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Abstract

The first direct measuvrement of the rate of spin diffusion through a homogeneous
sample was performed as an incoherent NMR scattering experiment. The experiment
consists of a combination of pulsed gradient spin echo methods with multiple pulse /
pulsed gradient spatial encoding methods. The NMR scattering experiment involves
the creation of an initial spatial magnetization grating, a period of spin evolution
including the displacement of spin magnetization, followed by the detection of the
residual magnetization grating. The essence of NMR scattering measurements is to
record the extent of microscopic motion of spin magnetization through a sample by
directly observing amplitude and phase changes of a well defined spin magnetization
grating. The spin diffusion measurement records the rate of destruction of a magneti-
zation grating by the random offset of spin magnetization associated with the flip-flop
term of the homonuclear dipole-dipole interaction.

Sit ce the microscopic motion driven by dipolar coupling is very slow, only fine
mzgnetization gratings are sensitive to the small spatial offsets. Strong pulsed mag-
netic field gradient techniques were developed for these studies which generate switched
gradients with strengths up to 103T/m (a factor of 100 stronger than those commer-
ciaily available, and a factor of 25 stronger than the highest previously reported).
These gradients are able to create a spatial magnetization grating with a pitch of
from 1um to 1nm for solid state NMR scattering experiments. Gradients on the
order of 2007/m were applied in the spin diffusion measurement experiment. For
single crystal CaF;, the measured parallel components of the spin diffusion rates are
7.1 x 107%cm?/s along the [0,0,1] direction and 5.3 x 10~'2cm?/s along the [1,1,1]
direction, in good agreement with theoretical predictions.

Additional work has been done on flow measurement. A noval approach is intro-
duced to measuring flow velocities using a probe with a spatially varying RF field,
and without using other magnetic field gradients. The velocities of the spins are
measured as a modulation of the NMR signal from the translat.on of a spatial mag-
netization grating through a detection coil with a spatially periodic field profile. Since
the same coil can be employed to create the initial magnetization grating, the overall
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measurement is as simple as recording the signal modulation frequency following a
single excitation pulse. The design principles are discussed for a probe that has a
spatially periodic field constructed from a series of lumped element m-circuits. Spa-
tial modulation of the amplitude or the phase of the RF field can easily be achieved,
and either of these may be used to characterize a flow field. Examples are shown of
measurements of pipe flow using a probe with an amplitude modulated RF field.

Thesis Supervisor: David G. Cory
Title: Associate Professor of Nuclear Engineering
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Chapter 1

Introduction

Spin diffusion was one of the earliest concepts in NMR of solids having been put forth
by Bloembergen in 1949 to account for the unexpectedly rapid spin lattice relaxation
found in solids [1]. Since then it has been of considerable theoretical and experimental
interest, and yet to date there has been no direct measurement of the spin diffusion
rate in a homogeneous solid. This study is the first reported instance of such a
measurement.

The exploration of spin diffusion in a single crystal is appealing since the spin
Hamiltonian is well known, the initial conditions are well defined, and the dynamics
are kinematically simple. The homonuclear dipolar Hamiltonian contains the well-
known “flip-flop” term, I.I_ + I_I,, which permits energy conserving two-spin flips
of anti-parallel aligned spins, and these two spin flips act as a means of transporting
spin magnetization through the lattice. In Bloembergen’s original analysis the trans-
port is to relaxation sinks created by the fluctuating magnetic fields of paramagnetic
impurities. The reduced bulk spin lattice relaxation time is then controlled by the
spin diffusion mediated transport of magnetization to the sinks. A clear indication
that spin diffusion does indeed govern the bulk relaxation rate is seen from the an-
gular dependence of T} in cubic crystals [2, 3]. In the absence of spin diffusion the
T of a cubic lattice is isotropic; the observed anisotropies arise from the angular
dependence of the dipolar interaction on which the diffusion rate depends.

Since the two spin flip-flop process appears as an elementary step in a random
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walk, the long time, large lattice behavior follows a diffusion law, and in the con-
tinuum limit, the overall transport of magnetization is Gaussian. For the case of a
sinusoidal magnetization grating, Redfield [4] connected the spin diffusion constant
to the lineshape moments, and later, Redfield and Yu [5, 6] explicitely worked out
the form for spin diffusion constant from moment method. Other groups also inves-
tigated this problem using different approaches. Among them, Lowe and Gade [7, 8]
derived a diffusion equation from density matrix approach, Borkmans and Walgraef
[9] obtained a similiar equation based on irreversible statistical mechanics, and re-
cently, Tang and Waugh [10] computed the diffusion coefficients from classical spin
dynamics.

Of course, the short time behavior of the flip-flop process is unitary and a mark of
the isolation of the spin system is that even over long times and for processes involving
many spins, spin diffusion is reversible, as shown by Waugh and coworkers [11]. In
systems that may be described as a small cluster of spins, the unitary behavior is
very pronounced [12, 13}, and the diffusion analogy is not applicable.

The archetype measurement of spin diffusion involves the creation of a non-
uniform magnetization profile throughout the sample and then measuring its rate
of returning to spatial uniformity. The experimental challenges are: 1) to create a
spatially varying magnetization that has a characteristic length scale shorter than,
or on the order of, the root mean square displacement during T} (Azym, = v2DTj,
where D ~ 10~'2cm?/s); and 2) to create this profile over an area that has a uniform
spin Hamiltonian. Prior to this study, there has been no successful measurement of
spin diffusion rates in a homogeneous solid.

In this work, the measurement of spin diffusion was performed as an incoherent
NMR scattering experiment. The essence of NMR scattering measurements is to
record the extent of microscopic transport of spin magnetization through a sample
by directly observing amplitude and phase changes of a well defined spin magneti-
zation grating. As is well known from coherent approaches to magnetic resonance
imaging, the linear increasing rate of spin precession in a magnetic field gradient

creates a spatial grating of the transverse nuclear spin magnetization. The grating
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is a spatially periodic modulatien of the phase of the magnetization since over time
each precessing spin picks up a phase factor of e"'"QBB-“‘, where 7 is the gyromagnetic
ratio, and %‘:& is the gradient strength. This grating is a linear ramp of the transverse
magnetization’s relative phase and the spatial period defines a wavenumber, k, that
in the simplest case is proportional to the first moment of the gradient waveform. In
an NMR scattering experiment, such a magnetization grating is created, followed by
an interval of magnetization translation, and then the resultant changes in the grat-
ing are recorded. To date, NMR scattering measurements have relied on molecular
diffusion to carry the spin magnetization through the sample. The new measurement
is the first instance of a scattering measurement in a well defined sample where spin
diffusion is responsible for the transport of the magnetization. Fischer, Kimmich
and Fatkulin [14] have recently observed a contribution to magnetization diffusion in
polymer melts that is attributed to spin diffusion.

In the case of a solid sample with strong homonuclear dipolar couplings, the mea-
surement must be carried out in such a fashion as to account for both the short
spin-spin relaxation time, and to suspend spin diffusion during the preparation of
the magnetization grating. A similar requirement is encountered in solid state imag-
ing [15] where a combination of multipie pulse coherent averaging interspersed \r;rith
pulsed magnetic field gradients [16] has been employed to interrupt the dipolar evolu-
tion during the creation of magnetization gratings. In this experiment a magic echo
sequence [11, 17, 18] is used to periodically refocus the evolution from dipolar cou-
pling and since spin diffusion is also driven by dipolar coupling there is no net spin
diffusion during the creation of the grating. The experimental ability ‘o suppress spin
diffusion during the creation of the grating makes the analysis of the diffusion data
very simple and is analogous to being in the “delta gradient pulse” limit for pulsed
gradient diffusion measurements in liquids.

The effectiveness of using a magic echo sequence to lengthen the decay of the
transverse magnetization depends both on the sample purity and on the experimental
conditions. The instrumentational factors, such as RF phase transients, finite RF

field strengths, and the impurities of RF frequencies, are unavoidable and affect the
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performance of the pulse sequence. In practice, there is a limited time during which
to apply magnetic field gradient. Tc create a magnetization grating with a pitch of
from 1um to 1nm for solid state NMR scattering studies, pulsed gradients on the
order of 10°T/m to 10T /m are necessary.

Strong pulsed magnetic field gradient techniques were developed for these studies
which generate switched gradients with strengths up to 103T/m (a factor of 100
stronger than those commercially available, and a factor of 25 stronger than the
highest previously reported). Meanwhile, small sample sizes, large pulsed currents,
coil heating, strong Lorentz forces and torques dramatically increased the difficulties
of the experiment.

The order of this thesis is the following: Chapter 1 is the introduction; Chapter
2 reviews spin diffusion theories and previous experiments; Chapter 3 describes the
proposed new approach of spin diffusion measurement by NMR incoherent scattering
method; Chapter 4 covers strong pulsed magnetic field gradient probe design; Chapter
9 describes a home-built NMR Spectrometer, provides the detailed pulse sequence
for spin diffusion measurement, and provides and discusses the experimental results;
Chapter 6 is the conclusion and also discusses future studijes of high resolution NMR
scattering. Chapter 7 is an independent chapter of additional work which describes
a noval approach of measuring flow velocities via spatially varying RF fields and
Provides a unique way of designing amplitude modulated and phase modulated NMR,

probes.
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Chapter 2

Review of Spin Diffusion: Theories

and Experiments

2.1 Review of Spin Diffusion Theories

2.1.1 Dipole-Dipole Interaction

Spin diffusion was first invoked by Bloembergen [1] in 1949 to account for the unex-
pectedly rapid spin lattice relaxation found in solids. To understand this concept, it is
necessary to briefly review the dipole-dipole interaction, which describes the coupling
between two nearby magnetic moments. In the quantum mechanical treatment, the

two-spin dipole-dipole interaction Hamiltonian is written as,

Hy = 71:§h2 {Il Ip = 3——(Il . rlglz L) }, (2.1)
where v, and v, are the gyromagnetic ratios of two nuclei with angular momentum I,
and I, respectively, and r is a position vector connecting them. By decomposing I, I,
and r into their x, y, z components, realizing that I, = (e +12)/2, I, = (I+—1.)/24,
z/r = sinfcos¢, y/r = sinBsing, z/r = cosh, and summing over all spins, the

dipolar interaction Hamiltonian for the entire spin system can be written in a more
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meaningful form,

I L
Hd_Z—T—s—(A+B+C+D+E+F), (2.2)
i>j ij
where

A = I;.1;,(1 - 3cos? 6;;), (2.3)
B= _%(1.,,1,-_ + L_I;,)(1 - 3cos?y,), (2.4)
C= —g(li+l"’ + I.'sz+) sin 20.-,-e"¢"", (25)
D = -:'j'(li-ljz + I.',Ij_) sin 20.':;6“’“, (26)

3 <20 -2igi;
E = -3 i+ 14 sin® 0;;e~ %, (2.7)

3 .2 2idi;
F= —ZI.'_IJ'_ sin 0.','8 7, (28)

The physical meaning of these terms can be understood through state transitions.
Among them, term A causes no transition, term C flips one spin up and term D flips
one spin down, similiarly, term E flips two spins up and term F flips two spins down.
Of all the six terms, the one of most interest here is term B, which simultaneously
flips one spin up and another spin down. If the two nuclei are identical, this flip-flop
process is energy conserving. Given an initially non-uniform spatial distribution of
spin polarization in an otherwise homogeneous system, the flip-flop term will drive a
diffusive process which will return the system to a spatially uniform spin magnetiza-
tion. In the long time large distance regime, this process follows a diffusion equation
and is referred as Spin Diffusion. In the spin diffusion case, only spin coherence is
transfered, and the spin itself remains physically fixed. In the next few subsections,
various theories and methods to derive the spin diffusion equation and to calculate

the spin diffusion coefficients are reviewed.
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2.1.2 Bloembergen’s Original Analysis of Spin Diffusion

In experiments with ionic crystals (diamagnetic insulators), such as CaF;, Bloem-
bergen (1] found that the measured spin lattice relaxation times are several orders
faster than that expected from conventional theory of relaxation where time varia-
tions in local fields caused by lattice vibrations were regarded as the major relaxation
mechanism. To resolve this discrepancy, Bloembergen suggested that paramagnetic
impurities present in these crystals play a predominant role in the relaxation pro-
cess, since each paramagnetic impurity generates fluctuating magnetic fields which
provide a wide energy spectrum, the spins nearby are efficiently relaxed. The con-
centration of paramagnetic impurities is however dilute, and most nuclear spins are
far from the “relaxation center”. Bloembergen then suggested that the energy con-
cerving “flip-flop” process, driven by term B of the dipolar interaction Hamiltonian,
serves as a mechanism to transfer the polarizations of remote spins to those spins
near paramagnetic impurities. The following simple argument, which basically fol-
lowed Bloembergen's original derivation, but was made clearer in Abragam’s treatise
(19], shows why this process follows a diffusion equation.

