Kreiman et al., 2006), the

initial Test Phase data showed that each IT site tended to main-

tain its preference for object P over object N at each size tested

here (Figures 3 and S3 available online). That is, most IT sites

showed good, baseline size tolerance. Following the logic out-

lined in the Introduction, the goal of Experiments I–III was to

determine if consistently applied, unsupervised experience

manipulations would predictably reshape that baseline size

tolerance of each IT site (see Figure 1 for the basic prediction).

In particular, we monitored changes in each IT site’s preference

for object P over N at each of the three objects sizes, and any

change in that selectivity following experience that was not

seen in control conditions was taken as evidence for an experi-

ence-induced reshaping of IT size tolerance.

In each experiment, the key experience manipulation was

deployed in one or more Exposure Phases that were all under

precise, automated computer-display control to implement

spatiotemporally reliable experience manipulations (see Experi-

mental Procedures). Specifically, during each Exposure Phase

the animals freely viewed a gray display monitor on which

images of object P or N intermittently appeared at randomly

chosen retinal positions away from the center of gaze (object

size: 1.5�, 4.5�, or 9�). The animals almost always looked to

foveate each object (>95% of object appearances) within

�124 ms (mean; median, 109 ms), placing the object image on

the center of gaze. Following that object acquisition saccade,
1064 Neuron 67, 1062–1075, September 23, 2010 ª2010 Elsevier Inc
we reliably manipulated the visual experience of the animals

over the next 200–300 ms. The details of the experience manip-

ulation (i.e., which object sizes where shown and the timing of

those object images) were different in the three experiments,

but all three experiments used the same basic logic outlined in

the Introduction and in Figure 1.

Experiment I: Does Unsupervised Visual Experience
Reshape IT Size Tolerance?
In Experiment I, following the object acquisition saccade, we left

the newly foveated object image unchanged for 100 ms, and

then we changed the size of the object image (while its retinal

position remained on the animal’s center of gaze) for the next

100 ms (Figure 1A). We reasoned that this creates a temporal

experience linkage (‘‘exposure event’’) between one object

image at one size and another object image at another size.

Importantly, on half of the exposure events, one object was

swapped out for the other object: for example, a medium-sized

(4.5�) object P would become a big (9�) object N (Figure 1A,

‘‘swap exposure event’’). As one key control, we also exposed

the animal to more normal exposure events in which object

identity did not change during the size change (Figure 1A,

‘‘non-swap exposure event’’). The full exposure design for one

IT site is shown in Figure 1B; the animal received 800–1600

swap exposures within the time period of 2–3 hr. Each day, we

made continuous recordings from a single IT site, and we always

deployed the swap exposure at a particular object size (either

1.5� or 9�, i.e., swap size) while keeping the other size as a control

(i.e., non-swap size). Across different IT sites (i.e., different

recording days), we strictly alternated the object size at which

swap manipulation took place so that object size was counter-

balanced across our recorded IT population (n = 27).

UTL theory makes the qualitative prediction that the altered

experience will induce a size-specific confusion of object identity

in the IT response as the ventral stream learns to associate the

temporally linked images. In particular, our exposure design

should cause the IT site to reduce its original selectivity for

images of object P and N at the swap size (perhaps even

reversing that selectivity in the limit of large amounts of experi-

ence; Figure 1C, red). UTL is not currently specific enough to

make a quantitative prediction of what this altered experience

should do for selectivity among the medium object size images

because those images were temporally paired in two ways:

with images at the swap size (altered visual experience) and

with the images at the non-swap size (normal visual experience).

Thus, our key experimental prediction and planned comparison

is between the selectivity (P versus N) at the swap and non-swap

size: we predict a selectivity decrease at the swap size that

should be much larger than any selectivity change at the non-

swap object size (Figure 1C, blue).

This key prediction was born out by the data: as the animals

received experience in the altered visual world, IT selectivity

among objects P and N began to decrease at the swap size,

but not at the control size. This change in selectivity grew

stronger with increasing experience over the time course of

2–3 hr (Figure 2A). To quantify the selectivity change, for each

IT site, we took the difference between the selectivity (P � N,

response difference in units of spikes/s, see Experimental
.
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Figure 2. Experimental I and II Key Results

(A) Mean ± SEM. IT object selectivity change, D(P � N), from

the first Test Phase as a function of the number of exposure

events is shown. Each data point shows the average across

all the sites tested for that particular amount of experience

(n = 27, 800 exposure events; n = 22, 1600 exposure events).

(B) Mean ± SEM selectivity change at the swap, non-swap,

and medium size (4.5�). For each IT site (n = 27), total D(P� N)

was computed using the data from the first and last Test

Phase, excluding any middle Test Phase data. Hence, not all

data from (A) were included. *p < 0.05 by two-tailed t test;

**p < 0.01; n.s. p > 0.05.

(C) For each IT site (n = 27), we fit a line (linear regression) to the

(P � N) data as a function of the number of exposure events

(insert). We used the slope of the line fit, Ds(P � N), to quantify

the selectivity change. The Ds(P � N) is a measure that lever-

ages all our data while normalizing out the variable of exposure

amount [for sites with only two Test Phases, Ds(P � N) equals

D(P � N)]. Ds(P � N) was normalized to show selectivity

change per 800 exposure events. Error bars indicate the

standard error of the procedure to compute selectivity

(Supplemental Experimental Procedures). M1, monkey 1;

M2, monkey 2.

(D) Mean Ds(P � N) at the swap and non-swap size (n = 27 IT

sites; M1: 7, M2: 20). Error bars indicate SEM over neuronal

sites.

(E) Change in selectivity, Ds(P � N), of all IT sites from

Experiment II at the swap and non-swap size.

