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Rigid-Plastic Approximations 
for Predicting Plastic 
Deformation of Cylindrical 
Shells Subject to 
Dynamic Loading 

A theoretical approach was developed for predicting the plastic deformation of a 
cylindrical shell subject to asymmetric dynamic loads. The plastic deformation of the 
leading generator of the shell is found by solving for the transverse deflections of a 
rigid-plastic beam/ string-on-foundation. The axial bending moment and tensile force 
in the beam/string are equivalent to the longitudinal bending moments and membrane 
forces of the shell, while the plastic foundation force is equivalent to the shell circumfer­
ential bending moment and membrane resistances. Closed-form solutions for the 
transient and final deformation profile of an impulsive loaded shell when it is in a 
"string" state were derived using the eigenfunction expansion method. These results 
were compared to D YNA 3D predictions. The analytical predictions of the transient 
shell and final centerline deflections were within 25% of the DYNA 3D results. 
© 1996 John Wiley & Sons, Inc. 

INTRODUCTION 

The objective of this study is to develop a gen­
eral approach for predicting the plastic deforma­
tion of a cylindrical shell subject to dynamic load­
ing. The shell is subject to a "side-on" pressure 
load (i.e., one in which the loading is asymmetric 
in the circumferential direction). Previous analyt­
ical attempts by Witmer et al. (1960) and Green­
spon (1970) to solve this problem resulted in 
closed-form expressions for the final deformation 
and response time of the shell, but these solutions 
do not give the transient deformation of the shell. 
Several commercially available numerical codes 
(see for example, Underwood, 1972; Stricklin et 
aI., 1974; Jiang and Olson, 1991) are also available 
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for finding the transient deformation of the shell, 
and the analytical model will be compared with 
DYNA 3D numerical predictions produced by 
Moussouros and Koenig (1994). The particular 
example chosen for comparing the analytical so­
lution with DYNA 3D predictions is an aluminum 
shell subjected to asymmetric impulsive loading. 

It is well known that the coupled nonlinear 
partial differential equations that govern shell de­
formation are mathematically intractable if the 
loading to the shell is asymmetric because deriva­
tives with respect to the circumferential direction 
must be retained. In the following theory, the 
distribution of the shell deformation in the cir­
cumferential direction is specified by considering 
a kinematically admissible plastic collapse mech-
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anism of a ring in plane strain. The circumferential 
distribution of the ring deformation is assumed 
to be the same for each cross section of the shell, 
and the function used to describe it yields "equiv­
alent functions," i.e., average values of shell 
quantities found by integration with respect to 
the circumferential coordinate. It will be shown 
subsequently that by deriving equivalent shell 
functions, one may represent the longitudinal 
bending moment and membrane force of the shell 
as the axial bending moment and tensile force in 
a beam/string, and the circumferential bending 
moment and membrane compression as a plastic 
foundation that supports the beam/string. The 
equivalent functions are functions only of axial 
direction, and thus enable us to solve the two­
dimensional (2-D) shell as a leD beam/string-on­
foundation. The beam-on-foundation model for 
the shell has been used to model shells undergoing 
large plastic deformation and gave useful results 
in applications such as the pinching of tubes 
(Reid, 1978), the denting of tubes (Wierzbicki and 
Suh, 1988), and projectile impact into thin cylin­
drical shells (Yu and Stronge, 1990). 

In developing the theoretical model for the 
shell, we assume a material that is isotropic, rate 
independent, and rigid-plastic. A general method­
ology for reducing the 2-D shell problem sub­
jected to dynamic pressure loads into a I-D prob­
lem involving a rigid-plastic beam/string resting 
on a rigid-plastic foundation and subjected to 
equivalent line load is first derived in this article. 
This is then followed by the solution for a special 
case of an impulsively loaded shell using the 
eigenfunction expansion method. Finally, the an­
alytical solutions for the transient and final defor­
mation of the impulsively loaded shell are com­
pared to DYNA 3D predictions. 

THEORETICAL FORMULATION 

Consider a long cylindrical shell of thickness n 
and radius R as shown in Fig. 1. The cylinder 
is subjected to an inward radial pressure pulse 
p(x, 8, t) only on the upper half of the cylinder. 
The load is asymmetric, but it has two planes of 
symmetry at x = 0 and 8 = O. The load intensity 
is such that the shell experiences localized plastic 
deformation, i.e., the maximum extent in the 
hoop direction is of the order of the shell radius 
or smaller, and the axial distribution of the shell 
deformation spans over a few shell radii. In addi­
tion to the inward radial pressure are radial shear 

force F,., axial force F r , and bending moment T 
at the ends of the shell. 

