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Based on first-principle calculations, we show that a family of nonmagnetic materials including TaAs,
TaP, NbAs, and NbP are Weyl semimetals (WSM) without inversion centers. We find twelve pairs of Weyl
points in the whole Brillouin zone (BZ) for each of them. In the absence of spin-orbit coupling (SOC),
band inversions in mirror-invariant planes lead to gapless nodal rings in the energy-momentum dispersion.
The strong SOC in these materials then opens full gaps in the mirror planes, generating nonzero mirror
Chern numbers and Weyl points off the mirror planes. The resulting surface-state Fermi arc structures on
both (001) and (100) surfaces are also obtained, and they show interesting shapes, pointing to fascinating
playgrounds for future experimental studies.
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I. INTRODUCTION

Most topological invariants in condensed-matter non-
interacting phases are defined on closed manifolds in
momentum space. For gapped systems, both the Chern
insulator and Z2 topological insulator phases can be defined
using the Berry phase and curvature in either the entire or
half of the two-dimensional (2D) Brillouin zone (BZ),
respectively [1,2]. A similar idea can be generalized to
gapless metallic systems. In three-dimensional (3D) sys-
tems, besides the BZ, an important closed manifold in
momentum space is a 2D Fermi surface (FS). Topological
metals can be defined by Chern numbers of the single-
particle wave functions at the Fermi surface energies [3–5].
Such nonzero FS Chern numbers appear when the FS
encloses a band-crossing point—the Weyl point—which
can be viewed as a singular point of Berry curvature or
“magnetic monopole” in momentum space [6–9]. Materials
with such Weyl points near the Fermi level are called Weyl
semimetals (WSM) [7–10].
Weyl points can only appear when the spin-doublet

degeneracy of the bands is removed by breaking either time
reversal T or spacial inversion symmetry P (in fact, Weyl
points exist if the system does not respect T · P). In these
cases, the low-energy single-particle Hamiltonian around a

Weyl point can be written as a 2 × 2 “Weyl equation,”
which is half of the Dirac equation in three dimensions.
According to the “no-go theorem” [11,12], for any lattice
model, the Weyl points always appear in pairs of opposite
chirality or monopole charge. The conservation of chirality
is one of the many ways to understand the topological
stability of the WSM against any perturbation that pre-
serves translational symmetry: The only way to annihilate a
pair of Weyl points with opposite chirality is to move them
to the same point in BZ. Since generically the Weyls can sit
far away from each other in the BZ, this requires large
changes of Hamiltonian parameters, and theWSM is stable.
The existence of Weyl points near the Fermi level will lead
to several unique physical properties, including the appear-
ance of discontinuous Fermi surfaces (Fermi arcs) on the
surface [7–9], the Adler-Bell-Jackiw anomaly [10,13–15],
and others [16,17].
The first proposal to realize WSM in condensed-matter

materials was suggested in Ref. [7] for Rn2Ir2O7 pyro-
chlore with all-in/all-out magnetic structure, where 24 pairs
of Weyl points emerge as the system undergoes the
magnetic ordering transition. A relatively simpler system
HgCr2Se4 [9] was then proposed by some of the present
authors, where a pair of double-Weyl points due to
quadratic band crossing appear when the system is in a
ferromagnetic phase. Another proposal involves a fine-
tuned multilayer structure of normal insulators and mag-
netically doped topological insulators [18]. These proposed
WSM systems involve magnetic materials, where the spin
degeneracy of the bands is removed by breaking time-
reversal symmetry. As mentioned, the WSM can also be
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generated by breaking the spatial inversion symmetry only, a
method which has the following advantages. First, compared
with magnetic materials, nonmagnetic WSM are much more
easily studied experimentally using angle-resolved photo
emission spectroscopy (ARPES) as alignment of magnetic
domains is no longer required. Second, without the spin
exchange field, the unique structure of Berry curvature leads
to very unusual transport properties under a strong magnetic
field, unspoiled by the magnetism of the sample.
Currently, there are several representative proposals for

