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We propose amultiagent-based reinforcement learning algorithm, in which the interactions between travelers and the environment
are considered to simulate temporal-spatial characteristics of activity-travel patterns in a city. Road congestion degree is added to
the reinforcement learning algorithm as a medium that passes the influence of one traveler’s decision to others. Meanwhile, the
agents used in the algorithm are initialized from typical activity patterns extracted from the travel survey diary data of Shangyu city
in China. In the simulation, both macroscopic activity-travel characteristics such as traffic flow spatial-temporal distribution and
microscopic characteristics such as activity-travel schedules of each agent are obtained. Comparing the simulation results with the
survey data, we find that deviation of the peak-hour traffic flow is less than 5%, while the correlation of the simulated versus survey
location choice distribution is over 0.9.

1. Introduction

Over the few last decades, activity-based approaches has
become the main theme in transportation demand model-
ing, taking the place of trip-based approaches. Trip-based
approach has several drawbacks: trip generation is fixed and
independent of the transportation system; travel demand
is generated from the need of activity participation; and
the space and temporal relationship of all trips and activity
patterns is ignored. Such drawbacks brought activity-based
approach into transportation demand modeling.

The first activity-based approaches began in the 1970s
[1–3]. Those pioneering studies explored choices and con-
straints in travel demand. Since that time, activity-based
modeling has flourished. Various methodologies have been
introduced and they can be classified into three categories.

The first category is utility-maximizing model (or econo-
metric model) which suggests that individuals seek to max-
imize their cumulative utilities when performing activities.
Those models link individual or household’s sociodemo-
graphics, transportation policies, and other environmental

factors to their activity and travel patterns. Econometric
models ranging from discrete choice models (such as multi-
nomial logit and nested logit mode) to hazard duration
models remain to be a powerful approach in activity-travel
analysis [4–7].

The second category is computational process model
(CPM) which focuses on using context-dependent choice
heuristics to model individual’s decision process. A compu-
tational process model is a set of condition-action rules that
specify how a decision is made. One precursor in CPM is
the time-space prism method. Hägerstrand [3] introduced
the three-dimensional space-time models. In such models
limited resources of time and space became constraints on
each individual’s behavior alternatives [8]. The techniques
used in more recent studies include decision trees, neural
networks, and Bayesian networks [9–11].

The combination of the above two approaches leads to
hybridmodels. Hybridmodels concentrate on the integration
of econometric models and CPM. Decision-tree is combined
with parametric modeling [12]; random utility maximization
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is incorporated into activity schedulingmodel [13]. New algo-
rithms such as reinforcement learning are also introduced
into the field.

Reinforcement learning integrates the concepts of reward
(utility) maximization and context-dependent choice heuris-
tics. The applications of reinforcement learning include
robotics, game theory, dispatching system, and financial trad-
ing [14–17]. Tan used reinforcement learning to formalize an
automated process for determining stock cycles by tuning the
momentum and the average periods. The total experimental
results from the five stocks are able to beat the market by
about 50 percentage points [18]. Lahkar and Seymour studied
reinforcement learning in a population game. Agents in a
population game revise mixed strategies using the cross rule
of reinforcement learning [17]. In addition, formulation of
economic dispatch as a multistage decision making problem
is carried out using reinforcement learning by Jasmin et
al. [15]. Applying reinforcement learning in transportation
demandmodeling has several advantages. First, the imitation
of human learning through trial and error interactions
with a dynamic environment helps to explain behavioral
mechanisms [19]. The RL mechanism is distinguished from
other computational cognitive mechanisms by its empha-
sis on learning by an individual from direct interaction
with individual’s decision environment in the presence of
an explicit goal and feedback and without relying on any
exemplary supervision. Secondly, it does not need an expert-
system to inform it what selection is right and what is wrong.
Thirdly, it could react to unforeseen events and take both
long-term learning and short-term dynamics into account.
Among the first attempts, Charypar and Nagel built the basic
model of activity time plans using q-learning and got quite
realistic results [20].Thismodel was thenmodified to allocate
both time and location choice of activity-travel pattern [21].
Because q-learning generally takes a long time to converge
and the curse of dimensionality occurswhen the problemgets
complex, q-learning was combined with the regression tree
method to form a new algorithm called q-tree [22].