As a result of these loads, the shell undergoes 
deformation u(x, 8, t), where x, 8 denotes the 
axial and circumferential coordinates and t de­
notes time, and rigid body displacement in the 
radial direction w lend and axial direction u lend' and 
rotation w I lend at the ends. 

Material Idealization 

In the theoretical formulation of the problem, the 
material is assumed to be isotropic, time-indepen­
dent, and rigid-plastic. Neglect of elasticity and 
strain rate tends to increase the value of the flow 
stress U o of most ductile materials, and the rigid­
plastic approximation provides an upper bound 
for shell deformations. 

Material strain hardening may be taken into 
account by using the concept of an average flow 
stress U o ' which lies somewhere between the 
yield and ultimate strength. (The flow strength 
is calculated by requiring equal areas under the 
actual material stress-strain curve and the ap­
proximate rigid-plastic stress-strain curve.) 
When the material undergoes considerable work 
hardening, the flow stress represents a constant, 
elevated stress corresponding to an average strain 
eav during the loading process, U o = u(eav). An 
average strain during the loading process is then 
evaluated from the solution for the deformation 
based on the assumed flow stress. If the calcu­
lated average strain corresponds to the assumed 
flow stress, then the rigid-plastic solution is con­
sistent with the assumed flow stress. If both are 
not consistent with each other, the flow stress 
that corresponds to the average strain is evaluated 
and used to derive a new solution for shell defor­
mation. The iterative process is repeated until the 
average strain and flow stress are in agreement 
with the material stress-strain relation. 

Dynamic Equilibrium 

The overall shell equilibrium is expressed via the 
principle of virtual velocities 

D == f uUe;jdV = f pw dS - J pww dV, (1) 
v s v 

where ( . ) denotes a/at, D is the rate of plastic 
work dissipated, uij and sij denote stress and 
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FIGURE 1 Geometry of and loading on the cylindrical shell. 

strain rate, w is the displacement vector, and p 
is a generalized surface traction. 

In shell coordinates for which a differential 
shell element is dS = dx R de, the above equation 
is expressed as 

2 r 2R r (M,,(3K,,(3 + N,,(38,,(3) de dx 

= 2 r 2R r Pow de dx + 2· 2R r Fxulend de 

+ 2· 2R r Frwlend de + 2· 2R f7T Tw' lend de 
o 0 

- 2 fog 2R r m(iiu + vv + ww') de dx, (2) 

where g is the extent of plastic deformation, [ex, 
m = [x, e]; M,,(3 and N,,(3 are the corresponding 
tensors of the bending moment and membrane 
force; K"(3 and 8"(3 are curvature and strain rates; 
the velocity vector w[u, v, w] corresponds to the 
x, e, r axis; p is a vector of surface tractions with 
components p[O, 0, Po] in the x, e, r direction; 
and m = ph is the mass per unit shell area. 

The bending moments M,,(3 and membrane 
forces N,,(3 are coupled through a yield condition, 

(3) 

which is assumed to be a plastic potential for the 
generalized strain rates 

. \ af 
K,,(3="-M ' a a(3 

. af 
Sa(3=A-N ' a a(3 

where A is a proportionality constant. 

(4) 

An expression of the rate of plastic work dissi­
pated in the shell b is 

Previous analyses by Wierzbicki and Suh 
(1988) and Moussouros and Hoo Fatt (1995) 
showed that the contribution of plastic work asso­
ciated with shear deformation is 10-15% of the 
total plastic work dissipated in tubes subject to 
transverse "knife" loading. As a first-order ap­
proximation, assume that MxoKxo = N¥08xO = 0, 
so that (he rate of plastic dissipation simplifies to 

(6) 

Strain-Displacement Relations 

If we confine our analysis to moderately large 
deflection and small strains, the Lagrangian de­
scription of the axial strain and curvature rates 
are (Brush and Almroth, 1975) 

8xx = u' + w'w', 

Kxx = -w", 

where ( )' denotes afax. 