We will consider a simple cubic lattice of spin % nuclei, with nearest spin distance
a and limit the dynamics to mutual flips between only nearest neighbor spins. With
p+ and p_ giving the probabilities of spin up and spin down and W the probability

of a transition, then, the dynamics are governed by the coupled differential equation,

apgfx) = W{p-(2)lps+ (< +a) + p+(z - a)] - p4(@)[p-(z + @) + p_(z — a)}}, (29)
and,
ap—ét(z) = W{p.(@)ip-(z +0) +p_(z ~ a)] = p-(2)[p+(z + 0) + P+ (z ~ @)]}. (2110)

These may be rewritten in terms of the spin polarization (p = p; — p_) as,

apa(f) = 2W {p_(2)lp+(z + a) + p+(z - a)] - p+(z)[p-(z + &) +p_(z - a)]}. (2.11)
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Since p; +p- =1, and p; = (1 + p)/2, p- = (1 — p)/2, then,

a—%(ti)- = Wp(z + a) + p(z — a) — 2p(z)]. (2.12)

It has been argued that it is reasonable to assume that p(z) varies slowly at

the length scales of a (a few A), so that (2.12) can be approximated by a diffusion

equation:
2p 20°p
E =Wa @, (213)

where the diffusion constant is given by,

D=Wa~ -2 (2.14)
5073

For single crystal CaF;, a =~ 2.7 x 10~8cm, T, & 1055, the diffusion constant was
estimated to be on the order of 10~'2cm?/s.

Such an analysis can be extended to a three dimensional form, however, in doing
so, caution must be exercised since the anisotropies of W result in a diffusion tensor,

not an isotropic diffusion constant.

2.1.3 Redfield and Yu’s Calculation of Diffusion Coefficients
from the Moment Method

In 1959, Redfield (4] outlined a procedure to evaluate the spin diffusion coefficients
from moment calculation, and later, Redfield and Yu [5, 6] demonstrated explicitly
their moment method. They argued that the decay of a spatially sinusoidally varying
magnetization can not be exponential at the very beginning since the first derivative of
the decay function should initially be zero. However, after a short time T} (T; << T,
where 7 is the decay constant), the decay can be exponential. Thus, the Fourier
transform of this decay function should be nearly Lorentzian, except for w > TJ-".

Following this argument, they guessed a form of the Fourier transform of the decay
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function,
27 /m
1+ w?r?

Aw) = T/—=—9W), (2.15)

where g(w) was introduced to cut off the Lorentzian for w > 7}"'.

Since w?A(w) =~ (2/77)g(w) for w > 771, the second moment becomes,
2 00
My~ = [~ g(w)dw, (2.16)

and likewise,
M, [ wig(w)dw

Jo® 9(w)dw

Since 7! = Dk2, where k is the wavenumber of a spatially sinusoidally varying

(2.17)

magnetization, and D is the diffusion coefficient, by assuming g(w) is Gaussian, they

obtained,

D = (My/K?) (7w My /2M,)'/2. (2.18)

Thus, they reduced the problem cf analyzing the temporal decay of a spatially
sinusoidally varying magnetization to a moment calculation.
Following Van Vleck's moment expressions [20], the 2nth moment can be calcu-

lated as,
Zaa(“’a - wﬁ)zn | Pap |2
Eaﬂ l Pﬂﬂ |2 ’

where P,g is the matrix component of a time-dependent perturbation, and | P,g |? is

A/lgn = (219)

proportional to the transition rate between states a and 3.

By writing the perturbation Hamiltonian as,
P(t) = € cos(wt)sin(kz;)Si., (2.20)

where the summation is over all spins in z direction, and writing the truncated Hamil-

tonian as

1
=3 Y (AuSk+Si- + BuSi:Siz) + Y hyHoSk:, (2.21)
ki k

they worked out an explicit form for the diffusion coefficients of Zeeman energy,
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D., which is the diffusion coefficient of the magnetization. For lattices with pure
dipole-dipole interaction, they further simplified the calculation by assuming that
By >> Ap and thus ignored higher order A, terms. Finally they simplified the
lattice summation, while introducing some errors, by allowing the sum over identical
spins. The final estimate they obatined for the diffusion coeffcient of Zeeman energy

in a lattice with dipolar coupling is,

_ 2SS+ 1) E, 74 AL

1)
T AR < At > T

(2.22)

where < Aw? > is the Van Vleck second moment of the resonance lineshape.
It is noted that the assumption of By >> Ay is not strictly true in the dipole-
dipole case. As shown in (2.3) and (2.4), By, in (2.21) is only twice as large as Ay,.

2.1.4 Tang and Waugh'’s Calculation of Spin Diffusion Coef-

ficients from Classical Spin Dynamics

In addition to the original analysis by Bloembergen and the moment method by
Redfield and Yu, there are three other calculations of particular note. Lowe and
Gade (7, 8] derived the spin diffusion equation using a density matrix approach,
and evaluated the average diffusion coefficients for a simple cubic lattice with the
external field along the [100], [110], and [1,1,1] axes. Borkmans and Walgraef [9]
derived the diffusion equation from irreversible statistical mechanics, and explicitly
calculated the Dy, D,, and D.y; with the external field along the [100], [110], and
[111] axes of single crystal CaF;, where D), D, are the components of spin diffusion
cocfficients for diffusion parallel or perpendicular to the external field, and D,/ is the
average diffusion coefficient. Apart from above methods, Morita [21] used a “memory
function” method analyzing the spin diffusion in Heisenberg magnets.

Recently, Tang and Waugh [10] chose to investigate this subject from a classical
approach. They considered each spin j in a lattice as a classical gyromagnet, with

a magnetic momentum m; which experiences a local field B, arising from all its
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neighbors,

B, =Y B (2.23)
k#j

The truncated dipolar field from like spins is
- 20.
B; = —u-(?s—%k-(mxﬂ + myj — 2mz,,k). (2.24)
2rik
By specifying the initial condition of a sinusoidally varying magnetization, and
using the classical equation
dm,

—d—t" = ym; X Bj, (225)

they were able to follow the evolution of the spatially varying magnetization via
computer simulations. Their simulation showed that the process did follow a diffusion
course, and the diffusion coefficients of both the Zeeman energy and the spin-spin
energy were calculated for a single crystal CaF; at various crystal orientations. All

of their results yield the same order of magnitude in the classical many spin limit.

2.2 Previous Spin Diffusion Measurements

The archetype measurement of spin diffusion involves the creation of a non-uniform
magnetization profile throughout the sample and then measuring its rate of returning
to spatial uniformity. So far, nearly all approaches to creating a spatially varying
magnetization profile have involved the use of chemically heterogeneous samples, ei-
ther based on the morphology of semicrystalline polymers [22], diffusion in melts
(14], diffusion in blends [23, 24, or exploring small spin systems [25|. While these
measurements are useful to characterize the morphology of the sample, most have
little relationship to theoretical studies since the spectral difference that permitted
the creation of the magnetization profile complicates the analysis by introducing a
spin-diffusion bottle neck where the flip-flop term is no longer energy conserving.
1

single crystal CaF;,, in which the !°F nuclei have spin 2 and compose a simple

cubic lattice, is the one of most interest in rigid solid spin diffusion studies because
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of its simple structure and pure dipole-dipole interactions. However, the extremely
slow diffusion rates (predicted to be on the order of 10~'2cm?/s or 10~'3¢m?/s) have
brought tremendous difficulties for a quantitative measurement. Researchers had to
attack the problem indirectly by studying the spin lattice relaxation in crystals with
paramagnetic impurities. It was shown by Blumberg [26] that, when impurities are
far apart from each other, which is the diffusion limited relaxation case, for times very
short compared to T}, the relaxation due to interactions with impurities dominates
and the magnetization recovery after saturation has a t!/? behavior whose factor can
be subtracted and be relatad to the diffusion coefficients. Later, Leppelmeier and
Jeener [3] made a measurement of the diffusion coefficients in CaF; doped with U3+
based on this theory. Their measurements of the effective diffusion coefficient with
the external field along [100] direction agreed with theoretical predictions, but that
with the external field along [111] direction was an order magnitude smaller than
theoretical predictions.

This approach, which relied upon paramagnetic impurities, is however complicated
by the “diffusion barriers” which exist immediately surrounding the impurities. The
energy mismatch in this area prohibited energy conserving mutual spin flips. In
addition, the t'/2 behavior only provides a factor which is indirectly related to the
diffusion coefficients, and the ¢'/2 domain is so small that it is barely distinguishable
from the ¢t behavior. Therefore the accuracy of this method is quite limited.

Kuhns, Hammel, Gonen and Waugh [27] attempted to carry out a direct mea-
surement of spin diffusion in CaeF;, through a series of low temperature experiments
of relaxation in a single crystal whose surface was efficiently relaxed through contact
with a 3He bath. The experiment was designed to measure the return to thermal equi-
librium of a sample that was initially saturated, with special attention paid to the
long time behavior so that surface effects would not be important. Unfortunately,
the bulk '*F relaxation time was unexpectedly fast preventing the long time scale
necessary for the measurement.

Prior to the results presented here, there has been no direct measurement of the

spin diffusion rates in a homogeneous solid.
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Chapter 3

Proposed Measurement of Spin

Diffusion Rates in a Homogeneous
Solid via NMR Incoherent

Scattering Experiment

In this study, it is chosen to approach a measurement of spin diffusion as an incoherent
NMR scattering experiment. To describe this, it is necessary to introduce the concept

of magnetization grating, which plays a central role in NMR scattering experiments.

3.1 The Concept of Magnetization Grating

A magnetization grating is a spatially periodic modulation of the amplitude or phase
of the magnetization in a2 sample. This is generally achieved by the application of RF
pulses and magnetic field gradients.