The above-mentioned researches show several aspects
that need further development.

(i) In most of the reinforcement-learning-based studies,
though the format of reward function has been
scrutinized, the rewards are based on assumption
values and are hard to be acquired from survey data,
so that the result is hard to be put into practical use.

(ii) In many of the multiagent systems, “multi” means
several components of the system such as road, inter-
section, and traveler rather than multiple travelers.
Interactions of travelers are neglected.

(iii) The result analysis is often limited within individual
activity-travel schedule. Macroscopic characteristics
such as traffic flow distribution are often ignored.

In this study we propose an interactive reinforcement
learning algorithm in which individuals not only receive
information from the environment, but also give feedback
to the environment. We did this by adding road congestion
degree, which is determined by travelers’ decisions, to the

algorithm.Thedynamic environment is amedium that passes
the influence of one traveler’s decision to others. The self-
organization effect shown through this mechanism makes
the system reach a dynamic equilibrium. This algorithm not
only ensures rationality of each single traveler’s behavior,
but also obtains aggregated temporal-spatial traffic features
such as traffic flow distribution and the distribution of
activity locations. We also seek a compromise between the
well-established theoretical reward function form and the
quality of data we could truly get from practical surveys. The
simplified reward functionmakes the algorithm immediately
applicable.

The rest of this paper is organized as follows. Section 2
introduces the algorithm of modified multiagent-based q-
learning. Section 3 is devoted to the analysis and calculation
of the survey data. Section 4 shows the temporal-spatial
simulation results of Shangyu city’s traffic system. Section 5
concludes the findings of this paper and discusses future
research directions.

2. Multiagent-Based Q-Learning Method

2.1. Reinforcement Learning. Multiagent system focuses on
the analysis of several agents’ dynamic and complex collective
behavior. Because multiagent system has no global control
and each agent may get incomplete information, the system
must learn repetitively to improve the performance. Rein-
forcement learning is a major method of this kind. Kaelbling
et al. [19] define reinforcement learning as the problem faced
by an agent that must learn behavior through trial and
error interactions in a dynamic environment. Moreover, the
consequences of actions change over time and depend on the
current and future state of the environment. Reinforcement
learning has the potential to deal with this uncertainty
through continuous observations of the environment and
through consideration of indirect and delayed effects of
actions.

Basic concepts concerning reinforcement learning in-
clude the following.

(i) Agent: in this paper, an agent means a traveler.
(ii) State: a vector (activity, start time, duration, location,

and congestion degree) denotes an agent’s state. The
vector is denoted as (𝑎, 𝑠, 𝑑, 𝑙, and V𝑐) for brief.

(iii) Location: the unit of location is traffic zone which
is an area that has multifunctions including leisure,
shopping, and working.

(iv) Activity: activities include home, work, maintenance,
and leisure.

(v) Action: there are 4 actions, staying at current activity
or move to one of the other 3 activities. The same as
the way activities are represented; actions are denoted
as h, w, s, and l for brief.

(vi) Duration and start time: time variables should be
discrete in q-learning. The unit of time slot is 15min,
which divides a day into 96 slots. 24 pm is connected
with 0 am. Because the number of state should be
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finite, the longest duration of an activity is limited to
24 hours. Hence, both duration and start time could
be represented as a number from 1 to 96.

(vii) Policy: it means how an agent’s action may bring it
from one state to another.

(viii) Reward function: it is defined as the immediate
feedback an action brings.

(ix) Value function: it shows the total feedback an action
may bring both immediately and afterward.

(x) 𝑄-value: the 𝑄-value of an action 𝑎, given a state 𝑠,
denotes the expected utility of an agent taking action
𝑎 in state 𝑠.

(xi) Congestion degree: in order to show influence of
agents’ behavior on the environment, a variable of
congestion degree V𝑐 is added to the state of environ-
ment. Because environment is represented by discrete
variables in q-learning, V𝑐 should also be a discrete
variable. It is defined as V𝑐 = ceil(5 ⋅ (V/𝑐)). MATLAB
function ceil () rounds 𝑟(𝑠

𝑡
, 𝑎
𝑡
) to the nearest integer

towards infinity.𝑉 is the traffic volume of a given OD
pair and 𝐶 is the capacity of the OD pair. Because the
capacity is hard to be measured directly, we assume
that each OD pair’s capacity is 4000 considering the
total population and the size of Shangyu city.

