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Turku and Åbo Akademi University, FI-20520 Turku, Finland

ABSTRACT

Motivation: Gene expression profiling using RNA-seq is a powerful

technique for screening RNA species’ landscapes and their dynamics

in an unbiased way. While several advanced methods exist for differ-

ential expression analysis of RNA-seq data, proper tools to anal.yze

RNA-seq time-course have not been proposed.

Results: In this study, we use RNA-seq to measure gene expression

during the early human T helper 17 (Th17) cell differentiation and T-cell

activation (Th0). To quantify Th17-specific gene expression dynamics,

we present a novel statistical methodology, DyNB, for analyzing time-

course RNA-seq data. We use non-parametric Gaussian processes to

model temporal correlation in gene expression and combine that with

negative binomial likelihood for the count data. To account for experi-

ment-specific biases in gene expression dynamics, such as differ-

ences in cell differentiation efficiencies, we propose a method to

rescale the dynamics between replicated measurements. We develop

an MCMC sampling method to make inference of differential expres-

sion dynamics between conditions. DyNB identifies several known

and novel genes involved in Th17 differentiation. Analysis of differen-

tiation efficiencies revealed consistent patterns in gene expression

dynamics between different cultures. We use qRT-PCR to validate

differential expression and differentiation efficiencies for selected

genes. Comparison of the results with those obtained via traditional

timepoint-wise analysis shows that time-course analysis together with

time rescaling between cultures identifies differentially expressed

genes which would not otherwise be detected.

Availability: An implementation of the proposed computational meth-

ods will be available at http://research.ics.aalto.fi/csb/software/

Contact: tarmo.aijo@aalto.fi or harri.lahdesmaki@aalto.fi

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

A RNA-seq experiment provides a snapshot of RNA content

within a cell population. The observed data is in a form of

millions of short nucleotide sequences, which can be used to

construct a de novo transcriptome or aligned against known ref-

erence genome and transcriptome. To quantify expressions of

known genes, a common approach is to count the reads which

are aligned to different genes. The discrete nature of count data

led researchers to model the sequencing data using Poisson dis-

tribution (see e.g. Marioni et al. 2008). Recently, it has been

shown that the Poisson distribution is insufficient for modeling

sequencing data because it tends to underestimate the variance

for highly expressed genes. An extension of the Poisson distribu-

tion, the negative binomial distribution, has gained popularity

in modeling gene expression data from RNA-seq (or other

sequencing-based count data) because it can account for this

over-dispersion. Two commonly used approaches which use

the negative binomial distribution to detect differential expres-

sion are DESeq (Anders and Huber, 2010) and edgeR (Robinson

et al., 2010). Another method called baySeq uses an empirical

Bayesian method to estimate the posterior probabilities that a

gene is, or is not, differentially expressed (Hardcastle and Kelly,

2010).
Profiling gene expression over time provides information

about the dynamical behavior of the genes. Storey et al. (2005)

presented a method that can analyze time series microarray data

in order to assess the differential expression from whole time

series as opposed to the traditional methods, which analyze time-

points independently. More recently, Stegle et al. (2010) pre-

sented a methodology that uses Gaussian processes (GPs) to

model gene expression over time and to identify the time inter-

vals when each gene is differentially expressed. We have further

extended the GP approach to quantify condition-specific differ-

ential expression among multiple time-course experiments ( €Aij€o

et al., 2012). These methodologies are not optimal for analyzing

count data due to the different statistical characteristics and, to

our knowledge, next-maSigPro (Conesa and Nueda, 2013) is the

only methodology capable of taking into account the temporal

dimension of RNA-seq time series. In addition, by taking into

account temporal correlation makes it possible to carry out more

detailed analysis of the observed dynamics, e.g. to quantify simi-

larities and differences between the observed kinetics. To that

end, GPs have been used for modeling temporally or spatially

varying likelihood parameters in other fields, e.g. to model the

rate parameter of the Poisson distribution temporally and the

stochastic process that is produced is called as the Gaussian

Cox process (Adams et al., 2009). Similar approaches have

also been popular in geostatistics (Diggle et al., 1998).
Since the discovery of an interleukin 17 producing T-cell