WSM generated by inversion symmetry breaking. The first
one is a superlattice system formed by alternatively stack-
ing normal and topological insulators [19,20]. The second
one involves tellurium or selenium crystals under pressure
[21]. The third one is the solid solutions of ABi1−xSbxTe3
(A ¼ La and Lu) [22] and TlBiðS1−xRxÞ2 (R ¼ Se or Te)
[23] tuned around the topological transition points [24].
The fourth one is a model based on zinc-blende structure
[25] with the fine-tuning of the relative strength between
SOC and the inversion symmetry-breaking term. But none
of the above proposals has been realized experimentally.
In the present study, we predict that TaAs, TaP, NbAs, and

NbP single crystals are natural WSM, and each of them
possesses a total of 12 pairs of Weyl points. Compared with
the existing proposals, this family of materials is com-
pletely stoichiometric and, therefore, are easier to grow
and measure. Unlike in the case of pyrochlore iridates and
HgCr2Se4, where inversion is still a good symmetry and the
appearance of Weyl points can be immediately inferred
from the product of the parities at all the time-reversal
invariant momenta (TRIM) [26–28], in the TaAs, family
parity is no longer a good quantum number. However, the
appearance of Weyl points can still be inferred by analyzing
the mirror Chern numbers (MCN) [29,30] and Z2 indices
[26,31] for the four mirror and time-reversal invariant
planes in the BZ. Similar to many other topological
materials, the WSM phase in this family is also induced
by a type of band-inversion phenomena, which, in the
absence of spin-orbit coupling (SOC), leads to nodal rings
in the mirror plane. Once the SOC is turned on, each nodal
ring will be gapped with the exception of three pairs of
Weyl points leading to fascinating physical properties
which include complicated Fermi arc structures on the
surfaces.
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FIG. 1. Crystal structure and Brillouin zone (BZ). (a) The crystal symmetry of TaAs. (b) The bulk BZ and the projected surface BZ for
both (001) and (100) surfaces. (c) The band structure of TaAs calculated by GGAwithout including the spin-orbit coupling. (d) The band
structure of TaAs calculated by GGA with the spin-orbit coupling.
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II. CRYSTAL STRUCTURE
AND CALCULATION METHODS

As all four mentioned materials share very similar band
structures, in the rest of the paper, we will choose TaAs as
the representative material to introduce the electronic
structures of the whole family. The experimental crystal
structure of TaAs [32] is shown in Fig. 1(a). It crystalizes in
body-centered-tetragonal structure with nonsymmorphic
space group I41md (No. 109), which lacks inversion
symmetry. The measured lattice constants are a ¼ b ¼
3.4348 Å and c ¼ 11.641 Å. Both Ta and As are at 4a
Wyckoff position (0, 0, u) with u ¼ 0 and 0.417 for Ta
and As, respectively. We have employed the software
package OpenMX [33] for the first-principles calculation.
It is based on norm-conserving pseudopotential and
pseudo-atomic localized basis functions. The choice of
pseudopotentials, pseudo-atomic orbital basis sets (Ta9.0-
s2p2d2f1 and As9.0-s2p2d1), and the sampling of BZ
with a 10 × 10 × 10 grid have been carefully checked.
The exchange-correlation functional within a generalized
gradient approximation (GGA) parametrized by Perdew,
Burke, and Ernzerhof has been used [34]. After full
structural relaxation, we obtain the lattice constants a¼b¼
3.4824Å, c ¼ 11.8038 Å and optimized u ¼ 0.4176 for
the As site, in very good agreement with the experimental
values. To calculate the topological invariant such as MCN
and surface states of TaAs, we have generated atomiclike
Wannier functions for Ta 5d and As 4p orbitals using the
scheme described in Ref. [35].