(F) Mean ± SEM Ds(P � N) at the swap and non-swap size.
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Procedures) in the first (pre-exposure) and last Test Phase. This

D(P�N) sought to quantify the total amount of selectivity change

for each IT site induced by our experience manipulation. On

average, there was a significant decrease in selectivity at the

swap size (Figure 2B, p < 0.0001, two-tailed t test against 0)

and no significant change at the non-swap control size

(Figure 2B, p = 0.89). Incidentally, we also observed a significant

decrease in selectivity at the medium size (p = 0.002). This is not

surprising given that the images at the medium object size were

exposed to the altered statistics half of the time when they were

temporally paired with the images at the swap size. Because no

prediction wasmade about the selectivity change at the medium

size, we concentrate below on the planned comparison between

the swap and non-swap size. We statistically confirmed the size
Neuron 67, 1062–
specificity of the experience-induced decrease in

selectivity by two different approaches: (1) a direct

t test on the D(P � N) between the swap and non-

swap size (p < 0.001, two-tailed), and (2) a signifi-

cant interaction of ‘‘exposure 3 object size’’ on

the raw selectivity measurements (P � N)—that is,

IT selectivity was decreased by exposure only at

the swap size (p = 0.0018, repeated-measures

ANOVA; p = 0.006, bootstrap, see Supplemental

Experimental Procedures).

To ask if the experience-induced selectivity

change was specific to the manipulated objects

or the features contained in those objects, we

also tested each IT site’s responses to a second

pair of objects (P0 and N0, control objects; see

Experimental Procedures). Images of these control
objects at three sizes were tested together with the swap objects

during all Test Phases (randomly interleaved), but they were not

shown during the Exposure Phase. On average, we observed no

change in IT selectivity among these unexposed control objects

(Figure S4). This shows that that the experience-induced reshap-

ing of IT size tolerance has at least some specificity for the expe-

rienced objects or the features contained in those objects.

We next set out to quantify the amount of IT size tolerance

reshaping induced by the altered visual experience. Because

each IT site was tested for different amounts of exposure time

(due to experimental time constraints), we wanted to control

for this and still leverage all the data for each site to gain maximal

power. To do so, we fit linear regressions to the (P�N) selectivity

of individual sites at each object size (Figure 2C, insert). The
1075, September 23, 2010 ª2010 Elsevier Inc. 1065
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slope of the line fit, which we will refer to as Ds(P � N), provided

us with a sensitive, unbiased measure of the amount of selec-

tivity change that normalizes the amount of exposure experi-

ence. The Ds(P � N) for the swap size and non-swap size is

shown in Figures 2C and 2D, which qualitatively confirmed

the result obtained in Figure 2B (using the simple measure of

selectivity change), and showed a mean selectivity change of

�9.2 spikes/s for every 800 swap exposure events.

Importantly, we note that this reshaping of IT tolerance was

induced by unsupervised exposure to temporally linked images

that did not include a saccadic eye movement to make that link

(Figure 1A). We also considered the possibility that small inter-

vening microsaccades might still have been present, but found

that they cannot account for the reshaping (Figure S7). The

size specificity of the selectivity change also rules out alternative

explanations such as adaptation, which would not predict this

specificity (because our exposure design equated the amount

of exposure for both the swap and non-swap size). We also

found the same amount of tolerance reshaping when the sites

were grouped by the physical object size at which we deployed

the swap (1.5� versus 9�, p = 0.26, t test). Thus the learning is

independent of low-level factors like the total luminance of the

swapped objects. In sum, we found that unsupervised, tempo-

rally linked experience with object images across object size

change can reshape IT size tolerance.

Experiment II: Does Size Tolerance Learning Generalize
to the ‘‘Natural’’ Visual World?
In the natural world, objects tend to undergo size change

smoothly on our retinas as a result of object motion or viewer

motion, but, in Experiment I (above), the object size changes

we deployed were discontinuous: one image of an object was

immediately replaced by an image of another object with no

smooth transition (Figure 2, top). Therefore, although those

results show that unsupervised experience with object images

at different sizes linked in time could induce the predicted IT

selectivity change, we wanted to know if that learning was also

found during exposure to more natural (i.e., temporally smooth)

image dynamics.

To answer this question, we carried out a second experiment

(Experiment II) in which we deployed essentially the same

manipulation as Experiment I (object identity changes during

object size changes, no intervening eye movement), but with

natural (i.e., smooth-varying) stimulus sequences. The dynamics

in these movie stimuli were closely modeled after the kind of

dynamics that our visual system encounters daily in the natural

environment (Figure S2). To create smooth-varying object

identity changes over object size changes, we created morph

lines between pairs of objects we swapped in Experiment I (P

and N). This allowed us to parametrically transform the shape

of the objects (Figure 2, bottom). All other experimental proce-

dures were identical to Experiment I except, in the Exposure

Phases, objects underwent size change smoothly while

changing identity (swap exposure) or preserving identity (non-

swap exposure, Figure S2).

When we carried out this temporally smooth experience

manipulation on a new population of IT sites (n = 15), we repli-

cated the Experiment I results (Figures 2E and 2F): there was a
1066 Neuron 67, 1062–1075, September 23, 2010 ª2010 Elsevier Inc
predicted decrease in IT selectivity at the swap size and not at

the non-swap control size. This size specificity of the effect

was, again, confirmed statistically by (1) direct t test on the total

selectivity change, D(P � N), between the swap and non-swap

size [D(P � N) = �10.3 spikes/s at swap size, +2.8 at non-

swap size; p < 0.0001, two-tailed t test]; and (2) a significant

interaction of ‘‘exposure 3 object size’’ on the raw selectivity

measurements (P � N) (p < 0.001, repeated-measures ANOVA;

p = 0.001, bootstrap). This result suggests that image linking

across time is sufficient to induce tolerance learning in IT and

is robust to the temporal details of that image linking (at least

over the �200 ms time windows of linking used here). More

importantly, Experiment II shows that unsupervised size

tolerance learning occurs in a spatiotemporal image regime

encountered in real-world vision.