subset, this T helper 17 (Th17) cell lineage has been a focus of

great research interest (Dong, 2008; Park et al., 2005). Th17 cells

have been shown to play an important role in autoimmune dis-

eases and inflammation. Recent studies have identified transcrip-

tion factor genesRorc and Stat3 as the key regulators of the early

Th17 differentiation in murine (see a review in Ivanov et al.,

2007). Na€ıve human T cells are activated through the T-cell re-

ceptor (TCR) by �CD3 and �CD28 and Th17 cells are polarized*To whom correspondence should be addressed
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from the activated T cells by exposing the cells to TGF-�, IL-1�
and IL-23. The goal of gene expression profiling in the early

phase of Th17 differentiation is to gain insight into the process

of differentiation by unraveling dependencies between key fac-
tors and to understand how the differentiation signal propagates

through various pathways and gene regulatory networks. This

knowledge could potentially prove useful in identifying bio-
markers for immune-related diseases and in design of therapeutic

interventions.
We present a methodology, DyNB that is built on the negative

binomial likelihood and GPs. Non-parametric GP regression is

used to model gene expression over time and the model inference
is carried using the Bayesian reasoning. We demonstrate the ap-

plicability of DyNB by analyzing RNA-seq time-series datasets.

We also show how DyNB can be used to study relative differ-
entiation efficiencies between biological samples. The differen-

tially expressed genes detected by DyNB as well as estimated

differences in differentiation efficiencies for selected genes are
validated using qRT-PCR.

2 METHODS

2.1 GPs

The GP prior for functions is a collection of random variables such that

distribution for any finite subset (index set) X is defined as

FjX; � � Nðm;KÞ; ð1Þ

where F represents the process at X; � is the set of hyperparameters, m is

the mean of the process, and K is the covariance matrix. In our applica-

tion, the index set X of the random variables is time. We define the

covariances between pairs of random variables as follows

Cov FðtpÞ;FðtqÞ
� �

=kðtp; tqÞ=�1exp �
1

2�2
jtp � tqj

2

� �
; ð2Þ

where kð�; �Þ is the squared exponential covariance function and

�= �1; �2ð Þ
T. The ði; jÞth element in the matrix K is given by kðti; tjÞ.

2.2 A time-varying negative binomial distribution

Read count data are commonly modeled using the negative binomial

distribution (Anders and Huber, 2010; Robinson et al., 2010)

Y � NBðr; pÞ; ð3Þ

where r is a predefined number of failures and the probability of success

is p. We will parameterize the negative binomial distribution with mean

�=EfYg=pr=ð1� pÞ and variance �2=VarfYg=pr=ð1� pÞ2. Thus, we

solve p as a function of � and �2 as

p=
�2 � �

�2
ð4Þ

and similarly r

r=
�2

�2 � �
; ð5Þ

hence we can write Y � NB �; �2
� �

. We assume to have M repli-

cates (j=1; . . . ;M) in N timepoints (i=1; . . . ;N),

i.e., YjðtiÞ � NB �ðtiÞ; �ðtiÞ
2

� �
. Observed read count data yjðtiÞ ðj=1; . . . ;

M; i=1; . . . ;NÞ is collectively denoted as y. We omit the index of a gene

for notational simplicity.

Let us write the mean of the negative binomial distribution as a func-

tion of a random process F, i.e. Y � NB g1ðfÞ; �
2

� �
, where f is a realiza-

tion of a GP. In the case of a GP, we define g1ðfðtiÞÞ=fðtiÞ, where fðtiÞ is a

value of the random process at the i-th timepoint. Then we can write the

likelihood of the data as follows (see Supplementary Equations S2

and S3)