III. RESULTS

A. Band structures with and
without spin-orbit coupling

We first obtain the band structure of TaAs without SOC
by GGA and plot it along the high-symmetry directions in
Fig. 1(c). We find clear band inversion and multiple band
crossing features near the Fermi level along the ZN, ZS,
and ΣS lines. The space group of the TaAs family contains
two mirror planes, namely, Mx and My [shaded planes in
Fig. 1(b)] and two glide mirror planes, namely, Mxy and
M−xy [illustrated by the dashed lines in Fig. 1(b)]. The
plane spanned by Z, N, and Γ points is invariant under
mirror My, and the energy bands within the plane can be
labeled by mirror eigenvalues �1. Further symmetry
analysis shows that the two bands that cross along the Z
to N line belong to opposite mirror eigenvalues, and hence,
the crossing between them is protected by mirror sym-
metry. Similar band crossings can also be found along other
high-symmetry lines in the ZNΓ plane, i.e., the ZS and NS
lines. Altogether, these band crossing points form a “nodal
ring” in the ZNΓ plane as shown in Fig. 2(b). Unlike for the
situation in the ZNΓ plane, in the two glide mirror planes

(Mxy and M−xy), the band structure is fully gapped, with a
minimum gap of roughly 0.5 eV.
The analysis of orbital character shows that the bands

near the Fermi energy are mainly formed by Ta 5d orbitals,
which have large SOC. Including SOC in the first-principle
calculation leads to a dramatic change of the band structure
near the Fermi level, as plotted in Fig. 1(d). At first glance,
it seems that the previous band crossings in the ZNΓ plane
are all gapped, with the exception of one point along the ZN
line. Detailed symmetry analysis reveals that the bands “2”
and “3” in Fig. 1(d) belong to opposite mirror eigenvalues,
indicating the almost-touching point along the ZN line is
completely accidental. In fact, there is a small gap of
roughly 3 meV between bands “2” and “3” as illustrated by
the inset of Fig. 1(d). The ZNΓ plane then becomes fully
gapped once SOC is turned on.

B. Topological invariants for mirror plane
and Weyl points

Since the material has no inversion center, the usual
parity condition [26–28] cannot be applied to predict the
existence of WSM. We then resort to another strategy.
As previously mentioned, the space group of the material
provides two mirror planes (Mx and My), where the MCN
can be defined. If a full gap exists for the entire BZ, the
MCN would directly reveal whether this system is a
topological crystalline insulator or not. Interestingly, as
shown below, if the system is not fully gapped, we can still
use the MCN to find out whether the material hosts Weyl
points in the BZ or not. Besides the two mirror planes, we
have two additional glide mirror planes (Mxy and M−xy).
Although the MCN is not well defined for the glide mirror
planes, the Z2 index is still well defined here as these planes
are time-reversal invariant. We then apply the Wilson-loop
method to calculate the MCNs for the two mirror planes
and Z2 indices for the two glide mirror planes. Here, we
just briefly describe the essence of this method. For a
more detailed explanation of the method, please refer to
Refs. [5,37]. A Wilson loop is an arbitrary closed k-point
loop in BZ, evaluated around which, the occupied Bloch
functions acquire a total Berry phase θðwÞ, with w being the
loop index. One can define a series of parallel Wilson loops
w to fully cover a closed 2D manifold in 3D momentum
space, such as a cut plane in BZ or a closed FS as stated in
the beginning of this paper. Then, the evolution of θðwÞ
along these parallel Wilson loops (it turns out to be a 1D
problem) gives information on the band-structure topology
on the closed 2D manifold. For example, to determine the
MCNs for the mirror plane Mx, we define Wilson loops
along the kx direction with fixed kz. All the occupied bands
at k points in this plane can be classified into two groups
according to their eigenvalues under mirror operation,
i or −i. Taking those having eigenvalue i, the evolution
of Berry phases along the periodic kz direction can be
obtained, and the MCN is simply its winding number.
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The results are plotted in Fig. 2(d), which shows that
MCN is 1 for the ZNΓ plane (My) and the Z2 index is even
or trivial for the ZXΓ plane (Mxy). Then, if we consider
the (001) surface, which is invariant under the My mirror.
The nontrivial helical surface modes will appear because
of the nonzero MCN in the ZNΓ plane, which generates a
single pair of FS cuts along the projective line of the ZNΓ
plane [the x axis in Fig. 2(c)]. Whether these Fermi cuts will
eventually form a single closed Fermi circle or not depends
on the Z2 index for the two glide mirror planes, which are
projected to the dashed blue lines in Fig. 2(c). Since the Z2