Size Tolerance Learning: Observations and Effect Size
Comparison
Despite a wide diversity in the initial tuning of the recorded IT

multiunit sites, our experience manipulation induced a predict-

able selectivity change that was large enough to be observed

in individual IT sites: 40% (17/42 sites, Experiment I and II data

combined) of the individual IT sites showed a significant selec-

tivity decrease at the swap size within a single recording session

(only 7% of sites showed significant selectivity decrease at the

non-swap size, which is essentially the fraction expected by

chance; 3/42 sites, p < 0.05, permutation test, see Supplemental

Experimental Procedures). Eight example sites are shown in

Figure 3.

We found that the magnitude of size-tolerance reshaping

depended on the initial selectivity at the medium object size,

4.5� (Pearson correlation, r = 0.54, p < 0.01). That is, on average,

IT sites that we initially encountered with greater object selec-

tivity at the medium size underwent greater exposure-induced

selectivity change at the swap size. This correlation is not simply

explained by the hypothesis that it is easier to break highly

selective neurons (e.g., due to factors that might have nothing

to do with neuronal learning, such as loss of isolation), because

the correlation was not seen for changes in selectivity at the

non-swapped size (r = �0.16, p = 0.35) and we found no

average change in selectivity at the non-swapped size (Figure 2

and statistics above). Instead, this observation is consistent

with the overarching hypothesis of this study: the initial image

selectivity at the medium object size provides (at least part of)

the driving force for selectivity learning because those images

are temporally linked with the swapped images at the swap

size.

The change in selectivity produced by the experience manip-

ulation was found throughout the entire time period of the IT

response, including the earliest part of that period where IT

neurons are just beginning to respond above baseline

(�100 ms from stimulus onset, Figure S5). This shows that the

experience-induced change in IT selectivity cannot be explained

by changes in long lag feedback alone (>100 ms; also see

Discussion). On average, the selectivity change at the swap

size resulted from both a decrease in the response to the image

of the preferred object (P) and an increase in the response to the

less preferred object (N). Consistent with this, we found that the
.
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Figure 3. Example Single IT Sites

Mean ± SEM. IT response to P (solid square) and N (open

circle) as a function of object size for eight example IT sites

(from both Experiment I and II). The data shown are from the

first (‘‘before exposure’’) and last (‘‘after exposure’’) Test

Phase. (A) Swap size, 1.5�; (B) swap size, 9� (highlighted by

red boxes and arrows). Gray dotted lines show the baseline

response to a blank image (interleaved with the test images).
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experience manipulation produced no average change in the IT

sites’ mean response rate (Figure S5).

In this study, we concentrated on multiunit response data

because it had a clear advantage as a direct test of our hypoth-

esis—it allowed us to longitudinally track IT selectivity during

altered visual experience across the entirety of each experi-

mental session. We also examined the underlying single-unit

data and found results that were consistent with the multiunit

data. Figure 4A shows an example of a rare single-unit IT

neuronal recording that we were able to track across an entire

recording session (�3 hr). The confidence that we were

recording from the same unit comes from the consistency of

the unit’s waveform and its consistent pattern of response

among the nonexposed control object images (Figure 4B).

During this stable recording, the (P � N) selectivity at the swap

size gradually decreased while the selectivity at the non-swap

size remained stable, perfectly mirroring the multiunit results

described above. However these �3 hr single-unit recordings

were very rare because single units have limited hold-time in

the awake primate physiology preparation. Thus we took a

more standard population approach to analyze the single-unit

data (Baker et al., 2002; Kobatake et al., 1998; Sakai and Miya-

shita, 1991; Sigala et al., 2002). Specifically, we performed

spike-sorting analyses to obtain clear single units from each

Test Phase (Experimental Procedures). We considered each

single unit obtained from each Test Phase as a sample of

the IT population, taken either before or after the experience in

the altered visual world. This analysis does not require that the
Neuron 67, 1062–
sampled units were the same neurons. The predic-

tion is that IT single units sampled after exposure

(i.e., at the last Test Phase of each day) would be

less size tolerant at the swap size than at the non-

swap size. This prediction was clearly observed in

our single-unit data (Figure 4C, after exposure,

p < 0.05; for reference, the size tolerance before

the exposure is also shown and we observed no

difference between the swap and non-swap size).

The result was robust to the choice of the criteria

to define ‘‘single units’’ (Figure S6). Similarly, we

found that each single-unit population sampled

after successively more exposure showed a

successively larger change in size tolerance

(Figure 4D).

We next aimed to quantify the absolute magni-

tude of this size tolerance learning effect across

the different experience manipulations deployed

here, and to compare that magnitude with our

previous results on position-tolerance learning (Li
and DiCarlo, 2008). To do this, we plotted the mean selectivity

change at the swap size from each experiment as a function of

number of swap exposures (Figure 5). We found that Experi-

ments I and II produced a very similar magnitude of learning:

�5 spikes/s per 400 swap exposures (also see Discussion for

comparison to previous work). This effect grew larger at this

approximately constant rate for as long as we could run each

experiment, and the magnitude of the size tolerance learning

was remarkably similar to that seen in our previous study of posi-

tion tolerance (Li and DiCarlo, 2008).

Size and Position Tolerance Learning: Reversing Old IT
Object Selectivity and Building New IT Object Selectivity
The results on size tolerance presented above and our previous

study of position tolerance (Li and DiCarlo, 2008) both used the

breaking of naturally occurring temporal contiguity experience

to discover that we can break normal position tolerance and

size tolerance (i.e., we can cause a decrease in adult IT object

selectivity in a size- or position-specific manner). While these

results are consistent with the inference that naturally occurring

image statistics instruct the original building of that normal toler-

ance (see Introduction), we next sought to test that inference

more directly. Specifically, we asked if the temporal contiguity

statistics of visual experience can instruct the creation of new

IT tolerance (i.e., if they can cause an increase in IT object selec-

tivity in a size- or position-specific manner). Our experimental

data offered two ways to test this idea (below), and both ways

revealed that unsupervised temporal contiguity learning could
1075, September 23, 2010 ª2010 Elsevier Inc. 1067



Figure 4. Single-Unit Results

(A) P versus N selectivity of a rare single-unit IT neuron that was isolated across an entire recording session (�3 hr).