Reinforcement learning tasks are generally treated in
discrete time steps. A teach time step 𝑡, the agent observes
the current state 𝑠

𝑡
stand chooses a possible action at to

perform, which leads to its succeeding state 𝑠
𝑡+1
= 𝛿(𝑠

𝑡
, 𝑎
𝑡
).

The environment responds by giving the agent a reward
𝑟(𝑠
𝑡
, 𝑎
𝑡
). These rewards can be positive, zero, or negative. It

is probable that these preferable rewards come with a delay.
In otherwords, some actions and their consequential state
transitions may bring low rewards in short-term, while it will
lead to state-action pairs later with a much higher reward.

For this reason, the task of the agent is to learn a policy
𝜋 according to the state 𝑆 and the action 𝐴 to receive the
maximal accumulative rewards. Given a random policy 𝜋
from a random state 𝑠

𝑡
, the accumulative reward can be

formulated as follows:

𝑉
𝜋
(𝑠
𝑡
) = 𝑟
𝑡
+ 𝛾𝑟
𝑡+1
+ 𝛾
2
𝑟
𝑡+2
+ ⋅ ⋅ ⋅ =

∞

∑

𝑖=0

𝛾
𝑖
𝑟
𝑡+𝑖
, (1)

where 𝑟
𝑡+𝑖

represents the scalar reward received 𝑖 steps in the
future and 𝛾 is the discounting factor.The agent only receives
the immediate reward if 𝛾 is set to zero.

2.2. Q-Learning Algorithm. The agent needs to learn the opti-
mal policy 𝜋∗(𝑠) that maximizes the accumulative reward.
Unfortunately, it is required that the knowledge of immediate
reward function 𝑟 and state transition function 𝛿 are known
in advance. In reality, however, it is usually impossible for the
agent to predict in advance the exact outcome of applying
a random action to a random state. In other words, the
domain knowledge is probably not perfect. q-learning is then
devised to select optimal actions even when the agent has no
knowledge about the reward and state functions.

We define 𝑄 as the estimation of true 𝑄-value. The q-
learning algorithmmaintains a large table with entries to each
state-action pair.When it starts, the value of𝑄(𝑠, 𝑎) is initially
filled with random numbers. The agent repeatedly observes
its current state 𝑠, chooses a possible action 𝑎 to perform, and
determines its immediate reward 𝑟(𝑠, 𝑎) and resulting new
state 𝛿(𝑠, 𝑎). The 𝑄(𝑠, 𝑎) value is then updated according to
the following rule:

𝑄 (𝑠, 𝑎) ←󳨀 𝑟 (𝑠, 𝑎) + 𝛾max
𝑎
󸀠

𝑄(𝑠
󸀠
, 𝑎
󸀠
) . (2)

That is to say, the 𝑄-value of the current state-action pair
is refined based on its immediate reward and the 𝑄-value of
its next state. The agent can reach a globally optimal solution
by repeatedly selecting the action that maximizes the local
values of 𝑄 for the current state.

This is only a brief introduction of q-learning and detailed
introduction could be found in reference [20]. The process
can be described as follows:

(1) initialize the 𝑄-values,
(2) select a random starting state 𝑠 which has at least one

possible action to select from,
(3) select one of the possible actions. This action leads to

the next state,
(4) update the 𝑄-value of the state-action pair according

to the update rule above,
(5) go back to Step 3 if the new state has at least one

possible action, if not, go to Step 2.

2.3. Reward Function. Previous researchers in this domain
constructed their reward functions based on activity start
time, duration, length of travel, and so on [20, 22]. This
method is adopted by us and our reward function contains
the following parts.

2.3.1. Reward Based on Attraction Degree of Zones. In this
paper a location is a zone that has multiple land use
functions. In reality, people sometimes prefer to travel for a
long time downtown to go shopping because the land use
characteristics make downtown more attractive. To quantify
this, the reward based on attraction degree of zones is added
to the reward function. It is only for maintenance and leisure
activities because home and work have fixed locations. We
assume the more maintenance activities are conducted in a
zone, the higher attraction degree this zone has. This also
applies for leisure activities.