pðyjf;X; �Þ=
Y

j2f1;...;Mg
i2f1;...;Ng

� yjðtiÞ+�ðfðtiÞÞ
� �
yjðtiÞ! � �ðfðtiÞÞð Þ � 1� �ðfðtiÞÞð Þ

�ðfðtiÞÞ�ðfðtiÞÞ
yjðtiÞ; ð6Þ

where

�ðfðtiÞÞ=
g21 fðtiÞð Þ

�ðtiÞ
2
� g1 fðtiÞð Þ

ð7Þ

and

�ðfðtiÞÞ=
�ðtiÞ

2
� g1 fðtiÞð Þ

�ðtiÞ
2

: ð8Þ

2.3 A time-varying negative binomial distribution with

time scaling

We also consider a situation where we possess a priori knowledge that the

biological replicates are differentiating in different time scales. In this

study, we assume that the different time scales between biological repli-

cates can be modeled as tj=t=kj. The different time scales are taken into

account via the GP realizations fðtjÞ; j=1; . . . ;M

p yjf;X; �;kð Þ=
Y

j2f1;...;Mg
i2f1;...;Ng

� yjðtiÞ+�ðfðti=kjÞÞ
� �
yjðtiÞ! � �ðfðti=kjÞÞ

� �
� 1� �ðfðti=kjÞÞ
� ��ðfðti=kjÞÞ�ðfðti=kjÞÞyjðtiÞ;

ð9Þ

where k=ðk1; . . . ; kMÞ are the replicate-specific time-scaling factors.

Often one wants to analyze time scaling with respect to one of the rep-

licates, e.g., i-th replicate, which can be achieved by constraining ki=1.

This also makes the model identifiable.

The statistical dependencies of the variables in our model are depicted

in Supplementary Figure S1 using the plate notation.

2.4 Variance estimation and normalization

The variance for the negative binomial distribution is estimated using the

approach described in Anders and Huber (2010), i.e. we model the vari-

ance as a function of the read count using a smooth function. The idea

behind the variance estimation is that genes expressed in a similar level

have a similar variance and sharing information between genes improves

variance estimation (Anders and Huber, 2010). In other words, �ðtiÞ
2 in

Equations (7) and (8) are obtained from a polynomial of degree 2 giving a

robust variance estimate as a function of the read count. The second

order polynomial is fitted to the observed read counts and variances

across timepoints and genes.

To account for different sequence depths of the samples (over all

the replicates and timepoints), we make the read counts between

different RNA-seq runs comparable by scaling factors, which are esti-

mated using the procedure presented in Anders and Huber (2010).

Instead of scaling the discrete read counts, the scaling is performed on

the GPs samples f.

2.5 Bayesian inference for transcriptome dynamics

By using the likelihood in Equation (9), we can write the marginal like-

lihood

pðyjX; �;kÞ=

Z
p yjf;X; �;kð Þ p fjX; �; kð Þd f; ð10Þ

where we have marginalized over the possible realizations of F. In this

case, the integral in Equation (10) is not analytically tractable and we

resort to Markov chain Monte Carlo (MCMC) methods. A common
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practice is to marginalize over all the parameters, which in our case

include f, k and �

pðyjXÞ=

Z
p yjf;Xð Þ
zfflfflfflfflffl}|fflfflfflfflffl{NB distribution Z Z

p fjX; �; kð Þ
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{Gaussian distribution

p �ð Þ
z}|{prior

d�

0
@

1
A pðkÞ
z}|{prior

dk

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
=p fjXð Þ

0
BBBBB@

1
CCCCCAdf:

ð11Þ

For the integration in Equation (11), we construct a Metropolis–

Hasting algorithm presented in Algorithm 1.

Algorithm 1 A Metropolis–Hastings algorithm for posterior sampling of

parameters �; k and f.

Require: y;X
Initialize: �ð0Þ; kð0Þ; fð0Þ

for i=0 to N – 1 do

Sample: u � U½0;1�
Sample: �� � q�ð�

�j�ðiÞÞ

Sample: k� � qkðk
�jkðiÞÞ

Sample: f� � qfðf
�jfðiÞ;X; ��Þ

if u5min 1; p� ð�
�Þpkðk

�Þpfðf
�Þpðyjf�;k�;XÞ

p� ð�
ðiÞ Þpkðk

ðiÞ Þpfðf
ðiÞ ÞpðyjfðiÞ;kðiÞ;XÞ

�
q� ð�

ðiÞ j��Þqkðk
ðiÞ jk�Þqfðf

ðiÞ jf�;X;��Þ

q� ð�
�j�ðiÞ Þqkðk

�jkðiÞ Þqfðf
�jfðiÞ;X;�ðiÞ Þ

n o
then

�ði+1Þ  ��; kði+1Þ  k�; fði+1Þ  f�

else

�ði+1Þ  �ðiÞ; kði+1Þ  kðiÞ; fði+1Þ  fðiÞ

end if

end for

We assign the uniform prior distribution for the hyperparameter �2, i.e.