indices for the glide mirror planes are trivial, as confirmed
by our Wilson-loop calculation plotted in Fig. 2(d), there
are no protected helical edge modes along the projective
lines of the glide mirror planes [dashed blue lines in
Fig. 2(c)], and the Fermi cuts along the x axis in Fig. 2(c)
must end somewhere between the x axis and the diagonal
lines [dashed blue lines in Fig. 2(c)]. In other words, they
must be Fermi arcs, indicating the existence ofWeyl points
in the bulk band structure of TaAs.

From the above analysis of the MCN and Z2 index of
several high-symmetry planes, we can conclude that Weyl
points exist in the TaAs band structure. We now determine
the total number of Weyl points and their exact positions.
This is a hard task, as the Weyl points are located at generic
k points without any little-group symmetry. For this
purpose, we calculate the integral of the Berry curvature
on a closed surface in k space, which equals the total
chirality of the Weyl points enclosed by the given surface.
Because of the fourfold rotational symmetry and mirror
planes that characterize TaAs, we only need to search for
the Weyl points within the reduced BZ—one-eighth of the
whole BZ. We first calculate the total chirality or monopole
charge enclosed in the reduced BZ. The result is 1, which
guarantees the existence of, and odd number of, Weyl
points. To determine precisely the location of each Weyl
point, we divide the reduced BZ into a very dense k-point
mesh and compute the Berry curvature or the “magnetic
field in momentum space” [35,38] on that mesh, as shown
in Fig. 3. From this, we can easily identify the precise
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FIG. 2. Nodal rings and Weyl points distribution, as well as Z2 and MCN for mirror planes. (a) 3D view of the nodal rings (in the
absence of SOC) and Weyl points (with SOC) in the BZ. (b) Side view from [100] and (c) top view from [001] directions for the nodal
rings and Weyl points. Once the SOC is turned on, the nodal rings are gapped and give rise to Weyl points off the mirror planes (see
movie in Supplemental Material [36]). (d) Top panel: Flow chart of the average position of the Wannier centers obtained by Wilson-loop
calculation for bands with mirror eigenvalue i in the mirror plane ZNΓ. (d) Bottom panel: The flow chart of the Wannier centers obtained
by Wilson-loop calculation for bands in the glide mirror plane ZXΓ. There is no crossing along the reference line (the dashed line),
indicating the Z2 index is even.
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position of the Weyl points by searching for the “source”
and “drain” points of the “magnetic field.” The Weyl points
in TaAs are illustrated in Fig. 2(a), where we find 12 pairs
of Weyl points in the vicinity of what used to be, in the
SOC-free case, the nodal rings on two of the mirror-
invariant planes. For each of the mirror-invariant planes,
after turning on SOC, the nodal rings will be fully gapped
within the plane, but isolated gapless nodes slightly off
plane appear, as illustrated in Fig. 2(b). Two pairs of Weyl
points are located exactly in the kz ¼ 0 plane, and another
four pairs of Weyl points are located off the kz ¼ 0 plane.
Considering the fourfold rotational symmetry, it is then
easy to understand that there are a total of 12 pairs of Weyl
points in the whole BZ. The Weyl points in the kz ¼ 0
plane are about 2 meV above the Fermi energy and form
eight tiny hole pockets, while the others are about 21 meV
below the Fermi level to form 16 electron pockets. The

appearance of Weyl points can also be derived from a
k · p model with different types of mass terms induced by
SOC, which will be introduced in detail in the Appendix.
The band structures for the other three materials—TaP,
NbAs, and NbP—are very similar. The precise positions
of the Weyl points for all these materials are summarized
in Table. I.