Consider

attract
𝑖,𝑗
=

𝑛
𝑖,𝑗
− 𝑛
𝑖,avg

𝑛
𝑖,max − 𝑛𝑖,avg

, (3)

where 𝑛
𝑖,𝑗
is the number of leisure activities or maintenance

activities conducted in zone 𝑗, 𝑖 is the activity type, 𝑛avg
is the average leisure or maintenance activities conducted
among all zones, and 𝑛max is the maximum leisure or main-
tenance activities conducted among all zones. The reward is
𝑟attract(𝑖,𝑗) = 50 ∗ attract𝑖,𝑗.
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2.3.2. Reward Based on Activity Duration. When an agent
conducts an activity and the duration is within a reasonable
range, it should get a fairly large accumulative reward. When
the duration is less than the expected value, the marginal
benefit is positive, while if the duration is more than the
expected value, the marginal benefit is negative.

Consider

𝑟duration(𝑖) =

{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{

{

100 +

𝑑min(𝑖) − 𝑑

𝑑min(𝑖)
, (𝑑 < 𝑑min(𝑖)) ,

50, (𝑑min(𝑖) ≤ 𝑑 < 𝑑avg(𝑖)) ,

−50, (𝑑avg(𝑖) < 𝑑 ≤ 𝑑max(𝑖)) ,

−100, (𝑑 > 𝑑max(𝑖)) ,

(4)

where 𝑑min(𝑖), 𝑑avg(𝑖), and 𝑑max(𝑖) represent the reasonable
minimum,maximum, and average duration of activity 𝑖.They
are, respectively, the 5%, 50%, and 95% percentile duration of
activity 𝑖 in the survey data.

2.3.3. Reward Based on Activity Start Time. Each activity’s
start time distribution is calculated using the survey data.
To make the distribution curve more smooth in order
to diminish the effect of randomness, we use polynomial
functions (use 𝐶 to denote) to fit the curve. Then function
𝐶 is normalized.

Consider

𝑟start time(𝑖) = 𝐶𝑖 (𝑠) , (5)

where 𝑖 represents the type of activity, while 𝑠 is the start time
of the activity. The range of 𝑠 is (1, 96).

2.3.4. Reward Based on Travel Time. Some scholars define
travel-time-based reward as 𝑟travel = −𝑐∗(𝑏𝑡)

𝛼 [23].This form
is adopted by us, but it needs somemodifications because the
influence of congestion degree is taken into account. 𝑡 is no
longer a fixed value decided by the length between zones, but
it relates to the congestion degree of the OD pair. We use the
widely accepted impedance function in China [21]:

𝑈 =

{
{
{

{
{
{

{

𝑈
0
(1 −

0.6𝑉

𝐶

) ,

𝑉

𝐶

< 0.9,

𝑈
0

7.4𝑉/𝐶

,

𝑉

𝐶

≥ 0.9,

(6)

where 𝑈 is the actual speed, while 𝑈
0
is free flow speed. 𝑡

0
is

the free flow travel time. Actual travel time 𝑡 could be defined
as 𝑡 = 𝑡

0
∗ 𝑈
0
/𝑈.

2.4. Flow-Chart of Calculation. When q-learning is applied
in this paper, the process described below could be shown in
Figure 1. The whole process is separated into 3 steps.

Step 1 is to utilize travel diary survey data to extract
typical activity patterns and form different kinds
of agents according to their activity patterns. Also
utilizing the survey data, the reward function for
different kinds of agents is calculated.

Step 2 is to estimate the value function (in this
algorithm:𝑄-values) through trial and error until the
𝑄-value matrix converges.
Step 3 is to add agents on the network and then use the
𝑄-values to decide the activity-travel schedule of each
agent. In the end, temporal-spatial characteristics of
the simulation result and each agent’s activity-travel
schedule are calculated and recorded.

Taking congestion degree into account could enable
interactions among agents and let them cooperate and com-
pete in the environment. In the simulation of a network, a
number of agents are set on the network and their states are
initialized.Then at each time step, agents decide their actions
by choosing an action that brings maximum 𝑄-value one by
one according to the congestion degree and other aspects
of the environment. Their actions would in turn influence
the congestion degree therefore would influence other agents’
actions. In this way, all agents’ activity-travel schedules could
be decided.