(B) The example single-unit’s response to the six control object images during each Test Phase and its waveforms (gray: all traces from a Test Phase; red: mean).

(C) Mean ± SEM size tolerance at the swap (red) and non-swap (blue) size for single units obtained before and after exposure. Size tolerance for the control objects

is also shown at these two sizes (black). Each neuron’s size tolerance was computed as (P�N)/(P�N)medium, where (P�N) is the selectivity at the tested size and

(P�N)medium is the selectivity at the medium object size. Only units that showed selectivity at the medium size were included [(P�N)medium > 1 spikes/s]. The top

and bottom panels include neurons that had selectivity for the swap objects, the control objects, or both. Thus they show different but overlapping populations of

neurons. The result is unchanged if we only examine populations for which each neuron has selectivity for both the swap and control objects (i.e., the intersections

of the neuronal populations in top and bottom panels; Figure S6).

(D) Mean ± SEM size tolerance at the swap size further broken out by the amount of exposure to the altered visual statistics. To quantify the change in IT size

tolerance, we performed linear regression of the size tolerance as a function of the amount of experience. Consistent with the multiunit results, we found a signif-

icant negative slope (D size tolerance = �0.84 per 800 exposure; p = 0.002, bootstrap; c.f. �0.42 for multiunit, Figure S6). No decrease in size tolerance was

observed at the non-swap control size (D size tolerance = 0.30; c.f. 0.12 for multiunit).
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indeed build new IT tolerance. To do these analyses, we took

advantage of the fact that we found very similar effects for

both size tolerance and position tolerance (Li and DiCarlo,

2008), and we maximized our power by pooling the data across

this experiment (Figure 5: size experiment I, II; n = 42 MUA sites)

and our previous position experiment (n = 10 MUA sites). This

pooling did not qualitatively change the result—the effects

shown in Figures 5 and 6 below were seen in the size tolerance

data alone (Figure S9).

First, as outlined in Figure 1C, a strong form of the UTL hypoth-

esis predicts that our experience manipulation should not only

degrade existing IT selectivity for P over N at the swap size/posi-

tion, but should eventually reverse that selectivity and then build

new incorrect selectivity for N over P (Figure 1C; note that we

refer to this as incorrect selectivity because the full IT response

pattern is inappropriate for the veridical world in which objects

maintain their identity across changes in position and size).

Though the plasticity we discovered is remarkably strong

(�5 spikes/s per hour), it did not produce a selectivity reversal

for the ‘‘mean’’ IT site within the 2 hr recording session

(Figure S5D). Instead, it only produced a �50% decrease in

selectivity for that mean site, which is entirely consistent with
1068 Neuron 67, 1062–1075, September 23, 2010 ª2010 Elsevier Inc
the fact that our mean IT site had reasonably strong initial selec-

tivity for P over N (mean P � N = �20 spikes/s). To look more

deeply at this issue, we made use of the well-known observation

that not all adult IT neurons are identical— some have a large

amount of size or position tolerance, whereas others show

a small amount of tolerance (DiCarlo and Maunsell, 2003; Ito

et al., 1995; Logothetis and Sheinberg, 1996; Op De Beeck

and Vogels, 2000). Specifically, some IT sites strongly prefer

object P to N at some sizes/positions, but show only weak

(P � N) selectivity at the swap sizes/positions (this neuronal

response pattern is illustrated schematically at the top of

Figure 6). We reasoned that examination of these sites should

reveal whether our experience manipulation is capable of

causing a reversal in selectivity and building of new selectivity.

Thus, we used independent data to select neuronal subpopula-

tions from our data pool with varying amounts of initial selectivity

at the swap size/position (Supplemental Experimental Proce-

dures). Note that all of these neuronal sites had robust selectivity

for P over N at the medium sizes/positions (as schematically

illustrated in Figure 6A). This analysis revealed that our manipu-

lation caused neuronal sites with weak initial selectivity at the

swap size/position to reverse their selectivity, and to build new
.
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selectivity (building incorrect selectivity for N over P), exactly as

predicted by the UTL hypothesis (Figure 6).

A second way in which our data might reveal whether UTL can

build tolerance is to carefully look for any changes in selectivity

at the non-swap (control) size/position. Our experiment was

designed to present a large number of normal temporal conti-

guity exposures at that control size/position so that we would

perfectly equate its amount of retinal exposure with that

provided at the swap size/position. Although some forms of

unsupervised temporal contiguity theory might predict that

these normal temporal contiguity exposures should increase

the (P � N) selectivity at the control size/position, we did not

initially make that prediction (Figure 1C, blue) because we

reasoned that most IT sites would already have strong, adult-

like selectivity for object P versus N at that size/position, such

that further supporting statistics would have little to teach those

IT sites (Figure 7A, top right). Consistent with this, we found little

mean change in (P � N) selectivity for the control condition in

either our position tolerance experiment (Li and DiCarlo, 2008)

or our size tolerance experiment (Figure 2, blue). However,

examination of all of our IT sites revealed that some sites

happened to have initially weak (P � N) selectivity at the control

size/position while still having strong selectivity at the medium

size/position (Figure 7A, top left). This suggested that these sites

might be in a more naive state with respect to the particular

objects being tested such that our temporal contiguity statistics

might expand their tolerance for these objects (i.e., increase their

P � N selectivity at the control size/position). Indeed, examina-

tion of these sites reveals that our exposure experiment caused

a clear, significant building of new, correct selectivity among

these sites (Figure 7B), again directly demonstrating that unsu-

pervised temporal contiguity experience can build IT tolerance.

