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We demonstrate relationships between the classic Euclidean algorithm and many other
fields of study, particularly in the context of music and distance geometry. Specifically,
we show how the structure of the Euclidean algorithm defines a family of rhythms which
encompass over forty timelines (ostinatos) from traditional world music. We prove that
these Euclidean rhythms have the mathematical property that their onset patterns are
distributed as evenly as possible: they maximize the sum of the Euclidean distances
between all pairs of onsets, viewing onsets as points on a circle. Indeed, Euclidean
rhythms are the unique rhythms that maximize this notion of evenness. We also show that
essentially all Euclidean rhythms are deep: each distinct distance between onsets occurs
with a unique multiplicity, and these multiplicities form an interval 1,2, . . . ,k − 1. Finally,
we characterize all deep rhythms, showing that they form a subclass of generated rhythms,
which in turn proves a useful property called shelling. All of our results for musical
rhythms apply equally well to musical scales. In addition, many of the problems we explore
are interesting in their own right as distance geometry problems on the circle; some of the
same problems were explored by Erdős in the plane.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Polygons on a circular lattice, African bell rhythms [86], musical scales [23], spallation neutron source accelerators in
nuclear physics [16], linear sequences in mathematics [63], mechanical words and stringology in computer science [62],
drawing digital straight lines in computer graphics [59], calculating leap years in calendar design [7,51], and an ancient
algorithm for computing the greatest common divisor of two numbers, originally described by Euclid [39,44]—what do
these disparate concepts all have in common? The short answer is, “patterns distributed as evenly as possible”. For the long
answer, please read on.
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Mathematics and music have been intimately intertwined since over 2500 years ago when the famous Greek mathemati-
cian, Pythagoras of Samos (circa 500 B.C.), developed a theory of consonants based on ratios of small integers [8,10]. Most of
this interaction between the two fields, however, has been in the domain of pitch and scales. For some historical snapshots
of this interaction, we refer the reader to H.S.M. Coxeter’s delightful account [32]. In music theory, much attention has been
devoted to the study of intervals used in pitch scales [43], but relatively little work has been devoted to the analysis of
time duration intervals of rhythm. Some notable recent exceptions are the books by Simha Arom [3], Justin London [61] and
Christopher Hasty [49].

In this paper, we study various mathematical properties of musical rhythms and scales that are all, at some level, con-
nected to an algorithm of another famous ancient Greek mathematician, Euclid of Alexandria (circa 300 B.C.). We begin (in
Section 2) by showing several mathematical connections between musical rhythms and scales, the work of Euclid, and other
areas of knowledge such as nuclear physics, calendar design, mathematical sequences, and computer science. In particular,
we define the notion of Euclidean rhythms, generated by an algorithm similar to Euclid’s. Then, in the more technical part
of the paper (Sections 3–5.2), we study two important properties of rhythms and scales, called evenness and deepness, and
show how these properties relate to the work of Euclid.

The Euclidean algorithm has been connected to music theory previously by Viggo Brun [20]. Brun used Euclidean algo-
rithms to calculate the lengths of strings in musical instruments between two lengths l and 2l, so that all pairs of adjacent
strings have the same length ratios. In contrast, we relate the Euclidean algorithm to rhythms and scales in world music.

Musical rhythms and scales can both be seen as two-way infinite binary sequences [85]. In a rhythm, each bit represents
one unit of time called a pulse (for example, the length of a sixteenth note), a one bit represents a played note or onset (for
example, a sixteenth note), and a zero bit represents a silence (for example, a sixteenth rest). In a scale, each bit represents
a pitch (spaced uniformly in log-frequency space), and zero or one represents whether the pitch is absent or present in the
scale. Here we suppose that all time intervals between onsets in a rhythm are multiples of a fixed time unit, and that all
tone intervals between pitches in a scale are multiples of a fixed tonal unit (in logarithm of frequency).

The time dimension of rhythms and the pitch dimension of scales have an intrinsically cyclic nature, cycling every
measure and every octave, respectively. In this paper, we consider rhythms and scales that match this cyclic nature of the
underlying space. In the case of rhythms, such cyclic rhythms are also called timelines, rhythmic phrases or patterns that
are repeated throughout a piece; in the remainder of the paper, we use the term “rhythm” to mean “timeline”. The infinite
bit sequence representation of a cyclic rhythm or scale is just a cyclic repetition of some n-bit string, corresponding to the
timespan of a single measure or the log-frequency span of a single octave. To properly represent the cyclic nature of this
string, we imagine assigning the bits to n points equally spaced around a circle of circumference n [64]. A rhythm or scale
can therefore be represented as a subset of these n points. We use k to denote the size of this subset; that is, k is the
number of onsets in a rhythm or pitches in a scale. For uniformity, the terminology in the remainder of this paper speaks
primarily about rhythms, but the notions and results apply equally well to scales.

In this paper, we use four representations of rhythms of timespan n. The first representation is the commonly used
box-like representation, also known as the Time Unit Box System (TUBS), which is a sequence of n ‘×’s and ‘ · ’s where ‘×’
represents an onset and ‘ · ’ denotes a silence (a zero bit) [85]. This notation was used and taught in the West by Philip Har-
land at the University of California, Los Angeles, in 1962, and it was made popular in the field of ethnomusicology by James
Koetting [58]. However, such box notation has been used in Korea for hundreds of years [50]. The second representation of
rhythms and scales we use is the clockwise distance sequence, which is a sequence of integers that sum up to n and represent
the lengths of the intervals between consecutive pairs of onsets, measuring clockwise arc-lengths or distances around the
circle of circumference n. The third representation of rhythms and scales writes the onsets as a subset of the set of all pulses,
numbered 0,1, . . . ,n − 1, with a subscript of n on the right-hand side of the subset to denote the timespan. Clough and
Douthett [22] use this notation to represent scales. For example, the Cuban clave Son rhythm can be represented as [× · ·
× · · × · · · × · × · · · ] in box-like notation, (3,3,4,2,4) in clockwise distance sequence notation, and {0,3,6,10,12}16
in subset notation. Finally, the fourth representation is a graphical clock diagram [85], such as Fig. 1, in which the zero label
denotes the start of the rhythm and time flows in a clockwise direction. In such clock diagrams we usually connect adjacent
onsets by line segments, forming a polygon. We consider two rhythms distinct if their sequence of zeros and ones differ,
starting from the first bit in any of the described representations. We assume that two rhythms that do not have the same
sequence are different. However, if a rhythm is a rotated version of another, we say that they are instances of the same
necklace. Thus a rhythm necklace is a clockwise distance sequence that disregards the starting point in the cycle. Note that
the clockwise distance sequence notation requires that the rhythm starts with an onset, so it cannot be used to represent
all rhythms; it is most useful for our analysis of necklaces.

Even rhythms. Consider the following three 12/8-time rhythms expressed in box-like notation: [× · × · × · × · × · × · ],
[× · × · ×× · × · × · ×], and [× · · · ×× · · ××× · ]. The first rhythm contains beats that are distributed perfectly (well
spaced). Such rhythms are found throughout the world, and are most easily identified and incorporated in music and dance.
However, in many cultures where rhythm is more highly developed, rhythms are preferred that are not perfectly even. It is
intuitively clear that the first rhythm is more even (well spaced) than the second rhythm, and that the second rhythm is
more even than the third rhythm. In fact, the second rhythm is the internationally most well known of all African timelines.
It is traditionally played on an iron bell, and is known on the world scene mainly by its Cuban name Bembé [86]. Traditional
rhythms tend to exhibit such properties of evenness to some degree.
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Why do many traditional rhythms display such evenness? Many are timelines (also sometimes called claves), that is,
rhythms repeated throughout a piece that serve as a rhythmic reference point [67,91]. Often these claves have a call-and-
response structure, meaning that the pattern is divided into two parts: the first poses a rhythmic question, usually by creating
rhythmic tension, and the second part answers this question by releasing that tension. A good example of this structure is
the popular clave Son [× · · × · · × · · · × · × · · · ]. This clave creates such tension through syncopation, which can be
found between the second and third onsets as well as between the third and fourth onsets. The latter is weak syncopation
because the strong beat at position 8 lies half-way between the third and fourth onsets. (The strong beats of the underlying
4/4 meter (beat) occur at positions 0, 4, 8, and 12.) On the other hand, the former syncopation is strong because the strong
beat at position 4 is closer to the second onset than to the third onset [47]. Claves played with instruments that produce
unsustained notes often use syncopation and accentuation to bring about rhythmic tension. Many clave rhythms create
syncopation by evenly distributing onsets in contradiction with the pulses of the underlying meter. For example, in the
clave Son, the first three onsets are equally spaced at the distance of three sixteenth pulses, which forms a contradiction
because 3 does not divide 16. Then, the response of the clave answers with an offbeat onset, followed by an onset on the
fourth strong beat of a 4/4 meter, releasing that rhythmic tension.

On the other hand, a rhythm that is too even, such as the example [× · × · × · × · × · × · ], is less interesting from a
syncopation point of view. Indeed, in the most interesting rhythms with k onsets and timespan n, k and n are relatively
prime (have no common divisor larger than 1). This property is natural because the rhythmic contradiction is easier to
obtain if the onsets do not coincide with the strong beats of the meter. Also, we find that many claves have an onset on
the last strong beat of the meter, as does the clave Son. This is a natural way to respond in the call-and-response structure.
A different case is that of the Bossa-Nova clave [× · · × · · × · · · × · · × · · ]. This clave tries to break the feeling of the
pulse and, although it is very even, it produces a cycle that perceptually does not coincide with the beginning of the meter.

This prevalence of evenness in world rhythms has led to the study of mathematical measures of evenness in the new
field of mathematical ethnomusicology [26,88,89], where they may help to identify, if not explain, cultural preferences of
rhythms in traditional music. Furthermore, evenness in musical chords plays a significant role in the efficacy of voice leading
as discussed in the work of Tymoczko [52,90].

The notion of maximally even sets with respect to scales represented on a circle was introduced by Clough and Dou-
thett [22]. According to Block and Douthett [12], Douthett and Entringer went further by constructing several mathematical

Fig. 1. The six fundamental African and Latin American rhythms which all have equal sum of pairwise geodesic distances; yet intuitively, the Bossa-Nova
rhythm is more “even” than the rest.
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measures of the amount of evenness contained in a scale; see [12, page 40]. One of their evenness measures simply sums the
interval arc-lengths (geodesics along the circle) between all pairs of onsets (or more precisely, onset points). This measure
differentiates between rhythms that differ widely from each other. For example, the two four-onset rhythms [× · · · × · · ·
× · · · × · · · ] and [× · × · × · · × · · · · · · · · ] yield evenness values of 32 and 23, respectively, reflecting clearly that
the first rhythm is more evenly spaced than the second. However, the measure is too coarse to be useful for comparing
rhythm timelines such as those studied in [85,86]. For example, all six fundamental 4/4-time clave/bell patterns discussed
in [85] and shown in Fig. 1 have an equal pairwise sum of geodesic distances, namely 48, yet the Bossa-Nova clave is
intuitively more even than, say, the Soukous and Rumba claves.

Another distance measure that has been considered is the sum of pairwise chordal distances between adjacent onsets,
measured by Euclidean distance between points on the circle. It can be shown that the rhythms maximizing this measure
of evenness are precisely the rhythms with maximum possible area. Rappaport [73] shows that many of the most common
chords and scales in Western harmony correspond to these maximum-area sets. This evenness measure is finer than the
sum of pairwise arc-lengths, but it still does not distinguish half the rhythms in Fig. 1. Specifically, the Son, Rumba, and
Gahu claves have the same occurrences of arc-lengths between consecutive onsets, so they also have the same occurrences
(and hence total) of distances between consecutive onsets.

The measure of evenness we consider here is the sum of all pairwise Euclidean distances between points on the circle,
as described by Block and Douthett [12]. It is worth pointing out that the mathematician Fejes-Tóth [84] showed in 1956
that a configuration of points on a circle maximizes this sum when the points are the vertices of a regular polygon. This
measure is also more discriminating than the others, and is therefore the preferred measure of evenness. For example, this
measure distinguishes all of the six rhythms in Fig. 1, ranking the Bossa-Nova rhythm as the most even, followed by the
Son, Rumba, Shiko, Gahu, and Soukous. Intuitively, the rhythms with a larger sum of pairwise chordal distances have more
“well spaced” onsets. It may seem odd that rhythms “lie” in the one-dimensional musical space, while the evenness of
the rhythm is measured through chord lengths that “live” in the two-dimensional plane in which the circle is embedded.
However, note that two chords are equal if and only if its two corresponding circular arcs are equal. Therefore a polygon is
regular if and only if all its circular arcs are equal.

In Section 4, we study the mathematical and computational aspects of rhythms that maximize evenness. We describe
three algorithms that generate such rhythms, show that these algorithms are equivalent, and show that in fact the rhythm
of maximum evenness is essentially unique. These results characterize rhythms with maximum evenness. One of the algo-
rithms is the Euclidean-like algorithm from Section 2, proving that the rhythms of maximum evenness are precisely the
Euclidean rhythms from that section.

Deep rhythms. Another important property of rhythms and scales that we study in this paper is deepness. Consider a rhythm
with k onsets and timespan n, represented as a set of k points on a circle of circumference n. Now measure the arc-
length/geodesic distances along the circle between all pairs of onsets. A musical scale or rhythm is Winograd-deep if every
distance 1,2, . . . , �n/2� has a unique number of occurrences (called the multiplicity of the distance). For example, the rhythm
[××× · × · ] is Winograd-deep because distance 1 appears twice, distance 2 appears thrice, and distance 3 appears once.

The notion of deepness in scales was introduced by Winograd in an oft-cited but unpublished class project report from
1966 [94], disseminated and further developed by the class instructor Gamer in 1967 [45,46], and considered further in
numerous papers and books, e.g., [23,53]. Equivalently, a scale is Winograd-deep if the number of onsets it has in common
with each of its cyclic shifts (rotations) is unique. This equivalence is the Common Tone Theorem [53, page 42], and it is
originally described by Winograd [94] (who in fact uses this definition as his primary definition of “deep”). Deepness is one
property of the ubiquitous Western diatonic 12-tone major scale [× · × · ×× · × · × · ×] [53], and it captures some of the
rich structure that perhaps makes this scale so attractive.