p�ð�Þ=U½0:5; 1�, to favor smooth GP realizations and a symmetric prior

pkð�Þ for time-scaling factors kj; j=1; . . . ;M, which is centered around

identity scaling (Fig. 5A). The parameter �1 is set empirically to account

for large differences in gene expression counts y between low- and high-

expressed genes (from 1 to approx. 5� 105 in our case). Thus, �1 is fixed

to a gene-specific and data-dependent value 10Stdevfyg. The GP prior

per gene (pf) is defined by the mean vector and covariance matrix, which

is parameterized by the parameters �1 and �2 (which have a similar role as

�1 and �2). Again, in defining the mean m and �1, we should take into

account the large range of different read count magnitudes; thus they are

defined separately for each of the genes. The mean vector is defined as

m=Maxfyg+Minfyg
2 1 and �1=500Maxfyg+Minfyg

2 and �2=0:75.

In our implementation, we use a truncated normal distribution as the

proposal distribution q�, where the last accepted sample �ðiÞ2 is themean and

the variance and the boundaries are predefined, i.e.N ½0:5;1�ð�
ðiÞ
2 ; 0:01

2Þ. Our

choice of the proposal distribution for the time-scaling factors k is an

uniform distribution, where the probabilities for the three allowed transi-

tions, i.e. +4h, –4h and 0h, are 1/3. For the proposal distribution qf we

use the GP prior whose mean is the last accepted sample fðiÞ and the co-

variance matrix K is defined by the inputs X and the hyperparameters ��.

Using the accepted samples fðiÞ we estimate the posterior mean and

(co)variance of the distribution using the standard sample estimators. The

marginal likelihood is estimated using the harmonic mean of the likeli-

hoods of the samples from the posterior distribution as presented in

Newton and Raftery (1994), where the idea is to use the parameter pos-

terior as the importance sampling function

pðyjXÞ �
1

m

Xm
i=1

pðyjX; fðiÞ; �ðiÞ;kðiÞÞ�1

 !�1
;

where fðiÞ; �ðiÞ; kðiÞ � pðf; �; kjyÞ:

ð12Þ

Another variable whose posterior distribution we are interested in is k

whose posterior we also get directly from the MCMC chain. Moreover,

the estimated marginal likelihoods are used for model selection purposes

as we will see in next section. The convergence of the chains was assessed

using the potential scale reduction factors as described in Gelman and

Rubin (1992), and the results confirming the convergence are depicted in

Supplementary Figure S2.

2.6 Quantification of differential dynamics

In this study we want to answer the question whether a gene is differen-

tially expressed between different conditions, namely Th0 and Th17 lin-

eages, and we assume to have replicated time series measurements from

these two lineages. From now on we consider only two conditions but the

same methodology can be easily generalized for any number of conditions

(Hardcastle and Kelly, 2010; €Aij€o et al., 2012). The null model, M0,

denotes that the Th0 and Th17 lineages behave similarly, which we im-

plement by fitting a single DyNB model to Th0 and Th17 measurements.

The alternative model,M1, denotes that the two lineages behave differ-

ently, which we implement by fitting one DyNB model to Th0 and an-

other DyNB model to Th17. Assuming equal prior probabilities for both

models, the evidence for the alternative model is quantified by the Bayes

factor (BF)

BF=
pðyjX;M1Þ

pðyjX;M0Þ
: ð13Þ

By following the BF interpretation chart described in Jeffreys (1998), a

BF 	10 should be thought as strong evidence for the modelM1 over the

modelM0. BFs were recently used for model selection purposes in the

context of identifying alternative splicing events between biological sam-

ples (Katz et al., 2010).

2.7 Human-activated T and Th17 cells

CD4+ T cells were isolated from the umbilical cord blood collected from

healthy neonates born in Turku University Hospital; Hospital District of

Southwest Finland with approval from the Finnish Ethics Committee.