Experiment III: Does the Learning Depend
on the Temporal Direction of the Experience?
Our results show that targeted alteration of unsupervised natural

visual experience rapidly reshapes IT size tolerance—as pre-

dicted by the hypothesis that the ventral stream uses a temporal
Neu
contiguity learning strategy to build that tolerance in the first

place. Several instantiated computational models show how

this conceptual strategy can build tolerance (Foldiak, 1991; Mas-

quelier et al., 2007; Masquelier and Thorpe, 2007; Wallis and

Rolls, 1997; Wiskott and Sejnowski, 2002; Wyss et al., 2006),

and such models can be implemented using variants of Heb-

bian-like learning rules that are dependent on the timing of spikes

(Gerstner et al., 1996; Sprekeler et al., 2007; Wallis and Rolls,

1997; Morrison et al., 2008; Sprekeler and Gerstner, 2009). The

time course and task independence of the observed learning

are consistent with synaptic plasticity (Markram et al., 1997; Me-

liza and Dan, 2006), but our data do not constrain the underlying

mechanism. One can imagine ventral stream neurons using

almost temporally coincident activity to learn which sets of its

afferents correspond to features of the same object across

size changes. If tolerance learning is spike timing dependent,

any experience-induced change in IT selectivity might reflect

any temporal asymmetries at the level of the underlying synaptic

learning mechanism. For example, one hypothesis is that

lingering postsynaptic activity caused by temporally leading

images drives synaptic plasticity in afferents activated by tempo-

rally lagging images. Alternatively, afferents activated by tempo-

rally leading imagesmight bemodified by the later arrival of post-

synaptic activity caused by temporally lagging images. Or

a combination of both hypotheses might be the case. To look

for reflections of any such underlying temporal asymmetry, we

carried out a third experiment (Experiment III) centered on the

question, ‘‘Do temporally leading images teach temporally

lagging ones, or vice-versa?’’

We deployed the same experience manipulation as before

(linking of different object images across size changes, the

same as Experiment I), but this time only in one direction

(compare single-headed arrows in Figure 8A with double-

headed arrows in Figure 1B). For example, during the recording

of a particular IT site, the animal only received experience seeing

objects temporally transition from a small size (arrow ‘‘tail’’ in Fig-

ure 8A) to a large size (arrow ‘‘head’’ in Figure 8A) while swapping

identity. We strictly alternated the temporal direction of the expe-

rience across different IT sites. That is, for the next IT site we re-

corded, the animal experienced objects transitioning froma large

size to a small size while swapping identity. Thus, object sizewas

counterbalanced across our recorded population, so that we

could isolate changes in selectivity among the temporally

leading stimuli (i.e., arrow tail stimuli) from changes in selectivity

among the temporally lagging stimuli (i.e., arrow head stimuli). As

in Experiments I and II, wemeasured the expression of any expe-

rience-induced learning by looking for any change in (P � N)

selectivity at each object size measured in a neutral task with

all images randomly interleaved (Test Phase). We replicated

the results in Experiments I and II in that a decrease in (P � N)

selectivity was found following swapped experience (red bars

are negative in Figure 8B). When we sorted our data based on

the temporal direction of the animals’ experience, we found

greater selectivity change (i.e., learning) for the temporally

lagging images (Figure 8B). This difference was statistically

significant (p = 0.038, n = 31, two-tailed t test) and cannot be ex-

plained by any differences in the IT sites’ initial selectivity

(Figure S4C; also see Figure S4B for results with all sites
ron 67, 1062–1075, September 23, 2010 ª2010 Elsevier Inc. 1069
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Figure 6. Altered Statistics in Visual Experi-

ence Builds Incorrect Selectivity

(A) Prediction: top, most adult IT neurons start with

fully position/size tolerant selectivity (left). In the

limit of a large amount of altered visual experience,

temporal contiguity learning predicts that each

neuron will acquire fully altered tolerance (right).

Bottom, at the swap position/size (red), the selec-

tivity for P over N is predicted to reverse in the limit

(prefer N over P). Because we could only record

longitudinally from a multiunit site for less than

3 hr, we do not expect our experience manipula-

tion within a session to produce the full

selectivity reversal (pre versus post) among

neuronal sites with strong initial selectivity.

However, because different IT sites differ in their

degrees of initial selectivity, they start at different

distances from selectivity reversal. Thus, our

manipulation should produce selectivity reversal

among the initially weakly selective sites and build

new (‘‘incorrect’’) selectivity.

(B) Mean ± SEM normalized response to object P

and N at the swap position/size among subpopu-

lations of IT multiunit sites. Sites are grouped by

their initial selectivity at the swap position/size

using independent data. Data from the size and

position tolerance experiments (Li and DiCarlo,

2008) were combined to gain maximal power

(size experiment I, II; position experiment, see

Supplemental Experimental Procedures). These

sites show strong selectivity at the non-swap

(control) position/size, and no negative change in

that selectivity was observed (not shown). **p <

0.01; *p < 0.05, one-tailed t test against no change.

(Size experiment data only, group 1–6: p < 0.01;

p < 0.01; p < 0.01; p = 0.02; p = 0.07; n.s.).
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included). This result is consistent with an underlying learning

mechanism that favors experience-induced plasticity of the

afferents corresponding to temporally lagging images.

To test if the tolerance learning spread beyond the specifically

experienced images, here, we also tested object images at an

intermediate size (3�) between the two exposed sizes (Figure 8).

Unlike as in Experiments I and II, this medium size was not

exposed to the animals during the Exposure Phase (it was also

at a different physical size from the medium size in Experiments
1070 Neuron 67, 1062–1075, September 23, 2010 ª2010 Elsevier Inc.
I and II). We observed significant selec-

tivity change for the medium size image

pairs (Figure 8B, middle bar; p = 0.01,

two-tailed t test against zero), which

suggests that the tolerance learning has

some degree of spread (but not to very

different objects; Figure S4). Finally, the

effect size observed in Experiment III

was consistent with, and can explain the

effect sizes observed in Experiments I

and II. That is, based on the Experiment

III effect sizes for the temporally lagging

and leading images, a first-order predic-

tion of the net effect in Experiments I

and II is the average of these two effects
(because Experiments I and II employed a 50-50mix of the expe-

rience manipulations considered separately in Experiment III).

