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SUMMARY

During pauses in exploration, ensembles of place
cells in the rat hippocampus re-express firing se-
quences corresponding to recent spatial experience.
Such ‘‘replay’’ co-occurs with ripple events: short-
lasting (�50–120 ms), high-frequency (�200 Hz)
oscillations that are associated with increased
hippocampal-cortical communication. In previous
studies, rats exploring small environments showed
replay anchored to the rat’s current location and
compressed in time into a single ripple event. Here,
we show, using a neural decoding approach, that
firing sequences corresponding to long runs through
a large environment are replayed with high fidelity
and that such replay can begin at remote locations
on the track. Extended replay proceeds at a charac-
teristic virtual speed of�8 m/s and remains coherent
across trains of ripple events. These results suggest
that extended replay is composed of chains of
shorter subsequences, which may reflect a strategy
for the storage and flexible expression of memories
of prolonged experience.

INTRODUCTION

Place cells in the hippocampal formation fire selectively when an

animal moves through particular locations (‘‘place fields’’) in the

environment (O’Keefe and Dostrovsky, 1971; Wilson and

McNaughton, 1993). As a consequence, when the animal travels

along a given trajectory, hippocampal cells with place fields on

that trajectory are activated in sequence. During pauses in loco-

motion and during slow-wave sleep, many place cells are

recruited in intermittent population bursts, which are accompa-

nied by ripples in the hippocampal local field potential (Buzsáki

et al., 1992; Chrobak and Buzsáki, 1996). The firing order of

place cells during those bursts reflects a memory for the order

in which they were activated during previous exploration. Such

‘‘replay’’ has been observed during slow-wave sleep (Ji and Wil-

son, 2007; Lee and Wilson, 2002; Nádasdy et al., 1999; Wilson

and McNaughton, 1994) as well as during immobility on linear

tracks (Diba and Buzsáki, 2007; Foster and Wilson, 2006) and

in an open field (Csicsvari et al., 2007).

During replay events in rats, place cell firing sequences are re-

expressed at a faster rate than during actual experience (Diba
and Buzsáki, 2007; Foster and Wilson, 2006; Ji and Wilson,

2007; Lee and Wilson, 2002). For the small 1–2 m long linear

tracks used in previous studies, the firing sequence of a set

of place cells that spans the complete environment can be re-

expressed at the same timescale of a single ripple (50–120 ms

[Ylinen et al., 1995]). These results can be accounted for by

a model in which sensory input drive to place cells is ‘‘read

out,’’ possibly by a sweeping release of inhibition during a single

sharp-wave ripple (Csicsvari et al., 2007; Diba and Buzsáki,

2007; Foster and Wilson, 2006).

The limited duration of single ripple events suggests that

awake replay in a large environment should be limited to a small

region of space. In the wild, however, rats typically navigate over

tens or even hundreds of meters (Jackson, 1982). Can the hippo-

campus support replay across larger spatial scales? If so, is such

extended replay further compressed in time or is there a fixed

rate at which replay progresses? If the latter, how are longer

sequences mapped onto short-lasting ripple events?

RESULTS

Extended Replay Detected by Neural Decoding
Simultaneous recordings of multiple single units in hippocampal

area CA1 were made (n = 47, 34, 23, and 32 units with consistent

place-related firing in rats 1–4; see Experimental Procedures)

while rats explored a 10.3 m long track (Figures 1A and 1B).

Food reward was provided at both ends of the track, but since

rats were not pretrained, behavior was variable and the animals

frequently paused at many locations on the track (Figure 1C).

We linearized the animal’s position, such that it represented the

distance from one end of the track (Figure 1C), and the behavior

of the rat was classified as either ‘‘RUN’’ (linear speed >15 cm/s)

or ‘‘STOP’’ (linear speed <5 cm/s) (Figure 1E). Candidate replay

events (‘‘CAND’’) were identified as periods during STOP with

elevated multiunit activity across all electrodes (Figures 1D and

1E; see Experimental Procedures; mean rate during STOP of

0.36, 0.40, 0.32, 0.40 events/s in rats 1–4). Candidate events

were characterized by sharp on- and offsets (Figures 1G and

1H), and event durations ranged from 40 to 1018 ms

(Figure 1F), with 19% of events (17%, 22%, 16%, 14% in rats

1–4) characterized as ‘‘long’’ (>250 ms; chosen to be more than

twice the typical duration of a single ripple [Ylinen et al., 1995]).

To evaluate whether candidate events contained replayed

spatial memory sequences, we employed a probabilistic neural

decoding strategy to estimate the animal’s position on the track

from the ensemble of spike trains (Brown et al., 1998; Wilson and
Neuron 63, 497–507, August 27, 2009 ª2009 Elsevier Inc. 497
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McNaughton, 1993; Zhang et al., 1998). We reasoned that during

reactivation of previous experience the position estimate would

deviate systematically from the actual position (Johnson and

Redish, 2007).