CD4+ T cells were isolated from umbilical cord blood samples using

Ficoll-Paque and anti-CD4 magnetic beads. For activating CD4+ T

cells and inducing polarization of Th17 phenotype the cells were activated

and stimulated as indicated in Figure 1A and as previously described

(Tuomela et al., 2012). The polarization was confirmed as described by

Tuomela et al. (2012). Strand-specific RNA-seq libraries were prepared

from 2–5mg of total RNA (Parkhomchuk et al., 2009), bar-coded and

multiplexed (3 to 4 samples per lane) and 40-nt paired-end reads were

obtained on an Illumina HiSeq2000. The gene expressions were profiled

from Th0 and Th17 cells at the five timepoints, 0, 12, 24, 48 and 72h with

three biological replicates. The Ensembl gene models were used in the

gene expression estimation.

3 RESULTS

3.1 Temporal modeling of RNA-seq data

Using the model described in Section 2, our first goal is to esti-
mate a smooth representation of gene expression dynamics based
on the measured read counts. Smoothness of expression dy-

namics is enforced by the GP prior, and agreement of expression
dynamics with the read count data is quantified using the nega-
tive binomial likelihood. To avoid overfitting, the inference is

done using the Bayesian analysis, and thus the final model fitting
estimate is obtained by integrating over parameters using an
MCMC sampling technique.

Applying the aforementioned methodology without the time-
scaling option to RNA-seq data, we estimated the smooth rep-
resentations of the underlying gene expression in Th0 and Th17

lineages. The posterior means (solid curves) of the specific Th0
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and Th17 models (M1) together with corresponding 95% CIs

(shaded areas around means) for IL17A, IL17F and RORC are

depicted in Figures 1B–D.

For example, the cytokine IL17A is known to be highly ex-

pressed in Th17 cells and its expression is commonly used to

assess the Th17 polarization efficiency (Brucklacher-Waldert

et al., 2009). The strong induction of IL17A and IL17F in the

Th17 differentiation is apparent by the data. Based on visual

assessment, however, the induction of IL17A and IL17F behaves

differently among the replicates.

3.2 Modeling of variable differentiation efficiency

To study variable differentiation efficiencies in IL17 genes in an

unbiased manner, we repeated the analysis but now taking into

account the possibility of different time scales between the repli-

cates. The model with time scaling allows the samples to be

decelerated/accelerated relatively to each other, so that their

scaled behavior is similar. We fixed the time scale of the

second sample and allowed the other two samples to be acceler-

ated or decelerated independently of each other using the trans-

formation t=kj. Another choice could have been a time shift,

t+sj, which moves linearly the whole time series together with

the start point. Because in our case the cells are activated and

polarized exactly at the same time, we wished to keep the start

point fixed across the samples. The transformation is illustrated

in Figure 2A, where the axis in the center corresponds to the case

without time scaling and the top and bottom axes correspond the

cases of 32 and –32h time differences at 72 h due to the time

scaling (corresponding to k=5/9 and k=13/9), respectively.

We constrained the effects of scaling to be discrete, i.e. from

–32 to +32h at the end of the time series (72 h) in 4 h steps.

To demonstrate the methods applicability for estimating differ-

entiation efficiencies, we carried out a simulation study. Using

IL17A as a template profile, we generated two time series (2nd

and 3rd replicate) with a similar behavior and third one (the first

replicate) which is a delayed version of the two, i.e. the timepoint

72 h corresponds to 48 h. The method correctly inferred that the

first replicate is delayed compared with the other two replicates

as depicted in Figure 2B. Finally, the estimated posterior distri-

butions of time differences depicted in Figure 2C demonstrated

the method’s accuracy in estimating differences in differentiation

efficiency.
The results with time scaling for the marker genes IL17A, IL17F

and RORC are depicted in Figures 3B–D, respectively. The effect

of time scaling is visualized by transforming the measurements

based on the time-scaling parameter posterior mean: e.g. IL17A

is delayed over 24h at 72h in the first Th17 sample. As expected,

uncertainty of the estimates, especially at the end of time series,

increases due to the time scaling. For the marker genes IL17A and

IL17F, however, we notice that the time scaling is able to improve

the model fit. To validate our observation of different time scaling,

we performed a kinetic assay of IL17A, IL17F and RORCmRNA

levels throughout the early Th17 differentiation using qRT-PCR

in the same biological samples as the RNA-seq (Fig. 4;