Winograd-deepness translates directly from scales to rhythms. For example, the diatonic major scale is equivalent to the
famous Cuban rhythm Bembé [70,86]. Fig. 2 shows a graphical example of a Winograd-deep rhythm. However, the notion
of Winograd-deepness is rather restrictive for rhythms, because it requires half of the pulses in a timespan (rounded to
a nearest integer) to be onsets. In contrast, for example, the popular Bossa-Nova rhythm [× · · × · · × · · · × · · × · · ]
= {0,3,6,10,13}16 pictures in Fig. 1 has only five onsets in a timespan of sixteen. Nonetheless, if we focus on just the
distances that appear at least once between two onsets, then the multiplicities of occurrence are all unique and form an
interval starting at 1: distance 4 occurs once, distance 7 occurs twice, distance 6 occurs thrice, and distance 3 occurs four
times.

We therefore define a rhythm (or scale) to be Erdős-deep if it has k onsets and, for every multiplicity 1,2, . . . ,k −1, there
is a nonzero arc-length/geodesic distance determined by the points on the circle with exactly that multiplicity. The same
definition is made by Toussaint [87]. Every Winograd-deep rhythm is also Erdős-deep, so this definition is strictly more
general.

To further clarify the difference between Winograd-deep and Erdős-deep rhythms, it is useful to consider which distances
can appear. For a rhythm to be Winograd-deep, all the distances between 1 and k − 1 must appear a unique number of
times. In contrast, to be an Erdős-deep rhythm, it is only required that any distance that appears must have a unique
multiplicity. Thus, the Bossa-Nova rhythm is not Winograd-deep because distances 1,2 and 5 do not appear.

The property of Erdős deepness involves only the distances between points in a set, and is thus a feature of distance
geometry—in this case, in the discrete space of n points equally spaced around a circle. In 1989, Paul Erdős [37] considered
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Fig. 2. A rhythm with k = 7 onsets and timespan n = 16 that is Winograd-deep and thus Erdős-deep. Distances ordered by multiplicity from 1 to 6 are 2,
7, 4, 1, 6, and 5. The dotted line shows how the rhythm is generated by multiples of m = 5.

the analogous question in the plane, asking whether there exist n points in the plane (no three on a line and no four on
a circle) such that, for every i = 1,2, . . . ,n − 1, there is a distance determined by these points that occurs exactly i times.
Solutions have been found for n between 2 and 8, but in general the problem remains open. Palásti [68] considered a
variant of this problem with further restrictions—no three points form a regular triangle, and no one is equidistant from
three others—and solved it for n = 6.

In Section 5, we characterize all rhythms that are Erdős-deep. In particular, we prove that all deep rhythms, besides
one exception, are generated, meaning that the rhythm can be represented as {0,m,2m, . . . , (k − 1)m}n for some integer m,
where all arithmetic is modulo n. In the context of scales, the concept of “generated” was defined by Wooldridge [95] and
used by Clough et al. [23]. For example, the rhythm in Fig. 2 is generated with m = 5. Our characterization generalizes a
similar characterization for Winograd-deep scales proved by Winograd [94], and independently by Clough et al. [23].

In the pitch domain, generated scales are very common. The Pythagorean tuning is a good example: all its pitches are
generated from the fifth of ratio 3 : 2 modulo the octave. Another example is the equal-tempered scale, which is generated
with a half-tone of ratio 12

√
2 [10]. Generated scales are also of interest in the theory of the well-formed scales [21].

Generated rhythms have an interesting property called shellability. If we remove the “last” generated onset 14 from the
rhythm in Fig. 2, the resulting rhythm is still generated, and this process can be repeated until we run out of onsets. In
general, every generated rhythm has a shelling in the sense that it is always possible to remove a particular onset and obtain
another generated rhythm.

Most African drumming music consists of rhythms operating on three different strata: the unvarying timeline usually
provided by one or more bells, one or more rhythmic motifs played on drums, and an improvised solo (played by the lead
drummer) riding on the other rhythmic structures. Shellings of rhythms are relevant to the improvisation of solo drumming
in the context of such a rhythmic background. The solo improvisation must respect the style and feeling of the piece which is
usually determined by the timeline. One common technique to achieve this effect is to “borrow” notes from the timeline, and
to alternate between playing subsets of notes from the timeline and from other rhythms that interlock with the timeline [1,
2]. In the words of Kofi Agawu [1], “It takes a fair amount of expertise to create an effective improvisation that is at the same
time stylistically coherent”. The borrowing of notes from the timeline may be regarded as a fulfillment of the requirements
of style coherence. Another common method is to make parsimonious transformations to the timeline or improvise on a
rhythm that is functionally related to the timeline [60]. Although such an approach does not give the performer wide scope
for free improvisation, it is efficient in certain drumming contexts. In the words of Christophe Waterman [34], “individuals
improvise, but only within fairly strict limits, since varying the constituent parts too much Could unravel the overall texture”.

Of course, some subsets of notes of a rhythm may be better choices than others. One might often want to select sets
of rhythms that share a common property. For example, if a rhythm is deep, one might want to select subsets of the
rhythm that are also deep. Furthermore, a shelling seems a natural way to decrease or increase the density of the notes
in an improvisation that respects these constraints. For example, in the Bembé bell timeline [× · × · ×× · × · × · ×], which
is deep, one possible shelling is [× · × · ×× · × · × · · ], [× · × · × · · × · × · · ], [× · × · · · · × · × · · ], [× · × · · · ·
× · · · · ]. All five rhythms sound good and are stylistically coherent. In fact the shelled rhythms are used in African drum
music [25]. To our knowledge, shellings have not been studied from the musicological point of view. However, they may be
useful both for theoretical analysis as well as providing formal rules for “improvisation” techniques.

One of the consequences of our characterization that we obtain in Section 5 is that every Erdős-deep rhythm has a
shelling. More precisely, it is always possible to remove a particular onset that preserves the Erdős-deepness property. Thus
this is one method of implementing parsimonious transformation of rhythms. Finally, to tie everything together, we show
that essentially all Euclidean rhythms (or equivalently, rhythms that maximize evenness) are Erdős-deep.

2. Euclid and evenness in various disciplines

In this section, we first describe Euclid’s classic algorithm for computing the greatest common divisor of two integers.
Then, through an unexpected connection to timing systems in neutron accelerators, we see how the same type of algorithm
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can be used as an approach to maximizing “evenness” in a binary string with a specified number of zeroes and ones. This
algorithm defines an important family of rhythms, called Euclidean rhythms, which we show appear throughout world music.
Finally, we see how similar ideas have been used in algorithms for drawing digital straight lines and in combinatorial strings
called Euclidean strings.

2.1. The Euclidean algorithm for greatest common divisors

The Euclidean algorithm for computing the greatest common divisor of two integers is one of the oldest known algo-
rithms (circa 300 B.C.). It was first described by Euclid in Proposition 2 of Book VII of Elements [39,44]. Indeed, Donald
Knuth [57] calls this algorithm the “granddaddy of all algorithms, because it is the oldest nontrivial algorithm that has
survived to the present day”.

The idea of the algorithm is simple: repeatedly replace the larger of the two numbers by their difference until both are
equal. This final number is then the greatest common divisor. For example, consider the numbers 5 and 13. First, 13−5 = 8;
then 8 − 5 = 3; next 5 − 3 = 2; then 3 − 2 = 1; and finally 2 − 1 = 1. Therefore, the greatest common divisor of 5 and 13
is 1; in other words, 5 and 13 are relatively prime.

The algorithm can also be described succinctly in a recursive manner as follows [29]. Let k and n be the input integers
with k < n.

Algorithm. Euclid(k,n)

1. if k = 0 then return n
2. else return Euclid(n mod k,k)

Running this algorithm with k = 5 and n = 13, we obtain Euclid(5,13) = Euclid(3,5) = Euclid(2,3) = Euclid(1,2) =
Euclid(0,1) = 1. Note that this division version of Euclid’s algorithm skips one of the steps (5,8) made by the original
subtraction version.

2.2. Evenness and timing systems in neutron accelerators

One of our main musical motivations is to find rhythms with a specified timespan and number of onsets that maximize
evenness. Bjorklund [15,16] was faced with a similar problem of maximizing evenness, but in a different context: the
operation of components such as high-voltage power supplies of spallation neutron source (SNS) accelerators used in nuclear
physics. In this setting, a timing system controls a collection of gates over a time window divided into n equal-length
intervals. (In the case of SNS, each interval is 10 seconds.) The timing system can send signals to enable a gate during any
desired subset of the n intervals. For a given number n of time intervals, and another given number k < n of signals, the
problem is to distribute the pulses as evenly as possible among these n intervals. Bjorklund [16] represents this problem as
a binary sequence of k ones and n −k zeroes, where each bit represents a time interval and the ones represent the times at
which the timing system sends a signal. The problem then reduces to the following: construct a binary sequence of n bits
with k ones such that the k ones are distributed as evenly as possible among the (n − k) zeroes.

One simple case is when k evenly divides n (without remainder), in which case we should place ones every n/k bits. For
example, if n = 16 and k = 4, then the solution is [1000100010001000]. This case corresponds to n and k having a common
divisor of k. More generally, if the greatest common divisor between n and k is g , then we would expect the solution to
decompose into g repetitions of a sequence of n/g bits. Intuitively, a string of maximum evenness should have this kind
of symmetry, in which it decomposes into more than one repetition, whenever such symmetry is possible. This connection
to greatest common divisors suggests that a rhythm of maximum evenness might be computed using an algorithm like
Euclid’s. Indeed, Bjorklund’s algorithm closely mimics the structure Euclid’s algorithm, although this connection has never
been mentioned before.

We describe Bjorklund’s algorithm by using one of his examples. Consider a sequence with n = 13 and k = 5. Because
13 − 5 = 8, we start by considering a sequence consisting of 5 ones followed by 8 zeroes which should be thought of as 13
sequences of one bit each:

[1][1][1][1][1][0][0][0][0][0][0][0][0]

If there is more than one zero the algorithm moves zeroes in stages. We begin by taking zeroes one at a time (from right
to left), placing a zero after each one (from left to right), to produce five sequences of two bits each, with three zeroes
remaining:

[10] [10] [10] [10] [10][0] [0] [0]

Next we distribute the three remaining zeros in a similar manner, by placing a [0] sequence after each [10] sequence:

[100] [100] [100] [10] [10]
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Now we have three sequences of three bits each, and a remainder of two sequences of two bits each. Therefore we continue
in the same manner, by placing a [10] sequence after each [100] sequence:

[10010] [10010] [100]

The process stops when the remainder consists of only one sequence (in this case the sequence [100]), or we run out of
zeroes (there is no remainder). The final sequence is thus the concatenation of [10010], [10010], and [100]:

[1001010010100]

We could proceed further in this process by inserting [100] into [10010] [10010]. However, Bjorklund argues that, because
the sequence is cyclic, it does not matter (hence his stopping rule). For the same reason, if the initial sequence has a group
of ones followed by only one zero, the zero is considered as a remainder consisting of one sequence of one bit, and hence
nothing is done. Bjorklund [16] shows that the final sequence may be computed from the initial sequence using O (n)

arithmetic operations in the worst case.
A more convenient and visually appealing way to implement this algorithm by hand is to perform the sequence of

insertions in a vertical manner as follows. First take five zeroes from the right and place them under the five ones on the
left:

1 1 1 1 1 0 0 0
0 0 0 0 0

Then move the three remaining zeroes in a similar manner:

1 1 1 1 1
0 0 0 0 0
0 0 0

Next place the two remainder columns on the right under the two leftmost columns:

1 1 1
0 0 0
0 0 0
1 1
0 0

Here the process stops because the remainder consists of only one column. The final sequence is obtained by concatenating
the three columns from left to right:

1 0 0 1 0 1 0 0 1 0 1 0 0

Bjorklund’s algorithm applied to a string of n bits consisting of k ones and n − k zeros has the same structure as
running Euclid(k,n). Indeed, Bjorklund’s algorithm uses the repeated subtraction form of division, just as Euclid did in his
Elements [39]. It is also well known that applying the algorithm Euclid(k,n) to two O (n) bit numbers (binary sequences of
length n) causes it to perform O (n) arithmetic operations in the worst case [29].

2.3. Euclidean rhythms

The binary sequences generated by Bjorklund’s algorithm, as described in the preceding, may be considered as one
family of rhythms. Furthermore, because Bjorklund’s algorithm is a way of visualizing the repeated-subtraction version of
the Euclidean algorithm, we call these rhythms Euclidean rhythms. We denote the Euclidean rhythm by E(k,n), where k is
the number of ones (onsets) and n (the number of pulses) is the length of the sequence (zeroes plus ones). For example,
E(5,13) = [1001010010100]. The zero-one notation is not ideal for representing binary rhythms because it is difficult to
visualize the locations of the onsets as well as the duration of the inter-onset intervals. In the more iconic box notation,
the preceding rhythm is written as E(5,13) = [× · · × · × · · × · × · · ]. It should be emphasized that Euclidean rhythms
are merely the result of applying Euclid’s algorithm and do not privilege a priori the resulting rhythm over any of its other
rotations.

The rhythm E(5,13) is in fact used in Macedonian music [4], but having a timespan of 13 (and defining a measure of
length 13), it is rarely found in world music. For contrast, let us consider two widely used values of k and n; in particular,
what is E(3,8)? Applying Bjorklund’s algorithm to the corresponding sequence [11100000], the reader may easily verify
that the resulting Euclidean rhythm is E(3,8) = [× · · × · · × · ]. Fig. 3(a) shows a clock diagram of this rhythm, where the
numbers by the sides of the triangle indicate the arc-lengths between those onsets.

The Euclidean rhythm E(3,8) is one of the most famous on the planet. In Cuba, it goes by the name of the tresillo, and
in the USA, it is often called the Habanera rhythm. It was used in hundreds of rockabilly songs during the 1950s. It can often
be heard in early rock-and-roll hits in the left-hand patterns of the piano, or played on the string bass or saxophone [19,42,
65]. A good example is the bass rhythm in Elvis Presley’s Hound Dog [19]. The tresillo pattern is also found widely in West
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Fig. 3. (a) The Euclidean rhythm E(3,8) is the Cuban tresillo. (b) The Euclidean rhythm E(5,8) is the Cuban cinquillo.