Our algorithm does not require that each cluster used for

decoding contains only spikes emitted by a single neuron;

successful estimation requires only that the spatial tuning of

each unit is stable across the training and decoding epochs.

This property of the decoder allows us to make optimal use of

the spatial information present in the neural data by including

units that are less well isolated but which nevertheless have

a stable spike amplitude signature and carry consistent spatial

information. We therefore interpret our results in terms of the

behavior of the hippocampal ensemble rather than that of indi-

vidual place cells; we use the term ‘‘unit’’ rather than ‘‘cell’’

throughout the paper to emphasize this distinction. All reported

results were qualitatively similar when calculated using only

well-isolated units (see Supplemental Results).

We first confirmed that we could use our decoder to accurately

estimate the animal’s position during RUN using 500 ms time

windows. Median error for rats 1–4 was 7, 9, 8, and 8 cm, with

good performance across the entire environment (Figures 2A–

2C; see also Figure S1 and Movie S1).

We next applied the decoding algorithm to nonoverlapping

20 ms time windows in all candidate events lasting at least

100 ms. During many candidate events, the sequence of position

estimates described a rapid traversal of a section of the track at a

relatively constant speed, even though the animal was stationary

Figure 1. Behavior and Candidate Replay Events

(A) Top view of the 10.3 m long track. Rat visible at right.

(B) Head position during 100 s of exploration. Labels ‘‘A’’ and

‘‘B’’ denote the two ends of the track as used throughout the

paper.

(C) Linearized position (meters from ‘‘A’’); same data as (B).

(D) Multiunit activity (MUA) across all electrodes. Note distinct

peaks corresponding to elevated population activity.

(E) Identified periods of RUN (>15 cm/s), STOP (<5 cm/s), and

candidate replay events (CAND; extracted from the MUA in D).

(F) Histogram of candidate event durations in all rats.

(G and H) Average MUA aligned to start (G) and end (H) of long

(>250 ms) candidate events for rat 1. Note steep onset and

offset of events.

(Figures 2 and 3A–3C). The decoding algorithm we

use is memoryless, and therefore the observed

trajectories are not the result of temporal smoothing

across neighboring estimates.

In order to characterize individual events, we

determined the best linear fit to the observed

pattern of position estimates for each candidate

event by maximizing a ‘‘replay score.’’ The result-

ing fit specifies the most likely constant-speed

trajectory being replayed, and the replay score

corresponds to the mean estimated likelihood

that the rat was on the specified trajectory (see

Experimental Procedures and Figure S2). To test

for statistical significance, we compared the

observed replay score for each event to sample

distributions of scores obtained after shuffling the original

data. Three distinct shuffling regimes were employed to control

for nonspecific factors possibly contributing to the replay score

(Figure S2). First, to control for the chance linear alignment of

position estimates, we circularly shifted the estimate at each

time point by a random distance (‘‘column-cycle shuffle’’).

Second, to control for the contribution to the replay score of

firing characteristics of single units (e.g., bursting), we randomly

permuted the mapping between spiking records and spatial

tuning curves (‘‘unit identity shuffle’’). Third, to control for a

bias of the decoding procedure toward particular locations,

we constructed artificial candidate events by combining position

estimates taken randomly from the complete set of candidate

events in each session (‘‘pseudoevent shuffle’’). We performed

each shuffle 1500 times and conservatively consider only events

with a Monte Carlo p value <0.01 under all three shuffles to be

significant.

Using these criteria, 16% of all analyzed candidate events

contained significant replay trajectories (118/657, 109/699, 12/

137, 24/163 events significant for rats 1–4; p < 10�7 for each

rat under a binomial distribution assuming a false-positive rate

of 1%). Of long (>250 ms) candidate events, 33% were signifi-

cant (59/145, 60/203, 9/36, 10/38 candidate events in rats 1–4;

p < 10�10 for each rat). (Using a significance threshold of p <

0.05, 29% of all events and 50% of long events were found to

contain replayed memory sequences; however, we chose to

use a threshold of p < 0.01 to reduce the likelihood of false

positives.)
498 Neuron 63, 497–507, August 27, 2009 ª2009 Elsevier Inc.
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Figure 2. Replay Detection Using Position

Reconstruction

(A–E) Behavior and position reconstruction for

a 80 s epoch during which rat 1 runs �7 m (from

10.3 m to 3.5 m), while pausing frequently. (A)

True position of animal. (B) Estimated position.

Each column is a probability density function esti-

mated from unit activity in a 500 ms window.

White, p = 0; black, p = 1. (C) Raster plots of spike

times. Units are ranked by their preferred firing

location; unit 1 has a place field closest to 0 m.