3. Data Analysis and Process

3.1. Data Survey. We utilized the travel diary survey data
from Shangyu city conducted in 2006. The survey includes
individual/household sociodemographics and travel records.
Travel records include trip starting and ending times, ori-
gin and destination, mode used, and trip purpose. Trip
purpose is divided into nine categories, including work,
school, official business, shopping, socializing-recreation,
serving passengers, personal business, returning home, and
returning to work. Among these purposes, work, school, and
official business are named commute activity or simply work.
Shopping, serving passengers, and personal business are
called maintenance activities. Socializing-recreation is called
leisure activity. Maintenance and leisure activities generally
are named none-working activities. Hence, the 9 categories
of activities could be divided into 4 types: work, maintenance
activity, leisure activity, and staying at home.

Shangyu city has a population of 204,900. 4,101 residents
from 1,564 households are surveyed. After deleting the incor-
rect statistics, data from 3,368 people are used, representing
82.1% of the people surveyed. 486 students account for 14.4%
of the valid data. Because students’ activity-travel schedules
are rather fixed and the main focus of this paper is on
working and none-working groups, the students’ data are not
considered.Thus, the data obtained from the remaining 2,883
people, accounting for 85.6% of all the valid data, are used for
the analysis.

3.2. Typical Activity Patterns. The first step of processing
valid survey data is to extract typical activity patterns. A tour
is defined as the travel from home to one or more activity
locations and back to home again [4]. An activity pattern here
is defined as all tours an individual conducted in a single day.
In the valid data, 10 of the patterns are shared by more than
20 samples. We call these 10 activity patterns typical activity
patterns and the description of them can be seen in Table 1.
They take up 2397 of the 2882 valid samples. Agents could be
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Figure 1: Three Steps of multiagent-based q-learning simulation.

classified according to their activity patterns. We take these
10 typical patterns to form 10 types of agents. Patterns which
include working activity are called commuting patterns, and
others are called none-working patterns. The characteristics
of these 10 patterns are described as in Table 1 (the 4 activities
are written as h, w, s, and l for brief).

3.3. Reward Function Calculation. The reward function has
been constructed in Section 2.3. The paragraphs below show
the values of parameters used in the reward function, calcu-
lated from the survey data. Furthermore, ten different types
of agents have their own parameters, respectively, though the
functional forms are the same.

3.3.1. Attraction Degree of Zone. The attraction degrees of
zones are listed in Figure 2, next to it is the traffic zone
division of Shangyu city. Because these degrees are decided by
land use characteristics of different zones, to different groups
of people the attraction degrees are the same.

It is quite clear that zones 2, 8, and 13 are the center
of leisure activity, while zones 3 and 5 are the center of

maintenance activity. This result corresponds to the land use
characters of Shangyu because these zones are in the center
of Shangyu.

3.3.2. Reward Based on Duration. To make the results more
realistic, we calculate the rewards based on duration of
10 typical activities patterns according to the definition in
Section 2.3. The unit of these parameters is 15min. The
relatively small value of standard deviation shows that people
who belong to the same group share much similarity in
behavior, at least in the duration of activity.

Where are the statistics?

3.3.3. Reward Based on Activity Start Time. The process of
calculating this reward has been stated in Section 2.3. Use
polyfit function in MATLAB to fit every activity’s start time
distribution of each group into smooth curves.

In Figure 3 min is not 0.
The start time-duration-reward graphs of the four activi-

ties are shown in Figure 3.
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Table 1: Description of typical activity patterns.

Activity pattern Number of samples Ratio Description
hwh 1069 37.1% Simple work pattern with only primary tour

hwsh 26 1.0% Having other stops when getting off work, with
only primary tour

hwhsh 44 1.5% With a secondary tour, primary tour is simple
work pattern

hwhwh 568 19.7% Work tour with home-based subtour
hwswh 26 1.0% With a subtour during work
hsh 357 12.4% Simple maintenance tour
hlh 111 3.9% Simple leisure tour

hshlh 32 1.1% With both maintenance and leisure tours, the
prior one is a maintenance tour

hshsh 105 3.6% With two maintenance tours

hlhsh 59 2.0% With both maintenance and leisure tours, the
prior one is a leisure tour

