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by
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Abstract

Robotic rovers have become important tools in planetary exploration.
Future missions require improved rover performance. This thesis preserts
an analysis of a six-wheeled prototype rover. Its design is based on the rocker-
bogie configuration.

A procedure is presented which can rapidly compute the configuration
of the rover as a function of its environment. Also, a quasi-static force
analysis of the system is detailed. It considers realistic physical constraints
such as wheel slip and actuator saturation. A computer simulation with a
graphic interface is developed to evaluate performance and enhance the
understanding of the system.

The analysis leads to the design of a fuzzy logic controller that increases
rover traction and mobility. Analytical and experimental studies are
performed to validate the analysis and control scheme.
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1. Introduction

1.1. Motivations

Since the Viking mission in 1976, Mars exploration had been set aside. However,
interest in the red planet has been greatly heightened by a recent analysis of the Antarctic ice
field SNC meteorite “Allen Hiils 84001”. The chemistry, mineralogy and texture of this
rock indicate biological origin and the possible existence of past primitive life on Mars.

This is why NASA has started an ambitious planetary exploration program.

To minimize the cost of planetary exploration, robots are preferred to humans who
require significant resources and supplies. Specifically, rovers which have high mobility
and can transport scientific equipment are ideal (Weisbin et al., 1997) and thus are
important assets for future scientific exploration of planetary surfaces. Such vehicles will
enable wide area imaging and identification of science sites, spectroscopically-based
chemical analysis of surface terrain, collection of loose soil and extracted rock samples and
other useful tasks. This science data collection is fundamental to understanding the
formative processes of Martian geology, a possible history of life, and the possible

suitability of the Martian ¢cnvironment to future habitation.

On July 4™ 1997, the Sojourner rover landed successfully on Mars and started
exploring the surface (Mars Pathfinder, 1997). Even though its range of motion was
limited by the field of view of the lander, Sojourner was able to send back a significant

amount of useful information about Martian climate and geology. More ambitious missions
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are planned for the future. After the Mars Global Surveyor mission, which will map the
surface of the planet through a satellite in 1998, rovers might be used widely in the 2001,
2003 and 2005 missions. The ‘01 and ‘03 missions will carry long-range rovers that will
traverse tens of kilometers, visiting numerous sites, over many months. Such rovers will
be equipped with manipulators to extract many soil and rock samples, anaiyzing some in
situ and caching the most promising materials for the ‘05 sample and retrieval return
mission, which will enable far more detailed earth-based analysis of morphology,

chemistry and comparative mineralogy.

1.2. Purpose of this Research and Literature Review

The Martian environment (see Figure 1-1) is difficult to traverse and is challenging
for future rovers. It is important for an exploration rover not to become trapped or get
hung up during its mission. To design and control these rovers, analytical models of how
they interact with their environments are essential. Models are also needed for rover action
planning (Farritor et al., 1998). The purpose of this resea:ch is to develop an analytical
model of a rocker-bogie based rover (Hayati et al., 1997). Specifically, the Lightweight
Survivable Rover (Schencker et al., 1997), a future candidate for exploration missions, is
studied. This research also presents a controller, based on the physics of the system, that

improves the traction of the vehicle. Experimental results corroborate the theory.

Figure 1-1: Mars Landscape (Viking Lander, 1976).
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Simple mobility analysis of rocker-bogie vehicles has been developed and used for
design evaluation (Linderman et al. 1992; Chottiner, 1992). In the available published
works, the rocker-bogie configuration is modeled as a planar system, which is not
sufficient to determine how the rover can perform in its environment. The posture of the
rover must indeed be computed in real time. Detailed models of the full 3-D mechanics of
rocker-bogie rovers have not been developed. Further models, which include the
manipulator’s influence, are also required to effectively plan and control the actions of these
rovers. It is indeed important for a planner to be able to predict if a rover can successfully
negotiate a given terrain obstacles, such as a ditch, without being trapped, and the effects of

the interactions between the manipulator ad the ground.

Soil-tire interaction models are important for a complete and detailed analysis of
rovers. A lot of research has been conducted in this area, and several different models have
been defined (Ben Amar et al. 1995; Bekker, 1969). They are, however, complex and
require a dynamic simulation of the system. This introduces other difficult issues such as

non holonomic constraints.

Improving the performance of a four-wheel rover has also been explored
(Sreenivasan, 1994). In this work, actuator redundancy and the position of the center of
mass of a vehicle (the Gofor) are exploited to improve tracticn. The method relies on real-
time measurements of wheel/ground contact forces, which are difficult to obtain in practice.
Traction can also be improved by monitoring the skidding of the rover wheels on the

ground (Van der Burg, 1997).

In future planetary exploration missions, rovers will be somewhat autonomous and
will have to predict how they will perform on any given terrain. This is why analytical
models of such rovers are required. This research presents a model that considers the 3-D

structure of the system, and the computation of useful evaluation measures. The model
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characterizes the interactions between the wheels and thus leads to the design of a traction
controller.

1.3. Outline of the Thesis

This thesis is divided into six chapters. This chapter serves as an introduction and

overview of the work.

Chapter 2 introduces the rover kinematics. It also presents an overview of the

analysis structure and an efficient method of solving the inverse kinematics of the rover.

Chapter 3 presents the rover force analysis. A model of soil-tire interaction is
developed. The redundancy in actuators of the rover makes the problem more difficult to

solve. A methodology that computes the optimum solution to the problem is presented.

Chapter 4 characterizes the influence of the different rover parameters on the
system. A set of heuristic rules is deduced from the understanding of the physics of the
system and implemented using a fuzzy logic controller. Simulation results show the

behavior of the controller.

Chapter 5 describes the design of the experimental rover and of its envircnment.
Experiments were conducted that validate the rover analysis. Two rover conirol systems

are also compared.

Chapter 6 outlines general conclusions regarding the analysis of the system and

traction control, and presents suggestions for further work.

The appendices to this thesis give detailed information on the analysis and its
implementation. Appendix A presents kinematic relations of the rover. Appendix B details
equations of the rover’s force analysis. Appendix C presents a general defuzzification

procedure. Appendix D details the laboratory rover design.

“Chapter I: Introduction 12



2. Rover Kinematic Analysis

2.1. Introduction

This chapter describes the kinematics of the rover, which is the first step of the
analysis. Knowing the pose and attitude of the rover in its environment is important for the
force analysis of the rover and is necessary for the computation of useful evaluation
parameters such as stability. Section 2.2 presents the design of the rover studied. Section
2.3 is an outline of the structure of the system analysis and simulation. This structure must
be defined to stress the importance of the inverse kinematics procedure. Section 2.4
defines the kinematic parameters of the system and presents a method that solves the

inverse kinematics.

2.2. Rover Design

2.2.1.Design Requirements Overview

Launching equipment into space is very expensive. Therefore, space and weight
constraints are extremely important to the system design. It is also inportant to maximize
the science instrumentation payload while minimizing the physical rover load (Shirley et al,
1997). Future missions will require the rover to travel long distances. Therefore, safety,
stability and power consumption are key parameters. Additionally, the rover will need to

be partially autonomous and to manipulate soil samples.

Chapter 2: Rover Kinematic Analysis 13



2.2.2.Rocker Bogie Design

As the Sojourner rover, the LSR-1 is representative of a class of NASA prototype
planetary rovers based on a rocker-bogie mobility design (Bickler, 1992). This design has
six independently driven wheels mounted on an articulated frame (see Figure 2-1). The
frame has two rocker arms connected to a main body. Each rocker has a rear wheel
connected to one end and a secondary rocker, called a bogie, connected to the other. At
each end of the bogie is a drive wheel and the bogie is connected to the rocker with a free
pivoting joint. The rockers are connected to the main body with a differential so that the
pitch angle of the body is the average of the pitch angles of the rockers. A more detailed

description of the design is given in (Bickler, 1992).

With this design, while traversing uneven terrain, each wheel tends to remain in
contact with the ground. Additionally, the weight of the rover is well distributed over the
six wheels. This allows each wheel to develop good ground traction resulting in a highly

mobile rover.

Main Body
Differential joint
anipulator
| <§———Free pivot joint
Rocker Bogie

Figure 2-1 : Rocker-Bogie Design.
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2.2.3.LSR-1 Features

The LSR-1 is a prototype, 7-kilogram rover with six 20-centimeter-diameter
wheels. It is 97cm long, 70cm wide, and has 29cm of ground clearance. In comparison,
Sojourner is an 11kg microrover with 13cm diameter wheels, 63cm long, 45cm wide, and
has 15cm of ground clearance (Schencker et al., 1997). Compared with Sojourner, LSR-1
is designed to operate over larger obstacles (~0.4m), broader thermal latitudes (equatorial to
near polar regions), longer distances (multiple kilometers), and extended duration (multiple

months).

The LSR-1 is also equipped with a 0.7m long 3-dof manipulator (Schenker et al.,
1997-2). The manipulator’s mass is | kg (approximately 15% of the total rover mass) and
its range of operation is large. This is later shown to have a significant influence on the
mechanics of the system. The LSR-1 rover is designed to be volume and mass efficient.
Volume is saved with the compact structure and with the wheels that collapse to as little as
25% of operational field volume (Sword et al., 1997) (see Figure 2-2) during its transport

to Mars.

R e T R R N

Figure 2-2 : LSR-1 Volume Efficient Deployable Rigid Wheels. (Schencker et al.,
1997)

Mass is saved by removing any steering actuators. Therefore, LSR-1 is a skid

steering vehicle. In comparison, four wheels of the Sojourner rover can steer by turning in

Chapter 2: Rover Kinematic Analysis 15



place the front and back wheels. Figure 2-3 shows the Sojourner and LSR-1 prototypes

side by side. The LSR-1 weighs 4kg less than Sojourner.

ey

Figure 2-3 : LSR-1 and Sojourner Rovers (Schencker et al., 1997)

The LSR-1 is designed to be lightweight and able to travel kilometers on the Mars
surface. It is hence a serious candidate for future exploration missions and a detailed

physics-based model of this rover is presented in this research.

2.3. System Analysis Structure

This section describes the organization of the rover analysis (see Figure 2-4). It is
used as a tool for action planning methodology, which requires the repeated execution of
the simulation (the simulation is estimated to be called about 30,000 times to converge (o an
acceptable action plan) (Farritor et al., 1998). Therefore, it is important to keep the model
as computationally simple as possible while maintaining an acceptable level of fidelity for

future on-board implementation.

Several assumptions can sirplify the rover analysis. A key to this is to recognize
that the practical constraints of space systems, such as weight and power, require rovers to

travel at slow speeds (approximately 3 cmy/s for the LSR- 1, or a wheel angular velocity of
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1.5 rpm). Therefore, dynamic effects are very small and a quasi-static model is used here

to describe its behavior.

A rover’s ability to negotiate a giver. terrain is a function of the profile of the ground
and the surface characteristics. Rovers have sensors such as stereo cameras and laser
based systems capable of producing maps of the terrain around the rover (Matthies et al.,
1997). Estimates of soil characteristics are much more complex. On-line adaptive or
identification methods, as well as pre-established estimates may be used. Some
identification algorithms have been developed for simpler systems (Le et al., 1997). This
area -~emains an open research topic and is not addressed here: the ground characteristics

are consdered as input to the simulation.

Another important assumption used in this analysis relates to the rocker-bogie
design. As seen in Section 2.2, the rover design is such that the rover wheels tend to
remain in contact with the ground. Moreover, since the vehicle speed is very small, the
wheels are not expected to bounce. Therefore, the model considers that the six wheels are

always in contact with the ground.

The action plan is another input and is part of the action planning methodology. It
consists of a list of actions that the rover is required to execute. Such actions can be, for
example, “Move Forward 1 cm”. They are commands to the rover and define the next
position of the vehicle. The distances considered by these actions are small enough to be
physically relevant. The action module methodology is detailed in (Farritor, 1998). The
actions are read and the new desired rover position is computed. This position is the input
for the inverse kinematics algorithm (see Section 2.4). This procedure determines the
geometry of the wheel/ground contact. A quasi-static analysis is then performed (see
Figure 2-4). It determines whether the rover will slip, what the actuator characteristics are,

what is the stability of the vehicle, and other useful parameters for planning. Obviously,

Chapter 2: Rover Kinematic Analysis 17



the attitude of the rover is critical to this analysis. This justifies the development of the

inverse kinematics procedure. The inverse kinematics and force analysis are performed at

each step of the action plan and must therefore be very computationally efficient.

roeee——-—-e——____ e ,_,_—_,_—_——————_——— -
I I
TN Environment description: Action Plan: |
SINIIII\IJII;‘G,},,EONl Ground geometry List of Actions |
S | Ground characteristics to be Performed |
| |
End Simulation . .
Initialiaze Position
Initialize Configuration
YES V
] Read and Execute Plan
Is it the last Action NO >
Module or is the tar- [ Comglfjttl:lee \rat;‘[/)grs ttion
get reached?
Solve Inver_se Kinematics
Section 2.3 Task failed
Read Néxt Action r A [ Y
Module Compute Location of
the Center of Mass
Section 3.2
]
Evaluate Static Stabilit
Compute Evaluation v ugeectionlg.s.? a
Parameters
Section 3.5 f
NO
A Stable ?
YES VYES
: Solve Static
Is task physmally Force Analysis
realisable? .
Section 3
NO
Figure 2-4 : Analysis Structure.
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The structure and the main assumptions that simplify the analysis have been
presented in this section. The importance of the inverse kinematics has also bcen stressed.