Note bursts at 17 s, 27 s, and 78 s, which recruit

a large fraction of all units. (D) Multiunit activity

(MUA; average spike rate per tetrode, including

unclustered spikes). (E) Identified periods of RUN

and STOP and candidate replay events (CAND).

(F–I) Position reconstruction applied to a candidate

event revealing extended replay. (F) Estimated

position (20 ms bins) describes a trajectory from

8 m to 2 m while the animal remains stationary at

9 m (black arrowhead). The direction of the arrow-

head indicates that the animal is facing in the B/A

direction. (G) Raster plot of unit firing. (H) MUA. (I)

Candidate event. This event is the third example

shown in Movie S2.
Neuron 63, 497–507, August 27, 2009 ª2009 Elsevier Inc. 499
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Figure 3. Extended Replay

(A–C) Examples of extended replay from rats 1–3. (Top) Estimated position across time (20 ms bins). Arrowheads indicate animal’s location and facing direction.

Asterisks indicate start/end of detected linear trajectory. (Middle) MUA. (Bottom) Extent of replay event.

(D) Length of replayed trajectory versus event duration for all replays. Solid line: linear regression (slope = 11.1 m/s; R2 = 0.59; p < 10�10).

(E) Kernel density estimate (Gaussian kernel, width = 1.5 m/s) of the distribution of replay speeds.

(F and G) Distribution of start (F) and end (G) locations of replay trajectories relative to the animal’s position and heading on the track. A negative distance indicates

the replayed trajectory starts or ends behind the animal (along the track).
Speed and Location of Replayed Trajectories
Individual replay events could cover long sections of the track

(Figures 3A–3C), and the length of replayed trajectories was line-

arly correlated with the duration of the events (Figure 3D), indi-

cating a characteristic speed for replay (Figure 3E; median speed

of 8.1 m/s for all significant events; median of 8.7/7.6/10.8/

10.5 m/s in rats 1–4). These replay speeds are 15–20 times faster

than a typical rat running speed (�0.5 m/s), consistent with

previous reports of compression factors for shorter-duration

replay events (Lee and Wilson, 2002; Nádasdy et al., 1999).

We next analyzed the relation between the actual position of

the animal during replay and the location of the replayed trajec-

tories on the track. Replay occurred while the animal stopped at

the ends of the track to consume reward as well as at other loca-

tions (Figures S3A–S3D). Replay in both the A/B and B/A

directions was common, with no clear trend across rats (58%,

51%, 25%, 21% of replays from A/B in rats 1–4). Since rats

spent a significant amount of time at the reward sites facing

away from the track, a higher proportion of replayed trajectories

occurred behind the animal (Figure S3; 35% ahead, 65%

behind). This bias was not significantly different from chance

(33% ahead; p = 0.58, two-sided Monte Carlo p value), com-

puted under the null hypothesis that there is no relation between

the stopping location of the rat and the position of the replayed

trajectory.

Locally and Remotely Initiated Replay
Previous reports suggested that replay might be influenced by

strong local place-related inputs (Csicsvari et al., 2007; Diba

and Buzsáki, 2007; Foster and Wilson, 2006). Consistent with

this model for replay generation, we found that the start locations

of the replay trajectories were strongly biased toward the rat’s

current location (Figure 3F), with 40% of significant replay trajec-

tories starting within 50 cm of the rat’s current location, which we

refer to as ‘‘local replay’’ (chance = 17%, calculated by boot-
500 Neuron 63, 497–507, August 27, 2009 ª2009 Elsevier Inc.
strapping under the null hypothesis that replay trajectories and

the rat’s position are uncorrelated, p < 0.0005 pooled across

rats). The location of the ends of replay trajectories were not simi-

larly biased toward current location (Figure 3G), with only 5%

ending nearer than 50 cm (chance = 8%, p = 0.99 pooled across

rats).

We also observed many significant replay trajectories that

began at remote locations (Figure 3F; see examples in Figures

3B, 4C, and 4D). Indeed, 51% of events started at least 1 m

away from the rat’s current location. Such trajectories could be

artifacts of our replay detection method, if we made an error in

determining the start time of the candidate event. A remote event

could be either a truncated fragment of a long trajectory that

actually begins at the current location (i.e., event start time too

late; see Figure S7C for a possible example) or an incorrect

extrapolation of a shorter trajectory that actually begins at the

current location (i.e., start time too early). We conservatively

exclude these two classes of possible errors by selecting only

trajectories that proceed from a remote location toward the

animal and that never proceed past the current location. Twenty

percent of significant replay events (52/263) meet these more

stringent criteria and are termed ‘‘remote replay’’ (dashed lines

in Figure S3). There are significantly more remote replay events

than the number of false positives expected to be generated

by our replay detection procedure (52 of 1656 events; p <

10�11 under a binomial distribution, using false-positive rate

of 1%).