C. Fermi arcs and surface states

Unique surface states with unconnected Fermi arcs can
be found on the surface of a WSM. These can be under-
stood in the following way: For any surface of a WSM,
we can consider small cylinders in the momentum space
parallel to the surface normal. In the 3D BZ, these cylinders
will be cut by the zone boundary, and their topology is
equivalent to that of a closed torus rather than that of open
cylinders. If a cylinder encloses a Weyl point, by Stokes
theorem, the total integral of the Berry curvature (Chern
number) of this closed torus must equal the total “monopole
charge” carried by the Weyl point(s) enclosed inside. On
the surface of the material, such a cylinder will be projected
to a cycle surrounding the projection point of the Weyl
point, and a single Fermi surface cut stemming from the
chiral edge model of the 2D manifold with Chern number 1
(or −1) must be found on that circle. By varying the radius
of the cylinder, it is easy to show that such FSs must start
and end at the projection of two (or more) Weyl points with
different “monopole charge”; i.e., they must be “Fermi
arcs” [7,9,16]. In the TaAs materials family, on most of the
common surfaces, multiple Weyl points will be projected
on top of each other, and we must generalize the above
argument to multiple projections of Weyl points. It is easy
to prove that the total number of surface modes at the Fermi
level crossing a closed circle in surface BZ must equal the
sum of the “monopole charge” of the Weyl points inside the
3D cylinder that projects to the given circle. Another fact
controlling the behavior of the surface states is the MCN
introduced in the previous discussion, which limits the
number of FSs cutting certain projection lines of the mirror
plane (when the corresponding mirror symmetries are still
preserved on the surface).
By using the Green’s function method [5] based on the

tight-binding (TB) Hamiltonian generated by the previ-
ously obtained Wannier functions, we have computed the

(a)

(b)

FIG. 3. Berry curvature from pairs of Weyl points. (a) The
distribution of the Berry curvature for the kz ¼ 0 plane, where the
blue and red dots denote the Weyl points with chirality of þ1 and
−1, respectively; (b) same as (a) but for the kz ¼ 0.592π plane.
The insets show the 3D view of hedgehoglike Berry curvature
near the two selected Weyl points.

TABLE I. The two nonequivalent Weyl points in the xyz
coordinates shown in Fig. 1(b). The position is given in units
of the length of Γ-Σ for x and y and of the length of Γ-Z for z.

Weyl node 1 Weyl node 2

TaAs (0.949, 0.014, 0.0) (0.520, 0.037, 0.592)
TaP (0.955, 0.025, 0.0) (0.499, 0.045, 0.578)
NbAs (0.894, 0.007, 0.0) (0.510, 0.011, 0.593)
NbP (0.914, 0.006, 0.0) (0.494, 0.010, 0.579)
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surface states for both (001) and (100) surfaces. They are
plotted in Fig. 4 together with the FS plots. On the (001)
surface, the crystal symmetry is reduced to C2v, leading to
different behavior for the surface bands around the X̄ and Ȳ
points, respectively. Along the Γ̄-X̄ or Γ̄-Ȳ lines, there are
two FS cuts with the opposite Fermi velocity satisfying the
constraint from the MCN for the ΓZN plane. In addition to
the MCN, the possible “connectivity pattern” of the Fermi
arcs on the surface has to link different projection points of
the Weyl nodes in a way that obeys the chirality condition
discussed in the above paragraph. For the (001) surface of
TaAs, the connectivity pattern of the Fermi arcs that satisfy
all the conditions discussed is not unique. However, due to
the fact that all the projective points on the (001) surface are
generated either by a single Weyl point or by two Weyl
points with the same chirality, the appearance of “Fermi
arcs” on the (001) surface is guaranteed. The actual Fermi-
arc connectivity pattern for the (001) surface is shown in
Fig. 4(b), obtained by our ab initio calculation on a
nonrelaxed surface described by the TB model. Changes
of surface potentials or the simple relaxation of the surface
charge density might lead to transitions of the Fermi-arc
connectivity pattern and may result in topological Fermi-
arc phase transitions on the surface. Avery interesting point
of the (001) surface states are the extremely long Fermi
arcs that cross the zone boundary along the X̄ to M̄ line.