This procedure is detailed in the following section.

2.4. Inverse Kinematics

2.4.1.Frames definition

It is essential to define the different frames that are used in the analysis. The

reference frame is referred hereafter to as the ground frame or R, .4 (Xgrounds Yerounas

Z,ouna)- LEL R’ (X’,y’,2’) be defined as the rotated frame along z by an angle ¥ (yaw

ground
angle). The vector x’ is then the heading direction of the rover. R” (x”,y”,2”) is obtained
from R’ by a rotation ® (roll angle) around x’. The origin of this frame is taken to be in
the middle of the rover body. The vector y” represents the transversal direction of the
rover. R, 1s obtained from R” by a rotation @ (pitch angle) around y”. Figure 2-5

summarizes these definitions. The angles (¥, ©, ®) are in other words the Euler angles of

the system.
Yground X"
' x' Xrover
y Zrover
b4 o

zll

_ f x — "

Zground™ Z ground Yrover™Y

Rground to R R'to R" R'te Riover

Figure 2-5: Frame Definitions.
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Z2.4.2.Ground representation

‘Yground
Zground
Yground
y — — c—
K N
rh !
|
! ¢ L
h xground
X
47’ Xground
T ch 3-D scanned points

Figure 2-6: Ground Representation.

As seen in Section 2.3, the ground is input to the simulation. It is represented by a
matrix of point altitudes. These points are equally spaced by 4 in the X,,,,,q a0d ¥gruna
direction (see Figure 2-6). This representation is relevant to rover missions, since the
mapping of the environment of the rover is likely be done by laser triangulation techniques
(Krotkov et al., 1994). In the analysis, A is defined as one quarter of the wheel diameter,

i.e. 5cm. The points are joined to each other by planes see Figure 2-6.

It is then possible to write a function that computes the altitude of the ground at any

point. This function is thereafter called z,,,,.4(x, y)-

The following steps are taken to solve for z,,, given a point (x,y). First, rand c
are calculated. They are defined as the row and column respectively of the lower left point
of the square in which the point (x,y) is located (see Figure 2-6). Their expressions are

given by the equations (2-1) and (2-2).

= b4
r—ﬂoor(h) @2 -1
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x
c= ﬂoor(;) @ -2

where floor(x) is the greatest integer less than or equal to x.

Two cases must be taken into account: the desired point could be either in the lower
left plane or in the upper right plane as seen in Figure 2-7. The variables 8x and 8y are

defined by dx=x-c h and dy=y - r h.

ox+dy<h

Figure 2-7: Ground Altitude Determination.

If &x + 8y < h, then :
[ 8x (M(r+1,c) - M(r,c)) + 8y - h-(M(r,c +1) - M(r,c))]

zEmund = M(r,c)— hz (2 = 3)
If dx+dy > h, then :
Zground = M(r + l,C + 1) - h (h — 8x) . (M(r +’:;c ! 1) = M(r,c . l)) (2 - 4)
~ (h=38y)-h-(M(r+1,c+1)-M(r+1,))
hZ

where M is the matrix of the ground altitude points.

These formulae enable rapid calculation of the altitude of any point on the ground

and are widely used in the inverse kinematics procedure.

Chapter 2: Rover Kinematic Analysis 21



2.4.3.Kinematic parameters

Zground
Ground Frame

x:,.;:\ ¥

Yground \—}
zrover cz
(X Yrr2Zp) A Yeover — >
d
o DN o 4 :
SN Ay T
ne_ , A
J, G
1
a 1, B $
(o]
L 0, N 9,
9, 0,
Wheel 11 Wheel 21 Wheel 31
Wheel 1r Wheel 2r Wheel 3r

Figure 2-8: LSR-1 Kinematic Parameters.

The configuration and the position of the rover alone can be fully defined by ten

parameters (see Figure 2-8):
*The position of the center of the body in R, is defined by (xy, Yy, Z,)-

eThe rover’s orientation is defined by (y,0,0), using the Euler notation given in

Section 2.4.1, for the yaw, roll and pitch of the rover respectively.

eThe configuration of the rocker-bogie mechanism is defined by the angles (©, ,©,

0,,0, ) measured in the plane (x

rovcr’zrover) *

The manipulator kinematics are also taken into account. It has a torso-shoulder-

elbow (roll/pitch/pitch) configuration with additional end-arm pitch degree of freedom and
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clamshell tool in the end effector. The inverse kinematics of this type of manipulator is a

classical problem and can be found in (Bonitz, 1997). It is not detailed here.

At this point, it is necessary to outline the inverse kinematics procedure. All the
wheels are assumed to be in contact with the ground. Loop closure equations can be
written as functions of the variables and parameters presented above. Since there are six

contact points with the ground, six independent equations can be written.

These closure loop equations give the altitude of the rover wheels as functions of
the kinematic variables. The problem is to find the set of variables that satisfies the
constraints that all the wheels are in contact with the ground. Therefore, it is necessary to
be able to measure the distance between the wheel height that is determined by the rover

kinematics and the ground. This is done by developing a function, called z that

center

computes the altitude of a wheel center, given its position (x, ) and its orientation

center ’ycenler

(© and ) and given the additional constraint that the wheel is touching the ground.

The difference between the altitude computed with z .. and the altitude computed

center

from the rover kinematic relations define an error, that is used for iterative numerical

methods. The next section describes this function.

2.4.4.Determination of the altitude of the center of a wheel

As it was previously discussed, it is necessary to model the wheel-ground
geometric interface. In other words, the goal is to define a function that determines the
altitude z of the center of a wheel given its coordinates (x,y), orientation (©,'¥) and the

additional constraint that the wheel touches the grouiid (see Figure 2-9).
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Figure 2-9: Determination of the Altitude of a Wheel.

The wheel is represented geometrically as a rigid cylinder. This can however
account for the compliance of the wheels by using a wheel effective radius (see Figure 2-
10). Different geometric contact models have been implemented and tested and are
represented in Figure 2-11. This figure represents the side view of the wheel (i.e. rotated
by the roll ®). The first model is more accurate but presents drawbacks. The wheel can
have different contact points, and a search algorithm is necessary to find the most suitable
contact point, since the different wheel contact points can lead to different wheel altitudes.
The second model, however, is extremely simple. It models the ground as a plane under
the wheel. Therefore, there is a unique contact point, and the position of the wheel is
computed very easi'y. This method has been chosen for its simplicity and computational

speed.

Effective

Radius
’ \

Figure 2-10: Wheel Effective Radius
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Different wheel positions The wheel position is unique
are possible

Model 1: piece wise terrain Model 2: Averaged ground
Multiple Contact Points One contact point

Figure 2-11: Ground-Wheel Contact Representations.

The model presented above considers only disks (2-D) and not cylinders (3-D).
Hence, the wheel cylinder is modeied as three equally spaced circles. The ground is
represented as a plane in the vicinity of the wheel. The altitude of the center is taken as the

maximum of the three altitudes of each constituent circle (see Figure 2-12).

dw
- Z3

VRN
\\

Figure 2-12: Three Cases for Wheei Altitude Computation.

Equation (2-5) determines the wheel altitude, given the wheel configuration and the

ground profile (see Figure 2-13).

Z

center

= Zyouna (¥, Y) + rad -cos(0., ) - cos(©) + &w - sin(©)
2-5)

Here, o, is given by the ground geometry and dw is half the width of the wheel,

and x and y can be deduced from x

center

andy_ ., and © and ¥ (see Figure 2-13).

(2 - 6)
Y= Yeemer +(5W co8(@) + — sin(e)] -cos(‘¥)
cos(ag)
2-7
x=x,,, + (Sw -cos(@) + sin(@)] -sin(¥)
cos(ag)
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Zground(*.,Y.©)
Figure 2-13: Wheei Center Altitude Determination.

In conclusion, this section has presented and defined a function (see Equation (2-
5)) that is critical to the inverse kinematics problem. It computes the altitude that a wheel
would have if it was touching the ground, given its configuration and position, x and y, in

the ground frame.

2.4.5.Problem Statement

Using the ground/tire interaction model presented in Section 2.4.4, it is possible to
state the inverse kinematics problem. Section 2.4.3 showed that ten variables need to be
computed to fuily represent the rover attitude. From three of these ten, it is possible to
calculate the remaining seven parameters, given by seven kinematic equations. In this
analysis, the three variables that are considered as input parameters are the position (x,,,Y,,)
in the ground frame of the right middle wheel and the heading angle ‘¥ of the rover. The
angle ¥ can be measured using “sun sensors” (Kaliardos, 1993). The seven equations are

presented below (Equations (2-8) through (2-14)).

Because of the differential mechanism in the rover body, ¢, ©, and O, are linked by

the following relation:
_9*6,_, 2 - 8)

$=7

where 7y is the angle ©, when the rover is on a horizontal ground. The six closure

loop equations are given by the equations (2-9) through (2-14).
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Z2r =Z|:cnlct(x2r’y2r’®) (2 ) 9)

25, = Z orter (x3, 2 Y3, ,G)) = cos(®)-(l, -sin(®,) -1, -sin(©, +p)) @ - 10)
2oy = Zeomes (X102 Y11 » ©) = cOS(O) - (I -sin(®, ) +1, -sin(®, +a)—1, -sin(®,)) 2 = 1D
Zar = Zeener (%15 Y11, ©) = €08(©) - (1 - 5in(©,) + 1, -sin(©, + 1) - ], - sin(©,)) 2 -12)
+ w-sin(©)
Zyy = Zeemer (X210 ¥21-©) = €08(©) - (I; -in(©,) + 1, - sin(®, + ) - 1, - sin(O, + ) @-13)
- L -sin(®,) + w-sin(O)
Z3r = Zeemer (X3, 3,,©) = c08(©) - (I -sin(®, ) + 1, -sin(©, + 1) — 2 - 14)

L, -sin(@; +o)+/, -sin(®@, +B)+w-sin(O)

where the subscripts r and I refer to right and left respectively. The subscripts 1,2 and 3
refer to the rear, middle and front wheels respectively. The quantities x,, y,, x,, Y, X3
Y X1» Yi» X3, Y3, are functions of x,, y,,, ©, ‘¥ and the rocker-bogie angles. They
represent the center locations of their respective wheels (see Figure 2-8). Their expressions

are detailed in Appendix A.

These equations relate the difference between the altitude that the wheel has on a
given rover configuration and the altitude it would have if it touched the ground with its
center defined by the kinematic relations. The goal is to reduce that difference to zero.
This system of equations is highly non-linear. Some numerical methods (steepest descent,
Newton’s method) have been used in an attempt to solve the problem. However,

convergence of such algorithms is not ensured.

Newton’s method is based in the following principle : the equations are written as
F(x)=0, where x=[z,.,0,,0,,0,,0,,0].

The Jacobian of F is represented by J. Newton’s method gives:
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x"*'=xk—J'l'F(*) @2 - 15)

where x* is the estimated root at the k" iteration.

Here, J is the source of convergence problems. Newton’s method can work very
effectively if J is continuous. The function F is not continuously differentiable, because of

the function z____ that is function of the ground changes. Therefore, convergence is not

center

ensured and oscillations are frequent (Arora, 1989).

The steepest descent method has also been investigated. In this case, the goal is to

find x that minimizes g(%) =|F(x)|’. The iterative scheme is :
x* =gk +a"-V(g(x")) 2 - 16)
Again, this method tends to oscillate, for the same reasons as the Newton’s

method.

This section has presented the rover’s kinematic relations. It has been shown that
the conventional numerical methods often fail to converge. The following section presents a

simple and efficient method that solves the problem.

2.4.6.Solving Method

To find a solution to the inverse kinematics problem, some approximations need to
be made. These reasonable assumptions not only make the problem solvable, but they also

lead to a computationally fast and simple solution method.