Forward- and Reverse-Ordered Replay
Previous studies have taken advantage of the joint tuning of

many CA1 cells to running direction and location on the linear

track (McNaughton et al., 1983; Muller et al., 1994) to demon-

strate that spiking sequences can be replayed in either the

forward or reverse temporal order (Diba and Buzsáki, 2007;

Foster and Wilson, 2006). In order to determine the ordering of
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the observed replay trajectories, we extended our decoding

procedure to estimate both the rat’s position and its instanta-

neous running direction (i.e., whether the rat is running from

A/B or B/A) from the entire ensemble (Figure 4A; see Exper-

imental Procedures). Running direction was estimated correctly

during RUN 89%, 83%, 83%, and 89% of time in rats 1–4

(chance 50%; p < 10�12 in each rat).

For each replay event, we computed a ‘‘replay order score’’

that reflected the degree to which our estimate of instantaneous

running direction agreed with (+1, forward replay) or disagreed

Figure 4. Forward and Reverse Extended Replay

(A) Joint reconstruction of position and running direction (500 ms bins). Color indicates estimated running direction (see color mapping on the right). Direction is

correctly estimated for both the A/B (6750–6770 s) and B/A directions (6820–6850 s).

(B–F) Examples of forward (FWD), reverse (REV), and mixed (MIX) replay from rat 1, each labeled with its replay order score. The events in (B) and (C) are the first

two examples shown in Movie S2. (Top) Joint position and direction estimates (20 ms bins). Arrowhead indicates animal’s position and facing direction. Asterisks

indicate start and end of detected replay trajectory. (Middle) Multiunit activity. (Bottom) Extent of replay event. (B) Forward replay in the A/B direction

proceeding ahead of the animal. (C) Forward replay in the B/A direction, starting 2 m behind the animal and proceeding behind the animal. (D) Reverse replay,

starting remotely and proceeding toward the animal. Trajectory is similar to (C), but this is a reverse-ordered replay because the estimated running direction (i.e.,

A/B [blue]) does not agree with the direction in which the replay proceeds (i.e., from B/A). (E) Mixed replay proceeding behind the animal. (F) Mixed replay

proceeding ahead of the animal. This event begins as an apparently forward-ordered replay then switches to reverse-ordered after �240 ms.

(G) (Left) Distribution of observed (gray bars) and expected (pseudoevent shuffles; black line) replay order scores. (Right) Scatter plot of replay order score and

replay duration for all significant replay events in all animals. Green, forward replay; yellow, reverse replay; gray, mixed replay.

(H) Kernel density estimates (Gaussian kernel, width = 1.5 m/s) of the distribution of replay speeds for forward and reverse replay.
Neuron 63, 497–507, August 27, 2009 ª2009 Elsevier Inc. 501
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with (�1, reverse replay) the overall direction of the trajectory

being replayed (see Experimental Procedures). For example,

the reverse replay event in Figure 4D proceeds in the B/A direc-

tion (from 7.5 to 2.5 m on the track) but uses the hippocampal

ensemble code associated with running in the opposite A/B

direction, as indicated by the blue color. Overall, replay order

scores were significantly biased away from 0 and toward �1

and 1 (Figure 4G; p < 0.02 for each rat, one-sided Kolmo-

gorov-Smirnov two-sample test, compared to pseudoevent

shuffle distribution), indicating that the hippocampal ensemble

tends to represent one running direction consistently within a

replay event. Statistical significance of the replay order score

was next tested for each event by comparison to a distribution

of order scores obtained from shuffled data. Significantly (p <

0.05) forward- and reverse-ordered replays were observed in

all sessions (Figures 4B–4D and S5–S7 and Movie S2) across

the full range of event durations (Figure 4G).

Forward replay is significantly more frequent than reverse

replay (p < 0.005 by two-sided binomial test), consistent with a

previous report (Diba and Buzsáki, 2007). Of all replay events,

40% (106/263) were significantly forward ordered, 26% (68/

263) were significantly reverse ordered, with the remaining

33% of events (89/263) classified as ‘‘mixed’’ replay. This differ-

ence was also significant (p < 0.002) among replay events longer

than 250 ms: 48% (66/138) were significantly forward ordered,

and 25% (34/138) were significantly reverse ordered. Mixed

replay events contain significant replay in decoded position but

do not exhibit a consistent directional estimate. Most mixed

events exhibit weak or variable direction tuning (e.g., Figure 4E),

but we also occasionally observe events that apparently switch

represented directions in mid-replay (e.g., Figures 4F, S5D,

and S7C).

We observed no significant difference in the speeds of forward

and reverse replay trajectories (Figure 4H; median speed 8.6

versus 7.9 m/s; Kolmogorov-Smirnov two-sample test, p =

0.24). Forward and reverse replay trajectories did not preferen-

tially correspond to runs in the A/B or B/A direction (47%

of forward, and 52% of reverse replay trajectories proceeded

from A/B). Similar proportions of both forward and reverse

replay trajectories were initiated locally or remotely (p > 0.5 by

two-proportion z test): 42% of forward and 38% of reverse

replay events were local (greater than the respective chance

levels of 17% and 19%, p < 0.0005); and 19% of forward and

20% of reverse replay events were remote.