Zone number 1 2 3 4 5

−0.15 0.58 0.29

0.05 0.43 0.82−0.09 −0.14

6 7 8 9 10

Attraction
degree

Leisure
attraction degree

Maintenance
attraction degree

Zone number

Leisure
attraction degree

Maintenance
attraction degree

Zone number

Leisure
attraction degree

Maintenance
attraction degree

Zone number
Leisure

attraction degree
Maintenance

attraction degree

−0.11−0.26−0.21 0.70 0.35

−0.10−0.13−0.15−0.17 0.09

11 12 13 14 15

−0.15−0.230.64−0.23−0.11

0.15 −0.08−0.12 −0.05−0.17

16 17 18 19 20

−0.13−0.28−0.19−0.09−0.05

−0.130.13−0.09−0.07−0.15

River

20

19

10
11

12

13

14
18

17

15

16 3
1 2

7
6

5
4

8
9

Cao'e

−0.19 −0.17

Figure 2: Attraction degrees of zones and traffic zone division of Shangyu city.

4. Simulate Temporal-Spatial Features
of Multipleagents

4.1. Assumptions and Preparations for the Simulation. To
simulate traffic conditions in Shangyu, the first step is to
expand the number of agents from the size of the sample
to the proportion of population these types of agent take up
in Shangyu. By calculation, the 2397 samples in the survey
should be expanded to a population of 145684 people. Apart
from the already existed data of 2397 people, we need to estab-
lish 143287 people’s attribute data. Each people’s attributes
include activity pattern and home and work locations (if this
person works). To make the distribution of each attribute in
the newly established data the same as the survey data, the
procedure of establishing one person’s attributes could be as
follows.

(1) Randomly generate a natural number from 1 to 2397.
The activity pattern of this people will equal to that of
the number 𝑖 people in the survey data.

(2) Likewise, the attribute of home and work locations
can be decided by randomly choosing one from the
2397 survey samples.

Initialize each agent’s state and simulate 1000 time steps.
We take the last 96 time step to analyze. Both each individual
agent’s activity-travel schedule and spatial-temporal charac-
teristics are analyzed.

4.2. Simulation Results of Activity-Travel Schedules. Each
agent’s activity-travel schedule in one day is recorded. We
randomly choose one agent from each pattern and show his/
her activity-travel schedule in a day (from0 am to 24 pm).The
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Figure 3: (a) Home reward function. (b) Working reward function. (c) Leisure reward function. (d) Shopping reward function.

Table 2: Activity-travel schedules.

Agent type Activity-travel schedule

hwh h (00:00–08:00, 05) w (08:30–16:45, 08)
h (17:30–24:00, 05)

hwsh h (00:00–07:00, 12) w (07:30–17:00, 11)
s (17:15–18:15, 11) h (18:45–24:00, 12)

hwhsh
h (00:00–07:45, 01) w (08:15–15:30, 02)
h (15:45–19:00, 01) s (19:15–19:45, 03)
h (20:00–24:00, 01)

hwhwh
h (00:00–06:30, 11) w (07:30–11:15, 07)
h (12:00–13:00, 11) w (13:45–17:30, 07)
h (18:30–24:00, 11)

hwswh
h (00:00–07:15, 04) w (07:45–11:45, 06)
s (12:15–12:45, 05) w (13:15–16:30, 06)
h (17:15–24:00, 04)

hlh h (00:00–05:45, 03) l (06:00–07:00, 02)
h (07:30–24:00, 03)

hlhsh
h (00:00–04:45, 02) l (05:15–06:15, 08)
h (06:45–07:00, 02) s (07:30–08:00, 03)
h (08:30–24:00, 02)

hsh h (00:00–06:30, 15) s (07:00–07:30, 05)
h (08:00–24:00, 15)

hshlh
h (00:00–06:00, 04) s (06:30–06:45, 08)
h (07:15–07:30, 04) l (08:00–08:30, 08)
h (09:00–24:00, 04)

hshsh
h (00:00–05:15, 17) s (06:30–07:00, 03)
h (08:00–16:30, 17) s (17:15–17:45, 03)
h (18:30–24:00, 17)

result is shown in Table 2. The first part in each parenthesis
is activity time and the second part is activity location. The
table shows that no abnormal sequence, such as staying at

one activity for too long or conducting activities in improper
time, occurs in these 10 examples. One flaw is that to avoid the
morning peak of commute agents, the none-working agents’
trips are generally a little bit earlier than the peak shown by
the survey.