African traditional music. For example, it is played on the atoke bell in the Sohu, an Ewe dance from Ghana [54]. The tresillo
can also be recognized as the first bar (first eight pulses) of the ubiquitous two-bar clave Son shown in Fig. 1(b).

In the two examples E(5,13) and E(3,8), there are fewer ones than zeros. If instead there are more ones than zeros,
Bjorklund’s algorithm yields the following steps with, for example, k = 5 and n = 8:

[1 1 1 1 1 0 0 0]

[10] [10] [10] [1] [1]

[101] [101] [10]

[1 0 1 1 0 1 1 0]

The resulting Euclidean rhythm is E(5,8) = [× · ×× · ×× · ]. Fig. 3(b) shows a clock diagram for this rhythm. It is
another famous rhythm on the world scene. In Cuba, it goes by the name of the cinquillo and it is intimately related to
the tresillo [42]. It has been used in jazz throughout the 20th century [72], and in rockabilly music. For example, it is the
hand-clapping pattern in Elvis Presley’s Hound Dog [19]. The cinquillo pattern is also widely used in West African traditional
music [71,85], as well as Egyptian [48] and Korean [50] music.

We show in this paper that Euclidean rhythms have two important properties: they maximize evenness and they are
deep. The evenness property should come as no surprise, given how we designed the family of rhythms. To give some
feeling for the deepness property, we consider the two examples in Fig. 3, which have been labeled with the distances
between all pairs of onsets, measured as arc-lengths. The tresillo in Fig. 3(a) has one occurrence of distance 2 and two
occurrences of distance 3. The cinquillo in Fig. 3(b) contains one occurrence of distance 4, two occurrences of distance 1,
three occurrences of distance 2, and four occurrences of distance 3. Thus, every distance has a unique multiplicity, making
these rhythms Erdős-deep.

2.4. Euclidean rhythms in traditional world music

In this section, we list all the Euclidean rhythms found in world music that we have collected so far, restricting attention
to those in which k and n are relatively prime. In some cases, the Euclidean rhythm is a rotated version of a commonly used
rhythm; this makes the two rhythms instances of the same necklace. Fig. 4 illustrates an example of two rhythms that are
instances of the same necklace. We provide this list because it is interesting ethnomusicological data on rhythms. We make
no effort in this paper to establish that Euclidean rhythms are more common than their rotations. We leave the problem of
defining which rhythms are preferred over others as an open problem to ethnomusicologists.

Rhythms in which k and n have a common divisor larger than 1 are common all over the planet in traditional, classical,
and popular genres of music. For example, E(4,12) = [× · · × · · × · · × · · ] is the 12/8-time Fandango clapping pattern in
the Flamenco music of southern Spain, where ‘×’ denotes a loud clap and ‘ · ’ denotes a soft clap [35]. However, the string
itself is periodic: E(4,12) has period 3, even though it appears in a timespan of 12. For this reason, we restrict ourselves
to the more interesting Euclidean rhythms that do not decompose into repetitions of shorter Euclidean rhythms. We are
also not concerned with rhythms that have only one onset ([× · ], [× · · ], etc.), and similarly with any repetitions of these
rhythms (for example, [× · × · ]).

There are surprisingly many Euclidean rhythms with k and n relatively prime that are found in world music. Appendix A
includes more than 40 such rhythms uncovered so far.

2.5. Aksak rhythms

Euclidean rhythms are closely related to a family of rhythms known as aksak rhythms, which have been studied from
the combinatorial point of view for some time [4,17,28]. Béla Bartók [9] and Constantin Brăiloiu [17], respectively, have used
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Fig. 4. These two rhythms are instances of the same rhythm necklace.

the terms Bulgarian rhythm and aksak to refer to those meters that use units of durations 2 and 3, and no other durations.
Furthermore, the rhythm or meter must contain at least one duration of length 2 and at least one duration of length 3.
Arom [4] refers to these durations as binary cells and ternary cells, respectively.

Arom [4] generated an inventory of all the theoretically possible aksak rhythms for values of n ranging from 5 to 29, as
well as a list of those that are actually used in traditional world music. He also proposed a classification of these rhythms
into several classes, based on structural and numeric properties. Three of his classes are considered here:

1. An aksak rhythm is authentic if n is a prime number.
2. An aksak rhythm is quasi-aksak if n is an odd number that is not prime.
3. An aksak rhythm is pseudo-aksak if n is an even number.

A quick perusal of the Euclidean rhythms listed in the preceding reveals that aksak rhythms are well represented. Indeed,
all three of Arom’s classes (authentic, quasi-aksak, and pseudo-aksak) make their appearance. There is a simple character-
ization of those Euclidean rhythms that are aksak. From the iterative subtraction algorithm of Bjorklund it follows that if
n = 2k all cells are binary (duration 2). Similarly, if n = 3k all cells are ternary (duration 3). Therefore, to ensure that the
Euclidean rhythm contains both binary and ternary cells, and no other durations, it follows that n must be between 2k and
3k.

Of course, not all aksak rhythms are Euclidean. Consider the Bulgarian rhythm with interval sequence (3322) [4], which
is also the metric pattern of Indian Lady by Don Ellis [55]. Here k = 4 and n = 10, and E(4,10) = [× · · × · × · · × · ] or
(3232), a periodic rhythm.

The following Euclidean rhythms are authentic aksak:

E(2,5) = [× · × · · ] = (23) (classical music, jazz, Greece, Macedonia, Namibia, Persia, Rwanda).

E(3,7) = [× · × · × · · ] = (223) (Bulgaria, Greece, Sudan, Turkestan).

E(4,11) = [× · · × · · × · · × · ] = (3332) (Southern India rhythm), (Serbian necklace).

E(5,11) = [× · × · × · × · × · · ] = (22223) (classical music, Bulgaria, Northern India, Serbia).

E(5,13) = [× · · × · × · · × · × · · ] = (32323) (Macedonia).

E(6,13) = [× · × · × · × · × · × · · ] = (222223) (Macedonia).

E(7,17) = [× · · × · × · · × · × · · × · × · ] = (3232322) (Macedonian necklace).

E(8,17) = [× · × · × · × · × · × · × · × · · ] = (22222223) (Bulgaria).

E(8,19) = [× · · × · × · × · · × · × · × · · × · ] = (32232232) (Bulgaria).

E(9,23) = [× · · × · × · · × · × · · × · × · · × · × · · ] = (323232323) (Bulgaria).

The following Euclidean rhythms are quasi-aksak:

E(4,9) = [× · × · × · × · · ] = (2223) (Greece, Macedonia, Turkey, Zaïre).

E(7,15) = [× · × · × · × · × · × · × · · ] = (2222223) (Bulgarian necklace).

The following Euclidean rhythms are pseudo-aksak:

E(3,8) = [× · · × · · × · ] = (332) (Central Africa, Greece, India, Latin America, West Africa, Sudan).

E(5,12) = [× · · × · × · · × · × · ] = (32322) (Macedonia, South Africa).
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Fig. 5. The shaded pixels form a digital straight line determined by the points p and q.

E(7,16) = [× · · × · × · × · · × · × · × · ] = (3223222) (Brazilian, Macedonian, West African necklaces).

E(7,18) = [× · · × · × · · × · × · · × · × · · ] = (3232323) (Bulgaria).

E(9,22) = [× · · × · × · · × · × · · × · × · · × · × · ] = (323232322) (Bulgarian necklace).

E(11,24) = [× · · × · × · × · × · × · · × · × · × · × · × · ] = (32222322222)

(Central African and Bulgarian necklaces).

E(15,34) = [× · · × · × · × · × · · × · × · × · × · · × · × · × · × · · × · × · ] = (322232223222322)

(Bulgarian necklace).

2.6. Drawing digital straight lines

Euclidean rhythms and necklace patterns also appear in the computer graphics literature on drawing digital straight
lines [59]. The problem here consists of efficiently converting a mathematical straight line segment defined by the x and
y integer coordinates of its endpoints, to an ordered sequence of pixels that most faithfully represents the given straight
line segment. Fig. 5 illustrates an example of a digital straight line (shaded pixels) determined by the two given endpoints
p and q. All the pixels intersected by the segment (p,q) are shaded. If we follow either the lower or upper boundary
of the shaded pixels from left to right we obtain the interval sequences (43333) or (33334), respectively. Note that the
upper pattern corresponds to E(5,16), a Bossa-Nova variant. Indeed, Harris and Reingold [51] show that the well-known
Bresenham algorithm [18] is described by the Euclidean algorithm.

2.7. Calculating leap years in calendar design

For thousands of years human beings have observed and measured the time it takes between two consecutive sunrises,
and between two consecutive spring seasons. These measurements inspired different cultures to design calendars [7,74]. Let
T y denote the duration of one revolution of the earth around the sun, more commonly known as a year. Let Td denote the
duration of one complete rotation of the earth, more commonly known as a day. The values of T y and Td are of course
continually changing, because the universe is continually reconfiguring itself. However the ratio T y/Td is approximately
365.242199. . . . It is very convenient therefore to make a year last 365 days. The problem that arises both for history and
for predictions of the future, is that after a while the 0.242199. . . . starts to contribute to a large error. One simple solution
is to add one extra day every 4 years: the so-called Julian calendar. A day with one extra day is called a leap year. But
this assumes that a year is 365.25 days long, which is still slightly greater than 365.242199. . . . So now we have an error in
the opposite direction albeit smaller. One solution to this problem is the Gregorian calendar [78]. The Gregorian calendar
defines a leap year as one divisible by 4, except not those divisible by 100, except not those divisible by 400. With this rule
a year becomes 365 + 1/4 − 1/100 + 1/400 = 365.2425 days long, not a bad approximation.

Another solution is provided by the Jewish calendar which uses the idea of cycles [7]. Here a regular year has 12 months
and a leap year has 13 months. The cycle has 19 years including 7 leap years. The 7 leap years must be distributed as evenly
as possible in the cycle of 19. The cycle is assumed to start with Creation as year 1. If the year modulo 19 is one of 3, 6,
8, 11, 14, 17, or 19, then it is a leap year. For example, the year 5765 = 303 · 19 + 8 and so is a leap year. The year 5766,
which begins at sundown on the Gregorian date of October 3, 2005, is 5766 = 303 × 19 + 9, and is therefore not a leap year.
Applying Bjorklund’s algorithm to the integers 7 and 19 yields E(7,19) = [× · · × · × · · × · · × · × · · × · · ]. If we start
this rhythm at the 7th pulse we obtain the pattern [ · · × · · × · × · · × · · × · · × · ×], which describes precisely the leap
year pattern 3, 6, 8, 11, 14, 17, and 19 of the Jewish calendar. In this sense the Jewish calendar is an instance of a Euclidean
necklace.

2.8. Euclidean strings

In the study of the combinatorics of words and sequences, there exists a family of strings called Euclidean strings [38].
In this section we explore the relationship between Euclidean strings and Euclidean rhythms. We use the same terminology
and notation introduced in [38]. Euclidean strings result from a mathematical algorithm and represent a different arbitrary
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Fig. 6. Two right-rotations of the Bembé string: (a) the Bembé, (b) rotation by one unit, (c) rotation by seven units.

convention as to how to choose a canonical rhythm that represents the necklace. Whether there is anything musically
meaningful about these conventions is left to ethnomusicologists to decide.

Let P = (p0, p1, . . . , pn−1) denote a string of nonnegative integers. Let ρ(P ) denote the right rotation of P by one
position; that is, ρ(P ) = (pn−1, p0, p1, . . . , pn−2). Let ρd(P ) denote the right rotation of P by d positions. If P is considered
as a cyclic string, a right rotation corresponds to a clockwise rotation. Fig. 6 illustrates the ρ(P ) operator with P equal
to the Bembé bell-pattern of West Africa [86]. Fig. 6(a) shows the Bembé bell-pattern, Fig. 6(b) shows ρ(P ), which is a
hand-clapping pattern from West Africa [70], and Fig. 6(c) shows ρ7(P ), which is the Tambú rhythm of Curaçao [77].

Ellis et al. [38] define a string P = (p0, p1, . . . , pn−1) to be Euclidean if incrementing p0 by 1 and decrementing pn−1 by 1
yields a new string τ (P ) that is the rotation of P . In other words, P and τ (P ) are instances of the same necklace. Therefore,
if we represent rhythms as binary sequences, Euclidean rhythms cannot be Euclidean strings because all Euclidean rhythms
begin with a ‘one’. Increasing p0 by one makes it a ‘two’, which is not a binary string. Therefore, to explore the relationship
between Euclidean strings and Euclidean rhythms, we will represent rhythms by their clockwise distance sequences, which
are also strings of nonnegative integers. As an example, consider E(4,9) = [× · × · × · × · · ] = (2223). Now τ (2223) =
(3222), which is a rotation of E(4,9), and thus (2223) is a Euclidean string. Indeed, for P = E(4,9), τ (P ) = ρ3(P ). As
a second example, consider the West African clapping-pattern shown in Fig. 6(b) given by P = (1221222). We have that
τ (P ) = (2221221) = ρ6(P ), the pattern shown in Fig. 6(c), which also happens to be the mirror image of P about the (0,6)

axis. Therefore P is a Euclidean string. However, note that P is not a Euclidean rhythm. Nevertheless, P is a rotation of the
Euclidean rhythm E(7,12) = (2122122).

Ellis et al. [38] have many beautiful results about Euclidean strings. They show that Euclidean strings exist if, and only if,
n and (p0 + p1 + · · · + pn−1) are relatively prime numbers, and that when they exist they are unique. They also show how
to construct Euclidean strings using an algorithm that has the same structure as the Euclidean algorithm. In addition they
relate Euclidean strings to many other families of sequences studied in the combinatorics of words [5,62].