The rover is first translaied to a new desired position in its previous configuration.
The new wheel positions are used to calculate an estimate ©,, of ©. This estimate is
calculated by taking the average of the altitude of the ground on each side and dividing it by
the width of the rover (see Figure 2-14 and Equation (2-17)).

- Zright _th_fL (2 - 17)
! width
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Figure 2-14: Roll Estimation.

This estimate is the starting point of future calculations. The variable z, c"n be
deduced from (2-9): ¥, x, and y, are input variables and © is known; hence
Znier(X2pY2@) is known. Finding ©, is then much easier. Equation (2-10) is now
dependent on one variable. The bisection method is then used to find its solution. It is very
easy to implement, and convergence is ensured, because no conditions must be verified on

the differentiability of the function. It only needs to be continuous (which is the case).

This approach is actually equivalent to keeping the roll of the body and the middle
wheel position fixed while changing the angle ©, until the front wheel touches the ground.
The same method is then be applied to ©,, with equation (2-11). This is equivalent to
holding the joint of the rocker-bogie fixed, and to changing ©, until the rear wheel is in

contact with the ground. This solves the problem for the right side.

The same procedure is repeated for the left side. The starting valve for the left side
is again the position of the middle wheel. This outputs the angles ©,, ©,, ©, and ©,. Of
course, the value of ©, has to be modified. This correction is done according to Figure 2-

15. Both planes are attached together using Equation (2-18).

2, — %, = (h, — h;)- cos(©) + width - sin(O) (2 - 18)
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Figure 2-15: Roll Angle Correction.

As long as the ground’s characteristic length is larger than the rover's, these
approximations appear to be good enough for the model. After the approximated roll angle
is changed, the errors are less than 2% of the diameter of the wheel. This amounts to less
than 0.1 degree error in angles. This is of the same order of magnitude as unmodelled
phenomena such as wheel compliance and poor ground characterization. Not only is this

solution computationally simple and efficient, it also proves to be very accurate.

2.5. Conclusions

This chapter presented the LSR-1 design and kinematic characteristics. The
structure of the simulation has also been outlined. It explains and stresses the importance
of the inverse kinematics in the analysis. Different reference frames have been defined and
the inverse kinematics procedure has been developed. Under some simplifying
assumptions, the rover’s attitude can be computed quickly and convergence has been
proven. The knowledge of the kinematic parameters and variables is the first step to the

development of the force analysis.
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3. Rover Force analysis and Simulation

3.1. Introduction

This chapter presents the force analysis of the rover. The 3-D balance is delineated
in Section 3.2. Ground-tire interaction models are used to introduce additional equations.
Section 3.3 presents a planar analysis of the rover. Section 3.4 details a solution method to
the problem. Useful evaluation parameters are defined and computed in Section 3.5. The

graphic interface has been developed and is presented in Section 3.6.

3.2. Force Analysis

3.2.1.Main Assumptions

The force analysis determines if the rover is physically able to perform a task. An
easy way to evaluate this is to determine if the rover can stay in static equilibrium in its
current position. This evaluation method is consistent with the fact that the rover is going

to move at slow speeds: a quasi-static approximation is appropriate.

Moreover, under this hypothesis, if the different evaluation positions of the rover
are closely distributed in space and time, the torque distribution on the wheels that verifies
the rover’s balance can be approximated as the actual commanded torques and can be used

to calculate power consumption.
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3.2.2.Rover center of mass and input force computation

The position of the center of mass affects the load distribution on the wheels and the
stability of the vehicle. It is therefore critical to compute its location. From this, the input

force to the system can be deduced.

3.2.2.1. Rover Masses Distribution

Carried Objects
Main Body

Py

Manipulator and

System ! .
manipulated objects

Wheels

Figure 3-1: Rover Mass Distribution.

The rover mass distribution is shown in Figure 3-1. Contribution to the system

mass can be summarized as follows:

e The main body, which will contain the science experimental equipment, the

computer and power supplies.

e The wheels. The motors’ masses are not negligible. This is why the LSR-1

design does not include any steering wheels. Extra actuators are not desirable.
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e The manipulator represents approximately 15% of the mass of the rover and
whose range of motion is large enough to affect the center of mass position (Schenker er
al., 1997-3). The position of the center of mass of this subsystem is computed with the

knowledge of the kinematics of the arm.

e Additional masses are rock samples gripped by the arm and those loaded or

carried into the rover. Their influence must be taken into account too.

The locations of all these elements are fully determined by the kinematics of the
rover. Moreover, the masses of the rover’s parts are known, and it is assumed that rover
sensors can estimate the masses of the rocks quite well. Volume estimates can lead to such
mass estimations. All these systems and sensor readings are taken into account for the
computation of the center of mass position. While simple, this task is important since it

affects the rover’s stability and balance equations.

3.2.2.2.Input Forces to the System

Since the rover’s force analysis is performed under the quasi-static assumption, the
input forces can be expressed as a wrench that will be located at the center of the body.
This input wrench vector is composed of six components computed in (x”, y”, z”) : [ F,

F

»

F

zi

M

i

Myi' Mzi ]T'

The quantities F,, F,, and F, are the components of the sum of all the externally

applied forces in x”, y” and z” respectively. M,;, M, and M, are the components

xi?
respectively in x”, y” and z” of the moment created by the sum of the externally applied
forces on the center of the body. These external forces can be arbitrary forces or moments
along the direction of motion of the system. Forces resulting from the manipulator’s

interaction with its environment can be represented too. In the following sections, the

lumped input wrench vector will be referred to as F,.
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3.2.3.Transversal Forces Computation

With the input force F, to the system considered to be known, the three-dimensional

analysis can be developed.

The rover mechanics are quite complex. Since there are six contact points with the
ground, the system is statically indeterminate. Modeling it as a solid results in 36
unknowns (six per wheel), that have to be computed with only six equilibrium equations!
(see Figure 3-2). The problem can then not be uniquely solved. Some simplifications help
to reduce the number of unknowns. The moments created by the ground are small with
respect to the moment that are induced by the rover transversal forces and can ignored,

leaving ontly the friction forces.

Figure 3-2: Force Analysis Unknowns (Represented on one wheel only).
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Even with these simplifications, the system remains statically indeterminate, with
18 unknowns (three per wheel) for six balance equations. The most common way to
eliminate the extra unknowns is to make some elements of the structure compliant (Beer et

al., 1981). Then, additional equations can be written.

In the case of the rover, the most compliant elements of the structure are the tires,
since the rocker-bogie structure is intended to be very rigid. The following model is used

to represent the wheel/terrain interactions.

First, the . agitudinal forces (T, or T}) are controlled by the wheel torques, where |
refers to the wheel number. The normal forces (N, or N,) are defined by the system and
are not friction forces. But the transverse forces (F,, or F,) can only be computed using a

vir

model of soil-tire interaction, more specifically the compliance of the wheels.

Yu

CAAAA

X1

Figure 3-3: System Compliance.

Naturally, the transverse forces need to equilibrate the transverse input force
F,.(see Figure 3-3). They are also modeled to create no net moment on the body. This
assumption is plausible. Indeed, when the rover is sitting exactly perpendicular to a slope

and that no external forces other than gravity are exerted, it will not turn in place.
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The compliance of the wheels is represented by a spring of stiffness k and is
assumed to be the same for all the wheels. Therefore, the problem is to find the relations
between the relative displacements y, of the wheels. The equations are:

k(3 + Yo+ s, + 3+ yy +yy)+F, =0 (3-1)

y° 3-2
Z(xir'yir+xj/'yil)=0 ( )

where x; is given by the kinematics of the rover. Equation (3-1) is the balance of forces in

the y” direction, and Equation (3-2) is the moment balance equation along 2.

Since the rest of the body is relatively more rigid than the tires, all the displacements
Y. Or y; are related to each other. This problem is similar to the balance of a beam on three
compliant points. The displacement of the springs are linearly coupled because the beam is
rigid (under small angle approximation). Here, the rover is taken as a rigid element too.
Therefore, the displacements y, and y, are linearly coupled, as shown in Figure 3-3,

inducing Equations (3-3) through (3-6):

Yo =0 +8 (x5, — x,) (3-3)
Y =2, 8 (5, — x,) (3-4)
Yu =Y +8&-(xy —x,) (3-5)
Y = Yu+ & (x - x) (3-6)

The parameter £ is the slope of the line joining all the relative displacements on the
same side, see Figure 3-3. There are six equations and seven unknowns: another

constraint is added.

Vi =N, (3-7)

This constraint means that both rear wheels have the same contribution to the force
balance. If the rover is such that all the wheels are at the same relative positions (i.e.
X1, =Xpp X=Xy, X5, =Xy), then by symmetry, the forces will be the same on each pair of

wheels. Equation (3-7) verifies this.
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It is then possible to solve for § and y,,. Their expressions are given in Equations

(3-8) and (3-9).

F;‘E'Z(xi'A‘xi) (3-8)
e = ’ °
2oz

g_ R,Z(x:) (3.9)

k-(ZZ(x,.ij)—6-Z(x,. -Ax,.))
[} i
where x; represents any x;, or x,, and Ax, =(x; -x, ).

This model gives the values of the transverse forces acting on the wheels and
reduces the hyperstaticity of the system. The remaining unknowns are the normal forces
N, and N, and longitudinal forces T, and T, They can be deduced using free body

diagrams as is described below.

3.2.4.Main body balance

The rest of the analysis is conducted using free-body diagrams (see Figure 3-4).
The main body is separated from the rest of the rover. By writing the balance equations for
the body, it is possible to calculate the forces that are applied to each side of the rover. This

section describes the main body balance.

The body’s balance is written in the R” frame, defined in section 2.4.1. The

F

2l

F

yr

F

w

F

xr’

F

xb

unknowns of the static equilibrium of the rover are F' and M

zr

M ki

Had

M

yrt

M, M, M, Here, the subscripts x, y, and z refer to the x”, y” and z” directions
respectively. The equilibrium equations are scalar and the sign convention used is that the

unknowns are positive in the directions shown in Figure 3-4.
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Figure 3-4: Rover Balance.

The input F, is a vector of three forces and three moments which are applied at the
center of the body (more precisely, in the middle of the two body-rocker joints). They are
positive in the directions defined by R”. The influence of the transverse forces are also
taken as inputs to the static body balance. These forces induce forces in the y”* direction
that exactly compensate for F;, (therefore F,, and F,, are known) and moments in the x”
and z” directions. The sum of the moments in the z”” direction is zero because of the model
used in the previous section. The moments in the x”’ direction should be affected by the
longitudinal and normal forces on the wheels as wel!, but in the model, the width of the
rocker-bogie mechanism is zero. Consequently, these moments are only functions of the

transverse forces and are input to the body balance equations.
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Using the directions of the forces defined in Figure 3-4 and using the components
of the vectors u, v and w (defined in Figure 3-5) along the 2’ axis (referred to as u,,, v,,
and w,, for the right side and u,, v, and w,, on the left side), F,, F,,, M,, M,, M_and M,

can be deduced, since they are functions of the transverse forces only, and are given by:

F;'r = F;-Ir+F;'2r+F;'3r (3-10)
£y ==(Fy +Fy+Fy) (3-11)
M,+M,=0 (3-12)
‘wxr =_(F;'Ir 'u:r +PT\'2r .V2r +F;'3r 'w3r) (3-13)
Mxl=_(F;-u'“:1+F;-21'V21+F;-31'W.u) (3-14)
Figure 3-5: Transverse Forces Influence.
The remaining unknowns to the body balance are then : F,, F, F,, F,, M, and

M, The quantities F,, and F, are the forces in the 2” direction acting from the rocker to the

body. F_ and F , are in the x”’ direction. The balance equations of the system are:

F,+F, =F, (3-15)
F:rr'i_F,‘\'l-£=Mzi+M'r+le (3-16)
2 2 :
M, +M,=M, (3-17)
F,+F,=F, (3-18)
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(3-19)

There are only five equations to solve for the six unknowns (the force equation in
y” does not provide any new information and is not considered here). An additional
equation is needed to solve for the moments in the y” direction. Here, it is assumed wv.at

both sides have the same contribution to that balance, hence the additional equation:
M, =M, (3-20)

The forces acting on the body can then be calculated and expressed as functions of
the input forces and of F,, F,,, M, M,, M and M, that are defined by the transverse

forces only. Their expressions are :

F,=fn M (3-21)
2 w
F=f M (3-22)
2 w
M. 3-23
M\‘r =—= ( )
| 2
M. (3-24)
My, =
2
I;;’ - i_l_ Mxi —hlxr - Mxl (3'25)
2 w
F. M.-M_ -M (3-26)

These results can be checked intuitively. For example, if the center of mass is
shifted to the right side of the body then M, increases and, from (3-25), F, becomes more
negative. Also, if the roll of the body is positive, more weight should be transferred to the
right side. What happens then is that the transversal forces F,; become more positive.
Therefore, M, and M,, become more negative (from (3-13) and (3-14)) and so does F,

from (3-26). Such rapid tests suggest that the equations are correct.
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From these solutions, the forces that will be applied to each rover side can be
deduced. The rocker-bogie mechanism is modeled as a two-dimension system. The
following sections present the force analysis of the rocker-bogie, addiess the issue of

actuator redundancy, and present a method to find an optimum wheel torque distribution.