In a typical NMR experiment, the sample is subjected to a strong external mag-

netic field B = ByZ, and, at equillibrium, a nuclear magnetization is induced,
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where X is the static nuclear susceptibility of the sample.
A 90° RF pulse nutates the equilibrium magnetization into a plane perpendicular
to the z-axis (which is thus called the transverse plane), then the magnetization in

the transverse plane will precess around the z-axis according to,

d—dl\-t/[— =M x B, (3.2)

where v is the gyromagnetic ratio of the nuclei. The angular frequency of this pre-
cession is characterized by,

W = —"YBo. (33)
In the presence of a magnetic field gradient,

0B,. O0B,_ 0B, _
G= 6:1:I+ ayy+ Fd (3.4)

the precession frequency is modified as,
wo(r) = —v(Bo+ G - 1). (3.5)

For a pulsed gradient time period, é, the transverse magnetization gains a linear
phase ramp from the gradient evolution, e~***, where k = 7yG4d. The spatially mod-
ulated magnetization is then called a magnetization grating, and k is the wavevector

of the grating.

3.2 The Creation of a Magnetization Grating in

. Rigid Solids

A magnetization grating can easily be created in liquids by simply applying a magnetic
field gradient when the magnetization is in the transverse plane. Since the dipolar
interactions are averaged out due to the physical motions of spins, the resonance lines

are sharp and the spin-spin relaxation times (T3) are sufficiently long to allow fine
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gratings to be prepared.

In rigid solids, however, the dipolar interaction dominates the spin-spin relaxation
process. T for these materials are very short, for instance, for single crystal CaF3,
T; is on the order of 10us. The transverse magnetization will thus lose its phase
ccherence very quickly.

A varity of techniques have been developed to overcome the strong dipole-dipole
interactions in solids, usually by performing coherent averaging either in the spin
space or in the coordinate space.

Since the creation of a necessarily fine magnetization grating is a prerequisite
for solid state NMR scattering experiments, and coherent averaging techniques are
indispensable for the creation of such a grating, it is worthwhile to discuss one such
technique in detail. A magnetization grating can be created by combining coherent
averaging with gradient pulses.

Rhim, Pines and Waugh [11] developed the magic echo sequence which, ideally, can
completely refocus the spin evolution due to dipole-dipole interactions. Basically, this
is achieved by realizing that, under a strong RF irradiation, the dipolar interaction
Hamiltonian gains a negative sign. To show this, consider the Hamiltonian of a spin

system under a strong RF irradiation,
H = H, + H, + Hy, (36)

where

Hy = —vhB, Z I;; = huwel, (3.7)

is the Zeeman Hamiltonian with I, = ¥, I;, and wy = —vB,, and,
H, = —2vhB, cos(wt) Y _ I;z = 2hw) cos(wt)I, (3.8)

is the Hamiltonian due to the RF irradiation with I, = ¥, I;; and w, = —yB,, and

H, is the dipolar interaction Hamiltonian expressed as (2.2).

25



The evolution of the spin system is subjected to the Schrodinger equation,

LAY

By transforming to a frame rotating around the z-axis with an angular frequency

w (which is thus called the rotating frame), that is, by performing,

¥ = UrYr, (3.10)

where
Up = e "t (3.11)

then,

L d

zh% = Hryr, (3.12)

where

dUg

Hp = {Uz'HURg - ihUR! (3.13)

il

+24t introduce fast oscillations. In NMR experi-

All terms containing e*** or e
ments, the RF frequency is on the order of a few hundred M Hz, and the detected
NMR signal in the rotating frame is at the audio frequency range (kHz). Therefore,
the effect of the fast oscillations will be averaged out, and it is justified to write a
truncated Hamiltonian as,

Hp = H® + HY, (3.14)

where

Hf = h(wo — w)I, + hun I, (3.15)
is the Hamiltonian due to the effective field, and,

72h? (1 — 3cos? 6;;)

0 _
H, = 2

t>j

3 (3.1 - L - L), (3.16)
ij

is the truncated dipolar interaction Hamiltonian.

A second coordinate transformation can be done so that the effective field is along
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the z-axis of the new coordinate (called the tilted rotating frame). This is achieved

by a unitary transformation,

Yr = Ur¥re, (3.17)
where
Ur = eflv, (3.18)
with
B = cos™! Yo~ w’ (3.19)
We
and
we = /(wo — w)? + wi. (3.20)
(3.12) then becomes,
L d
ih 'f;:ﬂ = HTR¢TR- (321)

Since Ur is not a function of time, Hrp is expressed as,
Hrgr = U;IHRUT. (3.22)

When the effective field is much larger than the dipolar coupling strength, the
dipolar interaction Hamiltonian will be truncated again in the tilted rotating frame,

and it is easy to show,

3cos’f -1
Boor 0= D,

Hrgr = hw.l, + 5

(3.23)

where HJ is the truncated dipolar Hamiltonian in the rotating frame expressed hy
(3.16). |

Thus, the dipole-dipole interaction Hamiltonian has obtained an additional factor
(3cos? 3 — 1)/2 due to the strong RF irradiation. When cos™'(1/V3) < 8 < 7 —
cos~'(1/+/3), this factor is negative. By designing an appropriate pulse sequence, the
evolution due to the dipolar interaction can be reversed, and an echo called magic

echo is obtained. This technique is therefore referred as a time reversal technique by
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Figure 3-1: A magic echo sequence with pulsed magnetic field gradients added to
create a spatial spin magnetization grating in rigid solids, The first 903 pulse performs
the coordinate transformation from the rotating frame into the tilted rotating frame.
The second 907 pulse can be taken as the combination of a 902, pulse and a 180 pulse,
where the 90‘1,, pulse performs the coordinate transformation from the tilted rotating
frame back into the rotating frame, and the 1802 pulse refocuses any evolution due
to chemical shifts, static field inhomogeneities and susceptibilities. The evolution due
to gradient pulses is kept since the sign of the second gradient pulse is intentionally
inverted. The phases of the RF irradiations are also alternated for the same period
of time to cancel out any RF field inhomogeneity.

Rhim, Pines and Waugh [11].

It is straightforward tc combine this technique with pulsed gradients to create a
magnetization grating in rigid solids. An example of this is shown in Figure 3-1, where
B is chosen to be /2 (for on-resonance irradiation), so that (3 cos? 8 — 1) /2 =-1/2,
and a RF irradiation period twice as long as that without RF irradiation is used
to exactly refocus the dipolar evolution. By alternating the phases of RF irradia-
tion and incorporating an effective 1803 pulse (explained in the figure caption), the
pulse sequence shown in Figure 3-1 has the added advantages of avoiding RF inhomo-
geneities and refocusing evolutions due to chemical shifts, static field inhomogeneities
and susceptibilities.

A train of magic echo sequences with pulsed gradients can be applied to create a

fine magnetization grating in solids. However, the effectiveness of using a magic echo
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train to lengthen the decay of the transverse magnetization depends both on the sam-
ple purity and on the experimental conditions. The instrumentational factors, such
as RF phase transients, finite RF field strengths, and the impurities of RF frequen-
cies, are unavoidable and affect the performance of the pulse sequence. In practice,
there is a limited time during which to apply magnetic field gradient. Generally, to
create a magnetization grating with a pitch of from 1um to 1nm for solid state NMR
scattering studies, pulsed gradients on the order of 102T/m to 103T/m are necessary.
The design of strong pulsed magnetic field gradient probes will be covered in the next

chapter.

3.3 NMR Incoherent Scattering Measurement of
Spin Diffusion Rates in a Homogeneous Solid

The NMR scattering experiment involves the creation of an initial spatial magnetiza-
tion grating, a period of spin evolution including the displacement of spin magnetiza-
tion, followed by the detection of the residual magnetization grating. The essence of
NMR scattering measurements is to record the extent of microscopic motion of spin
magnetization through a sample by directly observing amplitude and phase changes
of a well defined spin magnetization grating.

Consider the spin density distribution and the linear phase ramp created by the

application of a magnetic field gradient, the magnetization is,
M(r) = p(r)e"™", (3:24)

where p(r) is the spin density.
The displacement of the spin magnetization may be described by a displacement
probability P(Ar,t), so that the final magnetization is the convolution of the original

magnetization with P(Ar,t),
M(r,t) = [p(r)e™™"] ® P(r, ). (3.25)
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Since the NMR signal is the integral of the spin magnetization over the entire
sample volume, to measure the amplitude and phase of the k-component of the resid-
ual magnetization grating, a second interval of spin precession in the magnetic field

gradient is required to unwind the phase ramp, and the resultant signal is,

St = [{loxe ") @ P(r,t)}e™"dr
= p(0)P(k,t), (3.26)

where 5(0) is the zero-frequency component of the Fourier transform of the spin
density p(r), which is equivalent to the integral of spin density over the entire sample
volume, and P(k, t) is the k-component of the Fourier transform of the displacement
probability.

From (3.26), it is seen that the NMR scattering signal is a direct measurement
of a selected Fourier component of the displacement probability. Since the signal is
derived from all spins in the sample, the S/N of the scattering measurement is not
related to the resolution.

To date, NMR scattering measurements have relied on molecular diffusion to
carry the spin magnetization through the sample. The new measurement is the first
instance of a scattering measurement in a well defined sample where spin diffusion is
responsible for the transport of the magnetization.

The spin diffusion measurement records the rate of destruction of a magnetization
grating by the random offset of spin magnetization associated with the flip-flop term
of the homonuclear dipole-dipole interaction. Here, consider a one-dimensional M,

grating along the z-axis, with a form of,
M, (z) = p(z) cos(kz), (3.27)

where k is the wavenumber of the grating.

In the long time/many spin limit of spin diffusion, a Gaussian displacement prob-
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ability is expected,

P(z,t) = - —e~ /4Dyt (3.28)
41I'D||t

where D) is the component of spin diffusion coefficient parallel to the z-axis, which

is the direction of the external magnetic field. Therefore the magnetization grating

is blurred by the random moticn of the spin magnetization,
M,(z,t) = [p(2) cos(kz)] ® P(z,t), (3.29)

and the resultant signal is,

() = [{lo(z)cos(kz)] ® P(z,t)}e*dz
= 513(0) + A(2k)]e2r (3.30)
Since the grating wavenumber k is several orders magnitude larger than the sample
bandwidth, 5(2k) = 0, the signal is still only a function of e~**Piit, the k-component

of the Fourier transform of the displacement probability, which provides a direct

measurement of the parallel component of the spin diffusion coefficient, D;.
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Chapter 4

Strong Pulsed Magnetic Field
Gradient NMR Probe Design

4.1 Background

Magnetic field gradients are widely employed in NMR [28] for imaging, diffusion
stadies, coherent pathway selection, solvent suppression, and with sufficiently strong
gradients they can be used to explore the structure and dynamics of dipolarly coupled
spins via high resolution NMR scattering experiments.

Large static magnetic field gradients are well known in NMR experiments with
the gradients originating either from the fringe fields of large magnets or from the
magnetic properties of the sample itself. Genack and Redfield [29, 30] studied the
dipolar energy dissipation and nuclear spin diffusion under static gradients of more
than 10°T/m by looking near the surface of a type II superconductor. Samoilenko et
al [31] used the stray field of 307/m near the end of a superconducting solenoid for
subsurface imaging of solids. Kimmich et al [32] used the fringe fields of 10T'/m and
42T /m of superconducting magnets for measuring small self-diffusion coefficients,
including studies [14] with fringe fields of 32T/m and 60T/m where spin diffusion
was observed in melts of entangled polymers. Using force detection, Ziiger et al [33]
recorded three-dimensional images of an ammonium nitrate sample with a gradient of

22007 /m generated by a small nearby magnetic particle, and Schaff and Veeman [34]
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have also used force detection with a gradient of 5007 /m generated with a somewhat
larger magnetic particle. While static gradients have the advantages of high strength,
excellent stability and no heating, they are difficult to combine with multiple pulse
coherent averaging, since the offset dependence of such methods complicates the cre-
ation of a spatially uniform grating. For these applications, pulsed gradients have an
advantage since it is known how to combine them with multiple pulse cycles while
avoiding offset variations 16, 18, 35]. Unfortunately, pulsed gradients are generally
much weaker than static gradients.