Let R(P ) denote the reversal (or mirror image) of P ; that is, R(P ) = (pn−1, pn−2, . . . , p1, p0). Now we may determine
which of the Euclidean rhythms used in world music listed in the preceding, are Euclidean strings or reverse Euclidean
strings. The length of a Euclidean string is defined as the number of integers it has. This translates in the rhythm domain
to the number of onsets a rhythm contains. Furthermore, strings of length one are Euclidean strings, trivially. Therefore
all the trivial Euclidean rhythms with only one onset, such as E(1,2) = [× · ] = (2), E(1,3) = [× · · ] = (3), and E(1,4) =
[× · · · ] = (4), etc., are both Euclidean strings as well as reverse Euclidean strings. In the lists that follow the Euclidean
rhythms are shown in their box-notation format as well as in the clockwise distance sequence representation. The styles of
music that use these rhythms is also included. Finally, if only a rotated version of the Euclidean rhythm is played, then it is
still included in the list but referred to as a necklace.

The following Euclidean rhythms are Euclidean strings:

E(2,3) = [×× · ] = (12) (West Africa, Latin America, Nubia, Northern Canada).

E(2,5) = [× · × · · ] = (23) (classical music, jazz, Greece, Macedonia, Namibia, Persia, Rwanda), (authentic aksak).

E(3,4) = [××× · ] = (112) (Brazil, Bali rhythms), (Colombia, Greece, Spain, Persia, Trinidad necklaces).

E(3,7) = [× · × · × · · ] = (223) (Bulgaria, Greece, Sudan, Turkestan), (authentic aksak).

E(4,5) = [×××× · ] = (1112) (Greece).

E(4,9) = [× · × · × · × · · ] = (2223) (Greece, Macedonia, Turkey, Zaïre), (quasi-aksak).

E(5,6) = [××××× · ] = (11112) (Arab).

E(5,11) = [× · × · × · × · × · · ] = (22223) (classical music, Bulgaria, Northern India, Serbia), (authentic aksak).

E(5,16) = [× · · × · · × · · × · · × · · · · ] = (33334) (Brazilian, West African necklaces).

E(6,7) = [×××××× · ] = (111112) (Greek necklace).
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E(6,13) = [× · × · × · × · × · × · · ] = (222223) (Macedonia), (authentic aksak).

E(7,8) = [××××××× · ] = (1111112) (Libyan necklace).

E(7,15) = [× · × · × · × · × · × · × · · ] = (2222223) (Bulgarian necklace), (quasi-aksak).

E(8,17) = [× · × · × · × · × · × · × · × · · ] = (22222223) (Bulgaria), (authentic aksak).

The following Euclidean rhythms are reverse Euclidean strings:

E(3,5) = [× · × · ×] = (221) (Korean, Rumanian, Persian necklaces).

E(3,8) = [× · · × · · × · ] = (332) (Central Africa, Greece, India, Latin America, West Africa, Sudan),

(pseudo-aksak).

E(3,11) = [× · · · × · · · × · · ] = (443) (North India).

E(3,14) = [× · · · · × · · · · × · · · ] = (554) (North India).

E(4,7) = [× · × · × · ×] = (2221) (Bulgaria).

E(4,11) = [× · · × · · × · · × · ] = (3332) (Southern India rhythm), (Serbian necklace), (authentic aksak).

E(4,15) = [× · · · × · · · × · · · × · · ] = (4443) (North India).

E(5,7) = [× · ×× · ××] = (21211) (Arab).

E(5,9) = [× · × · × · × · ×] = (22221) (Arab).

E(5,12) = [× · · × · × · · × · × · ] = (32322) (Macedonia, South Africa), (pseudo-aksak).

E(7,9) = [× · ××× · ×××] = (2112111) (Greece).

E(7,10) = [× · ×× · ×× · ××] = (2121211) (Turkey).

E(7,16) = [× · · × · × · × · · × · × · × · ] = (3223222) (Brazilian, Macedonian, West African necklaces),

(pseudo-aksak).

E(7,17) = [× · · × · × · · × · × · · × · × · ] = (3232322) (Macedonian necklace), (authentic aksak).

E(9,22) = [× · · × · × · · × · × · · × · × · · × · × · ] = (323232322) (Bulgarian necklace), (pseudo-aksak).

E(11,12) = [× · ××××××××××] = (11111111112) (Oman necklace).

E(11,24) = [× · · × · × · × · × · × · · × · × · × · × · × · ] = (32222322222)

(Central African and Bulgarian necklaces), (pseudo-aksak).

The following Euclidean rhythms are neither Euclidean nor reverse Euclidean strings:

E(5,8) = [× · ×× · ×× · ] = (21212) (Egypt, Korea, Latin America, West Africa).

E(5,13) = [× · · × · × · · × · × · · ] = (32323) (Macedonia), (authentic aksak).

E(7,12) = [× · ×× · × · ×× · × · ] = (2122122) (West Africa), (Central African, Nigerian, Sierra Leone necklaces).

E(7,18) = [× · · × · × · · × · × · · × · × · · ] = (3232323) (Bulgaria), (pseudo-aksak).

E(8,19) = [× · · × · × · × · · × · × · × · · × · ] = (32232232) (Bulgaria), (authentic aksak).

E(9,14) = [× · ×× · ×× · ×× · ×× · ] = (212121212) (Algerian necklace).

E(9,16) = [× · ×× · × · × · ×× · × · × · ] = (212221222) (West and Central African, and Brazilian necklaces).

E(9,23) = [× · · × · × · · × · × · · × · × · · × · × · · ] = (323232323) (Bulgaria), (authentic aksak).

E(13,24) = [× · ×× · × · × · × · × · ×× · × · × · × · × · ] = (2122222122222) (Central African necklace).

E(15,34) = [× · · × · × · × · × · · × · × · × · × · · × · × · × · × · · × · × · ] = (322232223222322)

(Bulgarian necklace), (pseudo-aksak).

The Euclidean rhythms that appear in classical music and jazz are also Euclidean strings (the first group). Furthermore,
this group is not popular in African music. The Euclidean rhythms that are neither Euclidean strings nor reverse Euclidean
strings (group three) fall into two categories: those consisting of clockwise distances 1 and 2, and those consisting of
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clockwise distances 2 and 3. The latter group is used only in Bulgaria, and the former is used in Africa. Finally, the Euclidean
rhythms that are reverse Euclidean strings (the second group) appear to have a much wider use. Finding musicological
explanations for these mathematical properties raises interesting ethnomusicological questions.

The Euclidean strings defined in [38] determine another family of rhythms, many of which are also used in world
music but are not necessarily Euclidean rhythms. For example, (1221222) is an Afro–Cuban bell pattern. Therefore it would
be interesting to explore empirically the relation between Euclidean strings and world music rhythms, and to determine
formally the exact mathematical relation between Euclidean rhythms and Euclidean strings.

3. Definitions and notation

Before we begin the more technical part of the paper, we need to define some precise mathematical notation for de-
scribing rhythms.

Let Z
+ denote the set of positive integers. For k,n ∈ Z

+ , let gcd(k,n) denote the greatest common divisor of k and n. If
gcd(k,n) = 1, we call k and n relatively prime. For integers a < b, let [a,b] = {a,a + 1,a + 2, . . . ,b}.

Let C be a circle in the plane, and consider any two points x, y on C . The chordal distance between x and y, denoted
by d(x, y), is the length of the line segment xy; that is, d(x, y) is the Euclidean distance between x and y. The clockwise
distance from x to y, or of the ordered pair (x, y), is the length of the clockwise arc of C from x to y, and is denoted by
�

d (x, y). Finally, the geodesic distance between x and y, denoted by ��

d (x, y), is the length of the shortest arc of C between x
and y; that is, ��

d (x, y) = min{�

d (x, y),
�

d (y, x)}.
A rhythm of timespan n is a subset of {0,1, . . . ,n − 1}, representing the set of pulses that are onsets in each repetition. For

clarity, we write the timespan n as a subscript after the subset: {. . .}n . Geometrically, if we locate n equally spaced points
clockwise around a circle Cn of circumference n, then we can view a rhythm of timespan n as a subset of these n points.
We consider an element of Cn to simultaneously be a point on the circle and an integer in {0,1, . . . ,n − 1}.

The rotation of a rhythm R of timespan n by an integer � � 0 is the rhythm {(i + �) mod n: i ∈ R}n of the same
timespan n. The scaling of a rhythm R of timespan n by an integer α � 1 is the rhythm {αi: i ∈ R}αn of timespan αn.

Let R = {r0, r1, . . . , rk−1}n be a rhythm of timespan n with k onsets sorted in clockwise order. Throughout this paper, an
onset ri will mean (ri mod k) mod n. Observe that the clockwise distance �

d (ri, r j) = (r j − ri) mod n. This is the number of
points on Cn that are contained in the clockwise arc (ri, r j] and is also known as the chromatic length [22].

The geodesic distance multiset of a rhythm R is the multiset of all nonzero pairwise geodesic distances; that is, it is the
multiset {��d (ri, r j): ri, r j ∈ R, ri �= r j}. The geodesic distance multiset has cardinality

(k
2

)
. The multiplicity of a distance d is

the number of occurrences of d in the geodesic distance multiset.
A rhythm is Erdős-deep if it has (exactly) one distance of multiplicity i, for each i ∈ [1,k−1]. Note that these multiplicities

sum to
∑k−1

i=1 i = (k
2

)
, which is the cardinality of the geodesic distance multiset, and hence these distances are all the

distances in the rhythm. Every geodesic distance is between 0 and �n/2�. A rhythm is Winograd-deep if every two distances
from {1,2, . . . , � n

2 �} have different multiplicity.
A shelling of an Erdős-deep rhythm R is an ordering s1, s2, . . . , sk of the onsets in R such that R − {s1, s2, . . . , si} is an

Erdős-deep rhythm for i = 0,1, . . . ,k. (Every rhythm with at most two onsets is Erdős-deep.)
The evenness of rhythm R is the sum of all inter-onset chordal distances in R; that is,

∑
0�i< j�k−1 d(ri, r j).

The clockwise distance sequence of R is the circular sequence (d0,d1, . . . ,dk−1) where di = �

d (ri, ri+1) for all i ∈ [0,k − 1].
Observe that each di ∈ Z

+ and
∑

i di = n.

Observation 1. There is a one-to-one relationship between rhythms with k onsets and timespan n and circular sequences
(d0,d1, . . . ,dk−1) where each di ∈ Z

+ and
∑

i di = n.

4. Even rhythms

In this section we first describe three algorithms that generate even rhythms. We then characterize rhythms with maxi-
mum evenness and show that, for given numbers of pulses and onsets, the three described algorithms generate the unique
rhythm with maximum evenness. As mentioned in the introduction, the measure of evenness considered here is the pair-
wise sum of chordal distances.

The even rhythms characterized in this section were studied by Clough and Myerson [30,31] for the case where the
numbers of pulses and onsets are relatively prime. This was subsequently expanded upon by Clough and Douthett [22].
We revisit these results and provide an additional connection to rhythms (and scales) that are obtained from the Euclidean
algorithm. Most of these results are stated in [22]. However our proofs are new, and in many cases are much more stream-
lined.

4.1. Characterization

We first present three algorithms for computing a rhythm with k onsets, timespan n, for any k � n, that possess large
evenness.

The first algorithm is by Clough and Douthett [22]:
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Algorithm. Clough-Douthett(k,n)

1. return {� in
k �: i ∈ [0,k − 1]}.

Because k � n, the rhythm output by Clough-Douthett(k,n) has k onsets as desired.
The second algorithm is a geometric heuristic implicit in the work of Clough and Douthett [22]:

Algorithm. Snap(k,n)

1. Let D be a set of k evenly spaced points on Cn such that D ∩ Cn = ∅.
2. For each point x ∈ D , let x′ be the first point in Cn clockwise from x.
3. return {x′: x ∈ D}.

Because k � n, the clockwise distance between consecutive points in D in the execution of Snap(k,n) is at least that of
consecutive points in Cn . Thus, x′ �= y′ for distinct x, y ∈ D , so Snap returns a rhythm with k onsets as desired.

The third algorithm is a recursive algorithm in the same mold as Euclid’s algorithm for greatest common divisors. The
algorithm uses the clockwise distance sequence notation described in the introduction. The resulting rhythm always defines
the same necklace as the Euclidean rhythms from Section 2.3; that is, the only difference is a possible rotation.

Algorithm. Euclidean(k,n)

1. if k evenly divides n then return (n
k , n

k , . . . , n
k︸ ︷︷ ︸

k

).

2. a ← n mod k.
3. (x1, x2, . . . , xa) ← Euclidean(k,a).
4. return (�n

k �, . . . , �n
k �︸ ︷︷ ︸

x1−1

, �n
k ; �n

k �, . . . , �n
k �︸ ︷︷ ︸

x2−1

, �n
k ; . . . ; �n

k �, . . . , �n
k �︸ ︷︷ ︸

xa−1

, �n
k ).

As a simple example, consider k = 5 and n = 13. The sequence of calls to Euclidean(k,n) follows the same pat-
tern as the Euclid algorithm for greatest common divisors from Section 2.1, except that it now stops one step earlier:
(5,13), (3,5), (2,3), (1,2). At the base of the recursion, we have Euclidean(1,2) = (2) = [× · ]. At the next level up,
we obtain Euclidean(2,3) = (1,2) = [×× · ]. Next we obtain Euclidean(3,5) = (2;1,2) = [× · ×× · ]. Finally, we obtain
Euclidean(5,13) = (2,3;3;2,3) = [× · × · · × · · × · × · · ]. (For comparison, the Euclidean rhythm from Section 2.2 is
E(5,13) = (2,3,2,3,3), a rotation by 5.)

We now show that algorithm Euclidean(k,n) outputs a circular sequence of k integers that sum to n (which is thus
the clockwise distance sequence of a rhythm with k onsets and timespan n). We proceed by induction on k. If k evenly
divides n, then the claim clearly holds. Otherwise a (= n mod k) > 0, and by induction

∑a
i=1 xi = k. Thus the sequence that

is output has k terms and sums to

a

⌈
n

k

⌉
+

⌊
n

k

⌋ a∑
i=1

(xi − 1) = a

⌈
n

k

⌉
+ (k − a)

⌊
n

k

⌋

= a

(
1 +

⌊
n

k

⌋)
+ (k − a)

⌊
n

k

⌋

= a + k

⌊
n

k

⌋

= n.