Locally initiated forward replay will reflect possible future

paths, while locally initiated reverse replay will reflect possible

approaches to the animal’s current location. Do such replayed

trajectories preferentially express the animal’s actual past and

future paths rather than the paths not taken? To address this

question, we analyzed periods when the animal was stopped

in the middle of the track (at least 2 m from either end), where

there are two possible paths associated with the animal’s current

location. We did not find a strong bias for locally initiated forward

replay trajectories to represent the actual future path (15 actual

future path versus 12 opposite direction). Similarly, there was

no strong bias for locally initiated reverse replay to represent

the actual path taken by the animal to reach the current location

(9 actual past path versus 7 opposite direction).
502 Neuron 63, 497–507, August 27, 2009 ª2009 Elsevier Inc.
Relationship between Extended Replay and Ripples
Replay events have consistently been found to co-occur with

ripple oscillations in the hippocampal local field potential (Diba

and Buzsáki, 2007; Foster and Wilson, 2006; Ji and Wilson,

2007; Lee and Wilson, 2002; Nádasdy et al., 1999). Consistent

with these reports, we found that ripple emission rate was

much higher during replay events than during noncandidate

event STOP periods (8.8–11.8 s–1 versus 0.17–0.27 s–1; p <

10�4 in each rat). Detected ripples were associated with tran-

sient deflections in the LFP (‘‘sharp waves’’; Figures 5B–5D)

and with transient increases in multiunit activity (78%–88%

increase; p < 10�7 for each rat; Figures 5C and 5E), and single-

unit firing rate (81%–94% increase; p < 0.0002 for each rat).

These effects each lasted �50 ms, which is comparable to the

duration of single sharp-wave ripple complexes as described

previously (Ylinen et al., 1995). In order to characterize the rela-

tionship between ripple events and extended replay, we per-

formed a linear regression and found a strong positive correla-

tion between the number of emitted ripples and the duration of

the replay event (Figure 5A; R2 = 0.65, 0.45, 0.70, 0.67 for rats

1–4, p < 0.001 for each rat). These results demonstrate that

extended replay spans trains of discrete sharp-wave ripple

events.

Next we explored whether the confidence of the position

reconstruction during replay events was uniform across the

ripple trains. We find that reconstruction quality during replay,

as measured by the mode of the position estimate, is signifi-

cantly elevated at ripple peak times (Figure 5F; 0.20–0.26 versus

0.32–0.41; p < 10�4 for each rat). We also find that the error

between the replayed trajectory and the estimated position is

significantly lower at ripple peak times (Figure 5G; 87–131 cm

versus 182–227 cm, p < 0.003 for each rat). These data show

that replay integrity is not uniform across the duration of an event

but that it is modulated in association with ripple trains, suggest-

ing that extended replay consists of chains of shorter ripple-

associated subsequences.

DISCUSSION

We have shown that time-compressed forward and reverse

hippocampal replay of long behavioral sequences is common

during pauses in exploration of a large environment and is asso-

ciated with trains of ripple events. In contrast to studies con-

ducted in smaller environments, we find that replay is neither

limited to locations where reward is consumed nor exclusively

tied to the animal’s current location.

We developed and used a neural decoding approach for

replay detection. Performing replay detection in the decoded

spatial domain affords advantages over methods that examine

firing order across individual units, such as pair-wise correlation

(Wilson and McNaughton, 1994) and spike-sequence detection

(Diba and Buzsáki, 2007; Foster and Wilson, 2006; Lee and

Wilson, 2004). Our method allowed us to examine the fine spatial

structure of replayed trajectories in a statistically rigorous

manner and makes optimal use of the spatial information con-

tained in hippocampal spikes, including the activity of cells

with irregularly shaped place fields (such as those with multiple

firing fields [Fenton et al., 2008]; Figure S8).
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Using this decoding approach, we demonstrated that behav-

ioral sequences spanning long sections of a 10 m track are re-ex-

pressed during population bursts lasting up to 700 ms. Replay

trajectories proceed at a constant speed of�8 m/s,�15–20 times

faster than typical rat running speeds. Such values are consistent

with the compression factors determined previously by analysis

of spike-time lags in smaller environments (Diba and Buzsáki,

2007; Lee and Wilson, 2002). The constant speed of replay

contrasts strongly with the rats’ highly irregular behavior on the

track, suggesting that the sequential structure of the behavioral

experience, rather than the detailed time course of particular

episodes, is re-expressed during replay. Constant-speed replay

is also reminiscent of studies in humans showing that response

times are linearly dependent on distance traveled across an imag-

ined map (Kosslynet al., 1978) or on the magnitude of mental rota-

tion of three-dimensional objects (Shepard and Metzler, 1971).