Pulsed magnetic field gradients are routinely used in spatial NMR experiments
and various designs are well known, including Stejskal and Tanner’s design of a pulsed
Maxwell pair at 1T/m for diffusion studies {36, 37], Karlicek and Lowe’s quadrupole
gradient set of 167/m for diffusion measurements in samples with small diffusion
coefficients [38]. For microscopy studies, pulsed gradients on the order of 10T /m are
widely used [28, 39]. For solid state scattering experiments, however, much stronger
gradients are required.

The essence of NMR scattering is to record the extent or variance of microscopic
displacement of spin coherence by directly observing the amplitude and phase changes
of a well defined spin magnetization grating. In solid state scattering experiments,
the spin magnetization displacement is driven by the dipole-dipole interaction. The
process is very slow, and in the case of a 'H or '°F rich rigid solid, the spin diffusion
coefficient, D, is of order 10~*m?/s or 10~3um?/s. To be able to detect these small
spatial offsets, the characteristic length scale of the magnetization grating has to be
shorter than, or on the order of, the root mean square displacement during the spin
lattice relaxation time (Az,n,, = 2DT). The pitch of a magnetization grating is
inversely proportional to the first moment of the gradient waveform. With a gradient
of 100T'/m, a total time of ~ 25ms is needed to create a magnetization grating with
a pitch of 10nm. The gradient pulse width, however, is limited in solid state NMR
experiments by the size of windows in multiple pulse cycles. Generally, to create a
magnetization grating with a pitch of from 1um to 1nm for solid state NMR scattering

studies, pulsed gradients on the order of 102T/m to 103T/m are necessary.
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4.2 Gradient Coil Design

Typically 8B, /02 gradient coils have one of two symmetries, a Maxwell pair [37], or
a quadrupole [38], and the general features have been described by Suits and Wilken
(40}. For the designs used here the Maxwell pair geometry is prefered since it is easier
to construct at very small dimensions, and good gradient profiles are obtained with
very few turns.

A Maxwell pair consists of a set of circular loops with currents of equal amplitudes
but opposite directions, and it generates magnetic field gradients symmetric about the
mid-plane and about the central axis. To derive a convenient formula to calculating

this, it is necessary to start from the Biot-Savart Law, which says,

Ids x R
Br) =2~ (a1)

where B(r) is the magnetic field at r. The integration path is over a closed current
path C, with Ids the current element, and R the vector from the current element to
position r. p is the permeability of the sample and has a value of 47 X 10-7N/A? in
free space.

Consider a pair of current loop with current of I and —I, centered at (0,0, 20) and

(0,0, —20), with radii of ro, as shown in Figure 4-1, it is easy to show that,

r' = ro(cos¢'Z + sin v'%), (4.2)

ds = dr' = rody'(—sin @'z + cos @'Y, (4.3)

R = (rcos¢ — roco8 ¢')E + (rsing — rosin ¢ )j+ (z — 20)Z, (4.4)

ds x R = rody'{(z — 20)(cos P'T +sing'y) + [ro — 7 cos(¥’ — $)]z}- (4.5)

Notice that cnly the Z component is of interest here, and due to the cylindrical

symmetry, it is only necessary to consider the case of ¢ = 0, thus, the Z field from
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Figure 4-1: An illustration of a Maxwell pair of current loops.

loop 1, centered at (0,0, zp), and with a current of I, is,

plrg (ro — rcos ¢')dy’

2n
Ur 2) =
Bz (T’ Z) 4 /0 [r2 + rg - 21'1'0 cos ‘P' + (Zo - 1)2]3/2 .

(4.6)

Now, include the Z field due to loop 2, centered at (0,0, —2zp), and with a current

of —1I, the total Z field becomes,

ﬂlrﬂ 2 ’ ’ 1
B = [ 4y~ reosg).
(r Z) ar Jo "2 (To TCOS<P) {[rz + 1.3 — 2rrocos tp' + (Zo - 2)2]3/2
1
- . 4.
[r2 + 13 — 2rrocos ¢’ + (20 + z)2]3/2} (4.7)
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Then, the magnetic field gradient along Z becomes,

33,(1‘,2) B 3”11.0 2 , ' 20— 2
0z - 4w /o dy'(ro — 7 cos ¢') [r? + 1§ — 2rrgcos ' + (29 — 2)?[5/2
2+ 2
. 4.8
+ [r2+ 718 - 2rrocos ¢’ + (20 + z)2)5/2 } )

(4.8) can be used to calculate the gradient profile and the gradient coil constant
(T/m/A). The gradient at the center of a single turn Maxwell pair is,

128ul

G = (1 + 252D’

(4.9)

where D is the diameter of the coil and § = 229/D. For largest volume of useful linear
gradients § is chosen to be 0.866 since this geometry eliminates the third order as well
as all even order expansion terms in the magnetic field as a function of offset along z
[37, 40]. The average coil constant, G, /I, is inversely proportional to D? for a single
turn Maxwell pair. At small dimensions, large coil constants are easily obtained, for
example, with g ~ 47 x 107" N/A?, if D = lmm, then G, /I = 3.22T/m/A, and 3004
will generate a gradient of ~ 10007 /m.

When higher coil constants and better gradient homogeneity are desired, more
turns and carefully placed multiple wirings are necessary. Suits and Wilken [40]
analyzed the field along the central axis, and found that, for a gradient coil constructed
by double blocks of Maxwell pairs, with Z,, Z; defined as the distance of the first
and second block from the center, respectively, R defined as the radius of the current
loop, and S,/S, defined as the current ratio between the second and the first block,
for the conditions Z, = 0.44R, Z, = 1.19R, S;/S, = 7.47, the third-order, fifth-order,

seventh-order and all even order expansion terms in the magnetic field are eliminated.

4.3 The Temperature Increase

The large pulsed currents required for strong gradients lead to coil heating which in

addition to raising the temperature of the gradient coil, changes its resistance, and
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leads to current decreases when used with a voltage source. The heat dissipation may
also raise the temperature and resistance of the nearby RF coil thereby de-tuning the
resonance circuit. In the following, a simple calculation of coil heating is employed
that assumes there is no heat transfer to the coil form and thus represents a worse
case analysis.

In these experiments a voltage source V' has been used since it is stable, readily
available and inexpensive. The gfadient coil is constructed from copper wire with
a mass of m, and a resistance of R,. Some of the properties of copper at room
temperature are: density p ~ 6.4 x 10°kg/m?3, heat capacity ¢. ~ 4.2 x 102J/kg-°C,
resistivity p, & 1.724 x 10*m, and temperature coefficient of resistivity a =~ 3.93 x
1073/°C. If Lotk the ou-zesistance due to all parts of the circuit other than the
gradient coi!, R,, and the coil resistance, Ry, increase with the same factor, then, the

temperature changes follow the differential equation,

2
{(Ro + R,)[l‘i o(T — Tp)] } Ryl + o(T — To)]dt = myqcdT, (4.10)

which has a solution for the temperature raise from ambient of,

- 2aV2R,At
AT =a {\ll ot Bbmoa. 1}, (4.11)

where At is the total on-time.
For practical coils, 2V2R,At/(R, + Ry)?meq. << a~'(x 254°C), which permits
the simplification to,
V2R, At

AT = 4.12
(Ro + Rg) mg‘lc ( )

(4.12) describes the temperature increase due to heat dissipation in the coil when

the resistance change is not an important contribution. For an n-turn Maxwell

pair (2n turns in total) with an average coil diameter D, wire diameter d, my, ~

nn?pd?D/2, Ry ~ 8nDp,/d?, and assuming that all resistance arises from the coil,
VAL ViAt

AT =~ (47°pp,q.)~" iz 0.055—— D7’ (4.13)
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where S! units are used for all variables. To a good approximation, the temperature
increase is independent of the wire diameter, but is inversely proportional to n? and

D2

4.4 The Ratio of the Grating Wavenumber to the
Coil Temperature Increase

In solid state scattering experiments, large wavenumber gratings are required, how-
ever, the coil temperature increases must be limited. It is useful therefore to consider
the ratio of the grating wavenumber k (k = yGAt, where v is the gyromagnetic ratio,
G is the gradient strength, and At is the gradient pulse length.) to the coil tempera-
ture increase AT as a measure of the coil performance. For the n-turn Maxwell pair
geometry, a general result may be derived for this ratio in the case where the gradient

scales as the square root of the number of turns

822 2000y8n*d?
Fa+ GBSV D . (1+ 252V D’

k
AT 6772pqc

AT (4.14)

where again SI units are used for all variables. The optimal geometry is then small
coils, low source voltages, and large wire diameters with multiple turns. Clearly, there
is the additional requirement that a sufficient volume must be provided to contain a

detectable number of spins.

4.5 Lorentz Forces and Associated Torques

Regardless of the details of the coil design, pulsed currents of more than 1004 are
delivered in a static magnetic field of ~ 10T, resulting in strong Lorentz forces and
their associated torques. There is no net force or torque on a current loop that is
symmetrically arranged in a magnetic field, however, the current paths that connect
to these loops can not all be parallel to the external field and the forces on these must

be sustained. In the design illustrated in figure 4-2, the input and return current paths

38



LA Y
- >

—
N e

11.2mm

.Omm

3.4mm — A

Figure 4-2: A schematic diagram of the gradient set holder. The frame was machined
from G-10, and solidly fixed to the probe body. Two copper blocks are fitted into
the G-10 frame to support the gradient coil. Currents through the probe is provided
by the two copper rods fixed to the copper blocks. The gradient coil is glued to the
frame as well as its leads being soldered to the copper blocks.

are each about 2.5cm long and are perpendicular to an external field of ~ 67. With
a current of 3004, the Lorentz force is ~ 45N. Since the two paths are about 30°
apart, the net force is ~ 23N, and with a distance between the two paths of ~ 8mm
the total torque is ~ 0.35N - m. As an example, consider a single turn gradient
coil constructed from a brass rod, shown in figure 4-3, with an inner diameter of
d; = 1.4mm, an outer diameter of d, = 5.0mm, and a length of [ = 8.8mm, ignoring
any asymmetry in this design, the moment of inertia with respect to the center of the
cylinder is, J = fi’,jz 22p(n[4)(d2 — d?)dz = np(d? - d?)I3/48 ~ 6 - 10~8kg - m?. With

a torque of T = 0.35N - m acting on its body, the initial angular acceleration would
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be 6 = T/J =~ 7- 10°rad/s? (~ lcycle/ms?) if there wasn’t any support!

Any motion of the sample relative to the gradient coil introduces errors in refo-
cusing the spin magnetization grating. A sample size of 500um with a grating of
1nm requires a precision of ~ 1 in 10. Fortunately in solid samples any motions
are of the entire sample relative to the gradient set and hence only a phase shift is
introduced. So while the sample need not be held to within the pitch of the grating,
a robust gradient holder is still necessary and for this work was constructed out of a

fiberglass composite, and is illustrated in figure 4-2.

4.6 Three Gradient Sets

For an optimal coil the gradient strength, temperature increase, k/AT, Lorentz forces
and torques need be considered together. In general, larger numbers of turns improves
the performance for all of these factors. Larger wire diameter d and larger coil diam-
eter D increase the ratio of k/AT, but they also reduce the gradient coil constant, so
some tradeoffs have to be made.