Equivalent Functions 

(7) 

(8) 

Substituting Eqs. (7) and (8) into Eq. (2) gives the 
following statement of dynamic equilibrium: 

-2 fg 2R r Mxx w" de dx 
o 0 
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= 2 f g 2R fIT pow dO dx + 2· 2R r F,ulend dO 
o 0 0 

+ 2· 2R fIT Frwlend dO + 2· 2R r Tw'lend dO 
o 0 

- 2 f 2R r m(iiu + vi; + ww) dO dx. (9) 
o 0 

Assume: tangential deformations are negligi­
ble, i.e., v = 0; there is no warping, i.e., u is 
independent of 0; and cross-sections of the de­
forming shell are similar and correspond to a plas­
tically deforming ring in plane strain whose defor­
mation field may be described in terms of its 
centerline deflection w(x, 0 = 0, t) = wjx, t). For 
a given deformation field, each term in Eq. (9) 
may be integrated with respect to the circumfer­
ential coordinate to give the following expression 
for deriving equivalent functions: an equivalent 
line load, 

p(x, t). Wo = 2R r Pow(x, 0, t) dO, 

an equivalent mass per unit length, 

m(x, t). Wo Wo = 2Rm r ww(x, 0, t) dO, 
o 

an equivalent ring crushing resistance, 

q(x, t) . Wo = 2R r (Meei<ee 

+ Neeeee)(x, 0, t) dO, 

an equivalent axial bending moment, 

(10) 

(11) 

(12) 

M(x, t) . w~ = 2R r Mu wl/(x, 0, t) dO, (13) 

an equivalent axial membrane force, 

N(x, t)· w~w~ = 2R r Nxxw'w'(x, 0, t) dO, (14) 

an equivalent applied axial force, 

Fx· Uolend = 2R r Fxulend dO, (15) 
o 

an equivalent applied shear force, 

(16) 

an equivalent applied bending moment, 

T· w ~ lend = 2R r Tw'lend dO. 
o 

(17) 

All equivalent functions depend on variables 
x and t; they are a consequence of the dynamic 
response of the shell. Even the equivalent mass 
varies with position and time because of varying 
inertia forces induced by the shell motion. 

Introducing equivalent functions into Eq. (9) 
gives 

fg - -
2 0 [-Mw~ + qwo + 21TRNxxu~ + Nw ~ w~l dx 

= 2F,uolend + 2Frwo lend + 2Tw~lend 

+ 2 f pWo dx (18) 

- 2 f [21TRmiio uo + mWowol dx. 

Integrating Eq. (18) by parts, one gets 

(Rw'-M'-Fr)wolends + Lg[inWo + MI/ 

-(Nw~)' + q-plwo dx+ (21TRNxx - FJuolends 

fg - -
+ 2R1T( - N'xx + mUo)uo dx + (M - T)w ~Iends = 0 

o (19) 

The above equations are valid for all virtual veloc­
ities. Therefore, 

mwo + MI/ - (Nw~)' + q = p (20) 

with boundary conditions Nw' - M' = Fr or 
Wolend = 0 and M = Tor W~lend = 0, and 

(21) 

with boundary condition 21TRNxx Fx or 
ito lend = O. 

Equations (20) and (21) describe the equations 
of motion in the radial direction of the leading 
generator (0 = 0) and axial directions, respec­
tively. Each equation is subjected to either force 
or displacement boundary conditions; i.e., mo­
ments and equivalent shear forces or slopes and 
radial deflections are specified in Eq. (20), while 



axial forces or axial displacements are specified 
in Eq. (21). 

Impulsive loading 

In elasticity, the pressure loading can be ex­
pressed as an impulsive loading if the pulse dura­
tion of the pressure load impinging on the shell 
is much less than the fundamental period of vi bra­
tion of the shell. In plasticity, the pressure loading 
is considered as an impulsive loading if the pulse 
duration is much shorter than the response time 
of the shell. (Vibrations do not occur because 
plastic work is dissipated instead of being stored 
as in an elastic body.) The magnitude and distribu­
tion of the initial velocity of the shell is governed 
by the impulse intensity, the shell impedance 
(ph), and the shell geometry, outer radius, and 
length. 

To find the corresponding impulsive loading 
I(x, 8), the pressure pulse is integrated in time 
and the loading to the shell is introduced as an 
initial shell velocity Vo(x, 8). The magnitude of 
the initial velocity is calculated from the transfer 
of linear momentum to the shell, 

f' p(x, 8, t) dt = I(x, 8) = mVo(x, 8), (22) 

where I is the specific impulse with units pressure 
time (not to be confused with an impulse with 
units force time) and m = ph is the mass per unit 
area or material impedance. 