We confirmed previous reports that awake replay events are

associated with sharp-wave ripples in the local field potential

Figure 5. Replay Spans Multiple Ripples

(A) Scatter plot of number of detected ripples

during significant replay events in all animals as

a function of replay event duration. Random jitter

added in y axis for visualization. Linear regression:

9.9 ripples/s, R2 = 0.56.

(B) Ripple-triggered averages of wide-band hippo-

campal local field potential (LFP) during replay

events in rat 1. Even in multiple-ripple events,

each ripple is associated with a sharp wave in

the LFP.

(C) Example of multiple ripples during a single

extended replay event. (From top to bottom)

LFP; average amplitude in the ripple band (150–

250 Hz) across all electrodes; detected ripples;

probability at the mode of position estimate; posi-

tion estimate; MUA; candidate event time.

(D–G) Ripple-triggered averages of wide-band

LFP (D), MUA (E), mode of position estimate (F),

and error between estimated location and replay

trajectory (G) for replay events in rat 1. Shaded

regions: 95% confidence intervals for the mean.

(Csicsvari et al., 2007; Diba and Buzsáki,

2007; Foster and Wilson, 2006). How-

ever, the extended replay sequences we

report last much longer than the duration

of a single sharp-wave ripple event, and

we demonstrate that they span trains of

sharp-wave ripples. Such trains have

been noted since the first reports of

ripples (Buzsáki et al., 1983; O’Keefe

and Nadel, 1978; Suzuki and Smith,

1987), but no function has previously

been ascribed to this phenomenon. CA1

unit activity is highest at the peak of

individual ripples, corresponding to an

increased confidence of the position esti-

mate, which suggests that extended

hippocampal replay may consist of

chains of subsequences, each with a

spatial extent of �50 cm (based on a ripple duration of 60 ms

and a replay speed of 8 m/s). Temporally compressed place

cell sequences with a similar duration and spatial extent also

occur during individual theta cycles (Foster and Wilson, 2007)

(Figure S9), as predicted from the observation of phase preces-

sion in single place cells (Skaggs et al., 1996).

Both theta sequences (Mehta et al., 2002) and ripple-associ-

ated replay (Foster and Wilson, 2006) have been proposed to

arise from a translation of place cell excitability into a phase or

latency offset by a sweeping decrease in inhibition. This model

predicts that ripple-associated sequences in the hippocampus

should be limited to roughly the spatial scale of a single place

field and would therefore require that longer sequences consist

of several sharp-wave-ripple-associated subsequences. One

possible mechanism for the generation of trains of subse-

quences is provided by the re-entrant loops in the hippo-

campal-entorhinal circuitry (Canto et al., 2008; Kloosterman

et al., 2004). Following each ripple, current hippocampal output
Neuron 63, 497–507, August 27, 2009 ª2009 Elsevier Inc. 503
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to the entorhinal cortex could be fed back to the hippocampus,

providing the inputs required for expression of the next subse-

quence. Alternatively, extended replay may reflect the contin-

uous operation of an autoassociative network, possibly in area

CA3 (August and Levy, 1999). Recordings across multiple brain

regions will be necessary to test these hypotheses.

We found a bias for both forward- and reverse-ordered replay

trajectories to begin near the animal, which suggests that such

events could be used for evaluation of immediate future and

past paths. We also found that when the rat was stopped in

the middle of the track, where there are multiple possible paths

away from (and possible approaches to) the current location,

replayed trajectories were not strongly correlated with the

animal’s actual behavior. In particular, forward replay trajectories

were not predictive of the upcoming path, and reverse replay did

not preferentially reflect the path just taken by the animal. These

results suggest that replayed trajectories represent the set of

possible future or past paths linked to the animal’s current

position rather than the actual paths. Further study of the corre-

spondence between replay order and behavior may benefit from

the use of tasks that place specific demands on the animal’s

evaluation of past and future experience.

Diba and Buzsáki (2007) found that forward replay beginning

at the present location, moving along the upcoming path, was

more common than forward replay beginning at a remote loca-

tion and proceeding toward the animal’s current location along

the preceding path. Similarly, they find a preference for reverse

replay events to represent the previous path (which, since it is

replayed in reverse, is also initiated locally). These results are

consistent with our observation of a bias toward local initiation

for both forward and reverse replay.

We also report that a significant number of replay events

express trajectories beginning at locations remote from the

physical location of the rat. This indicates that during awake

replay the hippocampus has access to a broad range of stored

memory sequences that are not solely dependent on the current

location or the behavior just prior to the replay event. In this

respect, awake replay is similar to sequence reactivation during

slow-wave sleep (Ji and Wilson, 2007; Lee and Wilson, 2002). In

our experiments, the rat has visual access to the complete track,

and it is possible that remotely initiated replay is cued by sensory

inputs reaching the hippocampus through cortical pathways.