That prediction is very close to what we found (Figure 5).

DISCUSSION

The overarching goal of this work is to ask whether the

primate ventral visual stream uses a general, temporal contiguity

driven learning mechanism to construct its tolerance to
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(A) Prediction follows the same logic as in

Figure 6A, but here for the control conditions in

which normal temporal contiguity statistics were

provided (Figure 1). Top, temporal contiguity

learning predicts that neurons will be taught to

build new ‘‘correct’’ selectivity (i.e., normal toler-

ance), and neurons starting with initially weak

position/size tolerant selectivity (left) have the

highest potential to reveal that effect. Bottom, at

the non-swap position/size (blue), our manipula-

tion should build new correct selectivity for P

over N among IT sites with weak initial selectivity.

(B) Mean ± SEM normalized response to object P

and N at the non-swap position/size among

subpopulations of IT multiunit sites. Sites are

grouped by their initial selectivity at the non-

swap position/size using independent data. Other

details are the same as those in Figure 6B. (Size

experiment data only, group 1–5: p = 0.06; p <

0.01; p = 0.05; n.s.; n.s.).
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object-identity-preserving image transformations. Our strategy

was to use experience manipulations of temporally contiguous

image statistics to look for changes in IT neuronal tolerance

that are predicted by this hypothetical learning mechanism.

Here we tested three key predictions that were not answered

by previous work (Li and DiCarlo, 2008). First, we asked if these

experience manipulations predictably reshaped the size toler-

ance of IT neurons. Our results strongly confirmed this predic-

tion: we found that the change in size tolerance was large (�5

spikes/s, �25% IT selectivity change per hour of exposure)

and grew gradually stronger with increasing visual experience.

Second, we asked if this tolerance reshaping was induced under

visual experience that mimics the common size-tolerance-
Neuron 67, 1062–1075, Sep
building statistics in the natural world:

temporally contiguous image changes

without intervening eye movements, and

temporally smooth dynamics. Our results

confirmed this prediction: we found that

size tolerance was robustly reshaped in

both of these conditions (Figure 2), and

the magnitude of reshaping was similar

to that seen with eye-movement-contin-

gent reshaping of IT position tolerance

(Li and DiCarlo, 2008, Figure 5). Third,

we asked if experience with temporal

contiguous image statistics could not

only break existing IT tolerance, but could

also build new tolerance. Again, our

results confirmed this prediction: we

found that experience with incorrect

statistics can build incorrect tolerance

(Figure 6) and that experience with

correct statistics can build correct toler-

ance (Figure 7). Finally, we found that

this tolerance learning is temporally
asymmetric and spreads beyond the specifically experienced

images (Figure 8, medium size), results that have implications

for underlying mechanisms (see below).

Given these results, it is now highly likely that our previously

reported results on eye-movement-contingent tolerance

learning (Li and DiCarlo, 2008) were only one instance of

a general tolerance learning mechanism. Taken together, our

two studies show that unsupervised, temporally contiguous

experience can reshape and build at least two types of IT toler-

ance, and that they can do so under a wide range of spatiotem-

poral regimes encountered during natural visual exploration. In

sum, we speculate that these studies are both pointing to the

same general learning mechanism that builds adult IT tolerance,
tember 23, 2010 ª2010 Elsevier Inc. 1071
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Figure 8. Experiment III Exposure Design and Key Results

(A) Exposure Phase design (top, same format as in Figure 1B) and example

object images used (bottom).

(B) Mean ± SEM selectivity change, Ds(P � N), among the temporally leading

images, the nonexposed images at the medium object size (3�), and the

temporally lagging images. Ds(P � N) was normalized to show selectivity

change per 800 exposure events. *p = 0.038, two-tailed t test.
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and we have previously termed this mechanism ‘‘unsupervised

temporal slowness learning’’ (Li and DiCarlo, 2008).

Our suggestion that UTL is a general tolerance learning mech-

anism is supported by a number of empirical commonalities

between the size tolerance learning here and our previously

reported position tolerance learning (Li and DiCarlo, 2008). (1)

Object specificity: the experience-induced changes in IT size

tolerance and position tolerance have at least some specificity

for the exposed object. (2) Learning induction (driving force): in

both studies, the magnitude of learning depended on the initial

selectivity of the temporally adjacent images (medium object

size here, foveal position in the position tolerance study), which

is consistent with the idea that the initial selectivity may provide

at least part of the driving force for the learning. (3) Time course

of learningexpression: learning increasedwith increasing amount

of experience and changed the initial part of IT response (100 ms

after stimulusonset). (4)Responsechangeof learningexpression:

in both studies, the IT selectivity change arose from a response
1072 Neuron 67, 1062–1075, September 23, 2010 ª2010 Elsevier Inc
decrease to the preferred object (P) and a response increase to

the less preferred object (N). (5) Effect size: our different experi-

ence manipulations here as well as our previous position manip-

ulation revealed a similar effect magnitude (�5 spikes/s per 400

swap exposures). More specifically, when measured as learning

magnitude per exposure event, size tolerance learning was

slightly smaller than that found for position tolerance learning

(Figure 5), and when considered as learning magnitude per unit

time, the results of all three experiments were nearly identical

(FigureS8).However,wenote that ourdatacannot cleanlydecon-

found exposure amount from exposure time.