3.3. Planar Analysis of the Rocker-Bogie

This section presents the planar quasi-static force analysis of the rocker-bogie
mechanism. Some planar analysis has been developed for mobility evaluation of the
rocker-bogie design in (Linderman et al., 1992). This analysis is a general tool to
accommodate any sort of input of rocker-bogie configuration. It can then be used to study

the effect of the kinematic parameters on the load distribution.

The model is shown in Figure 3-6. In inis model, there are six unknowns (7, N,
i=1,2,3) and four independent static equilibrium equaticns. There are indeed two
equilibrium equations for the forces in the x” and z” directions, and two moment equations
on the rocker-bogie pivot joint. The moment equation must be zero at that point for both

the rocker and the bogie, hence two equations.

The inputs to the system are F/, F, and M,!. They are related to the parameters

calculated in the previous section (F,, F_, etc.) based on the free body diagram in Figure

3-4. The geometry of the ground, and therefore the directions of the traction and normal
forces are known. The direction of these forces are defined by the inverse kinematics
procedure that locally considers the ground as a plane under each wheel (see Chapter 2).
To perform the fbrce analysis, the positions of the wheel contact points with respect to the
rocker-bogie joint are required. The vectors u, v and w connect the wheel/ground contact

points to the rocker-bogie joint (see Figure 3-6). Vector z connects the rocker/body joint to

the rocker/bogie joint. Their components along x” and z” are written with x and z
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subscripts respectively. The expression of these vectors as function of the kinematics of

the rover can be found in Appendix B.

x"

Figure 3-6: Rover Planar Analysis.

The static equilibrium equations are:

. 3-27
Li-c,+Ty-;+L-¢;= N5~ Ny 5= Ny -5, +F =0 ( )
; (3-28)
T -5,+7,-5,+T,-5;+N,-¢,+N,-c,+Ny-¢; - F =0
i i i (3-29)
T-c,-u,—~T-s,-u —Ny-s;-u =Ny-¢c,-u +M +F -z +F/ -z, =0
(3-30)

T-co-vp—=T,-5,-v,—N, -5, v, =N, "¢, v
+T, ¢y -w, =T, -5,-w, —N; 53w

X

y—Nycy-w, =0

where ¢; = cos(a;) and s; = sin(), i=1,2,3. These equations can also be expressed in

mairix form (see Equation (3-31)).
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A-[T, T, T,N, N, N}]T-_-[_p:' F -M ~F .z ~F .z, O]T (3-31)

where A is a 4x6 matrix (four equations, six unknowns). Hence the system of equations
is underdetermined and its null space is at least of dimension two. A more detailed study of

this matrix can be found in Appendix B.

This system cannot be uniquely solved. However, it is very important to note that
some of the unknowns can be controlled or constrained. Equilibrium of a wheel is given

by Equation (3-32) (assuming that the wheel is not slipping).
T, =rad-T (3-32)

where rad is the radius of the wheel, T; the traction force and T, is the torque applied to the
wheel by the motor. It is equivalent to consider the traction forces or the wheel torques,

since they are related by the constant rad.

Since there are two infinities of solutions, two traction forces can be arbitrarily
chosen. The rear and middle wheel traction forces are considered as command inputs. The
other forces, including the third traction force and the other normal forces are uniquely
determined by these inputs. For example, if the rover is standing on a flat terrain, two
traction forces can be applie . the wheels 1 and 2. To obtain equilibrium, the thi-d force
must be equal to the opposite of the sum of the other two. This intuitively verifies the

double infinity of solutions.

The problem can then be restated by using the traction forces T, and T, as

parameters and inputs to the system :

B:[T, N, N, N =C-T+D.T,+E (3-33)
where B is 4x4, and C, D and E are 4x1 vectors.

If B is invertible, T;, N,, N, and N, are linear functions of T, and T.,.

Chapter 3: Rover Force Analysis and Simulation 43



T < d, e, (3-34)
N ¢ d e
. 'z T+ 2 T+ .2
N, Cs d, €,
N, c, d, €,

Properties of B and the expressions of the solutions are described in Appendix B.

Any couple (T, , T,) defines a solution to the equilibrium equations. However, the
solution must satisfy the physical constraints such as motor saturation, wheel slip and that

the normal forces must be positive.

Firstly, constraints on the sign of the normal forces must be verified:
1) N20 Vi (3-35)

Clearly, the normal forces must be positive. The conditicn N; < 0 implies that the ground

would have to pull down on the wheel to maintain equilibrium.

Secondly, the motors cannot create an infinite torque. Physical limitations of the

system have to be taken into account.

2) |rad-T|<t, ,Vi (3-36)

sar

Thirdly, a limitation on the traction force due to wheel slip must be verified. The
maximum traction force is limited by the product of the coefficient of friction and the

normal force on the wheel.

3) |T|<spu-N, , Vi (3-37)

These three constraints must be satisfied at all times and for all the wheels. Finding

acouple (T, , T,) that satisfies these three constraints is challenging.

A common way of finding a solution to such over determined problems is the
pseudo-inverse method. An advantage of this method is that it is very simple to implement

and it is computationally efficient. The pseudo inverse of a matrix A is defined as A*=A"
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(A AT)'. The solution to A x = b given by this method is: x = A* b. The method

minimizes [|x{’ (Doty, 1993).

In the case of the rover, however, some of the unknowns cannot be directly
actuated (the normal forces). Hence the optimum solution found with the pseudo-inverse
would have little relation to the power consumption. Also, there is no guarantee that the
physical constraints are verified. Another method must be used that fully considers the

physics of the system. It is described in the following section.

3.4. Force Analysis Solution

3.4.1.Solution Space

T1=IJ.N1

rad T, < 7,

‘1/

Solution Plane : T3=C'] Tl +d’] TZ +e’;

Figure 3-7: 3-D Solution Space.
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To solve for the underdetermined force analysis while verifying all the physical
constraints, a good representation of the problem is necessary. The previous section
describes how to express T;, N,, N, and N, as linear functions of T, and T, . A 3-D
visualization of the solution space is shown in Figure 3-7. Here, the plane defined by
Ti=c’,T, +d’, T, +e’, is represented. This plane is the solution space which contains the
two infinities of solutions. Other planes are drawn that represent the physical constraints of
the system. These constraint planes are represented by such equationas rad T, =t or T, =

W N, (see Table 3-1).

It is easier to view the orthogonal projection of the solution plane onto the (X,Y)

plane. The plane (X,Y) will be referred to as P (see Figure 3-8).

The constraints are also projected into P. They are functions of 7, and 7, only,
therefore they become lines in P (see Equation 3-34). There are nine constraints (three per
wheel). Since some of these constraints are represented using absolute values, they are
broken into two constraint equations (one if the term inside the absolute value is negative,
and the other if the term inside the absolute value is negative). Six of the nine constraints
are represented with absolute values, leading to 12 equations. In total, 15 equations must

be computed. They are represented on Table 3-1.

Table 3-1: Physical Constraints

1 rad-T, <7, 2 rad-T, 2 -7,
3 radT,<t, 4 rad-T,2-1_,
5 rad-T,<t,, 6 rad- T, 2 -7,
7 T <u-N, 8 T 2-uN,

9 T,<u-N, 10 T,>-p-N,
1 T,<p-N, 12 T,2-p-N,
13 N,20 14 N,20

15 N,20
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rad T3 = Ty T,=-uN, rad Ty = Tqy,

__I]=|J-Nl
— T,
T2=u.N2 A
Y Solution Space
>
X T,
T,=-uN, \
T~
[—
\ ‘
rad T, = -1,
'
A
/ \
T3='J-N3 rad T3 = Tsa

rad T, =-t Ty=tN,

sat

Figure 3-8: 2-D Visualization of the Solution Space.

This fully defines the solution space. The following method uses this

representation to find a suitable solution to the underdetermined systern of equations.

3.4.2.Solution Search for the Statics of the Rover

The solution space contains either zero or an infinity of solutions. It is then
necessary to define criteria to choose the best solution. Since power consumption is critical
in planetary exploration missions, the minimization of this variable is chosen as the criteria

in finding a solution.
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For systems actuated by DC motors using pulse-width-modulated amplifiers (as in
this case), the power consumed can be estimated by the power dissipation in the motors’
resistances (Dubowsky er al., 1995). Therefore, power consumption in the wheels is a

function of the square of the motor current (see Equation 3-38).
P=YR-i (3-38)
k

where R is the motor resistance and i, the current through the motor k. The motor current i,

is defined by Equation (3-39).

i = motor,k (3-39)
= e

kmumr
where 7,,,,, is the torque applied by the motor and k,,,, is the motor constant. The

quantity 7, is related to the output motor torque by the gear ratio r (see Equation (3-

40)).

. T, (3-40)

motor.k ~

where r is the gear ratio of motor k. The power consumption can be deduced from (3-38),

(3-39) and (3-40) and is given by:

kz Z 2 _ R- rad ZTZ
r

moltor m"lﬂ’

(3-41)

In other words P can be written as a second order function of T, and7,. The
function P is an elliptic paraboloid. Since P is a second order polynomial, it has a unique
global extremum. Moreover since P is always greater than or equal to zero, that extremum
is a minimum (if it were a maximum, then the branches of the paraboloid would tend to

negative infinity): P is monotonically increasing away from the minimum point.

The solution that minimizes power consumption can now be found. To do this, the

system of equations (3-42) must be solved.
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P _, (3-42)
oT,

9P _,

o7,

min(P) =

Since P is second order, Equation (3-42) is a linear system of equations which is
solved numerically. only. If the computed minimum value does not violate any constraint,
it is the solution. If it does, the optimum lies on one of the violated constraints (because P

is monotonous). The following steps are used to compute the optimum:

1) The constraints that are violated by the minimum are set aside. They are defined

as the active constraints (see Figure 3-9).

2) If only one of these constraints is violated, the solution is taken as the closest
point to the minimum that lies along the line equation of the constraint. The equation
specific to that geometric problem can be found in (Anton, 1984). This is not necessarily

the optimum solution but it can be found rapidly. The algorithm ends.

3) If more than one constraint is active, it is not possible to use the step 2) method
the closest point to the minimum on any active constraint is not guaranteed to satisfy all the
conditions. Therefore, the easiest and fastest way to find a solution is to look at the
intersection of the constraints lines. The algorithm calculates the intersection of the active
constraints with all the other constraints (the intersections between non-active constraints

are not interesting since the optimum should lie on an active constraint).

The active intersections set A is defined as the set of the intersections that do not
violate any constraint. If A is void, there are no solutions. If not, the solution is taken as
the active intersection that has the minimum power. This configuration is presented in

Figure 3-9.

Chapter 3: Rover Force Analysis and Simulation 49



Final solution Non active constraints

o ) Non active
Active intersectio intersections

Active
Constraints

— —f—
/ / X T
Global minimum of \

power consumption

Iso-Power Lines

Figure 3-9: Force Analysis Solution Search Method.

Of course, this solution does not always provide the optimum solution, because the
constraints intersections are not always the optimum. But it is sufficient to determine if a

suitable solution can be found.

3.5. Calculation of Important Parameters

It is necessary to define and compute some measures that give an indication of how
well the rover is performing. The factors considered here are: static stability, power
consumption, actuator saturation, wheel slip and distance traveled. The definitions and
computation of these measures are presented below. For reasons of robustness, they are
represented as non-dimensional ratios. Some errors in the model or ground representation

are likely to alter the real value of that ratio.
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3.5.1.Stability Margin

There are different ways to determine the stability of a vehicle. If dynamics is
important one measure of stability is the energy required to tip over the vehicle

(Ghasempoor et al., 1995; Messuri et al., 1985).

However, in the case of the LSR, dynamics are negligible. Consequently, stability
margin is defined as a function of the location of the center of mass with respect to the
wheels’ contact points. A means to evaluate this stability is to project the center of mass on

the horizontal plane of the wheel footprint polygon projection (see Figure 3-10).