Similarly, during slow-wave sleep, cortical inputs may bias or

otherwise influence memory reactivation (Ji and Wilson, 2007),

given the complex bidirectional interactions between the hippo-

campus and neocortex (Isomura et al., 2006; Mölle et al., 2006;

Siapas and Wilson, 1998; Sirota et al., 2003; Wolansky et al.,

2006).

Interestingly, groups of ripples are also present during slow-

wave sleep, where they predominantly occur during periodic

increases in neocortical population activity (‘‘up states’’) (Batta-

glia et al., 2004; Clemens et al., 2007; Mölle et al., 2006; Sirota

et al., 2003) associated with slow oscillations in the cortical

EEG (Isomura et al., 2006; Steriade, 2006; Wolansky et al.,

2006). During these up states, coordinated memory reactivation

has been observed in the hippocampus and visual cortex (Ji and

Wilson, 2007). These data suggest that individual trains of ripples

during both slow-wave sleep and in the awake state may consti-
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tute a higher-level organization, possibly sharing a common

mechanism for their generation.

Replay associated with single ripples may represent a building

block for the expression of longer, more complex memories.

Hippocampal replay has been proposed to contribute to

memory consolidation during sleep (Buzsáki, 1989; Marshall

and Born, 2007; Stickgold, 2005). During wakefulness, high-

speed replay of long sequences of behavior could also support

learning processes that would benefit from prospective or retro-

spective evaluation, such as reinforcement learning (Foster and

Wilson, 2006). Extended replay may also support tasks involving

memory recall. This last possibility, while speculative, is lent

some support by the recent finding of specific reactivation of

hippocampal neurons during free recall in humans (Gelbard-

Sagiv et al., 2008) and by specific activation of the hippocampus

during sequence recall tasks in humans (Lehn et al., 2009). This

interpretation of the functional role of awake replay is also

consistent with work suggesting a high degree of overlap in

the cognitive processes supporting both episodic recall and

the evaluation of future events in humans (Buckner and Carroll,

2007; Schacter et al., 2007). The link between awake replay

and cognition can be further explored by studying replay in

animals engaged in more cognitively demanding tasks and by

the experimental disruption or bias of replay.

EXPERIMENTAL PROCEDURES

Electrophysiology and Behavior

All procedures were approved by the Committee on Animal Care at Massachu-

setts Institute of Technology and followed US National Institutes of Health

guidelines. Microdrive arrays carrying 9–18 independently adjustable gold-

plated tetrodes or octrodes (two octrodes in one animal) aimed at area CA1

of the right dorsal hippocampus (2.4 mm lateral and 4.0 mm posterior, relative

to bregma) were implanted under isoflurane anesthesia in five male Long-

Evans rats (400–500 g). Tetrode and octrode construction is as previously

described for tetrodes (Wilson and McNaughton, 1993): each electrode

consists of a twisted bundle of four or eight polyimide-insulated microwires,

fused and cut to create a blunt tip. Wire used for tetrodes was either 13 mm

diameter nichrome resistance wire (RediOhm-800, Kanthal, Palm Coast, FL)

electroplated with gold or 15 mm diameter nickel-iron wire (Nickel Alloy-120;

California Fine Wire, Grover Beach, CA) with all recording sites plated with

gold simultaneously using an electroless dip-plating process (Immersion

Gold CF, Transene, Danvers, MA). Octrode wires were polyimide-coated tung-

sten (8 mm diameter, California Fine Wire, Grover Beach, CA). Electrodes were

slowly lowered into the CA1 pyramidal cell layer over the course of 1–2 weeks.

Individual units were isolated by manual clustering on peak spike waveform

amplitudes across all channels using custom software (xclust; M.A.W.). For

each electrode, the local field potential (LFP) was recorded from a single

channel, filtered from 1–475 Hz and sampled at 2 kHz. All recordings were

differential against a reference electrode placed in white matter overlying

CA1. A screw in the skull overlying cerebellum served as ground. For each

rat, a single electrode showing clear sharp waves was selected for plotting

of LFP.

Animals were not introduced to the�10.3 m long linear track (Figures 1A and

1B) until stable unit recordings were obtained and only had one track session

per day. Animals received food reward at the track ends (‘‘A’’ and ‘‘B’’; see

Figures 1A and 1B) only after the rat completed a full length of the track. For

each animal, we selected a session in which the animal ran several complete

laps, but behavior was still variable and the number of recorded units was large.