An equivalent impulse load I is then given by 

I(x) = f' 2R r p(x, 8, t)w(x, 8, t) d8 dt 

(23) 

Neglect of Axial Deformation 

If we confine our analysis to a plastic foundation 
with an infinite shear resistance but finite com­
pressive resistance q, u = 0 and consequently, 
if = u = O. 

Setting if = 0 in Eq. (19) gives only an equation 
of motion for the radial deflection of the leading 
generator 

mwo + Mil - (Nw~)' + q = p, (24) 

with boundary conditions Nw~ - M' = Fr and 
M=T. 
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The above equation of motion is recognized as 
the rigid-plastic beam equation with finite deflec­
tions. No rigorous theoretical methods have been 
proposed for solving finite deflections of a rigid­
plastic beam. Several approximate solutions, 
which are in good agreement with experimental 
results, were proposed by Jones (1971) and Vaziri 
et al. (1987). Rigorous analytical solutions for lim­
iting cases of Eq. (24) do exist and these will be 
explained below. 

Beam-on-Foundation 

When deflections are infinitesimal, the equivalent 
axial membrane force is negligible compared to 
the equivalent axial bending moment. Omitting 
the (Nw~)' term in Eq. (24) gives 

(25) 

subject to the boundary conditions Nw~ - M' = 

Fr and M = T. Yu and Stronge (1990) used the 
above equation to derive solutions for the tran­
sient deformation of cylinders subject to projec­
tile impact. When shell deformations become 
large, they included a membrane factor to account 
for axial membrane forces in an approximate way. 

String-on-Foundation 

When the plastic deformation of an axially re­
stained shell are finite, axial membrane forces can 
no longer be ignored. The axial bending moment 
dominates the shell response during infinitesimal 
deflection, but it becomes less significant when 
compared to the axial membrane force as the shell 
deflections increase. Haythornwaite (1961) dem­
onstrated that a fully clamped rigid-plastic beam 
will enter a membrane state when the beam de­
flections are of the order of the thickness of the 
beam. A similar phenomenon is assumed to take 
place for the rigid-plastic shell. Neglecting the 
axial bending moment in Eq. (24) gives 

mw" - (Nw~)' + q = p, (26) 

subject to the boundary condition Nw ~ = Fr. In 
the following sections, we present a solution for 
the cylinder in a purely membrane state and com­
pare the analytical predictions to DYNA 3D re­
sults. 
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STRING-ON-FOUNDATION SUBJECT TO 
IMPULSIVE LOADING 

As an example, consider a fully-clamped cylinder 
of finite length 2L. The cylinder is subject to 
asymmetric impulsive loading. The circumferen­
tial distribution of the impulsive load is a cosine 
function on the upper half of the shell circumfer­
ence. Two impulsive load distributions in the 
axial direction are considered, a parabolic distri­
bution and a uniform distribution. The shell un­
dergoes radial deformation w(x, (), t), where x and 
() denote the axial and circumferential coordinates 
and t denotes time. 

Based on the string-on-foundation analogy for 
the shell, the equation for the plastic deformation 
of the leading generator of the shell «() = 0) under 
impulsive loading is 

The shell is clamped at both ends so that Eq. (27) 
is subject to the boundary conditions 

w~ = 0 atx = 0 (28) 

and 

W 0 = 0 at x = ± L. (29) 

The initial-boundary partial differential equation 
is also subject to the initial conditions 

Wo = 0 at! = 0 (30) 

and 
(31) 

where Vo(x) is the initial velocity distribution 
along the length of the shell. 

It is assumed for simplicity that equivalent 
functions are constant. The initial-boundary 
value problem can then be expressed in terms of 
the following normalized variables: 

1. x = xlL, axial coordinate 
2. I = telL, time 
3. W = woN/L2q, transverse deflection 

where e = YNlm is the plastic wave speed in 
the string. 