Having activity-travel schedules of all agents, we could
move our analysis further to macroscopic temporal-spatial
characteristics of the traffic.

4.3. Temporal Characteristics of the Simulation Result. The
traffic flow distributions of this paper’s algorithm and the tra-
ditional algorithm which has not taken interactions between
agents are compared in Figure 4. Both methods show appar-
ent morning and evening peak. But in the traditional method
environment is static, which means one agent’s action will
not affect other agents’ choices; it is natural that agents of the
same attributes all do the same activity at the same time and
zone. Therefore, the traditional method’s distribution of flow
is ladder-like, which means peak hour flow is very large.

By comparison, because the congestion degree is taken
into account, in this paper’s method, some agents avoid
traveling in the rush hour because it will lead to lower
rewards. As a result, the peak hour flow is much lower. Even
agents of the same attributes would have different activity-
travel schedules because the environment is dynamic. Thus,
the behavior of the whole population is not isolated but has
interactions.

Traffic flow distributions of the 2397 samples’ survey
result and their corresponding agents’ simulation result are
shown in Figure 5. The simulation result matches the survey
result well. Their peak hour flow deviation is less than 5%.

To show the features of different patterns’ traffic flow
distribution, we could mark different traffic patterns’ flows
with different colors as is shown in Figures 6(a) and 6(b).
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Table 3: Comparison of two methods’ PHR values.

OD pair Morning peak Evening peak
Traditional method New method Traditional method New method

(3, 11) 32.25% 17.93% 27.79% 11.42%
(5, 16) 24.43% 11.34% 31.64% 15.03%
(4, 17) 32.73% 21.52% 46.19% 20.49%
(5, 11) 25.50% 8.65% 28.61% 15.01%
(9, 10) 22.18% 16.79% 18.77% 10.12%
(9, 5) 46.23% 18.11% 17.98% 12.38%
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Figure 4: Comparison of traffic flow distribution between new
method and survey data (flipped with Figure 5).
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Figure 5: Comparison of traffic flow distribution between tradi-
tional method and new one.

Figure 6(a) shows the flow distribution of the 5 commute
patterns. It shows clear morning and evening peaks, at about
7 am and 6 pm, respectively. Compared with Figure 3 we
could find out that these commuting patterns, especially
pattern hwh and hwhwh, account for a large percentage
of morning and evening peaks’ flow. The peak at noon is
caused by pattern hwhwh agents who go home at noon. On
the whole, pattern hwh and hwhwh are the determinants of
commuting patterns’ flow distribution, and other commuting
patterns have too few people to influence the trend.

Figure 6(b) shows none-working agents’ traffic flow dis-
tribution, which is totally different from commuting agents’:
there is no such dominant pattern. On the contrary, all
none-working patterns contribute to the formation of figure’s
shape. Two peaks of the flow are all in the morning, at
about 5 am and 9 am, respectively. The survey result shows
that 42.9% of the none-working groups are retired people in
Shangyu. In China the elderly usually like to go out to do
some exercises early in themorning and foodmarkets usually
open very early; this explains why both the survey result and
the simulation result show that none-working people’s travel
peak is in the morning. Agents of pattern hlh tend to go out
early at 5 am, while the flow of pattern hsh almost distributes
evenly from 5 to 10. In China, most people tend to stay at
home in the evening, especially the none-working people so
there is not much traffic in the evening as in Figure 6(b).

Table 3 shows two methods’ comparison of peak hour
ratio (PHR). Peak hour ratio is defined as the ratio of peak
hour flow and the traffic flow of a whole day. In China, the
measured PHR is often between 10% and 15%. Because there
are too many OD pairs, the table listed the results of 6 OD
pairs which have the largest traffic flow as representative. For
all OD pairs, the original method’s average PHR is 30.5% and
the result of the newmethod is 16.2%. It is clear that the latter
is closer to reality.