The distance from the center of mass to the border of the stability polygon defines

the system stability. Therefore, the stability margin can be defined as:
dmin (3-43)
= dT

S

where d_;, is the minimum distance between the center of mass and the stability
polygon, and d°, is the nominal minimum distance evaluated when the rover is at its most

stable position, i.e. on an horizontal surface (see Figure 3-10).

P

Contact Polygon
AN

.

Armin

o

— P
Py(x1,y1) Py(x2,¥2) 3

Figure 3-10: Stability Margin Definition.

Let P,(x;, y;) be the coordinates of the i contact point between the wheel and the

ground in R The origin of R,,,,q is translated to the center of mass of the system.

ground*
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Here, the stability polygon’s vertices are ordered from 1 to 6 (the sides are [PP,,] ). Letvy,
be the normalized vector orthogonal to P,P,,, pointing towards the center of the polygon.
Let d, be the distance between [P,P,,,] and the center of mass. The quantity d; is deduced

with the following formulae :

v, = |:_(y|’+l ‘)’.')]_ 1 (3-44)
| v =i '\/(yi+l _yi)z +(xi+| - x'.)2
d, =POeyv, = X Vg = X)) = Y (X — X;) (3-45)

\/(}’m - )’i)2 + (X — xi)z

If 31i/d,<0, then the center of mass is out of the stability polygon. d_,=0. Else,
d,,=min{d),= i=1...6.

This method gives a good representation of the stability of the vehicle. However, it
does not consider top heaviness: using thic method, if the center of mass has the same
projection on the contact polygon, its altitude does not affect the stability. In reality, it
does, because a small perturbation on the rover would destabilize the rover more easily if

the center of mass is high (see Figure 3-11).

Marginally Stable

Very Stable

The two center of mass |
have the same projection

Figure 3-11: Top Heaviness.

Another method considers top heaviness in a more accurate way (Papadopoulos et

al., 1996).
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Let L, be the line joining the wheel contact points P, and P,,,. Let 1, be the angle
between the vertical direction and the line that is orthogonal to L, and contains the center of
mass of the system (see Figure 3-12). The stability margin S is then defined as:

S= mm(nn—m) (3-46)

where 1))*" is the angle measured when 1), the rover is standing on a horizontal surface.

Figure 3-12: Stability Margin that considers Top-Heaviness.

3.5.2.Actuator characteristics

It is important to determine how the wheel torques are close to saturation (t_,). The

sat
torque saturation ratio measure is important in determining if the rover can move over
obstacles. The torque saturation ratio is defined by Equation (3-47).
)
=Lil
T

sat

(3-47)

ratio, i
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3.5.3.Slip ratio

The slip ratio determines how close a wheel is from slipping. The i wheel slip

T (3-48)
b4

where W. is the local coefficient of friction under wheel i. The slip ratio can be seen as the

ratio S, is defined as :

ratio between the coefficient of friction at which the wheel would slip and the actual

coefficient of friction.

3.5.4.Power and Distance

The distance traveled by the rover across the terrain is also calculated. Power

consumption is a crucial element. Its computation is detailed in Section 3.4.2.

It is felt that these measures are useful evaluation tools. Different designs can be
implemented in the simulation and the influence of the Kinematic parameters can be

investigated.

3.6. Graphical Simulation

A graphical representation of the system is also beneficial to enhance the

understanding of the system and to verify the veracity of the model.

The simulation includes a graphical interface. It originated from Mechanical System
Visualizer (MSV), a 3-D graphical scftware (Torres, 1993). The original version has been
upgraded to meet the requirements of the simulation (Cassenti, 1997). Specifically, it was
upgraded to enable the representation of a meshed surface for the terrain, and to create a
user interface window. The rover is displayed as it moves and interacts with its

environment.
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Figure 3-13 shows a typical instance of the graphical interface.

Stablity
Margin
/ Wheel 1l Wheel 2| Wheel 3|

Rover Top View

Control Panel Window

Torque  Time: 330.7 s
Slip Ratio Distance traveled : 428.2 cm

Simulation Speed

Energy Consumed

Simulation Window

Figure 3-13: Graphical Simulation.

Additional features are included. First, it is possible to display the ground reaction

forces. This makes it possible to check the load is distribution on the wheels.

Other features are dispiayed in another “Control Panel” window. This window

displays the measures defined in Section 3.5, and updates them as the rover moves. This
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was created using a C-code library, called the Forms library, a graphical user interface
toolkit for Silicon Graphics Workstations (Overmars, 1995). More details on how the

simulation and the graphics work can be found in (Hacot, 1998).

Stability margin is displayed on the left corner of the “Control Panel” window.
Also, a rover top view is displayed and torque saturation and slip ratios are shown for each

wheel. Finally, energy consumption is represented in a graph that is updated in real time.

Therc are also buttons that allow a user interface with the simulation. These buttons
allow the us. . to stop, pause, step forward or backwards, at any desired speed. These

capabilities proved useful in evaluating rover performance.

3.7. Conclusion

This chapter has presented the rover force analysis and simulation. The analysis is
performed using a quasi-static model. The input force to the system can be arbitrarily
chosen and can reflect the manipulator’s interactions with the ground. The analysis shows
that the actuator redundancy can be used to affect the load distribution on the wheel. A
method has been developed that finds a solution to the under-determined system of
equations for static equilibrium. A graphical interface has been developed that enhances the
understanding of the physics of the system and displays different useful evaluation
parameters. The analysis is not specific to a single configuration of the rocker-bogie
mechanism. The kinematic parameters can be varied and their influence to the mechanics of

the system can be studied.
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4. Rover Traction Control

4.1. Introduction

The purpose of this chapter is to analyze the rover static equations with the aim of
developing an active traction control algorithm. A planar simulation of the rocker-bogie
mechanism is written in Section 4.2. The results are analyzed and heuristics are deduced in
Section 4.3. A traction controller based on the heuristics is designed and implemented in
Section 4.4.

4.2. Rover Planar Simulation

4.2.1.Motivation

In Chapter 3, a 3-D force analysis of the rover was presented. The main feature of
the mechanism is its actuator and kinematic redundancy. This leads to coupling between
wheel normal forces. This can be intuitively verified: for example, the middle wheel can

lift up the front wheel if it is moving faster than the rear wheel.

Redundancy in contact force allocation is also addressed in (Venkataraman et al.,
1997). The normal force distribution can also be affected by the position of the center of

mass of the system (Sreenivasan et al., 1997).

Normal force interaction must be controlled properly in order to avoid a loss of

wheel contact which could reduce stability. Control of normal forces can also help reduce
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wheel slip. It is widely known that a slipping wheel “digs in” easily on soft soil; this can

induce rover positioning errors, if they are based on the wheel rotations.

It is thus useful to develop a planar hence simple simulation of the system to
characterize the system redundancy and how it can be used to improve ncrmal forces

interaction.

4.2.2.Planar Simulation

In Chapter 3, the system was required to be in equilibrium, so the wheel torques
had to verify balance equations that were dictated by the external forces. Specifically, the
rover was required to maintain contact with the ground. Here, the approach is different.
The wheel torques are treated as input to the system. The goal is to see how the system

reacts to this input. Thus wheel contact loss is allowed.

The inputs to the simulation are (see Figure 3-6): o, O, 0y, T}, Ty, T,, M, and F.
The unknowns that have to be determined are the normal forces on the wheels (N, N,, N;)
and the rover body force F.'. The quasi static hypothesis is again used. In other words, it
is assumed that the rover mass is big enough and that F,' is small enough so that the rover
acceleration is small. The four balance equations lead to the following system :

(F ] (4-1)

X

N,
N,
N,

-

where M is a 4x4 square matrix (see Equation (4-3)) and X is a 4x1 vector function of the
input (traction forces) and of the kinematics of the mechanism (see Equation (4-4)). Note
that the vector X is a function of the traction forces, not the wheel torques. However, these

traction forces can be deduced from the wheel torques, as described below.
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The expressions for M and X are:

1 -5 =S, —$3
0 ¢ c, c (4-2)
M= X
Z, =8 -U—C U 0 0
0 0 =8V, =6V, =S5t W =Gyt w,
[ “5-¢-T,¢,-T-¢ ]
« Ts=T5-Ts @3

F.z.-M,-(T,-c,-u
‘(Tz‘cz“’

v~ s u)

_‘-_7;'sz'Vx+7;'C3'Wy_TJ'SJ'W:)J

where ¢, = cos(a,) and s; = sin(c,).

The system is solvable by simply inverting M, either analytically or numerically.

However, the values of T, must still be deduced from ..

An iterative method is used to compute the traction and normal forces of the system
given the rover kinematics and environment characteristics. Figure 4-1 shows the

algorithm structure.

The initial values of the traction forces are given by Equation 3-32. This equation
assumes thai the wheels are not slipping. Given these initial values, Equation 4-1 is solved
and wheel slip or loss of contact can be verified. If the i wheel loses contact ( i.e. if the
normal force N, is negative), T, and N, are set automatically to zero for the rest of the
algorithm. This adds an extra constraint to the system. However, the system is still
solvable. If wheel slip is detected (i.e. [T, > p N,), the value of T, is incrementally
decreased in the absolute sense, and the system is solved again. This algorithm is iterated

until a solution without wheel slip is found.

Note that it is not possible to directly assign IT||= p N, , as the equations of
equilibrium would no longer be verified. Thus T, must be gradually decreased until IT|= p

N, is satisfied by the system of equations.
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Initial Values

R 1 T;(0) Ny(0)
2 — —— " T,(0) [ M [—8 Ny0)
K rad T,(0) N3(0)

.

N, . -
. Testing the validity
—| M N .I of the solutions

A
NO
Tio=Tio-
sign(Tp) h
YES ViGA,Ni=O,Ti=0
for i IT;1>UiN; ?

Figure 4-1: Planar Simulation Structure.

The algorithm determines whether wheels lose contact or slip. Some rules are used
to calculate the wheel velocities. The system is assumed to be in quasi-static equilibrium.
This means that the accelerations and moments of the different elements are almost zero.
Here, the rover acceleration is deduced from F,'. The acceleration of the links of the rover

are assumed to be small enough so that the values of the normal forces are correct. The
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body velocity v_ .. can be deduced from the acceleration of the rover. If a wheel is not

rover
slipping its angular velocity @, is :

truver
mi—_.
(l- |)

where rad is the radius of the wheel. The value of @, should be relatively small.

If the wheel is slipping or has lost contact, its angular acceleration is given by:

o, = S red @-$)

where . is the inertia of the i wheel. Note that T, is zero when contact is lost. Here the

wheel angular velocity should increase rapidly.

Although this model is a very simplified version of reality (especially for wheel
velocity computation), it is accurate enough to gain insight in the mechanics of the rover.
Simulation results for different rover and terrain configurations are presented in the

following section.

4.3. Simulation Results

This section presents the results of the planar simulation. Different representative
tasks are presented: the rover rolling on a flat ground; the rover with its middle wheel on a
step; the rover on uneven terrain. The results presented are the variations of the three
normal forces as functions of each wheel input torque. A wheel torque is varied while the
other two are put to zero. Since the system of equations determining the state of the vehicle
is linear, each influence is additive. Therefore, each wheel is powered separately to isolate
their influence. Wheel 1 is the rear wheel, wheel 2 is the middle wheel and wheel 3 is the

front wheel (see Figure 3-6).
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4.3.1.Flat Ground Kesults

In this case, the rover is on a flat ground. The simulation results are shown in

Figure 4-2.
Wheel 1 influence Wheel 2 influence Wheel 3 influence
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Figure 4-2: Simulation Results - Flat Ground.

It can be seen that the rear wheel (wheel 1) has a tendency to increase its normal
force and to lift up the other wheels (i.e. decrease their normal force). The middle wheel

tends to lift up the front one, and the front wheel has the same effect.

It is interesting to look at the wheel normal forces distribution. In this case, the rcar
wheel is supporting most of the load (about 60%), the middle has about 30% of the load
and the front wheel only 10%. This is due to the geometry of the system and the relative
position of the center of mass. In this case, the center of mass is located on the
body/rocker joint. If it is translated forward, the front two wheels get more load, and the
rear wheel, less. When the center of mass is above the middle wheel, the front and rear

wheel share the same amount of load. If the center of mass is on the vertical of the rocker-
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bogie joint, the rear noimal force is zero: the rocker is on the verge of rotating around the
free pivot joint. The initial normal force on the wheel (at 7=0) affects the magnitude of the
influence of the wheel. For example, the front wheel has almost no effect on the other two.
The plateau that can be noticed on the plots of the influence of the front wheel is caused by

wheel slip.