Supplementary Table S1). Note that because time scaling (i.e. dif-

ferentiation efficiency) is a replicate-specific random effect we need

to use the same samples for qRT-PCR validation. These con-

firmed our conclusions: expression of IL17F and IL17A was

delayed in the first and third series, while expression of RORC

behaved similarly across the samples.
Next we wanted to confirm the presence of different time

scaling by studying the posterior distribution of the time-scaling

genome wide by repeating the analysis for all expressed genes

A

B

C

D

Fig. 1. Transcriptome dynamics of Th17 marker genes. (A) T helper

precursor cells isolated from cord blood are activated using plate-

bound �CD3 and soluble �CD28 in the presence of �IFN-	 and �IL-4
yielding the cells to follow the Th0 lineage. Th17 commitment is achieved

by activation and polarization condition, including IL-6, IL-1� and TGF-

�. Cells were harvested at 0, 12, 24, 48, and 72h. From the harvested cells

the RNA was extracted and used for preparation an RNA-seq library.

(B) The estimated smooth representation of IL17A dynamics without

time scaling. The read counts are on the y-axis. Circles and diamonds

mark the measurements from Th0 and Th17 cells, respectively, and the

replicates are distinguish with different colors. The solid curves are the

posterior means of the specific Th0 and Th17 models (M1) with corres-

ponding 95% CIs (shaded areas around means). (C and D) Same as (B),

but the depicted results are for the IL17F and RORC genes
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(i.e. at least one read in Th0 and Th17 samples). To detect dif-

ferentially expressed genes between the Th0 and Th17 lineages,

we used the following criteria: (i) BF410, i.e. strong evidence for

M1 overM0, and (ii) fold-change42 in at least one timepoint.

These criteria gave us 698 differentially expressed genes. Then we

studied how presence and absence of estimated time-scaling par-

ameters differ between the Th0 and Th17 lineages for each of the

differentially expressed genes. The results are depicted as 2D

histograms in Figure 5A where the first (top panel) and third

replicate (bottom panel) are analyzed separately. In both repli-

cates, there are many genes with no time scaling effect, and thus

they behave similarly to the second replicate. In the first repli-

cate, the probability mass is partly distributed to the left lower

quadrant, which corresponds to cases where a gene is decelerated

in both lineages in the first replicate relative to the second repli-

cate. We can conclude that in terms of genome-wide expression

dynamics the first and third replicates are different from each

other and that the third and second replicates are similar to each

other since the mass in Figure 5A (bottom panel) is centered

strongly around the point (0, 0).
Figure 5B and C shows the distributions of time differences

between the replicates over all the differentially expressed genes

for Th0 and Th17 lineages, respectively. Histograms in Figure 5B

and C suggests that both the activation (Th0) and differentiation

(Th17) are delayed in the first replicate. We did not observe a

difference in differentiation efficiencies for all differentially ex-

pressed genes but there is clear shift of the probability mass to-

wards deceleration. Whereas, for the third replicate the posterior

distribution is centered around the region corresponding to no

time scaling. We conclude that the first replicate differs from the

other replicates in its differentiation kinetics.

3.3 Comparison of temporal and timepoint-wise analysis

In order to study advantages and disadvantages of our temporal

analysis, we carried out a differential expression analysis at the

individual timepoints using DESeq tool for comparison

A

B

C

Fig. 2. Modeling differentiation dynamics. (A) An illustration showing

the effects of the time scaling. The axis in the center panel shows the

unscaled time axis. The axes in the top and bottom panels show the

maximum allowed deceleration (–32h at 72h) and acceleration (32h at

72h) relative to the unscaled case, respectively. (B) The estimated smooth

representation of the simulated data with the time scaling. The first rep-

licate is a delayed version of the second and third replicates. The red

arrows illustrate how much the measurements are effectively moved

due to the time scaling. (C) The posterior distribution of the time differ-

ences at timepoint 72h

A

B

C

Fig. 3. Perturbated differentiation dynamics. (A) The estimated smooth

representation of IL17A dynamics with the time scaling. The red arrows

illustrate how much the measurements are effectively moved due to the

time scaling. (B and C) Same as (A), but the depicted results are for the

IL17F and RORC genes
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purposes. For each timepoint we call a gene differentially ex-