4.4. Spatial Characteristics of the Simulation Result. In the
traditional method, because congestion degree is not taken
into account and attraction degree’s effect is quite distinct,
all agents conduct their maintenance and leisure activities
at the zone that has maximum attraction degree: all the
20094 leisure activities are conducted in zone 8, while all
the 70433 maintenance activities are conducted in zone 5.
We need to mention that because Shangyu is a small city
and the distances between zones are not very long; the
influence of distances betweenODpairs is subtle. After taking
into account congestion degree, the choice of location is
much more dispersed. Agents would choose to conduct their
activities in other zones which have lower attraction degrees
when center zones are crowded. Finally, 5845 leisure activities
are conducted in zone 8, which accounts for 29.0% of all
leisure activities. 22392 maintenance activities are conducted
in zone 5, accounting for 31.7% of all maintenance activities.

The choice of activity zones is shown in Figure 7. The
survey data’s activity location distribution is calculated and
then it is extended the same proportion that the samples are
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Figure 6: (a) Commute agents’ traffic flow distribution. (b) None-working agents’ traffic flow distribution.
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Figure 7: (a) Choice leisure activity location. (b) Choice of maintenance activity location.

extended to show how the 145684 people’s choice of location
would be like according to the survey data.

It is compared with the simulation result and the figure
shows that the simulation result is quite close to the extended
survey result. The correlation coefficient between the survey
data’s leisure activity location distribution and the simulation
result is 0.921. And the correlation coefficient between survey
data’s and the simulation result’s maintenance location distri-
bution is 0.902.

5. Conclusions and Future Directions

In this paper we use a modified multiagent-based reinforce-
ment learning algorithm to simulate the traffic condition
of Shangyu city. Both the spatial-temporal features of the

entire population and the activity-travel schedule of single
individuals are analyzed. The main findings are listed as
follows.

(i) This paper’s method takes the congestion degree
betweenOD pairs into account, which enables agents’
actions to influence the environment. Thus, agents’
actions have interactions with each other. Because of
this interaction, both the spatial-temporal features of
the entire population and the activity-travel schedule
of single agent are close to actual situations.

(ii) Because in this paper agents are no longer separated
individuals but an integrity that interacts with each
other, the spatial-temporal features of the whole pop-
ulation, such as traffic flow distribution, PHR factor,
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and location choice distribution, could be calculated,
which is rarely seen in previous research in this field.

(iii) Survey data are utilized throughout the whole pro-
cess, including the setting of traffic zones, extraction
of typical activity patterns, formation of agents, and
reward functions. The utilization of the survey data
makes the simulation result closer to the actual
situation in Shangyu; therefore, the simulation result
has practical meanings and could be further utilized
in transportation planning and management. For
example, it could be used in TDM policy effect
analysis.

(iv) Data used in this paper come from the survey of
a typical small city in east China. Both the survey
data and the simulation results have distinct Chinese
characteristics. For example, maintenance and leisure
activity are conducted mostly in the morning and
people tend to stay at home in the evening; commut-
ing groups have few leisure andmaintenance activities
during weekdays.These features providematerials for
future research of Chinese traffic.

The above mentioned analysis of the simulation result
shows that this paper’s simulation method could better
reflect actual traffic conditions. Both themacroscopic spatial-
temporal features and the microscopic activity-travel sched-
ule render this method valid. The veracity of the simulation
result and the utilization of survey data enable this method to
better service practical transportation planning and manage-
ment.

Because of the limitations of the survey data and the
algorithm, several aspects of the research can be improved in
the future.

(i) Route choice in the current model is simplified.
The travelers “jump” directly from the origin to the
destination, while the influence on the intermediate
regions is neglected.

(ii) In this paper, the reward function contains four
different parts; they are, respectively, based on attrac-
tion degree of zones, activity start time, duration,
and travel time. When accumulated, the weights of
them are considered to be equal. However, in reality,
these factors have different effects on people when
they make the decision on their trips. So one future
direction is to calculate these weights according to
the survey data, making the simulation results more
accurate.

(iii) Road impedance varies greatly according to the type
of traffic mode, since different modes have different
occupation rates of roads and their speed are also
different. As a result, it is better to take traffic mode
of each agent into consideration when calculating
congestion degree.

(iv) Reaction to uncertain events is a special character-
istic of reinforcement learning. In this paper we are
focusing on the most probable or the “average” state
of the system. But it is also interesting to explore

how the agents would react to radical changes of
the environment and how do they interact with each
other under this circumstance.
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