A single turn Maxwell pair gradient coil was designed and machined from a brass
rod and cemented to a fiberglass composite for rigidity. The details of the construction
are illustrated in figure 4-3. This gradient set has a calibrated average coil constant of
~ 0.32T/m/A, a sample diameter of 0.80mm, and a gradient homogeneity of ~ +5%.
Generally, this design has the advantages of a large effective wire diameter, very small
resistance, requiring a low source voltage and not suffering much from coil heating.
The disadvantages are a low coil constant, relatively poor homogeneity, and the large
currents required which introduce large Lorentz forces and torques.

For the measurement of the spin diffusion coefficient in single crystal CaF;, a 4-
turn Maxwell pair gradient coil set was used. The current loops were wound on a coil
frame, as shown in Figure 4-4, The calculated gradient profile in the sample region
is well confined to 0.687/m/A £ 2.0%. The average coil constant was calibrated by
self-diffusion measurements in water to be (0.67 £0.02)T/m/A. This gradient set has

both a higher coil constant and a greater homogeneity. The prices paid are a smaller
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Figure 4-3: A single-turn Maxwell pair gradient coil machined from a cylindrical brass
rod. The average coil constant was calibrated to be ~ 0.32T/m/A. AWG34 wires
with a diameter of ~ 0.18mm can be used for the RF coil. The sample tube has an
outer diameter of 1.00mm and an inner diameter of 0.80mm. (a) Side view of the
gradient coil. The arrows show the current directions. The head and the bottom are
soldered to the copper blocks shown in Figure 4-2. The central part is the single turn

Maxwell pair. (b) Top view of the central Maxwell pair.
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Figure 4-4: A gradient coil set with four turns on each side of the Maxwell pair.
The dotted lines denote the sample tube with an outer diameter of 1.00mm and an
inner diameter of 0.80mm. AWG28 wires with a diameter of ~ 0.35mm were used
for the gradient coil and AWG34 wires with a diameter of ~ 0.18mm were used for
the RF coil. The calculated coil constant for a sample region of diameter 0.80mm
and length 1.00mm is 0.68T/m/A + 2%, and the calibrated average coil constant is
(0.67 £ 0.02)T/m/A.

wire diameter, larger resistance and therefore more heat dissipation. Nevertheless,
the upper limit of the temperature increase of the gradient coil in the spin diffusion
measurement at k =~ 10um ™' was less than 2°C.

Even larger coil constants and better gradient linearity were realized by a third
gradient set constructed from two building blocks to approximate the ideal conditions
described by Suits and Wilken [40]. Figure 4-5 shows the configuration where 31 turns
were wound on each side of the coil frame. The calculated coil constant is 4.012'/m/A

with a homogeneity of £0.6%. The average coil constant was calibrated again by the
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Figure 4-5: A gradient coil set designed for higher coil constant and better gradient
profile. The dotted lines denote the sample tube with an outer diameter of 1.00mm
and an inner diameter of 0.80mm. AWG30 wires with a diameter of ~ 0.28mm were
used for gradient coil while AWG34 wires with a diameter of ~ 0.18mm were used
for RF coil. The calculated coil constant for a sample region of diameter 0.80mm
and length 1.00mm is 4.01T/m/A £0.6%, and the calibrated average coil constant is
(4.15 £ 0.04)T/m/A.

self-diffusion measurements in water and found to be (4.15 £ 0.04)T/m/A. Lower
currents are required in this design and thus smaller Lorentz forces and associated
torques. Heat dissipation is naturally higher. These three gradient sets are compared
in table 4.1.

One of the important experimental issues for scattering experiments is the tem-
perature raise of the gradient coil since this directly effects the gradient calibra-
tion. For the 31-turn gradient set, with 30 gauge wire, a total wire length of 0.90m,

my = 2.92 X 10-3kg and R, = 0319}, and a voltage source of 48V (corresponding
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Table 4.1: Compiled features of three gradient sets.

gradient coil set single turn 4-turn 31-turn
wire resistance < 3mSQ (brass) 20mQ 310mQ
sample diameter 0.8mm 0.8mm 0.8mm
sample length 1.0mm 1.0mm 1.0mm
coil constant 0.32T/m/A | 0.67T/m/A | 4.15T/m/A
gradient homogeneity +5% +2% +0.6%
current 3004 3004 1404
Lorentz force large large smaller
gradient strength ~100T/m | ~200T/m | ~ 600T/m

to ~ 140A), a total current on-time of ~ 12ms is necessary for the creation of a
magnetization grating with a pitch of 3nm and an upper limit of the temperature
increase of ~ 60°C is expected.

In an experiment where 64 current pulses of 200us each and a spacing of 400us
were applied, the measured temperature increase was ~ 40°C' and observed gradient
coil current dropped from ~ 1404 to ~ 100A. About half part of this current drop
was not due to the coil resistance change but due to the insufficient recovery of the

capacitors in the current providing circuit described in the next section.

4.7 A Circuit for Providing Large Pulsed Currents

Conradi et al [41] introduced a circuit to generate short, intense gradient pulses for
solid state imaging. The gradient pulses were as short as a few us, and voltage
sources of ~ 100V were used to generate pulsed currents of ~ 20A. In this work, the
requirement on the gradient pulse length is looser and so, lower voltage sources can
be used to generate much larger currents. Figure 4-6 shows the circuit for generating
large pulsed currents, using car batteries as the voltage source, and four large storage
capacitors (each 4800.F) in parallel to suppress spikes during switching. The bridge
circuit is switched by a set of power MOSFETs. FET 1A and 1B provide pulsed
currents in one direction, while FET 2A and 2B in the opposite direction. FET

3 and a variable resister R1 provide small puised currents for accurate adjustment
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Figure 4-6: The bridge circuit for switching large currents. A voltage source V is used
to supply pulsed currents, and large storage capacitors are used to suppress spikes
during switching. The bridge circuit is switched by a set of power MOSFETs. FET
1A and 1B provide pulsed currents in one direction, while FET 2A and 2B in the
opposite direction. FET 3 and a variable resister R1 provide small pulsed currents
for accurate adjustment purposes. A 10mQ shunt R2 is included in the circuit for
accurately calibrating the current amplitudes.

purposes. The power MOSFETs are HARRIS Semiconductor RFA100NOS5E, each
has an on-resistance of 8m and an allowed maximum pulsed current of 3004. In
order to protect from current over-driven, three FETSs are used in parallel. Since the
switching time of each FET is much faster than the current rising time of the circuit
(limited by the large capacitance), the three parallel FETs can be turned on nearly
simultaneously, and the on-resonances of the switches are correspondingly decreased
by a factor of three. A 10mQ shunt R2 is included in the circuit for accurately
calibrating the current amplitudes, and all other connections, other than the gradient
coil, contributed less than 10mS) resistance.

With a 12V car battery, pulsed currents of ~ 3004 were delivered to the single turn
gradient coil, and currents of more than 200A were delivered to the 4-turn gradient

coil. With two 12V car batteries in serial, currents of ~ 3004 were delivered to the
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4-turn gradient coil, with four 12V car batteries, currents of ~ 140A were delivered
to the 31-turn gradient coil. The maximum gradient strengths, achieved with these

three gradient sets are 100T'/m, 200T /m, and 600T /m.
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Chapter 5

Experimental Spin Diffusion

Measurement

5.1 NMR Spectrometer Design

An NMR spectrometer was designed and constructed for high resolution NMR scat-
tering experiments. Figure 5-1 shows a schematic diagram. A PTS160 frequency
synthesizer is employed to generate a CW RF frequency, which is doubled and then
splitted into two channels (called the transmitter channel and the receiver channel).
In the transmitter channel, the frequency goes to a 4-phase shifter and a RF switch to
get a RF pulse of correct phase. This RF pulse is sent to a power amplifier, followed
by a duplexer, with the RF power goes to the probe and the NMR signal goes to the
receiver channel. In the receiver channel, the NMR signal passes through a pream-
plifier and is then mixed down to the audio frequency. These audio signals (real and
imaginary) are sampled by two VXI digitizers controlled from a Pentium PC.

The RF switch, power amplifier, 4-phase shifter, digitizers, and gradient bridge
circuit discussed in last chapter, need TTL pulses to control. These TTL pulses
are generated by a Bruker pulse programmer, which is triggered by one of the two
digitizers. The new assignments of TTL pulses for the Bruker pulse programmer
are listed in Appendix A, and a sample pulse program is listed in Appendix B. The

system control and data transfer are based on VXI buses, and are accomplished by
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Figure 5-1: A schematic diagram of a home-built NMR spectrometer.
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a software package written in C. Appendix C lists a core function to control VXI
devices. The experimental data is saved as a binary file and then converted into a
Matlab file. Appendix D is the C code for making this conversion. Data processing

is done in Matlab.

5.2 The Detailed Pulse Sequence and Experimen-

tal Resuits

In this measurement, a magnetization grating is first created in the nuclear spin
system. Spin diffusion attenuates the amplitude of this grating. By monitoring the
rate of this attenuation, the spin diffusion coefficient is obtained. The detailed pulse
sequence is shown in Figure 5-2. The 90° pulse length was 2us. Some details of the
gradient strengths and gradient pulse lengths are provided in Table 5.1. The observed
signal is attenuated both by spin diffusion and by spin-lattice relaxation, according
to e~/Tie=**Dut where T\ is the spin lattice relaxation time, k is the wavenumber of
the magnetization grating, and D) is the spin diffusion coefficient for diffusion along
the direction of main magnetic field.

The samples for this measurement was a CaF; single crystal. Figure 5-3 shows
the results of a series of such measurements where the time over which spin diffusion

occurred was systematically varied from 10 to 60 seconds for crystal orientations of

Table 5.1: Details of the experimental gradient conditions and resultant gratings that
were used for the measurements shown in Figure 5-2.

pulse length | average current | average strength k/2m
0,0,1] 0 100 us 198.3 A 133 T/m 590 mm T
0,0,1] x 90 us 2074 A 139 T/m 500 mm "
0,0,1] * 70 ps 2174 A 146 T/m 410 mm™!
11,1} o 200 us 1839 A 123 T/m 990 mm ™!
L1+ 180 us 1758 A 118 T/m 850 mm "1
1,1,1] x 140 us 186.3 A 125 T/m 700 mm ™!
1,1,1] * 110 us 203.7 A 136 T/m 600 mm™!
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Figure 5-2: Schematic (a) and detailed diagram (b) of the NMR incoherent scattering
measurement used to measure the rate of spin diffusion in a homogeneous solid. The
method starts by creating a magnetization grating through the otherwise uniform
sample. This grating results from the differential rates of spin precession for spins
at different spatial offsets in a linear magnetic field gradient. As shown in (b), the
time available to create the grating is lengthened by two magic echo cycles which
have the added advantage of simultaneously interrupting spin diffusion. During the
storage time the z-component of the grating is slowly blurred (or attenuated) by spin
diffusion while the transverse components rapidly decay due to the short spin-spin
relaxation time. The final periocd removes the spatial variation in phase so that the
extent of attenuation may be measured, and again during this period spin diffusion
is interrupted. To measure the spin diffusion constant a series of such experiments
were carried out varying both the pitch of the grating and the diffusion (or storage)
time.
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[0,0,1] and [1,1,1], and the length scales of the magnetization grating were about 1um
to 3um. The contribution from the T; was measured in a separate set of experiments
at these orientations and has been subtracted. These two orientations were chosen
since they show the greatest variation in lineshape second moments [19] (see also
insert in Figure 5-3). As expected, spin diffusion is Gaussian over this length scale
and changes with orientation. The results are compiled in Table 5.2 along with a
theoretical prediction of Redfield and Yu from a moment calculation [5] (the value
for each orientation was calculated for a 200 x 200 x 200 lattice), Borckmans and
Walgraef based on irreversible statistical mechanics [9], and a classical spin dynamic
approach of Tang and Waugh [10].