pressed if multiple testing corrected (Benjamini–Hochberg

method) padj50:01 and the absolute value of the log 2 fold-

change is41. Combining differentially expressed genes from dif-

ferent timepoints, timepoint-wise analysis gives a total of 823

genes, which is in agreement with the number detected by

DyNB. Comparing directly the numbers of genes detected by

the frequentist DESeq and our Bayesian DyNB may not be

exactly meaningful due to differences in defining the detection

thresholds, and simply because timepoint-wise analysis has four

times more differential expression tests. Instead, results from the

two methods need more careful investigation. Overlap of the

differentially expressed genes identified by the two approaches,

DyNB and DESeq, are depicted in Figure 6A (top panel). Out of

698 differentially expressed genes identified by DyNB, 546 are

also detected by the DESeq. Figure 6A (bottom panel) shows a

similar Venn diagram but now using only the top 698 genes from

the timepoint-wise analysis (ranked according to the adjusted

P-values). In this case, 500 genes overlap between temporal

and timepoint-wise analysis. The overall agreement between

the two methods is demonstrated by the hypergeometric test of

gene set overlap (P51 e–16).
Next we wanted to see how the overlap between temporal and

timepoint-wise analysis changes when we consider separately the

top 698 genes that are identified by DESeq exactly at one, two,

three, or four timepoints. The number of genes belonging to each

class is shown in Figure 6B. The agreement between the two

methods for different gene classes was quantified using the preci-

sion–recall metric as a function of the statistical significance from

DyNB analysis (Fig. 6C). As expected, the level of agreement be-

tween the presented method and DESeq correlates with the

number of timepoints where DESeq identified genes to be differ-

entially expressed. For example, the genes differentially expressed

in all four timepoints based on theDESeq analysis are all detected

by DyNB as well. We conclude that, on average, both the tem-

poral and timepoint-wise analysis detect largely the same genes,

which have a strong differential expression, as expected. However,

A

B

C

D E

Fig. 4. Validation of marker gene expression. (A) qRT-PCR time-series

measurements of IL17A mRNA levels in the same samples where RNA-

seq was performed. The error bars are depicting the SDs. The colors

distinguish the different samples. (B and C) Same as (A) but for IL17F

and RORC, respectively. (D) The scatter plots illustrating the replicate-

specific correspondence between the qRT-PCR and RNA-seq gene ex-

pression estimates of the IL17A (top panel), IL17F (middle panel) and

RORC genes (bottom panel) over time in Th0 cells. The correlation is

quantified using the Pearson correlation coefficient (r). (E) Same as in (D)

but for Th17 cells

A B

C

Fig. 5. The replicate-specific differentiation efficiencies. (A) Density plots

representing the distribution of estimated time differences in gene level in

the Th0 and Th17 lineages. A gene is on diagonal if the estimated time

differences in the Th0 and Th17 cells are the same. The results for the first

and third replicate are depicted in top panel and bottom panel, respect-

ively. (B) Presence of time scaling in Th0 lineage among the 698 differ-

entially expressed genes. The dashed line represents the prior distribution

of the amount of time scaling at 72 h. The red area shows the posterior

distribution of the time scaling for the first replicate and the purple shows

the posterior distribution for the third replicate. (C) Same as (B) but here

the focus is on Th17 lineage. The focus is on the differentially expressed

genes in (B and C)
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the overlap is not perfect and different results are reported for

genes whose differential expression is weaker or noise level

higher and for genes which are affected by variable differentiation

efficiency. Additionally, DyNB provides insights into differenti-

ation efficiencies between biological replicates, which is not pos-

sible with timepoint-wise or traditional temporal methodologies.

DyNB allows each gene to have its own time scalings between

replicates. Thus, we studied the effect of the assumption that all

genes would be affected similarly by the differential differenti-

ation efficiency. This was done by introducing informative delay

priors (Supplementary Fig. S3A), which closely resembles the

posterior distribution of time-scaling parameters obtained from

the application of DyNB (Fig. 6C). After applying DyNB with

the strong time-scaling prior, we noticed that the distributions of

the estimated time differences of the differentially expressed

genes (the same criteria as before) resembled the informative

prior distributions as depicted in Supplementary Figure S3B,

indicating that the time differences can be estimated even without

strong regularization. Consequently, we believe that it is more

beneficial to apply DyNB without the informative prior distri-

bution because, e.g. in the context of Th17 differentiation only a

fraction of genes respond to the differentiation.
We also compared DyNB (with and without the informative

delay prior) with the next-maSigPro (Conesa and Nueda, 2013).