Compared to other proposed WSM materials, the Fermi
arcs in TaAs families are much longer, which greatly
facilitates their detection in experiments.
Compared to the (001) surface, the (100) surface states of

TaAs are much more complicated, as shown in Figs. 4(c)
and 4(d). The biggest difference between the (100) and
(001) surfaces is that all the projected Weyl points on the
(100) surface are formed by a pair of Weyl points with
opposite chirality, which does not guarantee (but does not
disallow) the existence of the Fermi arcs. The only
constraint for the (100) surface states is the nonzero
MCN of the ΓZN plane, which generates a pair of chiral
modes along the Γ̄ Ȳ line, the projection of the mirror plane,
as illustrated in Fig. 4(d).

IV. DISCUSSION

In summary, a family of nonmagnetic WSM materials is
proposed in the present paper. Each material in this family
contains 12 pairs of Weyl points, which appear because of
the lack of an inversion center in the crystal structure and
can be derived from the nonzero MCN for two of the
mirror-invariant planes in the BZ. The surface states of
these materials form quite complicated patterns for the
Fermi surfaces, which are determined by both the chirality
distribution of the Weyl points and the MCNs for the
mirror-invariant planes.
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APPENDIX: k · p MODEL OF A NODAL RING
AND THE APPEARANCE OF WEYL POINTS

DUE TO SPIN-ORBIT COUPLING

We perform a k · p analysis in the vicinity of the Σ point
in the 3D BZ.We show that (1) a nodal ring (a closed line of
band-touching points) is protected in the presence of a
mirror-reflection symmetry and SU(2) spin-rotation sym-
metry (when spin-orbit coupling is absent), and (2) when
SOC is turned on and all crystalline symmetries are
preserved, the nodal ring may be partially gapped with
several distinct possibilities: (i) Weyl nodes on the (001)
plane, (ii) Weyl nodes away from the (001) plane, and
(iii) nodal rings on the (010) plane and (iv) full gap. The
realization of these different possibilities strongly depends
on the specific form of the SOC terms.
The nodal ring around the Σ point can be modeled by a

two-band k · p theory, in the absence of SOC:

H0ðkÞ ¼
X

i¼x;y;z

diðkÞσi; ðA1Þ

where diðkÞ are real functions and k ¼ ðkx; ky; kzÞ are
three components of the momentum k relative to the Σ
point along [100], [010], and [001] axes, respectively. In
Eq. (A1), we have ignored the kinetic term proportional to
the identity matrix, as it is irrelevant in studying the band
touching. The mirror-reflection symmetry, denoted by
M010, is represented by M ¼ σz: In the absence of SOC,
we can choose a mirror symmetry that squares to unity.
The form of the mirror operator is chosen such that the
two bands have opposite mirror eigenvalues, information
obtained from the ab initio calculation. The mirror reflec-
tion dictates that