Relation to Previous Literature
Previous psychophysical studies have shown that human object

perception depends on the statistics of visual experience (e.g.,

Brady and Oliva, 2008; Fiser and Aslin, 2001; Turk-Browne

et al., 2005). Several studies have also shown that manipulating

the spatiotemporal contiguity statistics of visual experience can

alter the tolerance of human object perception (Cox et al., 2005;

Wallis et al., 2009; Wallis and Bülthoff, 2001). In particular, an

earlier study (Cox et al., 2005) showed that the same type of

experience manipulation deployed here (experience of different

object images across position change) produces increased

confusion of object identities across position—a result that

qualitatively mirrors the neuronal results reported here and in

our previous neuronal study (Li and DiCarlo, 2008). Thus, the

available psychophysical data suggest that UTL has perceptual

consequences. However, this remains an open empirical ques-

tion (see ‘‘Limitations and Future Direction’’ subsection).

Previous neurophysiological investigations in the monkey

ventral visual stream showed that IT and perirhinal neurons could

learn to give similar responses to temporally nearby stimuli when

instructed by reward (i.e., so-called ‘‘paired associate’’ learning;

Messinger et al., 2001; Miyashita, 1988; Sakai and Miyashita,

1991), or sometimes, even in the absence of reward (Erickson

and Desimone, 1999). Though these studies were motivated in

the context of visual memory (Miyashita, 1993) and used visual

presentation rates of seconds or more, it was recognized that

the same associational learning across time might also be

used to learn invariant visual features for object recognition

(e.g., Foldiak, 1991; Stryker, 1991; Wallis, 1998; Wiskott and Sej-

nowski, 2002). Our studies provide a direct test of these ideas by

showing that temporally contiguous experience with object

images can specifically reshape the size and position tolerance

of IT neurons’ selectivity among visual objects. This is consistent

with the hypothesis that the ventral visual stream relies on

a temporal contiguity strategy to learn its tolerant object repre-

sentations in the first place. Our results also demonstrate that

UTL is somewhat specific to the experienced objects’ images

(i.e., object, size, position specificity) and operates over natural,

very fast time scales (hundreds of ms, faster than those previ-

ously reported) in a largely unsupervised manner. This suggests

that, during natural visual exploration, the visual system can

leverage an enormous amount of visual experience to construct

its object invariance.

Computational models of the ventral visual stream have put

forms of the temporal contiguity hypothesis to test, and have

shown that learning to extract slowly varying features across
.
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time can produce tolerant feature representations with units that

mimic the basic response properties of ventral stream neurons

(Masquelier et al., 2007; Masquelier and Thorpe, 2007; Sprekeler

et al., 2007;Wallis and Rolls, 1997;Wiskott and Sejnowski, 2002;

Wyss et al., 2006). Thesemodels can be implemented using vari-

ants of Hebbian-like learning rules (Masquelier and Thorpe, 2007;

Sprekeler and Gerstner, 2009; Sprekeler et al., 2007; Wallis and

Rolls, 1997). The time course and task independence of UTL re-

ported here is consistent with synaptic plasticity (Markram

et al., 1997; Rolls et al., 1989), and the temporal asymmetry in

learning magnitude (Figure 8) constrains the possible underlying

mechanisms. While the experimental approach used here may

seem to imply that experience with all possible images of each

object is necessary for UTL to build an invariant IT object repre-

sentation, this is not believed to be true in a full computational

model of the ventral stream. For example, V1 complex cells that

encode edges may learn position tolerance that ultimately

supports the invariant encodingofmanyobjects.Our observation

of partial spread of tolerance learning to nonexperienced images

(Figure 8) is consistent with this idea. In particular, at each level of

the ventral stream, afferent input likely reflects tolerance already

constructed for simpler features at the previous level (e.g., in the

context of this study, some IT afferents may respond to an

object’s image at both the medium size and the swap size).

Thus any modification of the swap-size-image-afferents would

result in a partial generalization of the learning beyond the specif-

ically experienced images.

Limitations and Future Direction
Because the change in object selectivity was expressed in the

earliest part of the IT response after learning (Figure S5A), even

while the animal was performing tasks unrelated to the object

identity, this rules out any simple attentional account of the

effect. However, our data do not rule out the possibility that

attention or other top down signals may be required to mediate

the learning during the Exposure Phase. These potential top-

down signals could include nonspecific reward, attentional,

and arousal signals. Indeed, psychophysical evidence (Seitz

et al., 2009; Shibata et al., 2009) and physiological evidence

(Baker et al., 2002; Freedman and Assad, 2006; Froemke

et al., 2007; Goard and Dan, 2009; Law and Gold, 2008) both

suggest that reward is an important factor that can modulate

or gate learning. We also cannot rule out the possibility that the

attentional or the arousal systemmay be required for the learning

to occur. In our work, we sought to engage the subjects in natural

exploration during the Exposure Phases under the assumption

that visual arousal may be important for ongoing learning, even

though we deployed the manipulation during the brief periods

of fixation during that exploration. Future experiments in which

we systematically control these variables will shed light on these

questions, and will help expose the circuits that underlie UTL.

Although the UTL phenomenology induced by our experi-

ments was a very specific change in IT neuronal selectivity, the

magnitude of this learning effect was quite largewhen expressed

in units of spikes per second (Figure 5: �5 spikes/s, �25%

change in IT selectivity per hour of exposure). This is comparable

to or larger than other important neuronal phenomenology (e.g.,

attention, Maunsell and Cook, 2002). However, because this
Neu
effect size was evaluated from the multiunit signal, without

knowledge of how many neurons we are recording from, this

effect size should be interpreted with caution. Furthermore, con-

necting this neuronal phenomenology (i.e., change in IT image

selectivity) to the larger problem of size or position tolerance at

the level of the IT population or the animal’s behavior is not

straightforward. Quantitatively linking a neuronal effect size to

behavioral effect size requires a more complete understanding

of how that neuronal representation is read out to support

behavior, and large effects in confusion of object identities in

individual IT neurons may or may not correspond to large confu-

sions of object identities in perception. Such questions are the

target of our ongoing and future monkey studies in which one

has simultaneous measures of the neuronal learning and the

animal’s behaviors (modeled after those such as Britten et al.,

1992; Cook and Maunsell, 2002).