The following theorem is one of the main contributions of this paper.

Theorem 4.1.
Let n � k � 2 be integers. The following are equivalent for a rhythm R = {r0, r1, . . . , rk−1}n with k onsets and timespan n:

(A) R has maximum evenness (sum of pairwise inter-onset chordal distances);
(B) R is a rotation of the Clough-Douthett(k,n) rhythm;
(C) R is a rotation of the Snap(k,n) rhythm;
(D) R is a rotation of the Euclidean(k,n) rhythm; and
(�) for all � ∈ [1,k] and i ∈ [0,k − 1], the ordered pair (ri, ri+�) has clockwise distance �d (ri, ri+�) ∈ {� �n

k �, � �n
k }.

Moreover, up to a rotation, there is a unique rhythm that satisfies these conditions.
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Note that the evenness of a rhythm equals the evenness of the same rhythm played backwards. Thus, if R is the unique
rhythm with maximum evenness, then R is the same rhythm as R played backwards (up to a rotation).

The proof of Theorem 4.1 proceeds as follows. In Section 4.2 we prove that each of the three algorithms produces a
rhythm that satisfies property (�). Then in Section 4.3 we prove that there is a unique rhythm that satisfies property (�).
Thus the three algorithms produce the same rhythm, up to rotation. Finally in Section 4.4 we prove that the unique rhythm
that satisfies property (�) maximizes evenness.

4.2. Properties of the algorithms

We now prove that each of the algorithms has property (�). Clough and Douthett [22] proved the following.

Proof (B) ⇒ (�). Say R = {r0, r1, . . . , rk−1}n is the Clough-Douthett(k,n) rhythm. Consider an ordered pair (ri, ri+�) of
onsets in R . Let pi = in mod k and let p� = �n mod k. By symmetry we can suppose that ri � r(i+�) mod k . Then the clockwise
distance �

d (ri, ri+�) is⌊
(i + �)n

k

⌋
−

⌊
in

k

⌋
=

⌊
in

k

⌋
+

⌊
�n

k

⌋
+

⌊
pi + p�

k

⌋
−

⌊
in

k

⌋
=

⌊
�n

k

⌋
+

⌊
pi + p�

k

⌋
,

which is � �n
k � or � �n

k , because � pi+p�

k � ∈ {0,1}. �
A similar proof shows that the rhythm {� in

k : i ∈ [0,k − 1]} satisfies property (�). Observe that (�) is equivalent to the
following property.

(��) If (d0,d1, . . . ,dk−1) is the clockwise distance sequence of R , then for all � ∈ [1,k], the sum of any � consecutive
elements in (d0,d1, . . . ,dk−1) equals � �n

k  or � �n
k �.

Proof (C) ⇒ (��). Let (d0,d1, . . . ,dk−1) be the clockwise distance sequence of the rhythm determined by Snap(k,n). For the
sake of contradiction, suppose that for some � ∈ [1,k], the sum of � consecutive elements in (d0,d1, . . . ,dk−1) is greater
than � �n

k . The case in which the sum is less than � �n
k � is analogous. We can assume that these � consecutive elements are

(d0,d1, . . . ,d�−1). Using the notation defined in the statement of the algorithm, let x0, x1, . . . , x� be the points in D such
that �

d (x′
i, x′

i+1) = di for all i ∈ [0, � − 1]. Thus �

d (x′
1, x′

�+1) � � �n
k  + 1. Now �

d (x�+1, x′
�+1) < 1. Thus �

d (x′
1, x�+1) > � �n

k  � �n
k ,

which implies that �

d (x1, x�+1) > �n
k . This contradicts the fact that the points in D were evenly spaced around Cn in the first

step of the algorithm. �
Proof (D) ⇒ (��). We proceed by induction on k. Let R = Euclidean(k,n). If k evenly divides n, then R = (n

k , n
k , . . . , n

k ),
which satisfies (D). Otherwise, let a = n mod k and let (x1, x2, . . . , xa) = Euclidean(k,a). By induction, for all � ∈ [1,a], the
sum of any � consecutive elements in (x1, x2, . . . , xa) equals � �k

a � or � �k
a . Let S be a sequence of m consecutive elements

in R . By construction, for some 1 � i � j � a, and for some 0 � s � xi − 1 and 0 � t � x j − 1, we have

S =
(⌊

n

k

⌋
, . . . ,

⌊
n

k

⌋
︸ ︷︷ ︸

s

,

⌈
n

k

⌉
,

⌊
n

k

⌋
, . . . ,

⌊
n

k

⌋
︸ ︷︷ ︸

xi+1−1

,

⌈
n

k

⌉
, . . . ,

⌊
n

k

⌋
, . . . ,

⌊
n

k

⌋
︸ ︷︷ ︸

x j−1−1

,

⌈
n

k

⌉
,

⌊
n

k

⌋
, . . . ,

⌊
n

k

⌋
︸ ︷︷ ︸

t

)
.

It remains to prove that �mn
k � �

∑
S � �mn

k .
We first prove that

∑
S � �mn

k �. We can assume the worst case for
∑

S to be minimal, which is when s = xi − 1 and
t = x j − 1. Thus by induction,

m + 1 =
j∑

α=i

xα �
⌈

( j − i + 1)k

a

⌉
.

Hence

am

k
� a

k

⌈
( j − i + 1)k

a

⌉
− a

k
� a

k

(
( j − i + 1)k + a − 1

a

)
− a

k
= j − i + 1 − 1

k
.

Thus � am
k � � j − i and

∑
S = m

⌊
n

⌋
+ j − i � m

⌊
n

⌋
+

⌊
am

⌋
=

⌊
m

⌊
n

⌋
+ am

⌋
=

⌊
m

(
k

⌊
n

⌋
+ a

)⌋
=

⌊
mn

⌋
.

k k k k k k k k
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Now we prove that
∑

S � �mn
k �. We can assume the worst case for

∑
S to be maximal, which is when s = 0 and t = 0.

Thus by induction,

m − 1 =
j−1∑

α=i+1

xα �
⌊

( j − i − 1)k

a

⌋
.

Hence

am

k
� a

k

⌊
( j − i − 1)k

a

⌋
+ a

k
� a

k

(
( j − i − 1)k − a + 1

a

)
+ a

k
= j − i − 1 + 1

k
.

Thus � am
k  � j − i and

∑
S = m

⌊
n

k

⌋
+ j − i � m

⌊
n

k

⌋
+

⌈
am

k

⌉
=

⌈
m

⌊
n

k

⌋
+ am

k

⌉
=

⌈
m

k

(
k

⌊
n

k

⌋
+ a

)⌉
=

⌈
mn

k

⌉
. �

4.3. Uniqueness

In this section we prove that there is a unique rhythm satisfying the conditions in Theorem 4.1. The following well-
known number-theoretic lemmas will be useful. Two integers x and y are inverses modulo m if xy ≡ 1 (mod m).

Lemma 4.2. (See [82], page 55.) An integer x has an inverse modulo m if and only if x and m are relatively prime. Moreover, if x has an
inverse modulo m, then it has an inverse y ∈ [1,m − 1].

Lemma 4.3. If x and m are relatively prime, then ix �≡ jx (mod m) for all distinct i, j ∈ [0,m − 1].

Proof. Suppose that ix ≡ jx (mod m) for some i, j ∈ [0,m − 1]. By Lemma 4.2, x has an inverse modulo m. Thus i ≡
j (mod m), and i = j because i, j ∈ [0,m − 1]. �
Lemma 4.4. For all relatively prime integers n and k with 2 � k � n, there is an integer � ∈ [1,k − 1] such that:

(a) �n ≡ 1 (mod k),
(b) i� �≡ j� (mod k) for all distinct i, j ∈ [0,k − 1], and
(c) i� �n

k � �≡ j� �n
k � (mod n) for all distinct i, j ∈ [0,k − 1].

Proof. By Lemma 4.2 with x = n and m = k, n has an inverse � modulo k. This proves (a). Thus k and � are relative prime
by Lemma 4.2 with x = � and m = k. Hence (b) follows from Lemma 4.3. Let t = � �n

k �. Then �n = kt + 1. By Lemma 4.3 with
m = n and x = t (and because k � n), to prove (c) it suffices to show that t and n are relatively prime. Let g = gcd(t,n). Thus
� n

g = k t
g + 1

g . Because n
g and t

g are integers, 1
g is an integer and g = 1. This proves (c). �

The following theorem is the main result of this section.

Theorem 4.5. For all integers n and k with 2 � k � n, there is a unique rhythm with k onsets and timespan n that satisfies property (�),
up to a rotation.

Proof. Let R = {r0, r1, . . . , rk−1}n be a k-onset rhythm that satisfies (�). Recall that the index of an onset is taken modulo k,
and that the value of an onset is taken modulo n. That is, ri = x means that ri mod k = x mod n.

Let g = gcd(k,n). We consider three cases for the value of g .

Case 1. g = k: Because R satisfies property (�) for � = 1, every ordered pair (ri, ri+1) has clockwise distance n
k . By a rotation

of R we can assume that r0 = 0. Thus ri = in
k for all i ∈ [0,k − 1]. Hence R is uniquely determined in this case.

Case 2. g = 1 (see Fig. 7): By Lemma 4.4(a), there is an integer � ∈ [1,k − 1] such that �n ≡ 1 (mod k). Thus �n = (k −
1)� �n

k � + � �n
k . Hence, of the k ordered pairs (ri, ri+�) of onsets, k − 1 have clockwise distance � �n

k � and one has clockwise
distance � �n

k . By a rotation of R we can assume that r0 = 0 and rk−� = n−� �n
k . Thus ri� = i� �n

k � for all i ∈ [0,k −1]; that is,
r(i�) mod k = (i� �n

k �) mod n. By Lemma 4.4(b) and (c), this defines the k distinct onsets of R . Hence R is uniquely determined
in this case.
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Fig. 7. Here we illustrate Case 2 with n = 12 and k = 7. Thus � = 3 because 3 × 12 ≡ 1 (mod 7). We have � �n
k  = 6 and � �n

k � = 5. By a rotation we can
assume that r0 = 0 and rk−� = r4 = 6 (the darker dots). Then as shown by the arrows, the positions of the other onsets are implied.

Fig. 8. Here we illustrate Case 3 with n = 15 and k = 9. Thus g = 3, n′ = 5 and k′ = 3. We have �′ = 2 because 2 × 5 ≡ 1 (mod 3). Thus � �′n′
k′  = 4 and

� �′n′
k′ � = 3. We have L0 = 0, L1 = 4 and L2 = 7. A rotation fixes the first g = 3 onsets (the darker or blue dots). As shown by the arrows, these onsets imply

the positions of the next three onsets (medium or green dots), which in turn imply the positions of the final three onsets (the light or yellow dots). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Case 3. g ∈ [2,k − 1] (see Fig. 8): Let k′ = k
g and let n′ = n

g . Observe that both k′ and n′ are integers. Because R satisfies (�)

and � k′n
k  = � k′n

k � = n′ , we have �

d (ri, ri+k′ ) = n′ for all i ∈ [0,k − 1]. Thus

rik′+ j = in′ + r j (1)

for all i ∈ [0, g − 1] and j ∈ [0,n′ − 1].

Now gcd(n′,k′) = 1 by the maximality of g . By Lemma 4.4(a), there is an integer �′ ∈ [1,k′ − 1] such that �′n′ ≡
1 (mod k′). Thus �′n′ = (k′ − 1)� �′n′

k′ � + � �′n′
k′ , implying �′n = (k − g)� �′n′

k′ � + g� �′n′
k′ . Hence, of the k ordered pairs (ri, ri+�′)

of onsets, k − g have clockwise distance � �′n′
k′ � and g have clockwise distance � �′n′

k′ . By a rotation of R we can assume that

r0 = 0 and r�′ = � �′n′
k′ . By Eq. (1) with j = 0 and j = �′ , we have

rik′ = in′ and rik′+�′ = in′ +
⌈

�′n′

k′

⌉
(2)

for all i ∈ [0, g − 1]. This accounts for the g ordered pairs (ri, ri+�′ ) with clockwise distance � �′n′
k′ . The other k − g ordered

pairs (ri, ri+�′) have clockwise distance � �′n′
k′ �. Define

L0 = 0 and L j =
⌈

�′n′

k′

⌉
+ ( j − 1)

⌊
�′n′

k′

⌋
for all j ∈ [1,k′ − 1].

Thus by Eq. (2),

rik′+ j�′ = in′ + L j

for all i ∈ [0, g − 1] and j ∈ [0,k′ − 1]; that is, r(ik′+ j�′) mod k = (in′ + L j) mod n.
To conclude that R is uniquely determined, we must show that over the range i ∈ [0, g − 1] and j ∈ [0,k′ − 1], the

numbers ik′ + j�′ are distinct modulo k, and the numbers in′ + L j are distinct modulo n.
First we show that the numbers ik′ + j�′ are distinct modulo k. Suppose that

ik′ + j�′ ≡ pk′ + j�′ (mod k) (3)

for some i, p ∈ [0, g − 1] and j,q ∈ [0,k′ − 1]. Because k = k′ · g , we can write (ik′ + j�′) mod k as a multiple of k′ plus a
residue modulo k′ . In particular,

(ik′ + j�′) mod k = k′
((

i +
⌊

j�′
′

⌋)
mod g

)
+ ( j�′ mod k′).
k
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Thus Eq. (3) implies that

k′
((

i +
⌊

j�′

k′

⌋)
mod g

)
+ ( j�′ mod k′) = k′

((
p +

⌊
q�′

k′

⌋)
mod g

)
+ (q�′ mod k′). (4)

Hence j�′ ≡ q�′ (mod k′). Thus j = q by Lemma 4.4(c). By substituting j = q into Eq. (4), it follows that i ≡ p (mod g). Thus
i = p because i, p ∈ [0, g − 1]. This proves that the numbers ik′ + j�′ are distinct modulo k.

Now we show that the numbers in′ + L j are distinct modulo n. The proof is similar to the above proof that the numbers
ik′ + j�′ are distinct modulo k.