Denoting derivatives with respect to the nor­
malized variables gives 

with boundary conditions 

Wi = 0 at x = 0 

and 

W = 0 at x = 1, 

and initial condiions 

W = 0 at I = 0 

and 

Wi = Vex) at I = 0, 

where the normalized velocity is V 
(eDi)· 

Eigenfunction Expansion 

(32) 

(33) 

(34) 

(35) 

(36) 

Reduce the problem into a homogeneous system 
of equations by assuming a solution of the form 

(37) 

The homogeneous system is 

(38) 

with boundary conditions 

<l>i = 0 at x = 0 (39) 

and 

<I> = 0 at x = 1, (40) 

and initial conditions 

(41) 

and 

<l>i = H(x) at I = 0, (42) 

where j is the amplitude of the dimensionless 
impUlse andf(x) is the axial distribution of the im­
pulse. 

Equation (39) is automatically satisfied if 

oc 

<I> = L [An sin(Ani) + Bn COS(Ant)] cos (An x). (43) 
n=\ 



The eigenvalues are determined from condition 
(40) so that 

cos An = 0 or An = (211 - 1)rr/2, for n = 1, 2, 3,. . . (44) 

The solution is thus 

The eigenfunction coefficients are found from the 
initial conditions, Egs. (41) and (42), 

~ Bn COS(AnX) = !(1 - X2) (46) 
n~l 

and 

~ AnA" COS(AnX) = iJ(x). (47) 
n~l 

The value of Bn is 

(48) 

The value of An depends on the axial distribu­
tion of the impulse, !(X) , 

ifj(x) = 1 - X2 

(49) 

if!(x) = 1. 

Using!(1 - X2) = L~~l Bn COS(AnX), we can 
also express Eg. (45) as 

W = ~ [An Sin(AJ) + Bn[COS(Ani) - 1]] COS(AnX). (50) 
n=l 

Unloading and Final Deformation 

The generalized strain rates, i.e., strain rate and 
velocity rate, in the string-on-foundation model 
are ei, Wi, where Si = Wi W ii. The unloading condi­
tion is formulated in the space of the strain rate 
vector. One can distinguish two cases of partial 
unloading and full unloading. Partial unloading 
occurs when only one component of the general­
ized strain rate vanishes (e t = 0, Wi 7"- 0 or Wi = 
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0, ei 7"- 0). Full unloading takes place when both 
components are zero. 

An exact unloading analysis was performed by 
Suliciu et al. (1995) in a related problem of an 
infinite string on a plastic foundation loaded im­
pulsively. Using the method of characteristics, 
several regions were identified in the phase plane 
(x, 1). The analysis was complicated and involved 
propagation of rigid zones into an already de­
formed plastic string. 

The present solution methodology, based on 
the eigenvalue expansion method, covers a fixed 
length of the beam and precludes the application 
of the rigorous unloading analysis. Instead, an 
approximate and more restrictive unloading crite­
rion is proposed. 

The solution in the loading region, Eg. (50), is 
expressed in terms of an infinite series of modal 
function COS(AnX) and variable coefficients wn(i) 

x 

w(x, l) = ~ wn(i) COS(AnX). (51) 
n~l 

For impulsive loading with expansion coefficients 
specified by Egs. (48) and (49), the amplitudes 
wn(i) are diminishing functions oftime. Each am­
plitude reaches a maximum value when the corre­
sponding velocity vanishes 

(52) 

It can be shown that higher modes decay more 
rapidly than the lower ones. It is assumed that 
each mode contributes to the final deflection of 
the structure only in the time 0 < i < in' 

{

[An sin(Ani) + Bn[COS(Ani) - 1]], 

wn(i) = forO < i < in 

o for i > in' 

(53) 

where in is defined by Eg. (52). 
According to the above criterion, all modes 

contributes to the shell response early on. Later 
only the lower modes survive and the motion 
ends with the fundamental mode. This criterion 
of progressive switching off of higher modes has 
many advantages. It confirms the property of 
mode convergence proven by Martin and Sy­
monds (1966) for general rigid, perfectly plastic 
structures. It also leads to a much desired closed­
form solution for the final deflection, giving realis­
tic permanent shapes of the deformed shell. Fi-
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nally, it eliminates formation and propagation of 
rigid zones because all points of the structure are 
brought to rest at the same time in the terminal 
phase of the shell motion. The unloading criterion 
was first formulated by Wierzbicki (1972) for vis­
coplastic structures, and later modified by Wierz­
bicki (1974) for rigid, perfectly plastic structures. 