The rapid and unsupervised nature of UTL gives us new exper-

imental access to understand how cortical object representa-

tions are actively maintained by the sensory environment.

However, it also calls for further characterization of the time

course of this learning to inform our understanding of the stability

of ventral stream object representations in the face of constantly

available, natural visual experience. This sets the stage for future

studies on how the ventral visual stream assembles its neuronal

representations at multiple cortical processing levels, particu-

larly during early postnatal visual development, so as to achieve

remarkably powerful adult object representation.
EXPERIMENTAL PROCEDURES

Animals and Surgery

Aseptic surgery was performed on two male Rhesus monkeys (8 and 6 kg)

to implant a head post and a scleral search coil. After brief behavioral training

(1–3 months), a second surgery was performed to place a recording chamber

to reach the anterior half of the temporal lobe. All animal procedures were

performed in accordance with National Institute of Health guidelines and the

Massachusetts Institute of Technology Committee on Animal Care.

General Design

On each experimental day, we recorded from a single IT multiunit site for

2–3 hr. During that time, the animal was provided with altered visual experi-

ence in Exposure Phases and wemade repeatedmeasurements of the IT site’s

selectivity during Test Phases (Figure 1). The study consisted of three separate

experiments (Experiments I, II, and III), which differed from each other only in

the Exposure Phase design (described below). We focused on one pair of

objects (swap objects) that the IT site was selective for (preferred object P,

and nonpreferred object N, chosen using a prescreening procedure; see

Supplemental Experimental Procedures).

Experiment I

Objects (P and N at 1.5�, 4.5�, or 9�) appeared at random positions on a gray

computer screen and animals naturally looked to the objects. The image of the

just-foveated object was replaced by an image of the other object at a different

size (swap exposure event, Figure 1A) or an image of the same object at a

different size (non-swap exposure event, Figure 1A). The image change was

initiated 100 ms after foveation and was instantaneous (Figure 2, top). We

used a fully symmetric design illustrated graphically in Figure 1B. This experi-

ence manipulation temporally linked pairs of object images (Figure 1A shows

one such link) and each link could go in both directions (Figure 1B shows full

design example). For each IT site, we always deployed the swap manipulation

at one particular size (referred to as the swap size: 1.5� or 9�, prechosen,
strictly alternated between sites), keeping the other size as the exposure-

equalized control (referred to as the non-swap size).
ron 67, 1062–1075, September 23, 2010 ª2010 Elsevier Inc. 1073
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Experiment II

All design parameters were identical to Experiment I except that the image

changes were smooth across time (Figure 2, bottom). The image change

sequence started immediately after the animal had foveated the image and

the entire sequence lasted for 200 ms (Figure S2). Identity-changing morph

lines were only achievable on the silhouette shapes. OnlyMonkey 2was tested

in Experiment II (given the stimulus class assignment).

Experiment III

We used an asymmetric design that is illustrated graphically in Figure 8A: for

each IT site, we only gave the animals experience of image changes in one

direction (1.5�/4.5� or vice versa, prechosen, strictly alternated between

sites). The timing of the image change was identical to that in Experiment I.

Another pair of control objects (P0 and N0, not shown in the Exposure Phase)

was also used to probe the IT site’s responses in the Test Phase. The selec-

tivity among the control objects served as a measure of recording stability

(below). In each Test Phase, the swap and control objects were tested at three

sizes (Experiments I and II: 1.5�, 4.5�, 9�; Experiment III: 1.5�, 3�, 4.5�) by
presenting them briefly (100 ms) on the animals’ center of gaze (50–60 repeti-

tions, randomized) during orthogonal behavioral tasks in which object identity

and size were irrelevant. See Supplemental Experimental Procedures for

details of the task design and behavioral monitoring.

Neuronal Assays

We recorded MUA from the anterior region of IT using standard single micro-

electrode methods. Our previous study on IT position tolerance learning

showed that we could uncover the same learning in both single-unit activity

and MUA with comparable effect size (Li and DiCarlo, 2008), so here, we

only recorded MUA to maximize recording time. Over a series of recording

days, we sampled across IT and sites selected for all our primary analyses

were required to be selective among object P and N (ANOVA, object 3 sizes,

p < 0.05 for ‘‘object’’ main effect or interaction) and pass a stability criterion

(n = 27 for Experiment I; 15 for Experiment II; 31 for Experiment III). We verified

that the key result is robust to the choice of the stability criteria (Figure S4).

See Supplemental Experimental Procedures for details of the recording

procedures and site selections.

Data Analyses

All the analyses and statistical tests were done in MATLAB (Mathworks,

Natick, MA) with either custom-written scripts or standard statistical pack-

ages. The IT response to each image was computed from the spike count in

a 150ms timewindow (100–250ms poststimulus onset, data from Test Phases

only). Neuronal selectivity was computed as the response difference in units of

spikes/s between images of object P and N at different object sizes. To avoid

any bias in this estimate of selectivity, for each IT site we define the labels P

(preferred) and N by using a portion of the pre-exposure data to determine

these labels, and the remaining data to compute the selectivity values reported

in the text (Supplemental Experimental Procedures). In cases where neuronal

response data was normalized and combined (Figures 6 and 7), each site’s

response from each Test Phase was normalized to its mean response to all

object images in that Test Phase. The key results were evaluated statistically

using a combination of t tests and interaction tests (Supplemental Experi-

mental Procedures). For analyses presented in Figure 4, we extracted clear

single units from the waveform data of each Test Phase using a PCA-based

spike sorting algorithm (Supplemental Experimental Procedures).

SUPPLEMENTAL INFORMATION

Supplemental Information for this article includes nine figures and Supple-

mental Experimental Procedures and can be found with this article online at

doi:10.1016/j.neuron.2010.08.029.
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