4.3.2.Middle Wheel on a Step

In this case, the middle wheel is on the a step and the front wheel is below the
middle wheel, at the same altitude as the rear wheei (see Figure 4-3). The results are

plotted on Figure 4-4.

Figure 4-3: Middle Wheel on a Step - Rover Geometry.
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Figure 4-4: Simulation Results - Middle Wheel on a Step.
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The rear wheel has a higher normal force than in the first case. The influence of the
torques on the normal forces is the same as before, although their relative magnitude is

changed.

4.3.3.Front Wheel on a 70 degree slope

In this case, the relative altitudes of the wheel centers are equal. The ground angle
under the wheels is zero except for the front wheel, which is at 70 degree (see Figure 4-5).

The results are shown in Figure 4-6.

Stability
region

Figure 4-5: Stability Region Definition.

The stability region of Figure 4-5 is defined as the area between the lines joining the
rocker-bogie joint and the contact points of the bogie wheels. It is important to note that the
normal forces do not intersect in the stability region in this case. If the normal forces do
not intersect in this stability region, they both have the same contribution to the moment
balance about the bogie joint. Therefore, the system cannot be in equilibrium by itself. If
no torque were applied, the front wheel would roll down and the middle wheel would
likely lose contact. In the simulation, a constant torque T, of 30 oz-in is added to all the
torque distributions to enable N, and N; to be positive. Here, the action of the front wheel
is opposite to the previous results. The influence of the rear wheel on the middle wheel

normal force is also accentuated.
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Figure 4-6: Simulation Results - Uneven Terrain
4.3.4.Heuristics
From the results of the previous sections, it is possible to develop some trends.

eIncreasing the traction force on the rear wheel tends to cause the rear wheel normal

force to increase and to decrease the other two normal forces.

eIncreasing the traction force on the middle wheel tends to decrease the front wheel

normal force and to increase the other two normal forces.

eIncreasing the traction force on the front wheel tends to decrease the front wheel

normal force and to increase the other two normal forces.

These trends are physically intuitive. If the rear wheel traction force increases, then

the moment in y” increases too. Therefore, to balance this, N, must increase.

There are, however, cases when these heuristics are not valid:
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e If the rover is in the configuration of Figure 4-7, N, is below the bogie joint. In
this case, the influence of T, to N, is opposite to the one that is depicted in the previous

examples.

Figure 4-7: An Exception to the Heuristics.

elf the rover is in the configuration of Figure 4-4, the same thing is happening.
This was described in Section 4.3.3. Often, when the normal forces do not intersect in the
stability region, it has been observed on an experimental rover that one of the wheels loses
contact. This stability region is increased with B. Increasing  also tends to lower the

rover and decrease its ground clearance, while making it more stable.

This analysis shows some trends which influence normal forces distribution. It
also shows the influence of the angle 3 on the response of the system, and the importance
of ground geometry for torque distribution. These observations lead to the design of an

active traction controller, based on fuzzy logic.

44. Active Traction Control Design

After the analysis of the previous section, a fuzzy logic based controller is the
natural choice of traction control. Fuzzy logic can exploit the heuristics developed in

Section 4.3.4 in a systematic manner.
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4.4.1.Fuzzy Logic Control Theory

A fuzzy-logic controller is depicted by Figure 4-8. The fuzzification process
consists of evaluating sensor input and determine the probability of different system states.
For example, in the case of a room teinperature control, a temperature above 35 C is given
a very high value to the state “very hot” and a very small value to the state “cold”.
Functions are used to evaluate this likeliness of these sensor informations. They are

referred to as Measurement Probability Distribution Functions (MPDF).

From these “fuzzy” measurements, fuzzy approximate reasoning is used to infer the
output contributed by each rule (fuzzy output). This fuzzy approximation is obtained by
using Command Probability Distribution Functions (CPDF). Then the fuzzy outputs
determined by each rule are aggregated and go through a defuzzification process to form the

output. More details on the fuzzy control theory are in (Ross, 1995).

I
Rul FUZZY
I'{  wmpDF wes CONTROLLER |
: CPDF |
[ I
i |
| ! l
—l Fuzzyfication |—@»{ Fuzzy Output | g Defuzzification .:.> System >
I |
e e o ——— e ——— d
Sensor
Measurements

Figure 4-8: Fuzzy Logic Control Overview.

4.4.2.Fuzzy Logic Controller Design

The controller goal is to track a desired wheel angular velocity (so that the rover is
moving in the desired direction) while minimizing wheel slip. A desired angular velocity

(w,) of the wheels is the input of the system.
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Sensor measurements and the control law determine by how much the commanded
torques should change. They do not induce the command itself, just a change, as an
integral controller. If a wheel is roteting too fast, this means it is probably slipping.
Therefore, its coinmanded torque must be reduced (in the absolute sense) and the other

wheels must be commanded such that they increase its normal force.

MPDFs are defined to evaluate the probability of different states of the rover wheels
such as: wheel slipping backwards (SE), wheel rotating too slowly (SL), wheel at the
correct angular velocity (ZR), wheel rotating too fast (FA), and wheel slipping forward
(SF). In the same way, CPDFs are defined for the command change: very negative (NB),
negative (N), negative small (NS), zero (Z), positive small (PS), positive (P), very positive
(PB). The MPDFs and CPDFs are shown in Figure 4-9 and Figure 4-10 respectively.

4

SB SL__ZR FA SF

Wyes™ Dgeg™ Wy Wyest Wyey +
20, @, W, 2w,

Figure 4-9: Measurement Probability Distribution Functions.

}

NB N NS 4 PS P PB

Figure 4-10: Command Probability Distribution Functions.
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Let SB; be defined as SB(®,). SL,, ZR,, FA, and SF,, the other measurements, are

defined in the same way. From these measurements and from the rules, the fuzzy set of

outputs can be deduced. The following example illustrates the technique:

Let the k™ condition be: if wheel i is slipping backwards (SB,) and wheel j is

slipping forward (SF)) then the torque on wheel i is increased a lot (PB).
This is mathematically interpreted as : PB; ,=min(SB,, SF).

The value PB,, which sets the probability by which the torque change by a positive
big number is then defined by:

PBi = mflx(PB, k) (4-6)
The same process is used for all rules and all the CPDFs.

The fuzzy set of commands for the i wheel is then represented as in Figure 4-11.
A defuzzification procedure deduces the output from that set. It is presented in Appendix

C.

Figure 4-11: Fuzzy Set of Commands.

The set of rules that command the fuzzy logic controller is represented in Tabie 4-1
and Table 4-2. For simplification, the influence of the two front wheels on the rear wheel

normal force is neglected. The interaction between the rear and the other wheels is taken
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into account as well as the interaction of the middle and front wheels. This set of rules is
only a function of the heuristics developed previously. It has been shown that in some
cases the ground geometry can affect the wheel normal forces differently. These rules do

not consider those special cases. The rules deduced are the following:

Table 4-1: Set of Rules.

SB(w,) NG(w,) ZR(w,) PS(w,) SF(w,)
SB,[NS:PB:PB|NS:PBi{ P [NS: P: Z|NS:i PiNS| Ni P iNB
NG |[NSiPSiPB| - PiPS| - SiZ]| - P iNS! - iPSiNB
ZR,INSiNSiPB| - Z: P -1 ZiZ| - Z iNS| - iNBi N
PS,INS: NiPB| - iNSiPS| - iNSi{ Z| - iNS:i Z| - iNB: N
SF,INSiNB: P INSiNB: P {NS:NB:PS|NSiNBi{ Z [ NSiNB{ N

Table 4-2: Set of Rules - Rear Wheel.

SB, NG, ZR, PS, SF,

These tables should be read as follows (for the k™ rule):

MPDF.,

MPDF, CPDF, CPDF,, CPDF,,

These rules follow the heuristics defined in Section 4.3.4.

The measurement fuzzy values are computed. Defuzzification determines the

change in the wheel torques (see Appendix C).

It is important to note that the response of the controller is greatly affected by the
choice of 7,. Increasing T, makes the controller react faster but with much more chatter (see
Figure 4-13). 'The parameter ®, also has a big influence on the rover performance. The

smaller it 1s, the more reactive the system is, but the higher its bandwidth.
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A representative simulation result is shown below. The rover is simulated while
climbing 2 step with a slope of 20 degrees. The front wheel is on a 3 inch high step, the

middle wheel is on the slope and the rear wheel is on a flat ground (see Figure 4-12).

wheel
3

Figure 4-12: Step Climbing Simulation

The front wheel has no load initially. It can be seen, however, that the controller
attempts to increase the load on the front wheel, thus reduce wheel slip. The front wheel
stops slipping after less than 4 seconds. The rear wheel, by pushing the rover forward,
increases its own normal force. Pushing the rover forward, in that geometry, increases the
front wheel normal force. The iime until the front wheel starts having a positive normal
force can be decreased by increasing t,. However, when T, is too high, there is some
chatter. Figure 4-13 is a representative example of this pheromenon. This chatter is also
caused by the fact that the wheel changes fuzzy states between slipping and non slipping,

which stresses the importance of , .

It can be seen that the wheel angular velocities do not exactly converge to the
desired angular velocities. This is because the goal of the controller is not only to track that
angular velocity. What is important is that the wheels turn in the right direction and that

they do not slip.
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Figure 4-13: Active Traction Control: Simulation Results.

4.5. Conclusions

This chapter has presented planar simulation studies of the relationship between
normal force distribution and wheel input torque. A set of heuristic rules was developed
based upon the understanding of the physics of the rover. This set of rules is based on the
ground geometry which is most commonly encountered. A fuzzy logic controller has been
designed to improve traction. Simulation results show that the normal forces can be
affected by the wheel torques and an example shows the distribution of the load on the
wheels. These results are not enough though because the model is relatively simple. An

experimental system is required for validation.
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5. Experimental System

5.1. Introduction

This chapter presents some design concepts and experimental results of the MIT
Field and Space Robotics Laboratory Mars Rover (MIT/FSRL Rover). Section 5.2
presents the design of the rover, of its environment dubbed “Mars” and proposed future
enhancements. Section 5.3 details experiments that have been conducted with the rover.
Experiments show that the analytical model results approximate those of the real system.
Tests that compare the active traction controller to a PI wheel angular velocity controller are

performed and presented.

5.2. Rover Description

5.2.1.Rover design overview

The MIT/FSRL rover is a rocker-bogie type rover. It is a kinematic scale model of
the LSR-1 rover (see Figure 5-1 and Figure 5-2). Its footprint is about 14” long by 13”

wide and it has a 6” ground clearance.

The rover development project is still underway. Appendix D presents the rover’s
proposed future evolutions. The experiments described below are conducted with the
MOD 1.1 rover. MOD 2 includes the design and construction of a manipulator that is
mounted on the rover. The ultimate goal of this project is to construct a self-contained

rover (MOD 3). The design of this rover is detailed in (Burn, i998).
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Figure 5-1: MIT FSRL Rover Engineering Drawings (Burn, 1998)

Figure 5-2: The MIT/FSRL Rover.
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5.2.2.Experimental Environment overview

The rover platform, “Mars”, is a 10°’x8’ area. It has been designed to be a
challenging course for the rover. Various slopes of 15, 20 or 30 degrees are accessible to
the rover. A ditch, steep in some places and crossable in others, separates the area into two
parts, north and south. The north part is defined as the part that includes a 9-inch high hill.
It has been designed to be about two thirds of a wheel diameter deep. A 4-inch high
plateau is located on the south area. It is challenging to climb as the access slopes are very

steep. A picture of the “Mars” platform is shown in Figure 5-3.

JIPIPELIET. L )

Figure 5-3: The '"Mars" Platform.

5.2.3.Motors characteristics

he rover wheels are powered by Portescap motors 23 HL 11 216E which are
equipped with tachometers. The gear head has a ratio of 501:1 which liinits the output

angular velocity to 8 rpm and the output torque to 100 oz-in.
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In MOD 1.1, the rover motors are powered by voltage to current National
Semiconductor LM 12CLK amplifiers. They were previously used with a climbing robot

called Libra (Sunada, 1994; Bevly, 1997).

Because of the large gear ratio of the motors, friction is an important factor. Thus it

is necessafy to model the motors. The proposed model is the following :

=r-k . I =Dpor @

motor moior

T motor Tcoulvmb ) Sgn(mmmur) (5 = 1 )

our

where T, is the output torque of the motor, k,,,,. is the motor’s torque constant, r is the

mortor

gear ratio, b, is the viscous damping constant, T_,,., iS the coulomb friction torque as

motor coulom

seen from the output of the motor, and @__ ., is the motor output shaft angular velocity.

molor

Two experiments have been conducted on the motors to determine the values of the

b and ® First, the static motor torque is measured by

maotor? moltor motor*®

unknown constants k
attaching to the motor shaft a rod whose mass and center of mass position are known (see

Figure 5-4).