Differentiating Eq. (50) with respect to i gives 

x 

Wi = 2: [AnAn cos(Anl) - BnAn sin(Ani)] cos(Anx). 
n~1 

(54) 

Setting Eq. (54) equal to zero signifies that each 
mode unloads when 

(55) 

or at a characteristic time in 

(56) 

The above unloading criterion satisfies both con­
ditions (ei = 0 and Wi = 0). A closed-form expres­
sion for the final deformation profile is obtained 
by using trigonometric relations to give 

(57) 

and 

(58) 

Substituting these into Eq. (50) gives an expres­
sion for the final deformation profile 

x 

wf = 2: [V(A~ + B~) - Bnlcos(Anx). (59) 
n~1 

For the parabolic distribution, the above equation 
reduces to 

for the uniform distribution, we get 

The solution with an initial velocity distribution 
that is parabolic converges more rapidly than that 
with a uniform distribution. The rate of conver­
gence for the parabolic distribution is of the order 
l/A~ while that for the uniform is only of the order 
of IIA~. Simple closed-form expressions for very 
large impulses may be derived for the series solu­
tions in Eqs. (60) and (61). 

Approximation Solutions 

Previous analysis shows that a one-term approxi­
mation for the central deflection of the shell is 
within 5% of an eigenfunction solution if 1 > 1. 
(The eigenfunction solution was set to be within 
a convergence tolerance of 10-6 , see Liao, 1993.) 
Assuming a one-term approximation, we get Al = 
7T12 and 

The corresponding closed-form expression for 
the final central deflection is 

The series solution in Eq. (61) does not con­
verge as rapidly as that for a parabolically distrib­
uted impulse. However, for very large impUlses, 
the term V(A~j2 + 1) - 1-'> A), and Eq. (61) may 
be rewritten as 

(64) 

When 1 > 10, an approximation to the 50-term 
series solution in Eq. (64) is 

(65) 

and the central deflection is 

It is interesting to note that when the above ex­
pression is rewritten in unnormalized quantities, 
the solution for Of is independent q. 



SUMMARY OF DYNA 3D RESULTS 

Moussouros and Koenig (1994) have produced 
DYNA 3D solutions for the impulsively loaded 
6061-T6 aluminum shell using the Belytschko­
Tsai 5 degree-of-freedom elements with no in­
plane torsional components. 

The shell geometry was assumed to be a per­
fectly circular cylinder loaded with an asymmet­
ric radial impUlsive load. The (T - e relationship 
of 6061-T6 Al material was assumed to be bilinear, 
i.e., linear elastic, linear strain hardening with the 
following material properties: 

1. E = 10.8(106) psi, Young's modulus 
2. (Ty = 41,600 psi, yield strength 
3. Ep = 161,000 psi, linear strain-hardening 

modulus 
4. p = 2.6(10-4) lb m/in. 3 , density. 

The bilinear approximation for the (T - e curve 
is an idealization of the actual (T - e. For ductile 
materials, the plastic modulus decreases with in­
creasing strain and the material fractures at a fi­
nite value of strain. The plastic strain was ex­
tended to 80% (corresponding to a stress of 
170,400 psi), even though the shell would fracture 
before attaining a strain at this value. No fracture 
criterion was introduced in the numerical simula­
tion because the sole purpose of the numerical 
exercise was to test the rigid-plastic prediction of 
the large plastic deformation of the shell. 

Several test cases were examined and these 
are summarized in Table 1. In all cases the peak 
velocity was 9,670 in./s, except for the first test 
case where it was set to be 50% higher than the 
rest, i.e., Vo = 14,505 in./s. The first test case 
has a parabolically distributed impUlse and setting 
the peak velocity at 14,505 in./s results in the 
same "total" impulse (area under the mass times 
velocity curve) for Tests 1 and 4. 

Table 1. Description of Numerical Test Cases 

Radius Thickness Half-Length 
Test R (in.) h (in.) L (in.) 

1 6 0.25 2 
2 6 0.25 2 
3 6 0.25 4 
4 6 0.25 2 
5 6 0.25 4 

Plastic Deformation of Cylindrical Shells 177 

COMPARISON BETWEEN ANALYTICAL 
AND DYNA 3D SOLUTIONS 

Equivalent functions m, N, and q depend on the 
mode of plastic collapse of the ring. Cline and 
lahsman (1967) found that a ring subjected to a 
cosine impulse distribution over its upper half 
collapses in two stages: a "short-time response," 
when the plastic work dissipated is predominantly 
due to membrane compression, and a "long-time 
response," when the plastic work dissipated is 
predominantly due to bending at plastic hinges. 
As shown in Fig. 2, the ring is a membrane mode 
of plastic collapse during the short-time response 
and a bending mode during the long-time re­
sponse. The transition from one mode to the other 
and lor the interaction of both modes were not 
addressed by Cline and lahsman, and will be a 
topic for future research. 