The accuracy of the measured spin diffusion coefficients depends on the calibra-
tion of the gradient coil constant, the gradient waveform, an accurate measurement
of T\ and the correct orientation of the crystal. The 4-turn gradient set was used in
this measurement. The gradient coil constant was calibrated to the known diffusion
constant of water at 15°C and is 0.67 + 0.02T/m/A. The gradient waveform was di-
rectly measured by digitizing the voltage over a shunt to avoid introducing calibration
errors for the gradient coil heating. Any errors in gradient calibration are systematic
and appear in the absolute diffusion constant, but will not appear in the ratio of
the diffusion constants at the two orientations. The T, was measured via the same
sequence without a magnetization grating. The sample was oriented and cut with

the help of X-ray diffraction techniques, but the small (< 0.8mm) sized crystals and

Table 5.2: Compiled results of this measurement and previous predictions for single
crystal CaF;. T is the spin-lattice relaxation time, and Dj; is the component of spin
diffusion coefficient parallel to the external magnetic field.

ORIENTATION {0,0,1] (1,1,1]
T, (s)(measured) 114.7 £ 5.3 | 156.8 + 9.7
D, (10~ cm?/s)(measured) | 7.14 + 0.52 | 5.31 + 0.34
Dy (10~"em?/s)([5]) 8.22 6.71
QII(IO"zmz/s)( 9|) 6.98 4.98
Dy(10~Zcm?/5)([10]) 7.42 -
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Figure 5-3: Measured signal attenuation from a single crystal CaF, oriented with
either the [0,0,1] or [1,1,1] axis along the main magnetic field. The contributions to the
signal attenuation from relaxation have been subtracted. The diffusion measurements
were made with the sequence shown in Figure 5-2, with 7 = 60us for the [0,0,1]
orientation and 7 = 60us or 7 = 100us for the [1,1,1] orientation. Both the gradient
pulse lengths and the giadient strengths were varied in the experiments, the details
are contained in Table 5.1. Notice that for each orientation the data are well described
by a straight line, and that the [0,0,1] data decays more rapidly than does the [1,1,1].
The insert shows the measured free induction decay for the two orientations.
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limited gradient volume made handling difficult. The measured free induction decays
shown as insert in Figure 5-3 are however consistent with those previously reported
and so any errors in crystal orientation are small.

The agreement between the measured values and theoretical predictions are quite
good, in addition, the ratio of the diffusion constants Dy([0,0, 1])/Dy([1,1,1}) = 1.3
which does not suffer from systematic error from gradient coil constant calibration
agrees well with the predictions of 1.2 [5] and 1.4 [9)].

The spin diffusion rate was also measured for a second crystal with a shorter Tj,
therefore containing more defects, oriented along the [1,1,1} direction. As expected,
the measured D) is not a function of the defect density. In these scattering measure-
ments the defects introduce spectral mismatches in the surrounding spins and hence
locally suppresses the spin diffusion rate. The flow of magnetization which attenu-
ates the grating therefore naturally goes around the defect and exclude it from the
dynamics. Provided that the defect density is sufficiently low, the effective tortuosity

so introduced does not measurably increase the diffusion constant.
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Chapter 6

Conclusion and Future Studies of

High Resolution NMR Scattering

In conclusion, the first direct measurement of spin diffusion rate in a homogeneous
solid, single crystal CaF5;, has been carried out, and the absolute value and orientation
dependence agree well with theoretical predictions. The experiment is an example
of an incoherent NMR scattering measurement with a strong pulsed magnetic field
gradient ﬁrobe employed to both create and detect a necessarily fine magnetization
grating, and multiple pulse coherent averaging employed to both lengthen the time
during which a grating may be established and interrupt spin diffusion during the
creation of the grating.

This work can be extended to develop new NMR methods that accurately mea-
sure the local distribution of internuclear distances between selected spins over length
scales of 5 to 250 A, and to permit the study of spin dynamics over this same spa-
tial range. Key to achieving these goals is the newly developed strong pulsed mag-
netic field gradient techniques described in Chapter 4 (with gradient strengths up to
10T /m, a factor of 100 stronger than those commercially available, and a factor of
25 stronger than the highest previously reported). These gradients can be used to
create a Larmor precession frequency that increases linearly with distance at a rate
of 50 Hz/nm for 'H.

The essence of the new methods is that by using this gradient, a measurable phase
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difference can be developed between dipolarly coupled spins. This phase difference can
be made observable in a coherent scattering experiment, or employed with multiple-
pulse methods to spatially truncate a network of dipolarly coupled spins. Since the
dipolar couplings between spins are appreciable out to only a few hundred angstroms,
the creation of gradients strong enough to spatially modulate the spin states over these
short distances was a prerequisite for the new studies.

The significance of the new methods will allow chemically selected internuclear
distances to be accurately measured on a length scale of 5 to 250 A, the informa-
tion being presented as a probability of finding two coupled spins separated by a
given distance along the direction of increasing field. The scattering direction can be
systematically varied to explore anisotropic materials.

Detailed structural information is not readily available at these length scales par-
ticularly for protons, and the experiment can be performed so as to measure the
distribution of internuclear proton distances for all protons, between chemically se-
lected protons, or between protons and hetero-atoms. In biomedicine and chemistry
such measurements might be aimed at characterizing the local structure of solids, in
materials science they could be used to explore the details of interfaces. Used in this
fashion, the new methods are complementary to neutron scattering though operating
at larger length scale and over longer time intervals.

The spin diffusion rate has been accurately measured (for the first time) in a
well defined spin system. The full range of applications will only become known as
the method is parfected. The detailed local dynamics of spin transport can also be
probed. Note that the measurement should be accurate to a few A, be chemically
selective, and be very local (the sample need only have a coherence length on the
scale of the measurement). This will be an ideal approach to studies of mesoscopic
scale spin dynamics.

There is a complementary set of experiments that utilize the same instrumenta-
tion to truncate spin coupling Hamiltonians along the direction of the gradient (for
instance to move between a 3-D and 2-D or 1-D set of coupled spins). Such measure-

ments are very nearly a quantum “simulation” of a quantum system since the effective
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Hamiltonian is tailored from the true Hamiltonian. For instance, by varying the av-
erage Hamiltonian (through coherent averaging) it is possible to explore the effects of
lattice dilation and symmetry breaking without changing the sample. Related meth-
ods and the same instrumentation may also be used to implement a form of cellular
autonoma that is complementary to the ensemble quantum computing initiative.
The introduction of these new methods, which is collectively termed as high res-
olution NMR scattering, will fundamentally change both the way spin dynamics are
studied by NMR ard the way spin dynamics are viewed. These methods give the
experimentalist, for the first time, a handle on the length scale of spin magnetization
transport in strongly coupled systems, and permits spatial degrees of freedom to be
included directly in coherent averaging schemes. The potential of this second point
includes the preparation of average Hamiltonians in which the residual dipolar cou-
pling is periodically suppressed along the gradient axis and with a spacing that may

be tuned to match a specific lattice spacing.
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Chapter 7

Measurement of Flow Velocities by
NMR using a Spatially Modulated
RF Field

7.1 Introduction

NMR methods have long been employed to quantitatively measure flow rates, and
generally these methods require a precise control of gradient fields, and an extensive
data acquisition and processing step [28]. A typical experiment involves the creation of
a magnetization grating, a period during which the grating is allowed to be translated
by the flow field, and the detection of the extent of translation. The detection step
may be accomplished by refocusing the grating and recording the residual phase shift.
Here, we discuss a direct approach to measuring the detailed characteristics of a flow
field, where phase encoding in a magnetic field gradient is replaced with a grating
geometrically created through a spatially varying RF field, and refocusing is replaced
by a frequency readout of the velocity at which the grating flows through the RF
coil. A preliminary version of this work has been reported [42], and Goldman and
coworkers have discussed a related phenomenon seen when spinning a sample in a

quadrupolar RF field [43].
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A schematic representation for the experiment is shown in Figure 7-1. As seen in
the figure, the RF field is a periodic function whose amplitude oscillates along the
coil axis. NMR probes with spatially varying RF fields can be designed from & series
of lumped element 7-circuits resulting in either an amplitude modulation or a phase
modulation. The details are described below. In this introduction concentration will
be on flow measurements using a probe with an amplitude mcdulated RF field. There
are two necessary consequences of this geometry related to the spin excitation, and to
the detection portions of the experiment (the same coil is employed for each): the RF
field strength determines both the spatial variation of the strength of the excitation
pulse, and the spatial variation of the spins’ coupling to the receiver.

A single excitation pulse will result in a spatial modulation of the spin magne-
tization along the coil axis. Prior to the experiment the spins are at equilibrium
with a net magnetization oriented along the Z axis. Since the magnitude of the RF
field varies with displacement along the coil, then the nutation angle of the excitation
pulse reflects this variation, and a magnetization grating is imposed across the sam-
ple. Notice that the periodicity of the grating is directly tied to the construction of
the RF coil, unlike gratings created by evolution in a magnetic field gradient where
the period depends on both the strength of the gradient and the evolution time. The
length of the RF pulse only varies the depth of the magnetization grating (assuming
that the RF pulse is short with respect to the displacement time).

Naturally, if the spins did not change locations then the NMR signal would not
display any spatial information, but as the two gratings move past each other there

is (in this case) an amplitude modulation of the NMR signal,
S(t) = So(t)cos(kut), (7.1)

where Sy(t) is the signal in the absence of motion, k is the wavenumber of the RF

field grating, and v is the velocity of the flow.

The Fourier transformation of equation (7.1) is the convolution of the velocity
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Figure 7-1: An illustration of the flow velocity measurement as made via the NMR
response of moving spins excited and detected via a spatially varying RF field. The
RF coil windings are displayed schematically for the central slice of the cylindrical
coil, along with the instantaneous current directions (dot corresponds to currents
out of the page, crosses to currents into the page and blank to no currents). The
corresponding RF field is displayed as horizontal vectors of alternating polarity, clearly
displaying the amplitude modulation of the field. Superimposed on the diagram are
the spin magnetization vectors. In part (a), prior to the excitation pulse the spin
magnetization is spatially uniform and oriented along 7. Following the excitation
pulse (part (b)) the y-component of magnetization is shown and raturally it reflects
the spatial modulation of the RF field. In part (c), the spins have been displaced
uniformly and hence the coupling of the spin magnetization to the detection coil is
in turn modulated at a rate determined by the velocity.
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spectrum with the normal NMR spectrum,

§w) = S(w) ® O(w + kv) + 6(w — kv).

2

(7.2)

The spectrum therefore consists of pair of resonances from which the velocity
spectrum may be recovered by measuring the splitting.

In complex flows, the spectrum will display the full complexity of the distribution
of flow rates. The measurement is linear, and a profile of the relative contributions of
each velocity component is obtained. Additionally, each NMR resonance will report
on the flow characteristics of the compound from which that resonance arises, so in
mixtures of liquids the flow profile of each component is directly measured in a single
acquisition step.

The above analysis provides a simple picture of the expected dynamics of the
measurement and served as the motivation for starting the project. The real mea-
surement is performed in a truncated coil that may involve a combination of phase
and amplitude modulations and below we explore this in some detail. As expected,
the main points and inherent simplicity are preserved.