Suppose that

in′ + L j ≡ pn′ + Lq (mod n) (5)

for some i, p ∈ [0, g − 1] and j,q ∈ [0,k′ − 1]. Because n = n′ · g , we can write (in′ + L j) mod n as a multiple of n′ plus a
residue modulo n′ . In particular,

(in′ + L j) mod n = n′
((

i +
⌊

L j

n′

⌋)
mod g

)
+ (L j mod n′).

Thus Eq. (5) implies that

n′
((

i +
⌊

L j

n′

⌋)
mod g

)
+ (L j mod n′) = n′

((
p +

⌊
Lq

n′

⌋)
mod g

)
+ (Lq mod n′). (6)

Hence L j ≡ Lq (mod n′). We claim that j = q. If j = 0 then L j = 0, implying Lq = 0 and q = 0. Now assume that j,q � 1. In

this case, L j = j� �′n′
k′ � + 1 and Lq = q� �′n′

k′ � + 1. Thus

j

⌊
�′n′

k′

⌋
≡ q

⌊
�′n′

k′

⌋
(mod k′).

Hence j = q by Lemma 4.4(c). By substituting j = q into Eq. (6), it follows that i ≡ p (mod g). Thus i = p because i, p ∈
[0, g − 1]. This proves that the numbers in′ + L j are distinct modulo n.

Therefore R is uniquely determined. �
We have shown that each of the three algorithms generates a rhythm with property (�), and that there is a unique

rhythm with property (�). Thus all of the algorithms produce the same rhythm, up to rotation. It remains to prove that this
rhythm has maximum evenness.

4.4. Rhythms with maximum evenness

We start with a technical lemma. Let v, w be points at geodesic distance d on a circle C . Obviously d(v, w) is a function
of d, independent of v and w . Let f (C,d) = d(v, w).

Lemma 4.6. For all geodesic lengths x � d on a circle C , we have f (C, x) + f (C,d − x) � 2 · f (C, d
2 ), with equality only if d = 2x.

Proof. We can assume that C is a unit circle. Consider the isosceles triangle formed by the center of C and a geodesic of
length d (� π ). We have 1

2 f (C,d) = sin d
2 . Thus f (C,d) = 2 sin d

2 . Thus our claim is equivalent to sin x + sin(d − x) � 2 sin d
2

for all x � d (� π/2). In the range 0 � x � d, sin x is increasing, and sin(d − x) is decreasing at the opposite rate. Thus
sin x + sin(d − x) is maximized when x = d − x. That is, when d = 2x. The result follows. �

For a rhythm R = {r0, r1, . . . , rk−1}n , for each � ∈ [1,k], let S(R, �) be the sum of chordal distances taken over all ordered
pairs (ri, ri+�) in R . That is, let S(R, �) = ∑k−1

i=0 d(ri, ri+�). Property (A) says that R maximizes
∑k

�=1 S(R, �). Before we
characterize rhythms that maximize the sum of S(R, �), we first concentrate on rhythms that maximize S(R, �) for each
particular value of �. Let D(R, �) be the multiset of clockwise distances {�

d (ri, ri+�): i ∈ [0,k−1]}. Then S(R, �) is determined
by D(R, �). In particular, S(R, �) = ∑{ f (Cn,d): d ∈ D(R, �)} (where { f (Cn,d): d ∈ D(R, �)} is a multiset).

Lemma 4.7. Let 1 � � � k � n be integers. A k-onset rhythm R = {r0, r1, . . . , rk−1}n maximizes S(R, �) if and only if |�d (ri, ri+�) −
�d (r j, r j+�)| � 1 for all i, j ∈ [0,k − 1].

Proof. Suppose that R = {r0, r1, . . . , rk−1}n maximizes S(R, �). Let di = �

d (ri, ri+�) for all i ∈ [0,k − 1]. Suppose on the con-
trary that dp � dq +2 for some p,q ∈ [0,k−1]. We can assume that q < p, dp = dq +2, and di = dq +1 for all i ∈ [q+1, p−1].
Define r′

i = ri + 1 for all i ∈ [q + 1, p], and define r′
i = ri for all other i. Let R ′ be the rhythm {r′

0, r′
1, . . . , r′

k−1}n . Thus

D(R, �) \ D(R ′, �) = {dp,dq} and D(R ′, �) \ D(R, �) = {dp − 1,dq + 1}. Now dp − 1 = dq + 1 = 1
2 (dp + dq). By Lemma 4.6,

f (Cn,dp) + f (Cn,dq) < 2 · f (Cn, 1 (dp + dq). Thus S(R, �) < S(R ′, �), which contradicts the maximality of S(R, �).
2
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For the converse, let R be a rhythm such that |�d (ri, ri+�) − �

d (r j, r j+�)| � 1 for all i, j ∈ [0,k − 1]. Suppose on the
contrary that R does not maximize S(R, �). Thus some rhythm T = (t0, t1, . . . , tk−1) maximizes S(T , �) and T �= R . Hence
D(T , �) �= D(R, �). Because

∑
D(R, �) = ∑

D(T , �) (= �n), we have �

d (ti, ti+�) − �

d (t j, t j+�) � 2 for some i, j ∈ [0,k − 1].
As we have already proved, this implies that T does not maximize S(T , �). This contradiction proves that R maximizes
S(R, �). �

Because
∑k−1

i=0
�

d (ri, ri+�) = �n for any rhythm with k onsets and timespan n, Lemma 4.7 can be restated as follows.

Corollary 4.8. Let 1 � � � k � n be integers. A k-onset rhythm R = {r0, r1, . . . , rk−1}n maximizes S(R, �) if and only if �d (ri, ri+�) ∈
{� �n

k , � �n
k �} for all i ∈ [0,k − 1]. �

Proof (�) ⇒ (A). If (�) holds for some rhythm R , then by Corollary 4.8, R maximizes S(R, �) for every �. Thus R maximizes∑
� S(R, �). �

Proof (A) ⇒ (�). By Theorem 4.5, there is a unique rhythm R that satisfies property (�). Let R denote the unique rhythm
that satisfies property (�). Suppose on the contrary that there is a rhythm T = (t0, t1, . . . , tk−1) with property (A) but
R �= T . Thus there exists an ordered pair (ti, ti+�) in T with clockwise distance �

d (ti, ti+�) �∈ {� �n
k �, � �n

k }. By Corollary 4.8,

S(T , �) < S(R, �). Because T has property (A),
∑k

�=1 S(T , �) �
∑k

�=1 S(R, �). Thus for some �′ we have S(T , �′) > S(R, �′).
But this is a contradiction, because S(R, �′) � S(T , �′) by Corollary 4.8. �

This completes the proof of Theorem 4.1. We now show that Theorem 4.1 can be generalized for other metrics that satisfy
Lemma 4.6. To formalize this idea we introduce the following definition. A function g : [0,π ] → R

+ ∪ {0} is halving if for
all geodesic lengths x � d � π on the unit circle, g(x) + g(d − x) � 2 · g( d

2 ), with equality only if d = 2x. For example, chord
length is halving, but geodesic distance is not (because we have equality for all x). Observe that the proof of Lemma 4.7 and
Corollary 4.8 depend on this property alone. Thus we have the following generalization of Theorem 4.1.

Theorem 4.9. Let n � k � 2 be integers. Let g be a halving function. The following are equivalent for a rhythm R = (r0, r1, . . . , rk−1)

with n pulses and k onsets:

(A) R maximizes
∑k−1

i=0

∑k−1
j=i+1 g(

��d (ri, r j)),

(B) R is determined by the Clough-Douthett(k,n) algorithm,
(C) R is determined by the Snap(k,n) algorithm,
(D) R is determined by the Euclidean(k,n) algorithm,
(�) for all � ∈ [1,k] and i ∈ [0,k − 1], the ordered pair (ri, ri+�) has clockwise distance d(ri, ri+�) ∈ {� �n

k �, � �n
k }.

Moreover, up to a rotation, there is a unique rhythm that satisfies these conditions.

5. Deep rhythms

Recall that a rhythm is Winograd-deep if every geodesic distance 1,2, . . . , �n/2� has a unique multiplicity; it is Erdős-
deep if the multiplicity of every geodesic distance defined by pairs of onsets in unique. Winograd [94], and independently
Clough et al. [23], characterize all Winograd-deep scales: up to rotation, they are the scales that can be generated by the
first �n/2� or �n/2� + 1 multiples (modulo n) of a value that is relatively prime to n, plus one exceptional scale {0,1,2,4}6.
In this section, we prove a similar (but more general) characterization of Erdős-deep rhythms: up to rotation and scaling,
they are the rhythms generable as the first k multiples (modulo n) of a value that is relatively prime to n, plus the same
exceptional rhythm {0,1,2,4}6. The key difference is that the number of onsets k is now a free parameter, instead of
being forced to be either �n/2� or �n/2� + 1. Our proof follows Winograd’s, but differs in one case (the second case of
Theorem 5.3).

We later prove that every Erdős-deep rhythm has a shelling and that maximally even rhythms with n and k relatively
prime are Erdős-deep.

5.1. Characterization of deep rhythms

Our characterization of Erdős-deep rhythms is in terms of two families of rhythms. The main rhythm family consists of
the generated rhythms Dk,n,m = {im mod n: i = 0,1, . . . ,k − 1}n of timespan n, for certain values of k, n, and m. The one
exceptional rhythm is F = {0,1,2,4}6 of timespan 6.

Fact 5.1. F is Erdős-deep.
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Lemma 5.2. If k � �n/2� + 1 and m and n are relatively prime, then Dk,n,m is Erdős-deep.

Proof. The multiset of clockwise distances in Dk,n,m is {( jm − im) mod n: i < j} = {( j − i)m mod n: i < j}. There are k −
p choices of i and j such that j − i = p, so there are exactly p occurrences of the clockwise distance (pm) mod n in
the multiset. Each of these clockwise distances corresponds to a geodesic distance—either (pm) mod n or (−pm) mod n,
whichever is smaller (at most n/2). We claim that these geodesic distances are all distinct. Then the multiplicity of each
geodesic distance (±pm) mod n is exactly p, establishing that the rhythm is Erdős-deep.

For two geodesic distances to be equal, we must have ±pm ≡ ±qm (mod n) for some (possibly different) choices for the
± symbols, and for some p �= q. By (possibly) multiplying both sides by −1, we obtain two cases: (1) pm ≡ qm (mod n)

and (2) pm ≡ −qm (mod n). Because m is relatively prime to n, by Lemma 4.2, m has a multiplicative inverse modulo n.
Multiplying both sides of the congruence by this inverse, we obtain (1) p ≡ q (mod n) and (2) p ≡ −q (mod n). Because
0 � i < j < k � �n/2� + 1, we have 0 � p = j − i < �n/2� + 1, and similarly for q: 0 � p,q � �n/2�. Thus, the first case of
p ≡ q (mod n) can happen only when p = q, and the second case of p + q ≡ 0 (mod n) can happen only when p = q = 0 or
when p = q = n/2. Either case contradicts that p �= q. Therefore the geodesic distances arising from different values of p are
indeed distinct, proving the lemma. �

We now state and prove our characterization of Erdős-deep rhythms, which is up to rotation and scaling. Rotation pre-
serves the geodesic distance multiset and therefore Erdős-deepness (and Winograd-deepness). Scaling maps each geodesic
distance d to αd, and thus preserves multiplicities and therefore Erdős-deepness (but not Winograd-deepness). Note that
the rhythm Dk,n,m is a rotation by −m(k − 1) mod n of the rhythm Dk,n,n−m; to avoid this duplication we restrict m to be
equal to at most �n/2�.

Theorem 5.3. A rhythm is Erdős-deep if and only if it is a rotation of a scaling of either the rhythm F or the rhythm Dk,n,m for some
k,n,m with k � �n/2� + 1, 1 � m � �n/2�, and m and n are relatively prime.

Proof. Because a rotation of a scaling of an Erdős-deep rhythm is Erdős-deep, the “if” direction of the theorem follows from
Fact 5.1 and Lemma 5.2.

Consider an Erdős-deep rhythm R with k onsets. By the definition of Erdős-deepness, R has one nonzero geodesic
distance with multiplicity i for each i = 1,2, . . . ,k − 1. Let m be the geodesic distance with multiplicity k − 1. Because
m is a geodesic distance, 1 � m � �n/2�. Also, k � �n/2� + 1 (for any Erdős-deep rhythm R), because all nonzero geodesic
distances are between 1 and �n/2� and therefore at most �n/2� nonzero geodesic distances occur. Thus k and m are suitable
parameter choices for Dk,n,m .

Consider the graph Gm = (R, Em) with vertices corresponding to onsets in R and with an edge between two onsets of
geodesic distance m. By the definition of geodesic distance, every vertex i in Gm has degree at most 2: the only onsets at
geodesic distance exactly m from i are (i − m) mod n and (i + m) mod n. Thus, the graph Gm is a disjoint union of paths
and cycles. The number of edges in Gm is the multiplicity of m, which we supposed was k − 1, which is 1 less than the
number of vertices in Gm . Thus, the graph Gm consists of exactly one path and any number of cycles.

The cycles of Gm have a special structure because they correspond to subgroups generated by single elements in the
cyclic group (Z/(n),+). Namely, the onsets corresponding to vertices of a cycle in Gm form a regular (n/a)-gon, with a
geodesic distance of a = gcd(m,n) between consecutive onsets. (a is called the index of the subgroup generated by m.) In
particular, every cycle in Gm has the same length r = n/a. Because Gm is a simple graph, every cycle must have at least 3
vertices, so r � 3.

The proof partitions into four cases depending on the length of the path and on how many cycles the graph Gm has. The
first two cases will turn out to be impossible; the third case will lead to a rotation of a scaling of rhythm F ; and the fourth
case will lead to a rotation of a scaling of rhythm Dk,n,m .