For the particular load cases considered in the 
DYNA 3D analysis, the ring collapses in the mem­
brane mode. A flow stress of (To = 45,000 psi is 
used in evaluating equivalent functions for the 
6061-T6 aluminum shell in Appendix A. The cor­
responding values of the equivalent functions are 

1. m = 6.1(10)-4Ib m/in., equivalent mass 
2. N = 106,030 lb, equivalent tensile force 
3. q = 22,500 lb/in., equivalent ring crush­

ing resistance. 

The permanent centerline deflection of the 
shell for all five numerical test cases are compared 
to the rigid-plastic approximations of them in 
Table 2. In all cases the analytical predictions 
are within 25% of numerical results. Test 1 in­
volving a parabolic load distribution of Vo = 
14,505 in./s has a much higher deformation than 
Test 4, involving a uniform load distribution with 
the same total initial impulse. This was expected 
because the parabolic load is greatest at the cen­
terline. 

Axial Load Impulse Velocity 
Dlh Distribution Vo (in. Is) 

48 Parabolic 14,505 
48 Parabolic 9,670 
48 Parabolic 9,670 
48 Uniform 9,670 
48 Uniform 9,670 
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Membrane Mode 
(short-time response) 

Bending Mode 
(long-time response) 

FIGURE 2 Plastic collapse of ring in membrane and bending modes. 

Calculations show that, for the given diameter 
to thickness ratio of the shells considered by 
DYNA 3D, the equivalent ring crushing resis­
tance, i.e., the equivalent plastic foundation 
force, in a bending mode is 2 orders of magnitude 
less than that in a membrane mode. An equivalent 
ring crushing resistance that assumes both mem­
brane and bending modes would therefore be 
lower than one calculated with only a membrane 
mode. This explains why analytical predictions 
were less than the numerical solutions. In calcu­
lating equivalent functions, the bending mode 
during the long-time response of the shell was 
ignored, and the resulting foundation force is stif­
fer. A plastic collapse ring model that assumes 
both membrane and bending modes should bring 
analytical predictions closer to the numerical re­
sults. 

The analytical predictions of the transient and 
final deflection profiles of the shell in the circum­
ferential and longitudinal direction for Test 4 are 
compared to the numerical predictions in Figs. 3 
and 4. The shell undergoes about 10% circumfer­
ential compression on the upper half of its circum­
ference so that a considerable amount of plastic 
work is dissipated during hoop compression. The 
analytical predictions of the transient deflections 

Table 2. Comparison of DYNA 3D and Analytical Results 

Test j = VoNlcLq 
Analytical or = 
Bf L2qlN (in.) 

1 2.61 1.08 
2 1.74 0.62 
3 0.87 0.86 
4 1.74 0.75 
5 0.87 1.06 

in the circumferential and longitudinal directions 
at t = 46.9 fLS and 92.8 fLS, respectively, are within 
5% of the DYNA 3D predictions. To compare 
analytical and numerical predictions of the final 
deformed profiles, it was assumed that the elastic 
vibrations in the DYNA 3D analysis attenuated 
completely at t = 138.6 fLS. The rigid-plastic ap­
proximation for the final deformation is within 
25% of the DYNA 3D prediction of the shell de­
formation at t = 138.6 fLS. 

A comparison between the rigid-plastic ap­
proximation and the numerical solution of the 
transient response of the maximum centerline de­
flection for Tests 2 and 4 are also shown in Fig. 
5. Plastic unloading in the rigid-plastic approxi­
mation occurs near the first overshoot of the elas­
tic shell vibrations. The predicted plastic re­
sponse times of the shell are within 10% of the 
numerical predictions (measured by the time at 
the first overshoot of the elastic shell vibrations). 