’tOI.l[

/ I

Figure 5-4: Motor Calibration.

The angle © measured when the system is at rest leads to the determination of the

output torque:
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T, =-m-g-d-sin(®) (5-2)

ol
These experiments lead to the determination of the coulomb friction torque and of
the motor torque constant. The constants are (see Appendix D):

Table 5-1: Motor Constants and Coulomb Friction.

K,=78T oz-in/A T =67 ozin
k, =932 oz-in/A Teoutomp, 2=8-5 0Z-in
k,=1022 oz-in/A Teoutoms, 3=17-2 0Z-in
K;=920 0z-i/A T —4lozin
k,=822 oz-in/A T outoms, 2=7-9 0Z-in
K,=1006 oz-i/A T 1oz

coulomb, 3}

where the subscripts r and 1 refer to the right and left sides of the rover respectively.

A second experiment has been performed on the motors to evaluate their viscous
friction component : no load is applied to the motor and a constant current is input to the
motor. Therefore, when the motor reaches a steady state, the torque output by the motor is
equal to the motor friction. This allows the determination of both the Coulomb and viscous
friction constants. The experimental results are shown in Appendix D and are summarized

and are summarized in Table 5-2.

Table 5-2: Motor Viscous Friction Constants.

b,,=3.61 oz-in/rpm b, =1.16 oz-in/V
b, = 1.41 oz-in/rpm b, = 1.26 oz-in/V
b, =2.97 oz-in/V b, = 1.77 oz-in/V
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5.3. Experimental Results

Two kinds of experiments have been performed on the rover. The first category
concerns the validation of the model presented in the Chapters 2,3 and 4. The second
category is a compatison between PI wheel angular velocity control and fuzzy logic

control.

5.3.1.Model Validation

Two sets of experiments have been conducted to validate the model of the rover.
First, the statement that the wheel normal forces change as function of the other wheel
torques needs to be verified experimentally. This is a central piece of the research and leads
to the design of the traction controller. Second, different action plans have been tested and

the results predicted by the simulation are compared to the real system.

5.3.1.1. Normal Force changes

The influence of wheel torque on other wheels’ normal forces is one of the key
elements of the model. The experiment depicted in Figure 5-5 is designed to verify this
element. The rover is standing on a platform and a one-axis force sensor measures the
force exerted on one wheel in the vertical direction. Torques are applied to every wheel and

the effect of these torques on the normal force of the others is measured.

one axis force sensor

stiff environment

Figure 5-5: Normal Forces Measurement.
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The comparisons results are plotted in Figure 5-6. In this graph, the solid lines

represent experimental values, and the dashed lines represent simulation results.

Rear Norraal Middle Normal Front Normal
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Figure 5-6: Model Validation.

The errors between the model and the actual system are caused by several factors.
In the analytical model, when the effect of a wheel torque is considered, the other motors’
torques are assumed to be zero. However, the friction in the highly geared motors creates
static torque which opposes the commanded torque. The values of these opposing traction
forces are unknown, hence errors are induced. Also, even though motor models have been
developed, the experimental rover is not equipped with torque sensors so the output torque
canunot be known very accurately. The coefficient of friction between the wheels and the

ground cannot be determined very accurately either. Hence the simulation might predict
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slipping before it actually happens. Finally, unmodeled friction in the rocker-bogie joint

can also be shown to create some errors, especially in the front wheel normal force.

Nonetheless, the analytical model predicts the trends seen in the experimental

system quite well, which is important for the fuzzy logic controller.

5.3.1.2.Action Plan Validation

The simulation has been used as a tool in action planning. To experimentally verify
the correctness of these plans and therefore the rover model, different plans have been
tested on the simulation and on the real system. This work has been performed in

cooperation with Shane Farritor. The results are fully documented in (Farritor, 1998).

5.3.2.P1l/Fuzzy Logic Controllers Comparison

This section compares the performance of two controllers. The most commonly
used controller performs PI control on the wheels’ angular velocities. Intuitively, this
controller should have good traction on even terrain, but some wheels may lose contact or
slip if the rover is on a challenging terrain (if the ground angle under each wheel is
different, the wheels’ relative velocities should be different to remain on the ground). This

controller is compared to the fuzzy logic controller described in Section 4.4.

In most cases, these two controllers have similar performances. However, the
tasks successfully performed by the PI controller appears to be a subset of the tasks
successfully performed by the fuzzy logic controller. Of the many tasks tested, two show

a significant difference in behavior.

Chapter 5: Experimental System 80



5.3.2.1.Slope climbing task

In this experiment, the rover must climb a constant slope of 18 degrees. The static
coefficient of friction in this task is p = 0.33, so the rover is on the verge of slipping. The
velocity controller climbed the slope 60% of the time. The fuzzy logic controller climbed

this slope 85% of time.

The reason for the poorer performance of the PI controller is that the PI velocity
control causes each wheel to turn at the desired velocity. The wheels then start to slip and
traction is lost because the dynamic coefficient of friction for the ground/tire interface is
smaller than the static coefficient of friction. The wheels keep turning at the desired

velocity and the vehicle slides down the slope.

On the other hand, the fuzzy logic controller detects the slipping and therefore
reduces the torque causing the rover to move slightly forward and then it starts to slide.
However, the controller detects this and slows down the wheels. The rover stops sliding
and gains sufficient traction to continue forward again. Here, the fuzzy logic controller
exploits the change between static and dynamic friction (Van der Burg et al., 1997).
Changing the normal forces in this case is also useless because the slope is constant under

the wheels.

5.3.2.2.Step and slope climbing

The following task is more comprehensive and challenging. Here, the rover must

climb a step, followed by a slope (see Figure 5-7).

In this case, the results are largely in favor of the fuzzy logic controller. This task
is completed €3% of the time by the fuzzy logic controller and 27% of the time by the PI

velocity controller.
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$5° $ 2.15"

Figure 5-7: A Challenging Task.

In this case, the results are largely in favor of the fuzzy logic controller. This task
is completed 63% of the time by the fuzzy logic controller and 27% of the time by the PI

velocity controller.

The reason why the PI controller fails so often is as following: when the front two
wheels are on the slope and the rear wheel is on the step, most of the weight is transferred
to the rear wheel. The front wheel has very little traction, and the torque of the middle
wheel tends to pull the front wheel off the ground (see Figure 5-8). The rear wheel does
not move while the middle wheel keeps moving at the desired velocity lifting the front

wheel. Contact is lost and is not retrieved. The task fails.

The front wheel
loses contact

The rear wheel
cannot move

Figure 5-8: PI Controller Failure.

Chapter 5: Experimental System 82



With the fuzzy logic controller, however, the middle wheel is commanded to stop

moving. It helps the front wheel to puli the rear wheel. As soon as the rear wheel goes

over the step, the task becomes much more manageable.

54. Conclusions

This chapter has briefi ; described the experimental rover that has been built in the
Field and Space Robotics Laboratory at MIT. The rover’s experimental platform is also
outlined. The rover’s motors exhibit significant friction, and their model is detailed.
Experimental results are presented which verify the rover model presented in Chapters 2
and 3. The fuzzy logic controller is also compared to a PI controll=r. In some tasks, the
fuzzy logic controller proves to perform better than the PI controller, but in most of the

cases, the results are quite equivalent.
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6. Conclusions and Suggestions for Future Work

6.1. Contributions of this Work

This work has presented the analysis and the simulation of a rocker bogie rover.
Such rovers are likely candidates for future Mars exploration missions. They will need to
travel relatively long distances and to be partially autonomous. Therefore, it is important to

develop a detailed model of such systems.

This analysis considers the full three dimensional rover in its environment. A
procedure that solves for the inverse kinematics of the system is developed and presented.
This method simplifies the problem a4 yields accurate results, making it very useful for
planning methodology. The quasi-static force analysis of the rover is then provided. The
soil/tire interaction is a key element in this analysis as it provides knowledge of the
transverse forces. The system is proven to be over-actuated. In other words, the
mechanism redundancy induces interactions between the wheels. A method is shown that

computes the best wheel torque distribution.

The system over-actuation is exploited in the design of a traction contioller. A sct
of heuristic rules is defined to represent the system mechanics. Based on this set, a fuzzy

logic controller is designed to improve traction.

The analysis, the model and the controller are verified on the FSRL/MIT rover. A

brief overview of the design of this rover is given and experimental results are presented.
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They show that the model represents the real system quite well and that the fuzzy logic
controller can improve the traction of the rover.

6.2. Suggestions for Further Work

Improvements can be made to the simulation. For example, the simulation could
accommodate different ground/tire interaction models as the implementation of these
models and comparison of the results may be useful. Also, the simulation fails when there
is no solution to the static balance equations. This does not necessarily mean that the rover
will not be able to complete the task: instead, it may slide briefly, or a whesl may lose
contact, and be able to recover. An algorithm that could determine when the rover slides,
in which direction, and find the next equilibrium point would be a useful enhancement to

the simulation.

Further work can be conducted on the rover’s traction control. A different
approach may be used in the fuzzy logic controller architecture, by considering more
complete heuristics that take the ground geometry into account. Sensitivity to ground
angles must be studied. At present, the controller does only consider the action of the
wheels on one side. It may be possible to consider the influence of the opposing side of
the rover in the heuristics. The position of center of mass also proves to be very important
and the analysis could be used to determine its optimal location. This location can be
changed by altering the manipulator’s attitude or actively controlled through an adaptive

rover structure.

The laboratory rover itself needs to be improved. Self containment is one of the
goals to be achieved. Issues regarding communication with a fixed station will have to be
addressed. It would be useful for the rover to be able to determine its position and
orientation using visual pattern recognition techniques which could prove to be a very

challenging enhancement of the rover.
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Appendix A : Rover Kinematic Relations.

This Appendix details the expression of some kinematic relations necessary for

Chapter 2. Figure A-1 presents the kinematic parameters of the system.

Zground
Ground Frame

x;,:;d/\ ¥

Yground \——}
Ziover gz
(XorYo2p) & — >
Yrover
o d; dj

W N/ o Xeover
e 7 A SN

A @

lZ
@ \
1 o, 9,

Wheel 11 Wheel 21 Wheel 31

Wheel 1r Wheel 2r Wheel 3r

Figure A-1: Planar Force Analysis Presentation.

The inverse kinematics procedure requires the computation of the position of the

wheel centers in the ground frame.
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The relations between the wheel centers position in R, (%, ¥;) and the middle

right wheel position are:

x,, = x,, +cos(¥)- (4 - cos(©,) +1, -cos(®, + o) - I, - cos(®,))
—sin(¥)-sin(©)- (L, -sin(©,) + 1, -sin(©, + o) -, - sin(®, ))

Y, = s, +sin(¥)- (1, -cos(®,) + 1, -cos(®, + o) - ;- cos(0,))
+cos(¥) -sin(®) - (L, -sin(®,) + 1, -sin(®, + o) — [, -sin(V,))

X;, = x,, +cos(¥) (I, - cos(®,) -1, - cos(0, +B))
—sin(¥)-sin(®) - (I, -sin(©,) + I, -sin(©, +P))

Y3, = Yy, +sin(¥) - (I - cos(©,) - I, - cos(©, +P))
+cos(\¥)-sin(©)- (1, - sin(®,) +1, - sin(®, +P))

X, = x,, +cos(¥)- (I, -cos(®,) +1, -cos(©, +a)—1, -cos(O,))
—sin(‘¥) - (sin(®) - (I, -sin(®,) +1, - sin(®, + ) — 1, -sin(©,))
+cos(O) - width)

Yu = Yo, +sin(¥)- (I -cos(©,) +1, - cos(©, + ) -1, - cos(,))
+cos(¥)- (sin((:)) (1, -sin(®,) + 1, -sin(©, +a) -/, -sin(®,))
+cos(©) - width)

Xy = Xy, +cos(¥) - (I, - cos(®,) + 1, - cos(©, +a) — 1, - cos(O, + o)
~l, -cos(94))
—sin('V)- [sin((-:)) - (l, -sin(©,) + 1, -sin(O, + o)
-1, -sin(®,) - 1, -sin(©, + o))
+cos(©)- width]

Yo =¥y, +sin(¥)-(f; -cos(©,) +1; - cos(®, + ) — 1, - cos(O, +ar)
~1, -cos(0,))
+cos(W)-[sin(®) - (I; - sin(©,) +1, - sin(®, + )
-1, -sin(®,) - 1, -sin(©, + o))
+c0s(©) - width]

Xy = X,, +cos(W)- (L - cos(©,) + 1, - cos(®, + ) - I, - cos(O, + at)
+1,-cos(©, +P))
—sin(‘¥)-[sin(©) (1, -sin(®,) + 1, -sin(©), +at)
-1, -sin(©, +P) - L, -sin(©, + o))
+cos(0) - width]

(A-1)

(A-2)

(A-3)

(A-4)

(A-5)

(A-6)

(A-7)

(A-8)

(A-9)
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Yy = ¥, +sin(¥)- (L -cos(©,) + 1, - cos(©, + ) — I, - cos(O, + o)
+1, - cos(©, +PB))
+cos('¥)- [sin(@) . (l3 -sin(©,) + 1, -sin(O, + o)
-1, -sin(@, +B) - 1, -sin(©, + a))
+cos(0) - width]

(A-10)
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Appendix B: Force Analysis

This Appendix details the expression of some parameters used in the Chapter 3 for

the planar force analysis. Some properties of these elements are also given.