First suppose that the graph Gm consists of a path of length at least 1 and at least one cycle. We show that this case
is impossible because the rhythm R can have no geodesic distance with multiplicity 1. Suppose that there is a geodesic
distance with multiplicity 1, say between onsets i1 and i2. If i is a vertex of a cycle, then both (i + m) mod n and (i −
m) mod n are onsets in R . If i is a vertex of the path, then one or two of these are onsets in R , with the case of one
occurring only at the endpoints of the path. If (i1 + m) mod n and (i2 + m) mod n were both onsets in R , or (i1 − m) mod n
and (i2 − m) mod n were both onsets in R , then we would have another occurrence of the geodesic distance between i1
and i2, contradicting that this geodesic distance has multiplicity 1. Thus, i1 and i2 must be opposite endpoints of the path.
If the path has length �, then the clockwise distance between i1 and i2 is (�m) mod n. This clockwise distance (and hence
the corresponding geodesic distance) appears in every cycle, of which there is at least one, so the geodesic distance has
multiplicity more than 1, a contradiction. Therefore this case is impossible.

Second suppose that the graph Gm consists of a path of length 0 and at least two cycles. We show that this case is
impossible because the rhythm R has two geodesic distances with the same multiplicity. Pick any two cycles C and C ′ , and
let d be the smallest positive clockwise distance from a vertex of C to a vertex of C ′ . Thus i is a vertex of C if and only
if (i + d) mod n is a vertex of C ′ . Because the cycles are disjoint, d < a. Because r � 3, d < n/3, so clockwise distances of d
are also geodesic distances of d. The number of occurrences of geodesic distance d between a vertex of C and a vertex of
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C ′ is either r or 2r, the case of 2r arising when d = a/2 (that is, C ′ is a “half-rotation” of C ). The number of occurrences
of geodesic distance d′ = min{d + m,n − (d + m)} is the same—either r or 2r, in the same cases. (Note that d < a � n − m,
so d + m < n, so the definition of d′ correctly captures a geodesic distance modulo n.) The same is true of geodesic distance
d′′ = min{d − m,n − (d − m)}. If other pairs of cycles have the same smallest positive clockwise distance d, then the number
of occurrences of d, d′ , and d′′ between those cycles are also equal. Because the cycles are disjoint, geodesic distance d and
thus d + m and d − m cannot be (pm) mod n for any p, so these geodesic distances cannot occur between two vertices of
the same cycle. Finally, the sole vertex x of the path has geodesic distance d to onset i (which must be a vertex of some
cycle) if and only if x has geodesic distance d′ to onset (i + m) mod n (which must be a vertex of the same cycle) if and
only if x has geodesic distance d′′ to onset (i − m) mod n (which also must be a vertex of the same cycle). Therefore the
multiplicities of geodesic distances d, d′ , and d′′ must be equal. Because R is Erdős-deep, we must have d = d′ = d′′ . To
have d = d′ , either d = d + m or d = n − (d + m), but the first case is impossible because d > 0 by nonoverlap of cycles, so
2d + m = n. Similarly, to have d = d′′ , we must have 2d − m = n. Subtracting these two equations, we obtain that 2m = 0,
contradicting that m > 0. Therefore this case is also impossible.

Third suppose that the graph Gm consists of a path of length 0 and exactly one cycle. We show that this case forces R
to be a rotation of a scaling of rhythm F because otherwise two geodesic distances m and m′ have the same multiplicity.
The number of occurrences of geodesic distance m in the cycle is precisely the length r of the cycle. Similarly, the number
of occurrences of geodesic distance m′ = min{2m,n − 2m} in the cycle is r. The sole vertex x on the path cannot have
geodesic distance m or m′ to any other onset (a vertex of the cycle) because then x would then be on the cycle. Therefore
the multiplicities of geodesic distances m and m′ must be equal. Because R is Erdős-deep, m must equal m′ , which implies
that either m = 2m or m = n − 2m. The first case is impossible because m > 0. In the second case, 3m = n, that is, m = 1

3 n.

Therefore, the cycle has r = 3 vertices, say at �,� + 1
3 n,� + 2

3 n. The fourth and final onset x must be midway between
two of these three onsets, because otherwise its geodesic distance to the three vertices are all distinct and therefore unique.
No matter where x is so placed, the rhythm R is a rotation by � + c 1

3 n (for some c ∈ {0,1,2}) of a scaling by n/6 of the
rhythm F .

Finally suppose that Gm has no cycles, and consists solely of a path. We show that this case forces R to be a rotation
of a scaling of a rhythm Dk,n′,m′ with 1 � m′ � �n′/2� and with m′ and n′ relatively prime. Let i be the onset such that
(i − m) mod n is not an onset (the “beginning” vertex of the path). Consider rotating R by −i so that 0 is an onset in
the resulting rhythm R − i. The vertices of the path in R − i form a subset of the subgroup of the cyclic group (Z/(n),+)

generated by the element m. Therefore the rhythm R − i = Dk,n,m = {(im) mod n: i = 0,1, . . . ,k − 1}n is a scaling by a of the
rhythm Dk,n/a,m/a = {(im/a) mod (n/a): i = 0,1, . . . ,k − 1}n . The rhythm Dk,n/a,m/a has an appropriate value for the third
argument: m/a and n/a are relatively prime (a = gcd(m,n)) and 1 � m/a � �n/2�/a � �(n/a)/2�. Also, k � �(n/a)/2� + 1
because the only occurring geodesic distances are multiples of a and therefore the number k − 1 of distinct geodesic
distances is at most �(n/a)/2�. Therefore R is a rotation by i of a scaling by a of Dk,n/a,m/a with appropriate values of
the arguments. �
Corollary 5.4. A rhythm is Erdős-deep if and only if it is a rotation of a scaling of the rhythm F or it is a rotation of a rhythm Dk,n,m
for some k,n,m satisfying k � �n/2g� + 1 where g = gcd(m,n).

Proof. First we show that any Erdős-deep rhythm has one of the two forms in the corollary. By Theorem 5.3, there are two
flavors of Erdős-deep rhythms, and the corollary directly handles rotations of scalings of F . Thus it suffices to consider a
rhythm R that is a rotation by � of a scaling by α of Dk,n,m where k � �n/2�+ 1, 1 � m � �n/2�, and m and n are relatively
prime. Equivalently, R is a rotation by � of Dk,n′,m′ where n′ = αn and m′ = αm. Now g = gcd(n′,m′) = α, so n′/g = n.
Hence, k � �n′/2g� + 1 as desired. Thus we have rewritten R in the desired form.

It remains to show that every rhythm in one of the two forms in the corollary is Erdős-deep. Again, rotations of scalings
of F are handled directly by Theorem 5.3. So consider a rotation of Dk,n,m where k � �n/2g� + 1. The value of m matters
only modulo n, so we assume that 0 � m � n − 1.

First we show that, if �n/2� + 1 � m � n − 1, then Dk,n,m can be rewritten as a rotation of the rhythm Dk,n,m′ where
m′ = n − m � �n/2�. By reversing the order in which we list the onsets in Dk,n,m = {im mod n: i = 0,1, . . . ,k − 1}n , we can
write Dk,n,m = {(k − 1 − i)m mod n: i = 0,1, . . . ,k − 1}n . Now consider rotating the rhythm Dk,n,n−m = {i (n −m) mod n: i =
0,1, . . . ,k − 1}n by (k − 1)m. We obtain the rhythm {[i (n − m) + (k − 1)m] mod n: i = 0,1, . . . ,k − 1}n = {[(k − 1 − i)m +
in] mod n: i = 0,1, . . . ,k − 1}n = {(k − 1 − i)m mod n: i = 0,1, . . . ,k − 1}n = Dk,n,m as desired.

Thus it suffices to consider rotations of Dk,n,m where 1 � m � �n/2� and k � �n/2g�. The rhythm Dk,n′,m′ , where n′ = n/g
and m′ = m/g , is Erdős-deep by Theorem 5.3 because n′ and m′ are relatively prime, k � �n′/2� + 1, and 1 � m′ � �n′/2�.
But Dk,n,m is the scaling of Dk,n′,m′ by the integer g , so Dk,n,m is also Erdős-deep. �

An interesting consequence of this characterization is the following:

Corollary 5.5. Every Erdős-deep rhythm has a shelling.

Proof. If the Erdős-deep rhythm is Dk,n,m , we can remove the last onset from the path, resulting in Dk−1,n,m , and repeat
until we obtain the empty rhythm D0,n,m . At all times, k remains at most �n/2� + 1 (assuming it was originally) and m
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remains between 1 and �n/2� and relatively prime to n. On the other hand, F = {0,1,2,4}6 has the shelling 4,2,1,0
because {0,1,2}6 is Erdős-deep. �

We can generalize this characterization of Erdős-deep rhythms to the continuous case where n is an arbitrary real
number, and onsets can be at arbitrary (not necessarily integer) points along the circle. We will call such rhythms continuous
rhythms. In this case we have two kinds of rhythms. First, if m and n are rational multiples of each other, we can scale the
rhythm by some rational p such that pm and pn are integers, and apply Theorem 5.3 using pn and pm to characterize all
deep rhythms where m is a rational multiple of n. Second, if m and n are irrational multiples of each other, we can show
that every Dk,n,m is Erdős-deep. The complete characterization of continuous Erdős-deep rhythms is as follows:

Theorem 5.6. A continuous rhythm is Erdős-deep if and only if it is a rotation of a scaling of Dk,n,m with k � �n/2� + 1, 0 < m � n/2,
and where m and n are either (1) irrational multiples of each other, or (2) rational multiples such that for some rational p, integers
pm and pn are relatively prime.

Proof. To prove the “if” direction, we show that all geodesic distances defined by Dk,n,m are distinct; hence we need to
prove that the multiplicity of each geodesic distance (±pm) mod n is exactly p. First assume that m and n are irrational
multiples of each other, i.e., there is no rational number that divides both m and n. Suppose two geodesic distances ±pm ≡
±qm (mod n) for some (possibly different) choices for the ± symbols, and for some p �= q. Then we can write ±pm =
±qm + rn for some integer r. This in turn implies that m = r

±p∓q n, which contradicts the fact that m and n are irrational
multiples of each other. Therefore, when m and n are irrational multiples of each other, the geodesic distances arising from
different values of p are distinct, proving that Dk,n,m is Erdős-deep.

If m and n are rational multiples of each other, then so are each of the geodesic distances 2m,3m, . . . , (k − 1)m (mod n)

with n. In this case, there exists a rational p such that pn and pm are both integers. We can now apply Theorem 5.3 using
pn and pm, and generate all deep rhythms where m is a rational multiple of n.

For the “only if” direction, consider a continuous Erdős-deep rhythm R with k onsets and period n, and with some
geodesic distance m having multiplicity k − 1. Consider the graph Gm = (R, Em) as defined in the proof of Theorem 5.3
(with vertices corresponding to onsets in R and with an edge between two onsets of geodesic distance m). If m and n are
rational multiples of each other, then we can scale R by some rational p and apply Theorem 5.3 to show that R is a scaling
by 1/p of Dk,pn,pm where pm and pn are relatively prime integers and 1 � pm � �pn/2�, so 0 < m � n/2.

If m and n are irrational multiples of each other, then there is no rational number r such that n = rm. This means that
Gm cannot contain a cycle, so consists of a single path of length k − 1. As in the proof of Theorem 5.3, we can rotate R by
−i so that 0 is an onset in the resulting rhythm R − i. The vertices of the path in R − i form a subset of the subgroup of the
cyclic group (Z/(n),+) generated by the element m. Therefore the rhythm R − i = Dk,n,m = {(im) mod n: i = 0,1, . . . ,k−1}n

where m and n are irrational multiples of each other and 0 < m � n/2. �
5.2. Connection between deep and even rhythms

A connection between maximally even scales and Winograd-deep scales is shown by Clough et al. [23]. They define a
diatonic scale to be a maximally even scale with k = (n + 2)/2 and n a multiple of 4. They show that diatonic scales are
Winograd-deep. We now prove a similar result for Erdős-deep rhythms.

Lemma 5.7. A rhythm R of maximum evenness satisfying k � �n/2� + 1 is Erdős-deep if and only if k and n are relatively prime.

Proof. Recall that by property (�) one of the unique characterizations of an even rhythm of maximum evenness can be
stated as follows. For all 1 � � � k, and for every ordered pair (ri, ri+�) of onsets in R , the clockwise distance �

d (ri, ri+�) ∈
{� �n

k �, � �n
k }.

For the case in which k and n are relatively prime, by Lemma 4.2, there exists a value � < k such that �n ≡ 1 (mod k).
Thus we can write �n = k��n/k�+1. Let m = ��n/k�. Now consider the set {im mod n: i = 0,1, . . . ,k −1}n . By Lemma 4.4(c),
we get k distinct values, so R can be realized as Dk,n,m = {im mod n: i = 0,1, . . . ,k − 1}n . Thus, by Lemma 5.2, R is Erdős-
deep.

Observe that F = {0,1,2,4}6 does not maximize evenness because �

d (0,2) = 2 and �

d (2,0) = 4 yet � = 2. Hence, any
rhythm that maximizes evenness and that is deep must also be generated.

Now consider the case in which n and k are not relatively prime. We show that the assumption that R is deep leads
to a contradiction. Thus, assuming that R is deep implies that there is a value m such that R can be realized as Dk,n,m =
{im mod n: i = 0,1, . . . ,k − 1}n . This in turn implies that there exists an integer � such that km = �n + 1, that is, �n ≡
1 (mod k). However, for this to happen, n and k must be relatively prime, a contradiction.

Thus we have shown that R is Erdős-deep if and only if k and n are relatively prime. �
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Appendix A. Euclidean rhythms in traditional world music

Below is a list of Euclidean rhythms that can be found in traditional world music. We restrict out attention to rhythms
where k and n are relatively prime.

E(2,3) = [×× · ] = (12) is a common Afro–Cuban drum pattern when started on the second onset as in [× · ×]. For
example, it is the conga rhythm of the (6/8)-time Swing Tumbao [56]. It is common in Latin American music, as for example
in the Cueca [92], and the coros de clave [76]. It is common in Arabic music, as for example in the Al Táer rhythm of
Nubia [48]. It is also a rhythmic pattern of the Drum Dance of the Slavey Indians of Northern Canada [6].