MH0ðkx; ky; kzÞM−1 ¼ H0ðkx;−ky; kzÞ; ðA2Þ

which translates into

dx;yðkx; ky; kzÞ ¼ −dx;yðkx;−ky; kzÞ; ðA3Þ

dzðkx; ky; kzÞ ¼ dzðkx;−ky; kzÞ: ðA4Þ

Equation (A3) states that on the plane ky ¼ 0, only
dz is nonzero, and hence, generically, the equation
dzðkx; 0; kzÞ ¼ 0 will have codimension one, i.e., a nodal
line solution. Symmetry-preserving perturbations involve
gradually changing the forms of the di’s without violating
Eq. (A3), so the nodal ring is robust against them.
Another symmetry is present at the Σ point: a twofold

rotation C2 about the [001] axis followed by time-reversal
symmetry. The symmetry is present because the rotation
sends the Σ point to its time-reversal partner, and a further
time-reversal operation sends it back. This symmetry may
be represented by C2T ¼ UTK, where UT is any symmetric
and unitary matrix and K is complex conjugation. Without
SOC, the rotation about the [001] axis and the reflection
about the (010) plane commute with each other, so we
require

½σz; KUT � ¼ 0; ðA5Þ

and we may choose UT ¼ σz. This symmetry places
additional constraints on the di’s:

H0ðkx; ky; kzÞ ¼ σzH�
0ðkx; ky;−kzÞσz ðA6Þ

or

dy;zðkx; ky; kzÞ ¼ dy;zðkx; ky;−kzÞ;
dxðkx; ky; kzÞ ¼ −dxðkx; ky;−kzÞ: ðA7Þ

Equations (A3) and (A7) determine the general form of our
k · p model.
Now we consider adding spin-orbit coupling terms while

respecting the symmetries at the Σ point. We first need to
determine the matrix representations of the generators of
the little group, i.e., M010 and C2 � T. Considering spin
degrees of freedom, we know that (i) a mirror reflection
consists of a spatial reflection and a twofold spin rotation
about the axis perpendicular to the reflection plane, (ii) a
twofold rotation involves a spatial twofold rotation and a
twofold spin rotation about the same axis, and (iii) time-
reversal symmetry involves complex conjugation and a
flipping of the spin. Following these facts, we obtain the
matrix representations

M ¼ iσz ⊗ sy;

C2T ¼ Kσz ⊗ sx: ðA8Þ

Notice that now M2 ¼ −1 and C2
2T ¼ 1, as needed. With

spin degrees of freedom, each band in the previous spin-
orbit coupling free model in Eq. (A1) becomes two bands,
and the nodal ring becomes a four-band crossing. In the
vicinity of the nodal ring, the addition of SOC is equivalent
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to adding coupling between different spin components, i.e.,
“mass terms,” to the previous model. Here, the name mass
term simply means that these terms are not required to
vanish at the nodal ring by any symmetry.
The symmetry of the nodal ring is just a mirror

reflection. The mass terms hence must commute with
mirror symmetry, and a generic term on the ky ¼ 0 plane
is given by

Hm ¼ m1ðkÞsy þm2ðkÞσzsy þm3ðkÞσxsx þm4ðkÞσxsz
þm5ðkÞσysz þm6ðkÞσysx: ðA9Þ

Note that these mass terms are, in general, k dependent, as
their values may change as k moves along the nodal ring,
but the C2 � T symmetry makes them satisfy (on the ky ¼ 0

plane)

m1;2;4;6ðkx; 0; kzÞ ¼ m1;2;4;6ðkx; 0;−kzÞ ¼ m1;2;4;6ðkx; 0; kzÞ;
m3;5ðkx; 0; kzÞ ¼ −m3;5ðkx; 0;−kzÞ ¼ m3;5ðkx; 0; kzÞ:

ðA10Þ

A complete analysis of the band crossing in the presence of
all six mass terms is unavailable as the analytic expressions
for the dispersion are involved. However, one may see the
qualitative role played by each mass term by analyzing
them separately. From Eq. (A10), we see that m3;5 are odd
under kz → −kz, while the others are even. This indicates
that only m1;2;4;6 terms are responsible for band crossings
appearing on the kz ¼ 0 plane, while the band crossings
away from that plane are attributed mainly to the presence
of m3;5 terms.
At the ky ¼ 0 plane, m1;2 terms commute with H0,

so these terms, if of small strength, will split the doubly
degenerate nodal ring into two singly degenerate rings but
not open gaps. The equations for the two new rings are
given by