This approach is properly thought of as a simple transducer, that is straightfor-
ward to construct. The price that is paid for experimental simplicity is that each
transducer is useful over a limited range of flow rates, and over a finite length since
there must be a number of cycles of RF modulation to obtain an accurate measure
of the flow velocities. This method may be compared to spin tagging methods [44]
but retains the advantage that the velocity modulation is directly observed in a single

acquisition.

7.2 Detailed Theory of Flow Measurement in a
Spatially Varying RF Field

The essence of the measurement is contained within the spatially dependent coupling

of the spin magnetization to the receiver. This coupling is proportional to the flux
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density that would be created by a unit current through the coil [45], and the signal
is the integral of this across the sample. The induced emf across the detection coil,
£(t), is,
€0 =-[  2(B,-M@)}av,, (7.3
sample ot :

where B, is the field created by unit current through the coil, and M(t) is the trans-
verse magnetization.

Notice that the emf accumulates as the projection of the spin magnetization along
the RF field, so, if there is no motion then these are everywhere aligned and the NMR.
response is out of phase with the excitation pulse (assuming the NMR signal is on
resonance). In such case, spatial modulations of B, are not observed in the response.

The modulation of the NMR signal is revealed by exploring the spatial variations
of the magnetization and RF field. Following a RF pulse the transverse magnetization
is,

M(r,t) = M(r,t){coswot + ¢(r)]Z + sin[wot + ¢(r)]§}, (7.4)

where M(r,t) is the amplitude of the transverse magnetization, #(r) is its initial
phase angle, and wy is Larmor frequency.

Similarly, the RF field is,
B\(r) = By (r)[cos (r)3 + sin p(r)3], (7.5)

where B(r) is the amplitude of the field, and ¢(r) is the phase angle of the field.

The core of the integral of equation (7.3) then becomes,
0 :
_Et-{B' -M(t)} = B\(r)M(r, t)wp sin[wot + @(r) — o(r)). (7.6)

Transforming this into the rotating frame where Aw = wy —w, and neglecting the
component oscillating at wy + w, yields a general formula for the detected emf in the

rotating frame, &,(t),

& () = —%wo / e BUEIM(z, )it e1-e0lgy, (7.7)
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0 and spatial phase angle kz, where 8 varies from 0 to 27, and kx varies from 0 to 4.
It is clear that, a spatial magnetization grating has been created in the transverse
plane for each specific #, and the depth of this grating varies with the value of 8, which
is especially pronounced for # < /2. In addition to the fundamental spatial frequency
with wavenumber k, there are higher harmonics of these. As the amplitude of the
nutation pulse increases, the relative contribution of the higher spatial harmonics
increase. The intensity of the fundamental is a maximum for 6 ~ 0.5867. It is the
motion of this grating through the periodic RF field that will permit a measure of
the flow velocity. It is interesting to note that the harmonics arise directly from
the modulation pattern, and so we can expect to see harmonic behavior in the spin
dynamics regardless of the length of the RF coil.

Now, concentrating on the transverse magnetization only, and including the trans-

lation of spins due to flow, then,

Mz, 1) = { Mysin{fcoslk(z —vt)]} 0<z—-wvt<L
0 otherwise

where v is the flow velocity.

From (7.7), then the detected signal in the rotating frame is seen to be,
1 , L
&(t) = —§w°Bl MOSe'A“"/ cos(kz) sin{@ cos[k(z — vt)|}dz, (7.11)
vt

where S is the cross section area of the sample, and the integration is over the volume
of the sample within the coil suitably reduced by the flow to account for those spins
that leave the coil.

The above description of the detected signal is rather inconvenient, and may be
placed into a more recognizable form by expanding the integral in terms of Bessel

functions:

&(t) = _%woB,Mose"M'{J.(o)(L-vt) cos(kut)
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+ i (=1)"Jan+1(0) {sin[2(n + 1)kL — (2n + 1)kvt] — sin(kvt)}

= 2(n+1)k
+ i (_1)';'::;“(0) {sin[2nkL — (2n + 1)kvt] + sin(kvt)}},  (7.12)

where Jon41(6) is the Bessel function of order (2n + 1). This predicts that the spec-
trum has multiple peaks, because the magnetization grating created in this case has
harmonics of the fundamental and therefore multiple wave components exist. In the
case of small @ the response is well described by a single harmonic and corresponds
to a narrow-band FM modulation. For 8§ = 0.5867 and 27/k << L, the first term
dominates and the spectrum is well described by two peaks shifted by A f = +kv/2x
from the normal resonance position. Other terms lead to a series of sidebands at
Af = x(2n + 1)kv/2n. Only the n = 0 term gives an appreciable signal which,
however, overlaps with the main peaks.

Since k is the wavenumber of the B, field, which is controlled by the RF field
design, the flow velocity may be easily and accurately determined simply by measuring
the frequency shift in the detected signal. In addition to the flow modulation, there
is an extra damping term, (L — wvt) , which is associated with spins leaking out of
the coil, and contributes to the spectrum broadening. The velocity resolution of this
simplest form of the experiment is therefore dependent on the length of the coil.

Simpler calculations can be used for a phase modulated RF field, where the signal
evolves as e**"* instead of cos(kvt). This introduces a frequency shift instead of peak

splitting, and is similar to that described by Goldman and coworkers [43].

7.3 Design of Probes with Spatially Varying RF
fields

‘There are many ways to design probes with spatially modulated RF fields. One easy
approach is to geometrically arrange the wiring of the coil. A simple example is a
quadruple coil which can generate a phase modulated RF field [46]). For a solenoid

coil, alternately inverting the current paths of the neighboring turns can create an
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Figure 7-3: A C-L-C m-section where V is the input voltage, I,, I, I5 are the currents
around the circuit, and Z is the load. The input impedance of the circuit is Z;, =
V/I.

amplitude modulated RF field.

Here, however, we present a design that employs the transmission properties of
a resonant 7-circuit. Generally we expect such a design to be more efficient and of
higher quality factor than the purely geometric designs. Such a probe can easily be
constructed to have either an amplitude or phase modulated RF field.

As reported by Fukushima and Roeder (47], the C-L-C r-section, shown in Figure
7-3, with an input impedance of Z;, = V/I; and a load of Z, obeys the property,

Zin-Z =22 forw=1/VLC, (7.13)

so, on resonance, the r-section is identical tc a quarter wave line with character-
istic impedance of Z; = m This circuit also displays the well known quarter
wave impedance transformation property that if the load is an ideal inductor, it is
transformed into an ideal capacitor at the input, and vice versa.

For the application described here, the current at each point in the circuit is of

particular interest since the field throughout the coil is directly tied to this. It can
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be shown that, on resonance (w =1/VLC ),

L=(1- i%)n, (7.14)
Z,
I = -17%, (7.15)

please refer to Figure 7-3 for the definitions of the currents.

Three special cases are useful:

a) if Z =1wL, then I, =0, I = —-I; and Z;, = 1/iwC;

b) if Z = 1/iwC, then I, = 21, Iy = I, and Z;, = iwL ;

c) if Z = Z, then I, = 2e~"/41,, Iy = e~"*/2I, and Z;, = Z,.

A probe with an amplitude modulated RF field can be built based on the first
two cases. The probe consists of an even number of m-sections connected in series as
shown in Figure 7-4(a) with an inductor as the load. After an even number of quarter
wave impedance transformations, the load is transformed back into an inductor at
the input of the m-series, so the matching and tuning circuits are identical to those
conventionally used in NMR probes. However, a spatially modulated RF field is
created by the alternating current distribution. The period of the RF field and the
number of the cycles are tied directly to the geometric construction of the probe.

The same basic scheme can be used to build a probe with a phase modulated RF
field by employing case c) above. A simplified scheme is shown in Figure 7-4(b). The
characteristic impedance of the resonant w-circuit is designed to be 50Q. So if the
“load circuit” of the m-series is tuned and matched to 50%2 at the resonance frequency,
it will be transformed into 5052 at the input. Now, each m-network acts as a delay
line and the current in the two consecutive coils are exactly 90° out of phase.

Through an extension of the current transformation by a series of resonant -
networks, RF fields with amplitude modulation, phase modulation, or both, can be
created through the choice of load. These designs are certainly not the only choice
of circuits, but do have the benefits of simplicity and of maintaining a relatively high
self resonance frequency and high quality factor.

This analysis of the current behavior is simplified and intended to show the prin-
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Figure 7-4: Amplitude and phase modulated probe designs. (a) An amplitude modu-
lated probe of four 7-sections. The two parallel capacitors in neighboring 7-sections
were replaced by a single capacitor of twice the capacitance. (b) The corresponding
phase modulated probe of four m-sections. The phase of the current in the coil of

each m-section is shown in the complex plane. The curreats in two consecutive coils
are exactly 90° out of phase.
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Figure 7-5: The geometry of an NMR probe designed for flow measurement experi-
ment. The construction follows the circuit shown in Figure 7-4(a), with 16 cascaded
quarter wave m-seccions. The coil diameter is 9.5mm, and in each section, the coil has
3 turns. The total coil length for the 16 cascaded -sections is 4.7cm. An additional
3-turn coil is connected at the end of the last section, so that the total coil length for
the entire probe is 5.0cm. The first 7-section is connected to tuning and matching
capacitors, and the two capacitors between every two coils were replaced by a single
variable capacitor. These capacitors were tuned with the help of a network analyzer
and a small movable pickup coil. Direct measurement from the network analyzer
confirms the design of an amplitude modulated RF field.

ciple of how the amplitude or phase of the current may be made spatially varying.
In practice, each inductor has an associated resistance which must be included in the
analysis along with any mutual inductances.

The particular probe used for studies reported here was designed to have an am-
plitude modulated B, field. The construction is shown in Figure 7-5 and the details

is described in' the figure caption.
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Figure 7-6: A typical frequency spectrum for the amplitude modulated signal detected
in the presence of flow. Notice the peaks’ splitting and broadening.

7.4 Experimental Results

The experiments were performed on a 4.7T magnet with a home-built console. Water
flowed through the coil under a simple gravity feed with the flow rates varied. Under
these conditions, a few tens of centimeters of tubing was sufficient for T, relaxation
of the spins prior to entering the coil. Flow rates of from ~ 10cm/s to ~ 220cm /s (as
roughly measured by the fill rate of a calibrated cylinder) were explored. The exper-
imental results agree with theoretical predictions, the central peak for the stationary
sample is split into two peaks in the presence of fiow, and the frequency shifts are
proportional to the flow velocities.

Figure 7-6 shows a typical spectrum for the detected signal in the presence of flow.
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Figure 7-7: The measured frequency shift vs. flow velocity. The data was fit by linear
regression, and the slope indicates a measured k of 1.757/cm, in good agreement with
the designed value of 1.707 /cm.

Notice the spectral broadening, which has three contributions, the (L - vt) leakage
term in equation (7.12), the distribution of flow velocities, and the T; relaxation. For
these measurements, the field inhomogeneity term is quite pronounced since suscep-
tibility matched wire was not used and the variable capacitors were placed directly
on the coil.