E(2,5) = [× · × · · ] = (23) is a rhythm found in Greece, Namibia, Rwanda and Central Africa [4]. It is also a 13th century
Persian rhythm called Khafif-e-ramal [96], as well as the rhythm of the Macedonian dance Makedonka [79]. Tchaikovsky used
it as the metric pattern in the second movement of his Symphony No. 6 [55]. Started on the second onset as in [× · · × · ]
it is a rhythm found in Central Africa, Bulgaria, Turkey, Turkestan and Norway [4]. It is also the metric pattern of Dave
Brubeck’s Take Five, as well as Mars from The Planets by Gustav Holst [55]. B as in [× · · × · × · · × · · ], it is a Serbian
rhythmic pattern [4]. When it is started on the fourth (last) onset it is the Daasa al kbiri rhythmic pattern of Yemen [48].

E(4,15) = [× · · · × · · · × · · · × · · ] = (4443) is the metric pattern of the pañcam savārı̄ tāl of North Indian mu-
sic [27].

E(5,6) = [××××× · ] = (11112) yields the York-Samai pattern, a popular Arabic rhythm [81]. It is also a handclapping
rhythm used in the Al Medēmi songs of Oman [36].

E(5,7) = [× · ×× · ××] = (21211) is the Nawakhat pattern, another popular Arabic rhythm [81]. In Nubia it is called the
Al Noht rhythm [48].

E(5,8) = [× · ×× · ×× · ] = (21212) is the Cuban cinquillo pattern discussed in the preceding [42], the Malfuf rhythmic
pattern of Egypt [48], as well as the Korean Nong P’yǒn drum pattern [50]. Started on the second onset, it is a popular
Middle Eastern rhythm [93], as well as the Timini rhythm of Senegal, the Adzogbo dance rhythm of Benin [24], the Spanish
Tango [40], the Maksum of Egypt [48], and a 13th century Persian rhythm, the Al-saghil-al-sani [96]. When it is started on
the third onset it is the Müsemmen rhythm of Turkey [14]. When it is started on the fourth onset it is the Kromanti rhythm
of Surinam.

E(5,9) = [× · × · × · × · ×] = (22221) is a popular Arabic rhythm called Agsag-Samai [81]. Started on the second onset,
it is a drum pattern used by the Venda in South Africa [71], as well as a Rumanian folk-dance rhythm [69]. It is also the
rhythmic pattern of the Sigaktistos rhythm of Greece [48], and the Samai aktsak rhythm of Turkey [48]. Started on the third
onset, it is the rhythmic pattern of the Nawahiid rhythm of Turkey [48].

E(5,11) = [× · × · × · × · × · · ] = (22223) is the metric pattern of the Savārı̄ tāla used in the Hindustani music of
India [61]. It is also a rhythmic pattern used in Bulgaria and Serbia [4]. In Bulgaria is used in the Kopanitsa [75]. This metric
pattern has been used by Moussorgsky in Pictures at an Exhibition [55]. Started on the third onset, it is the rhythm of the
Macedonian dance Kalajdzijsko Oro [79], and it appears in Bulgarian music as well [4].

E(5,12) = [× · · × · × · · × · × · ] = (32322) is a common rhythm played in the Central African Republic by the Aka
Pygmies [3,26,33]. It is also the Venda clapping pattern of a South African children’s song [70], and a rhythm pattern used
in Macedonia [4]. Started on the second onset, it is the Columbia bell pattern popular in Cuba and West Africa [56], as
well as a drumming pattern used in the Chakacha dance of Kenya [11] and also used in Macedonia [4]. Started on the third
onset, it is the Bemba bell pattern used in Northern Zimbabwe [70], and the rhythm of the Macedonian dance Ibraim Odža
Oro [79]. Started on the fourth onset, it is the Fume Fume bell pattern popular in West Africa [56], and is a rhythm used in
the former Yugoslavia [4]. Finally, when started on the fifth onset it is the Salve bell pattern used in the Dominican Republic
in a rhythm called Canto de Vela in honor of the Virgin Mary [41], as well as the drum rhythmic pattern of the Moroccan Al
Kudám [48].

E(5,13) = [× · · × · × · · × · × · · ] = (32323) is a Macedonian rhythm which is also played by starting it on the fourth
onset as follows: [× · × · · × · · × · × · · ] [4].
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E(5,16) = [× · · × · · × · · × · · × · · · ] = (33334) is the Bossa-Nova rhythm necklace of Brazil. The actual Bossa-Nova
rhythm usually starts on the third onset as follows: [× · · × · · × · · · × · · × · · ] [85]. However, other starting places are
also documented in world music practices, such as [× · · × · · × · · × · · · × · · ] [13].

E(6,7) = [×××××× · ] = (111112) is the Póntakos rhythm of Greece when started on the sixth (last) onset [48].
E(6,13) = [× · × · × · × · × · × · · ] = (222223) is the rhythm of the Macedonian dance Mama Cone pita [79]. Started

on the third onset, it is the rhythm of the Macedonian dance Postupano Oro [79], as well as the Krivo Plovdivsko Horo of
Bulgaria [75].

E(7,8) = [××××××× · ] = (1111112), when started on the seventh (last) onset, is a typical rhythm played on the Bendir
(frame drum), and used in the accompaniment of songs of the Tuareg people of Libya [81].

E(7,9) = [× · ××× · ×××] = (2112111) is the Bazaragana rhythmic pattern of Greece [48].
E(7,10) = [× · ×× · ×× · ××] = (2121211) is the Lenk fahhte rhythmic pattern of Turkey [48].
E(7,12) = [× · ×× · × · ×× · × · ] = (2122122) is a common West African bell pattern. For example, it is used in the

Mpre rhythm of the Ashanti people of Ghana [86]. Started on the seventh (last) onset, it is a Yoruba bell pattern of Nigeria,
a Babenzele pattern of Central Africa, and a Mende pattern of Sierra Leone [83].

E(7,15) = [× · × · × · × · × · × · × · · ] = (2222223) is a Bulgarian rhythm when started on the third onset [4].
E(7,16) = [× · · × · × · × · · × · × · × · ] = (3223222) is a Samba rhythm necklace from Brazil. The actual Samba

rhythm is [× · × · · × · × · × · · × · × · ] obtained by starting E(7,16) on the last onset, and it coincides with a Mace-
donian rhythm [4]. When E(7,16) is started on the fifth onset it is a clapping pattern from Ghana [70]. When it is started
on the second onset it is a rhythmic pattern found in the former Yugoslavia [4].

E(7,17) = [× · · × · × · · × · × · · × · × · ] = (3232322) is a Macedonian rhythm when started on the second on-
set [79].

E(7,18) = [× · · × · × · · × · × · · × · × · · ] = (3232323) is a Bulgarian rhythmic pattern [4].
E(8,17) = [× · × · × · × · × · × · × · × · · ] = (22222223) is a Bulgarian rhythmic pattern which is also started on the

fifth onset [4].
E(8,19) = [× · · × · × · × · · × · × · × · · × · ] = (32232232) is a Bulgarian rhythmic pattern when started on the sec-

ond onset [4].
E(9,14) = [× · ×× · ×× · ×× · ×× · ] = (212121212), when started on the second onset, is the rhythmic pattern of the

Tsofyan rhythm of Algeria [48].
E(9,16) = [× · ×× · × · × · ×× · × · × · ] = (212221222) is a rhythm necklace used in the Central African Republic [3].

When it is started on the second onset it is a bell pattern of the Luba people of Congo [66]. When it is started on the fourth
onset it is a rhythm played in West and Central Africa [42], as well as a cow-bell pattern in the Brazilian samba [80]. When
it is started on the penultimate onset it is the bell pattern of the Ngbaka-Maibo rhythms of the Central African Republic [3].

E(9,22) = [× · · × · × · · × · × · · × · × · · × · × · ] = (323232322) is a Bulgarian rhythmic pattern when started on
the second onset [4].

E(9,23) = [× · · × · × · · × · × · · × · × · · × · × · · ] = (323232323) is a Bulgarian rhythm [4].
E(11,12) = [××××××××××× · ] = (11111111112), when started on the second onset, is the drum pattern of the

Rahmāni (a cylindrical double-headed drum) used in the Sōt silām dance from Mirbāt in the South of Oman [36].
E(11,24) = [× · · × · × · × · × · × · · × · × · × · × · × · ] = (32222322222) is a rhythm necklace of the Aka Pygmies of

Central Africa [3]. It is usually started on the seventh onset. Started on the second onset, it is a Bulgarian rhythm [4].
E(13,24) = [× · ×× · × · × · × · × · ×× · × · × · × · × · ] = (2122222122222) is another rhythm necklace of the Aka

Pygmies of the upper Sangha [3]. Started on the penultimate onset, it is the Bobangi metal-blade pattern used by the Aka
Pygmies.

E(15,34) = [× · · × · × · × · × · · × · × · × · × · · × · × · × · × · · × · × · ] = (322232223222322) is a Bulgarian rhyth-
mic pattern when started on the penultimate onset [4].
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[68] I. Palásti, A distance problem of P. Erdős with some further restrictions, Discrete Mathematics 76 (2) (1989) 155–156.
[69] V. Proca-Ciortea, On rhythm in Rumanian folk dance, Yearbook of the International Folk Music Council 1 (1969) 176–199.
[70] J. Pressing, Cognitive isomorphisms between pitch and rhythm in world musics: West Africa, the Balkans and Western tonality, Studies in Music 17

(1983) 38–61.
[71] J. Rahn, Asymmetrical ostinatos in sub-Saharan music: time, pitch, and cycles reconsidered, In Theory Only: Journal of the Michigan Music Theory

Society 9 (7) (1987) 23–37.
[72] J. Rahn, Turning the analysis around: African-derived rhythms and Europe-derived music theory, Black Music Research Journal 16 (1) (1996) 71–89.
[73] D. Rappaport, Geometry and harmony, in: Proceedings of BRIDGES: Mathematical Connections in Art, Music and Science, Banff, Alberta, Canada, 2005,

pp. 67–72.
[74] E.M. Reingold, N. Dershowitz, Calendrical Calculations: The Millennium Edition, Cambridge University Press, Cambridge, England, 2001.
[75] T. Rice, Music in Bulgaria, Oxford University Press, Oxford, England, 2004.
[76] O.A. Rodríguez, Instrumentos de la Musica Folklórico-Popular de Cuba, Centro de Investigación y Desarrollo de la Musica Cubana, Havana, Cuba, 1997.
[77] R.V. Rosalia, Migrated Rhythm: The Tambú of Curaçao, CaribSeek, 2002.



454 E.D. Demaine et al. / Computational Geometry 42 (2009) 429–454
[78] J.O. Shallit, Pierce expansions and rules for the determination of leap years, Fibonacci Quarterly 32 (5) (1994) 416–423.
[79] A. Singer, The metrical structure of Macedonian dance, Ethnomusicology 18 (3) (September 1974) 379–404.
[80] D. Sole, The Soul of Hand Drumming, Mel Bay Productions Inc., Toronto, 1996.
[81] J.A. Standifer, The Tuareg: their music and dances, The Black Perspective in Music 16 (1) (Spring 1988) 45–62.
[82] J. Stillwell, Elements of Number Theory, Springer, 2003.
[83] R.M. Stone, Music in West Africa, Oxford University Press, Oxford, England, 2005.
[84] L. Fejes Tóth, On the sum of distances determined by a pointset, Acta Mathematica Hungarica 7 (3/4) (1956) 397–401.
[85] G.T. Toussaint, A mathematical analysis of African, Brazilian, and Cuban clave rhythms, in: Proceedings of BRIDGES: Mathematical Connections in Art,

Music and Science, July 27–29 2002, Towson University, Towson, Maryland, USA, 2002, pp. 157–168.
[86] G.T. Toussaint, Classification and phylogenetic analysis of African ternary rhythm timelines, in: Proceedings of BRIDGES: Mathematical Connections in

Art, Music and Science, Granada, Spain, July 23–27 2003, University of Granada, 2003, pp. 25–36.
[87] G.T. Toussaint, Computational geometric aspects of musical rhythm, in: Abstracts of the 14th Annual Fall Workshop on Computational Geometry,

Cambridge, Massachusetts, November, 2004, pp. 47–48.
[88] G.T. Toussaint, A mathematical measure of preference in African rhythm, in: Phoenix, Arizona, USA, January 7–10 2004, in: Abstracts of Papers Pre-

sented to the American Mathematical Society, vol. 25, American Mathematical Society, 2004, p. 248.
[89] G.T. Toussaint, Mathematical features for recognizing preference in Sub-Saharan African traditional rhythm timelines, in: Proceedings of the 3rd Inter-

national Conference on Advances in Pattern Recognition, University of Bath, United Kingdom, August 2005, pp. 18–27.
[90] D. Tymoczko, The geometry of musical chords, Science 313 (5783) (2006) 72–74.
[91] E. Uribe, The Essence of Afro–Cuban Persussion and Drum Set, Warner Brothers Publications, Miami, Florida, 1996.
[92] P. van der Lee, Zarabanda: Esquemas rítmicos de acompañamiento en 6/8, Latin American Music Review 16 (2) (Autumn–Winter 1995) 199–220.
[93] B.C. Wade, Thinking musically, Oxford University Press, Oxford, England, 2004.
[94] T. Winograd, An analysis of the properties of ‘deep’ scales in a t-tone system, Unpublished, May 17 1966. Term paper for music theory course at

Colorado College.
[95] M. Wooldridge, Rhythmic implications of diatonic theory: A study of Scott Joplin’s ragtime piano works, PhD thesis, State University of New York,

Buffalo, 1993.
[96] O. Wright, The Modal System of Arab and Persian Music AD 1250–1300, Oxford University Press, Oxford, England, 1978.


	The distance geometry of music
	Introduction
	Even rhythms.
	Deep rhythms.

	Euclid and evenness in various disciplines
	The Euclidean algorithm for greatest common divisors
	Evenness and timing systems in neutron accelerators
	Euclidean rhythms
	Euclidean rhythms in traditional world music
	Aksak rhythms
	Drawing digital straight lines
	Calculating leap years in calendar design
	Euclidean strings

	Definitions and notation
	Even rhythms
	Characterization
	Properties of the algorithms
	Uniqueness
	Rhythms with maximum evenness

	Deep rhythms
	Characterization of deep rhythms
	Connection between deep and even rhythms

	Acknowledgements
	Euclidean rhythms in traditional world music
	References