CONCLUDING REMARKS 

A theoretical approach for predicting the plastic 
deformation of a cylindrical shell subject to asym­
metric dynamic loads was developed and com-

Numerical 
of (in.) % U nderprediction 

1.20 -10 
0.77 -19 
1.14 -25 
0.97 -23 
1.30 -18 



t = 92.8 microsec 

[in] 

-2 
- - - - Rigid-Plastic Approximation 

-- DYNA 3D Prediction 

-4 

-60~~--------~----------~10~--------~15 

[in] 

FIGURE 3 Circumferential deflection profile at x = 

o of the shell. Test 4: uniform velocity = 9670 in. Is, 
2R = 12 in., 2L = 4 in., h = 0.25 in. 

pared to numerical results from DYNA 3D. The 
plastic deformation of the shell was found by solv­
ing for the transverse deflections of a rigid-plastic 
beam/string-on-foundation. As an example, the 
deformation of a cylindrical shell subject to impul­
sive loading was predicted by finding the solution 
of the transient and final deformations of a string­
on-foundation. Equivalent functions for the 
string-on-foundation were evaluated using a 
membrane mode plastic collapse mechanism for 
the shell. The analytical predictions of the center­
line shell deflection underpredicted the DYNA 
3D results by 25%. The discrepancy between the 
analytical and numerical solutions was attributed 
to neglecting the bending mode or long-time re­
sponse of the shell. A plastic collapse ring model 
that assumes both membrane and bending phases 
would result in a reduction of the equivalent 
crushing resistance of the shell and should in­
crease analytical predictions, bringing them 
closer to the numerical results. Analyzing plastic 
collapse of a ring in combined membrane and 
bending modes will be the subject of future re­
search. 

APPENDIX A: EQUIVALENT FUNCTIONS 

Equivalent functions for the impulsively loaded 
shell are calculated for the membrane mode plas­
tic collapse mechanism shown in Fig. 2. 

Following Cline and lahsman (1967), the defor­
mation in the upper half of the shell circumference 
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a: 
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- - - - Rigid-Plastic Approximation 

-- DYNA 3D Prediction 

t = 138.6 microsec 

------~ 7 = - = = ~ , " ~nal Deformation 

t = 92.8 microsec ' : : - -\ , _ 

0.4 ~-~-~-~-~-~-~-c;=\~--.--=--~-~--~-~-~- - - - ~ ~ _ 

t = 46.9 microsec 
0.2 , 

, , 
oL-~ __ ~ __ ~ __ ~ __ ~ __ ~ __ L-~ __ ~ __ ~ 

o 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 
Axial Length [in] 

FIGURE 4 Transient and final deflection profile of 
the leading generator of the shell. Test 4: uniform veloc­
ity = 9670 in./s, 2R = 12 in., 2L = 4 in., h = 0.25 in. 

is described by a cosine distribution 

(A. I) 

Velocity and accelerations fields are similarly de­
scribed by cosine distributions, w(6) = wocos 6 
and w(6) = wocos 6. 

To evaluate the fully plastic bending moments 
and tensile forces, assume a limited interaction 
yield curve 

1.2 

l' 
~ 0.4 
o 

Test 4: Uniform Velocity = 9670 in/s, 

2R = 12 in, 2L = 4 in, h = 0.25 in , 

, -------------------------\--r--------------------
Test 2: Parabolic Velocity = 9670 in/s, 

2R = 12 in, 2L = 4 in, h = 0.25 in 

- - - - Rigid-Plastic Approximation 

-- OYNA 3D Prediction 

Time [sec] 

FIGURE 5 Transient centerline deflection of the 
leading generator of the shell for shells. Test 2: para­
bolic velocity = 9670 in./s, 2R = 12 in., 2L = 4 in., 
h = 0.25 in. Test 4: uniform velocity = 9670 in./s, 
2R = 12 in., 2L = 4 in., h = 0.25 in. 
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where Mp[ = U'oh2/4 is the fully plastic bending 
moment per unit length and Np[ = U'oh is the fully 
plastic axial force per unit length. 

With the above distribution, Eq. (A. I), and 
value for N p[' the equivalent mass and tensile 
force, defined by Eqs. (11) and (14), are 

m = 2Rm r cos2e de = nRph/2 

equivalent mass per unit length and 

N = 2RNp[ r cos2e de = 7TRU'oh12 
o 

equivalent tensile force. 
The equivalent ring resistance depends on the 

plastic work dissipated in membrane compression 

(A.3) 

Neglecting tangential component and higher or­
der terms, one can approximate the hoop strain 
rate as 

. _ {i cos e, for lei < 7T/2 
e88 -

0, otherwise. 

(A.4) 

Substituting Eq. (A.4) into Eq. (A.3) and integrat­
ing give 

(A.S) 
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