Interestingly, next-maSigPro (Benjamini-Hochberg-corrected P-

value50.01 with the negative binomial model) showed the weak-

est level of agreement with the other methods as depicted in

Supplementary Figure S3C.
Three representative examples detected by DyNB, but not

identified by DESeq from timepoint-wise analysis with the afore-

mentioned criteria, are shown in Figure 7. These genes illustrate

the benefits of the time-scaling parameter. The gene ISG20 has

similar behavior as the IL17A gene, i.e. it is induced between the

last two timepoints (48 and 72h) but the activation is delayed in

the first replicate. ISG20 has been reported to have a role in Th17

cells (Pan et al., 2013). The members of the RAB protein family,

e.g. RAB3, are known to play a major role in protein-mediated

transport and in fusion of intracellular structures and are highly

expressed in various cells of immune system, especially after ac-

tivation (Pei et al., 2012). TIAM1 (T lymphoma invasion and

metastasis protein 1) has shown to have a role in T-cell traffick-

ing through Rac activation (G�erard et al., 2009). On the con-

trary, Supplementary Figure S4 shows two representative genes,

KIF11 and MAP1B, which are detected by the timepoint-wise

analysis, but not by the temporal analysis implemented in

DyNB. Temporal analysis together with the possibility to ac-

count for variable differentiation efficiencies can filter out

those genes for which the replicated Th0 and Th17 profiles are

seemingly similar and thus likely false positives.

4 DISCUSSION AND CONCLUSIONS

We presented the first statistical method, DyNB, to study RNA-

seq dynamics together with a method to correct for, or detect,

A

B

C

Fig. 7. Examples of differentially expressed genes detected exclusively by

DyNB. (A) The estimated smooth representation of ISG20 dynamics with

the time scaling. (B and C) Same as (A), but the depicted results are for

the RAB13 and TIAM1 genes

A B

C

Fig. 6. A comparison of the results with DESeq. (A) The overlap between

the sets of differentially expressed genes identified by DyNB and DESeq

(top panel). In the bottom panel we take into account only the top 698

hits from DESeq analysis to make the gene sets equal in size. (B) The

number of the top 698 DESeq hits that are found to be differentially

expressed exactly at one, two, three or four timepoints in the DESeq

analysis. (C) A quantification of how the genes belonging to the classes

presented in (B) are found by the presented method using the precision

metric. The DESeq hits are taken into account in the order of descending

significance (x-axis), which are used to evaluate precisions. For example,

precision is one when all the considered genes are found in the set given

by DyNB
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different time scales between RNA-seq time-series datasets.
DyNB is compared with a commonly used method, DESeq
that relies on the same statistical assumptions but analyzes
data from each timepoints separately and, therefore, ignores cor-

relations between timepoints. As expected, the comparison
showed that the agreement between the methods is high but at
the same time temporal modeling approach has some benefits.

The most notable advantage is the possibility to take into ac-
count different differentiation efficiencies between biological rep-
licates. Indeed, many experimental systems in cell development

and differentiation display subtle kinetic differences between rep-
licates, which are not necessarily apparent until large-scale tran-
scriptomics data are obtained. This method might critically help

improve the interpretation of such experiments. Concerning
future improvements, the proposed straightforward MCMC
sampling scheme might lead to inefficient sampling if more par-
ameters are marginalized. In those cases, sampling could be im-

proved by using more elegant samplers, such as elliptical
sampling (Murray et al., 2009).
Our results show that a temporal analysis can bring insights

into analysis of differentiation processes and help in the analysis
of time-series datasets. We demonstrated applicability of DyNB
by applying it to time series RNA-seq data from Th17 and Th0

lineages and identified novel Th17-specific genes. We used qRT-
PCR to validate our computational predictions of sample-spe-
cific time scales. For example, by taking into account differences
in differentiation efficiencies, we can identify a more complete set

of differentially expressed genes. In turn, this improves our abil-
ity to discern subtle changes in regulatory pathways and broaden
the scope of targets available for intervention.
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