Figure 7-7 shows the measured frequency shifts at different flow velocities. It is
clear that the frequency shift is proportional to the flow velocity. A small systematic
error in the non-NMR measurements of the flow accounts for the deviation from
linearity. A value of k of 1.75m/cm was measured both with a small pickup coil and
from a fit of the frequency shift. This agrees quite well with the designed value of
1.70m /cm.
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7.5 Extensions for Measuring Slow Flows

There is a built-in lower limit to the flow velocity that can be measured by the
described one pulse approach, and higher & probes must be employed. However, very
high k probes are not easily constructed, and the associated fields fall off rapidly with
distance from the surface of the coil. A much simpler approach to the measurement
of slow flows is to make use of the residual magnetization along the z direction. A two
pulse sequence which is analogous to a stimulated echo can then be used to measure
flows via a time of flight sequence. After the excitation pulse, the magnetization in the
transverse plane is spatially modulated. Only this magnetization is used in the one
pulse experiment. However, from (7.9), it is seen that the residual magnetization along
Z is also spatially modulated after the pulse. The transverse magnetization decays
quickly due to T; relaxation. But the spatial modulation in the Z magnetization
remains for a time comparable to 7). This Z magnetization grating translates slowly
along Z. A second pulse (or a series of small tip angle pulses) can be employed to
monitor the progress of the spins through the coil, which can in turn be used to
accurately calibrate the velocity of the translating spins. Naturally, the maximum
signal occurs when the Z magnetization grating overlaps exactly with the B, field

grating.
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Appendix A

Hardware Specifications
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Table A.1: Voltage supply assignments for the home-built NMR spectrometer.

Voltage

Supply From

Supply To

+19V

Bruker Console Back Panel 1 (A)

Transmitter/Receiver Box

Ground

Bruker Console Back Panel 1 (CC)

Transmitter/Receiver Box

-19V Bruker Console Back Panel 1 (P) Transmitter /Receiver Box
+19V | Bruker Console Back Panel 1 (E) 4-Channel Phase Shifter Box
Ground | Bruker Console Back Panel 1 (HH) 4-Channel Phase Shifter Box
-19V Bruker Console Back Panel 1 (K) 4-Channel Phase Shifter Box
+19V | Bruker Console Frequency Unit RFT (k) 40dB Preamplifier Box
Ground | Bruker Console Frequency Unit RFT (HH) | 40dB Preamplifier Box
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Table A.2: The new assignments of TTL pulses for the Bruker pulse programmer.

Function Channel | Pin in ACQ P2
External Trigger In (From VX4240 Digitizer S3-8) B
RF Pulse Gate f1 D
Phase Shifter Control TTLO C2 T
Phase Shifter Control TTL1 , C3 R
RF Unblanking C4 P
 Receiver Gate (Reserved) C5 M
Digitizer Sampling Trigger Cé L
Gradient Control 1 Cc7 X
Gradient Control 2 C8 \%
Gradient Control 3 C9 S
Reserved C10 N
Reserved C11 K
Reserved C12 F
Reserved f2 E
Reserved f3 R
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Appendix B

A Sample Pulse Program
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Appendix C

A Core Function to Control VXI

Devices
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/***t***t****t*t****t*****tt*t**#**#************#******************/
/*******************************“mexnn)C********************************/
JHEERRRRORRRRRRRREE A (oo function to control VXI devices HEEEERRERR RO |
/*#****************#******t****************#*****************************/
#include "stdio.h”

#include ”string.h”

#include "nivxi.h”

#include "ws.h”

#include "main.h”

UINTS8 *write_buff = (UINT8 *) "LADDRS?"; /* buffer to write in WSwrt */

void wsexmp (void)

{

INT16 la,retval;

UINT16 comm,respflag,response,mode;
UINT32 count, retcount;

INT32 timeout, actualtimo;

UINTS read_buff{200];

INT8 *filename;

char *yes;

int i;

/**** The following code sets the timeout period to 10 seconds **** /
timeout = 10000L;

retval = WSsetTmo(timeout,&actualtimo);

/******************#*****************************************************/

/******** Sampling parameters are sent to digitizer A, logical address 20 FRRRXRRK |

/#**#**************#*****************************************************/
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la = 20;
mode = WSb_MODE_NO _DirDorAbort | WSb_.MODE_SendEnd ;

[*¥*** Reset VX4240 digitizer ****/
write_buff= "R\n”; /* Reset Command */
count = (UINT32)strlen(write_buff);

retval = WSwrt(la,write_buff,count,mode,&retcount);

/**** Set digitizer to be DC coupling, +-2.0 volt, 50 ohm, single ended input ****/
write_buff= "VD2FS\n";
count = (UINT32)strlen(write_buff);

retval = WSwrt(la,write_buff,count,mode,&retcount);

/**** Set digitizer sampling dwell time to be 0.1 microsecond, internal clock ****/
write_buff= "P0.1E-6\n";
count = (UINT32)strlen(write_buff);

retval = WSwrt(la,write_buff,count,mode,&retcount);

/**** Set digitizer to collect 4 records of 2500 samples (10000 samples total) ****/
write_buff= "CR2500/4\n";
count = (UINT32)strlen(write_buff);

retval = WSwrt(la,write_buff,count,mode,&retcount);

/**** Set digitizer to delay 3 sample after the trigger ****/
write_buff= "DS3\n”;
count = (UINT32)strlen(write_buff);

retval = WSwrt(la,write_buff,count,mode,&retcount);

/**** Set digitizer to be external sampling triggered: negative TTL edge ****/
write_buff= "ME-\n";
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count = (UINT32)strlen(write_buff);

retval = WSwrt(la,write_buff,count,mode,&retcount);

/**** Arm the trigger ****/
write_buff= "TA\n";
count = (UINT32)strlen(write_buff);

retval = WSwrt(la,write_buff,count,mode,&retcount);

/*******##******t********************************************************/

[*EFEEEEE Sampling parameters are sent to digitizer B, logical address 25 ********/

/*************t*************#********************************************/

la = 25;
mode = WSb_MODE_NO DirDorAbort | WSb_.MODE SendEnd ;

/¥*** Reset VX4240 digitizer ****/
write_buff= "R\n”; /* Reset Command */
count = (UINT32)strlen(write_buff);

retval = WSwrt(la,write_buff,count,mode,&retcount);

/**** Set digitizer to be DC coupling, +-2.0 volt, 50 ohm, single ended input ****/
write_buff= "VD2FS\n";
count = (UINT32)strlen(write_buff);

retval = WSwrt(la,write_buff,count,mode,&retcount);

/**** Set digitizer sampling dwell time to be 0.1 microsecond, internal clock ****/
write_buff= "P0.1E-6\n";
count = (UINT32)strlen(write_buff);

retval = WSwrt(la,write_buff,count,mode,&retcount);
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/**** Set digitizer to collect 4 records of 2500 samples (10000 samples total) ****/
write_buff= "CR2500/4\n";
count = (UINT32)strlen(write_buff);

retval = WSwrt(la,write_buﬂ',count,mode,&retcount);

/**** Set digitizer to delay 3 sample after the trigger *¥**/
write_buff= "DS3\n”;
count = (UINT32)strlen(write_buff);

retval = WSwrt(la,write-buﬁ’,count,mode,&retcount);

/**** Set digitizer to bé external sampling triggered: negative TTL edge ****/
write_buff= "ME-\n";
count = (UINT32)strlen(write_buff);

retval = WSwrt(la,write-buﬂ',count,mode,&retcount);

/**** Arm the trigger. Trigger the pulse programmer (see also Appendix B) Rk )
write_buff= "TA\n";
count = (UINT32)strlen(write_buff);

retval = WSwrt(la,write_buﬂ',count,mode,&retcount);

/*********************#**************************************************/

[XFIRRFEEIRL KRR Data transfer from digitizer A, logical address 20 FRRELLA KA KK |

/**********************t*********#***************************************/

la = 20;

count = 8;

/**** check the status of the digitizer until the sampling is completed ****/
do {

retval = WSrd(la,read_buff,count,mode,&retcount);
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} while (read_buff[5]=="0");

/**** Set the input request: incremental, offset:0 **** /
write_buff= "[I0TS1\n";
count = (UINT32)strlen(write_buff);

retval = WSwrt(la,write-buff,count,mode,&retcount);

/**** The following code reads from VX4240 and write to file "vx4240a.dat” **** /
filename="vx4240a.dat”:

count = 20000L; /* 10000 data points, 20000 bytes */

mode = WSb_MODE_NO DirDorAbort | WSb_MODE _NoEndEnd;

retval = WSrdf(la,ﬁlename,count,mode,&retcount);

/************#********t**************************************************/

[¥FERFHAFRRRARRERX Data transfer from digitizer B, logical address 25 ******kxxxxx

/**#*********************************************************************/

la = 25;

count = §;

/**** check the status of the digitizer until the sampling is completed ****/
do {

retval = WSrd(la,read-buff,count,mode,&retcount);

} while (read_buff{5]=="0);

/**** Set the input request: incremental, offset:0 ****/
write_buff= "II0TS1\n";
count = (UINT32)strlen(write_buff);

retval = WSwrt(la,write_buﬂ,count,mode,&retcount);
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/**** The following code reads from VX4240 and write to file "vx4240b.dat” ****/
filename="vx4240b.dat”;

count = 20000L; /* 10000 data points, 20000 bytes */

mode = WSb_.MODE_NO DirDorAbort | WSb_MODE NoEndEnd,;

retval = WSrdf(la,filename,count,mocie,&retcount);

83



Appendix D

A C Code for Converting Binary
Data Files into Matlab Data Files
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SRR R KRR R R KRR KRR R KR |
/********************#**#****** b2m.c **********************************/
[*¥**¥****¥* This program convert binary data files into Matlab data files ********
/***********************************************************************/
#include “stdio.h”

#include “math.h”

main()

{

struct header

{

long type; /* when using PC and DEC RISC, type=0 */

long nrows; /* # of rows */

long ncols; /* # of cols */

long imagf; /* imagf=0: data real, imagf=1: data imag */

long namelen; /* length of matrix name + 1 */

/* the matrix is referred (or used) in matlab */

b

struct header x1;

FILE *outfile,*infile;

int 1,j;

double out_img[1][500];

char *pname;

unsigned char in_img[1000;

/**** Convert binary data file “vx4240a.dat” into “vx4240a.mat” ****/
infile=fopen(” vx4240a.dat”,”rb");

x1.type=0;

x1l.nrows=1;

x1.ncols=10000;

x1.imagf=0;
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xl.namelen=8§;

pname= "vx4240a”; /* matrix name is "vx4240a” */
outfile=fopen(”vx4240a.mat” " w");

fwrite(&x1,sizeof(x1),1,0utfile); /* write out header info. */
fwrite(pname,sizeof(char),x1.namelen,outfile); /* write out matrix name * /
for (i=0;i<20;i++)

fread(in.img,sizeof(unsigned char),1000,infile);

for (j=0;j<500;j++)

out_img[0](j]= (double)(((inimg(2*j]) < <8)+in_img[(2*j+1)));
fwrite(out_img[0], sizeof(double), 1*500,0utfile); /* write out matrix */
}

fclose(infile);

fclose(outfile);

/**** Convert binary data file “vx4240b.dat” into “vx4240b.mat” Rk
infile=fopen(” vx4240b.dat" " rb");

x1.type=0;

x1.nrows=1;

x1.ncols=10000;

x1l.imagf=0;

x1.namelen=8§;

pname= "vx4240b”; /* matrix name is " vx4240b” */

outfile=fopen(” vx4240b.mat” " w");

fwrite(&x1,sizeof(x1),1,0utfile); /* write out header info. */
fwrite(pname,sizeof(char),xl.namelen,outﬁle); /* write out matrix name */
for (i=0;i<20;i++)

fread(in_img,sizeof(unsigned char),1000,infile);

for (j=0;j<500;j++)

out_img[0][j]= (double)(((inimg[2*j])< <8)+in_img[(2*j+1)]);

fwrite(out_img[0}, sizeof(double), 1*500,0utfile); /* write out matrix */
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}

fclose(infile);

fclose(outfile);
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