Figure B-1 presents the parameters of the system.

Figure B-1: Planar Force Analysis Presentation.
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As seen in Chapter 3, the equation of the balance of the system can be in two ways:
AT T, TN, N, N}]T =[_Fj F, -M,-F -z -F -z, O]T (B-1)

B[, Ny N, N =C-T+D-T,+E (B-2)

Before representing these matrices and vectors, the expressions of u, v, w and z

must be defined. They are :
[u ] [—rad -sin(a,) + 1, -cos(®,) =, - cos(©, + a)] (B-3)
u-= =

X

u, rad -cos(a,) +1, -sin(©,) -1, -sin(©, + at)
_[ve]_[-rad-sin(e;) + 1 - cos(®,) (B-4)
Y= |7 rad - cos(a,) +1, -sin(®,)
_[w.] _[~rad-sin(o;) +1, - cos(®, +B) (B-5)
W= w, | | rad-cos(a,)+1, -sin(©, +B)
fz] _[~h-cos(®, +a) (B-6)
L= z, —l—lz-sin(6)|+a)

Using these expressions, A, B, C, D and E can be defined. A = (A;). For

compactness, ¢, and s; will refer to cos(a,) and sin(ot,) respectively.

A, =¢ Ay =¢ WS U
A, =6 A, =0
Ay =6 Ay =0
Ay =5 Ay =-=5-u,—c u
As = -5, A,=0
Ag =-S5, Ay =0
Ay =5 A, =0
An =5, Ap=Cyo v, =5V,
Ay =5, ,

T Ay =cy-wy =53 w,
Ay = A =
A‘)S =6 A“ ~

- =—C,"V =5,V
A26 =c, 45 2 x 2 3

We have : B;=A,;,;and C;=A;, and D,= A, and E is the right hand side of

equation (B-1).
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In Chapter 3, the equations have been solved, assuming that B is invertible. The

determinant of that matrix has been computed analytically. After some simplifications, it is:

det(B) = (¢, -, + 5, -u)-[5,-(v, = w, )+ ¢+ (v, = w,)] D

The system is not invertible when equation (B-8) or equation (B-9) is verified:

tan(oc,)=—i (B-8)

u,
vV, — W, (B-9)

V.- w,

tan(a,) = —

The signification of equation (B-8) is represented in Figure B-2.a. Here, the
normal force N, crosses the rocker bogie joint. Therefore, it has no effect on the balance of
the moment of the rocker. This is where under-determination happens. Note that this
special case is exactly at the limit where the influence of the rear torque on the rear wheel

normal force changes (see Section 4.3.4).

Equation (B-9) is more difficult to interprate. This means that the normal force of
wheel 2 (the middle wheel) is passing through the contact point of wheel 3 (the front
wheel), see Figure B-2.b. Here again, equation (B-9) means that the normal forces
intersect exactly on the stability region defined in section 4.3.3. These locations, where the
influence of the traction forces start to reverse, are the only configurations for which the
solutions of the system do not exist.

N Stability Region Limits
I

Figure B-2.a Figure B-2.b

Figure B-2: Non invertibility of B
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Appendix C Defuzzification Procedure

This Appendix details the defuzzyfication procedure that computes the output to ke

sent to the system.

C.1 Problem Statement and General Methods

Chapter 4 outlines how the fuzzy logic controller uses a set of rules to calculate the
contribution of each Command Probability Distribution Function (CPDF). The goal is to
determine the output from the values of the different CPDFs. The Command fuzzy set is

defined as in Figure C-1. Here, V, refers to the value assigned to the i" CPDF.

: g AU bT
-To (n+1)/2 -Ty Tout T, To (n+1)/2

Figure C-1 : The Command Fuzzy Set

Different methods can be used to determine the output (Ross, 1995). The max-
membership method takes the output as the position where the maximum of the command
fuzzy set i;.( see Figure C-2.a). The centroid method (Figure C-2.b) is the method that is

used: it computes the “center of mass” of the system. The weighted average method (Figure
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C-2.c) calculates the weighted average of the position of all the maxima of the CPDFs.
The mean-max method (Figure C-2.d) is used instead of the max-membership method if

the maximum is not unique. The method calculates the average of these maxima.
H B
? A
& L\
T T

Toul Tout
Figure C-2.a. Figure C-2.b.
Hﬁ P-A
Vi |h T,
Vol
ey >
Tou=T1 V1+T2 V2) Tout T
VisVa Figure C-2.d.

Figure C-2.c.

Figure C-2 : Defuzzification Methods.

In this work, the centroid method has been used.

C.2 Solution

Let the CPDF:s distribution be as in Figure C-3. They are triangle functions, whose

base’s width is 2 T,. Let n be the number of CPDFs. n is obviously an odd number.

The output is given by:
o [u-Tear (€-1)
[w)-az
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The denominator is the area of the command fuzzy set. It can be easily determined

by adding the sum of the area of the trapezes formed by each CPDF and by removing their

intersections.
C.2.1 Parameters Definition
CPDF;, =2y T +by
CPDF,,
H= a5 T +by;

All

A ifull -A iinler

|
Xoi  Xyj X4i| Xoi X3

A iinter

Figure C-3 : Parameters Definition.

Let a, and b, be the parameters that define respectively the slope and the intersection

with the p axis of the i" line of the system of CPDF (see Figure C-3).

_ (_l)i+| (C_Z)
T
0
_l-n+i (C-3)
2i )
b _2+4n-i (C-4)
2i-1 )

C.2.2 Full Area Computation

The area of the trapeze contained in the i triangle, with the vertices x,, X,;, X,,, Xair
of altitude V; is given by (C-5) (See Figure C-3). (C-6) gives the weighted area of the

same region.

full x3i _xm +x2i _xn .V (C-5)

i 2 i

A
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a_ b A% (C-6)
B0 o ) a1

220 (x3 g3 Y2 (g2 2
+ 3 (xli xZi)-‘lh 2 (xli x2i)

where X, X,;, X, Xy; are defined by :

-b (C-7)
X = 2:i—1
0i a
2:i-1
V-b (C-8)
X = i Q=
Ti
2:i-1
\"% —b2_ (C-9)
X = - i
2i a
24
—bz, (C-10)
X = .
3i a
2

C.2.3. Intersection Computations

Four distinct cases have to be studied to determine what is the extra surface or

weighted area to be removed (see Figure C-4).

e Case 1: V;>V,, and V,, < 0.5 (see Figure C-4.a.): then A/™" and V™,

respectively the extra area and weighted area are:

X —X +X —Xx_ (C-ll)
3 4i 6i 5i V
i 2 i+l
. b v (C-12)
v .inl:E_:__' 2.i+l '(X3_ _x3.)+2_'l+l..(x2‘ _xz‘)+‘—+'-(x2. —Xz_)
i 3 si i 2 5i 4 2 6i S
+-2.(x?
3 3i

-x3 2 (x? _x?
x6i)+ 2 (x3i x6i)

where x,; ,X; and x,, are (see Figure C-4.a) ) :
-b (C-13)

X = 2:i+1
4i a
2:i+l
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Xoi X1i X4i Xsi Xg X3

Figure C-4.a. Figure C-4.b
CPDF;  CPDF,, CPDF;  CPDF,,,
A .inter
Aiinter
Xoi X1 X4 Xs; ;‘Gi X3 Xoi Xai X3i
Figure C-4.c. Figure C-4.d.

Figure C-4 : Intersection areas Calculation.

e Case 2: V,> V., and V,, > 0.5 (see Figure C-4.b.): then A/™" and v,

respectively the extra area and weighted area are:
X, —X (C-16)

A intcg 3i 4i
1 4

y intex ia A(x) = xP )+ 2 (x2 _x?) (C-17)
i si i 2 si Tai

2i (3 IV 2 (g2 _ 2
+T-(x3i_x5i)+ 2 (xli xSi)
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where x,; is given by (C-13) and x,; is (see Figure C-4.b) ) :
X, +X, (C-18)

X = i 4i

5i 2

o Case 3: V; <V, and V, < 0.5 (see Figure C-4.c): then A/™" and V"

respectively the extra area and weighted area are:

_ X —X +X —X_ (C-19)
A inter 3 4i 6i Si .V
i 2 i
a b \" (C-20)
inter _2i+l (3 _ 3 24l 02 2 (g2 2
Vo= (xsi x4i)+ 2 (xsi x4i)+ ) (x6i x5i)
2i 3,3 2 g2 2
+T'(x3i x6i)+ 2 (xli x6i)
where x; is given by (C-13) and x,; and x,, are (see Figure C-4.c) ) :
V -b_ (C-21)
X = 2+l
5i a
2i+l
V -b_ (C-23)
X = 2i
6i a

2i

e Case 4: V,< V,,, and V; > 0.5 (see Figure C-4.d), then the results are exactly the

same than for case 2.

The output of the defuzzification can then be easily determined :

! | C-24
z(v ijull -V ilnltr)+v nfu) ( )

— =l

— a-l
Z(Aijull _ Aiinler)_'_ A full
i=1

oul

n
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Appendix D : Experimental Rover.

This appendix presents the FSRL/MIT experimental Mars Rover. Different design
stages of the system are briefly presented, and the budget of the project is included. Mod
1.1 is there after studied in closer details. Results of the motor calibration experiments

detailed in Chapter 5 are presented. They infer the characteristics of the motors.
D.1 Project Description.

The FSRL/MIT rover project started in May 1997. Design studies have been
performed on the rover. Several stages of the design evolution have been planned. MOD1
(see Figure D-1) is a mechanical evaluation of the design. No controller is implemented on
the rover. MOD 1.1 includes sensors (see Figure D-2): an accelerometer, four
potentiometers placed on the rocker-bogie joints and on the rocker-body joints enable the
knowledge of the posture of the rover. Feedback from the motors is in the form of analog
signals frem tachometer units on each motor. Angular velocity is then directly measured.
This rover is controlled with a PC. Voltage to current amplifiers are used, thus enabling
the direct control of the wheel torques. The experiments depicted in this research are

conducted on this rover.

Future MOD:s include the attachment of a manipulator on the body and its control
(MOD 3) (see Figure D-3). Self containment is the ultimate projected goal, that will require

the use of PC/104 technology (see Figure D-4).
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D.2 MOD 1.1 Calibration

Chapter 5 has presented experiments that were performed for motor calibration.

The model of the motors is represented by:

= Ymotor * mmomr - Tcaulamb : Sgn(mmamr) (D - 1)

The first set of experiments is static. In other words, a constant current is sent to
the motor and the torque can be measured (see Figure 5-3). When the system is in

equilibrium, equation (5-2) can be applied:

r-k (D-2)

T ‘molor * i- Teoulomb

out —

This section presents the results of these experiments. Figure D-5 presents the
results obtained in the first experiment described in Section 5.2.3, for the motor static
torques. The solid and thick lines represent the experimental measurements. From these,
the best linear approximation is deduced (represented here by a dashed line). The slope of
can be deduced. The

this linear approximation is r k Since r is known, k

motor * motor

difference between the ideal motor characteristic and the actual characteristic is the Coulomb

friction. The results of these experiments are given in Chapter 5.
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Figurz D-5: Rover Motor Static Experiments
The second set of experiments is aimed at determining the viscous friction

motor*

Here, no load is applied to the motor and a constant current is sent.

Therefore, equation (5-3) applies when the motor reaches a stedy state.

Appendi

r- kmatar = bmator " ®ymor0r T Teonlomb * Sgn(mmomr)

(D-3)

x D: Experimental Rover
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The experimental results are shown in Figure D-6, and the experimental

measurements are detailed in Section 5.2.3.
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Figure D-6: Rover Viscous Parameters Determination.
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