dzðkx; 0; kzÞ �m1;2 ¼ 0: ðA11Þ

One should note that when the m1 term (m2 term) is added,
the two rings are the crossing between two bands with the
same (opposite) mirror eigenvalues. Therefore, the two
rings from adding the m1 term are purely accidental, and
the two rings from adding the m2 term are protected by
mirror symmetry.
Next, we discuss the effect of the m4;6 terms, which

should, in combination, give rise to the pair of Weyl nodes
on the kz ¼ 0 plane shown in Fig. 2. The dispersion after
adding the m4;6 terms is

EðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þm2

4 þm2
6 � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

4d
2
x þm2

6d
2
y þm2

4m
2
6

qr
;

ðA12Þ

where d2 ¼ d2x þ d2y þ d2z . With some straightforward alge-
braic work, it can be shown that the equation EðkÞ ¼ 0
(band touching) is equivalent to the following equations:

dx ¼ dz ¼ 0;

d2y ¼ m2
6 −m2

4: ðA13Þ

When jm6j > jm4j, these equations have at least one pair of
solutions on the kz ¼ 0 plane symmetric about ky ¼ 0 with
codimension zero: They are Weyl nodes on the kz ¼ 0
plane. In our simulation, we found only one pair of Weyl
nodes appearing on this plane, which can only be under-
stood if m4;6 are k dependent. The equations dx ¼ 0 and
dz ¼ 0 determine a closed loop on the kz ¼ 0 plane. At the

same time, dyðkx; ky; 0Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

6 −m2
4

q
has solutions that

are symmetric about ky ¼ 0. Since dyðkx; 0; 0Þ ¼ 0, the
solutions do not cross the ky ¼ 0 line if m4;6 are constants.
Therefore, the solutions must be two lines, which make
four crossings in total with the solution to dz ¼ 0. However,
let us recall that all mass terms can also contain a linear
function in kx, so it is possible that m6 −m4 vanishes for a

particular kx. At that kc, the solution to dy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

6−m2
4

q
¼ 0

is satisfied at ky ¼ 0. If the point ðkc; 0; 0Þ is inside the loop
that solves dzðkx; ky; 0Þ ¼ 0, then there must be an odd

number of crossings of dy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

6 −m2
4

q
and dz ¼ 0.

We can also understand the pairs of Weyl nodes that
are away from the kz ¼ 0 plane. Consider a coexistence of
both m4 and m5 terms. The dispersion is given by

EðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdx �m4Þ2 þ ðdy �m5Þ2 þ d2z

q
: ðA14Þ

Solving EðkÞ ¼ 0 is equivalent to solving

dz ¼ 0;

dx ¼ �m4;

dy ¼ �m5: ðA15Þ

The last two equations together give

k2z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
vm4=λ

p
; ðA16Þ

k2y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m4λ=v

p
; ðA17Þ

where dx ≡ ukykz, m5 ≡ λkz, and dy ≡ vky.
When vm4λ < 0, there is no solution. When vm4λ < 0,

there are four sets of solutions for ðky; kzÞ. We can
substitute them into dz ¼ 0 to obtain the four Weyl nodes
observed in our simulation. When m4 is small, the four
Weyl nodes are close to the crossing point of the nodal ring
and the kz ¼ 0 plane.
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We summarize the roles played by different mass terms:
m1;2 terms split the nodal ring into two nondegenerate
rings. With the m1 (m2) term alone, the ring is the crossing
of two bands with the same (opposite) mirror eigenvalues.
m3;5 terms gap the nodal ring except at ky ¼ kz ¼ 0. The
m4 term alone or coexisting with the m3 term fully gaps
the ring. The m4 term coexisting with m5 produces four
Weyl nodes away from the kz ¼ 0 plane. The m6 term
creates a pair of Weyl nodes on the kz ¼ 0 plane, symmetric
about ky ¼ 0.
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