These criteria limited the number of sessions we could use for each animal, and

we chose one session per animal in order to preserve independence across

sessions and to avoid overrepresentation of one animal in the data (track

session 3, 3, 3, 4, and 3, duration of 60, 55, 26, 28, 74 min for rats 1–5).
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Animal location and head direction were captured at 30 Hz by video tracking

of two head-mounted LEDs using an overhead camera. The linearized position

along the track was found by projecting the x,y coordinates of the animal’s

position onto a hand-fitted spline model of the track (A = 0 m, B z10.3 m).

Linearized velocity was smoothed with a Gaussian kernel (SD = 0.25 s) and

epochs during which linearized speed is >15 cm/s (RUN) or linearized speed

is <5 cm/s (STOP) were detected. Positive velocity indicates movement from

A/B.

Place/direction Tuning and Unit Selection

For each unit, we constructed a joint tuning curve over linearized position

(10 cm bins) and running direction (A/B and B/A) from all spikes emitted

during RUN (Figures S8E and S8F). This curve was smoothed in position

(Gaussian kernel; SD = 5 cm). We excluded putative interneurons (mean firing

rate >5 Hz) and units with weak place-related firing (peak rate in tuning curve

<3 Hz), leaving 47, 34, 23, 32, and 21 spatially tuned single units in rats 1–5

(cluster quality measures: L ratio 0.12 ± 0.17; isolation distance 17 ± 9; calcu-

lated using peak amplitude on each channel [Schmitzer-Torbert et al., 2005]).

Candidate Replay Events

A smoothed histogram (1 ms bins; Gaussian kernel, SD = 15 ms) was con-

structed of multiunit activity (MUA) including all spikes with a peak amplitude

greater than 100 mV on any channel, whether or not they are part of an isolated

cluster. Mean and standard deviation of MUA during STOP was calculated,

and candidate replay events were defined as epochs during which MUA was

higher than the mean and peak rate was at least three standard deviations

above the mean. Only candidate events within 30 s of RUN were analyzed to

exclude possible sleep periods.

Position Estimation and Validation

We used a Bayesian reconstruction algorithm (Zhang et al., 1998) to compute

the joint probability distribution of position and running direction from neuronal

firing in nonoverlapping time bins using the place-by-direction tuning curves

described above (see Supplemental Experimental Procedures). In cases

where only position estimates were needed, we computed the marginal distri-

bution of these estimates over position. In order to validate our estimation

procedure, RUN epochs in each session were divided into ‘‘training’’ and

‘‘testing’’ periods (alternating 1 s epochs). We calculated tuning curves using

data from the training period and used these to estimate position and direction

during the testing period. Confusion matrices were calculated to assess recon-

struction accuracy across the track (Figures S1B–S1F), and maximum-likeli-

hood estimates of position and running direction were compared with the

rat’s true behavior (Figure S1A). Data from rat 5 were excluded from further

analysis because of poor position estimation during RUN (median error

23 cm; uneven coverage of track).

Replay Detection

We define ‘‘replay’’ as a sequence of hippocampal firing patterns that encodes

a trajectory along the track at a constant velocity (Figure S2). The most likely

such trajectory is detected using a line-finding algorithm (Toft, 1996) across

the set of position estimates obtained during each candidate event (see

Supplemental Experimental Procedures). Each replay trajectory is character-

ized by its velocity, location on the track, and its likelihood (‘‘replay score’’).

For each candidate event, replay scores were compared to score distributions

of three types of shuffled versions of the data to test for significance (Monte

Carlo p value [Davison and Hinkley, 1997] < 0.01 for each shuffle type; see

Supplemental Experimental Procedures).

To determine if significant replay events represented forward or reverse

replay, we computed a ‘‘replay order’’ score as the difference between the

mean likelihoods that the estimated running direction on the trajectory was

in the same or opposite direction as the actual replayed trajectory (see Supple-

mental Experimental Procedures).

To test if the magnitude of the replay order score for a replay event is statis-

tically significant, it was compared to the distribution of replay order magni-

tudes of 2000 randomly generated pseudoevents of the same duration (see

Supplemental Experimental Procedures). Replay events with a Monte Carlo

p value < 0.05 are classified as ‘‘forward’’ or ‘‘reverse’’ replay; the remaining
events are classified as ‘‘mixed’’ replay. Throughout the paper, ‘‘significant

replay’’ includes forward-, reverse-, and mixed-order replay.

To measure overall bias of replay toward forward and reverse replay (scores

of +1 and �1) and away from mixed replay (score of 0), we performed a one-

sided two-sample Kolmogorov-Smirnov test on the absolute values of the

observed replay order scores and of the scores obtained under pseudoevent

shuffling, as described above.

Replay Trajectory Analysis

For each detected replay trajectory, we calculate whether that trajectory lies

mostly ahead of or behind (along the track) the rat’s true position and report

the fraction of events lying mostly ahead. We test the significance of this

measure by nonparametric bootstrapping. The chance level pooled across

animals is estimated by randomly pairing within each session the observed

replay trajectories to the location of the rat at the time of the replay events

(2000 simulations, Monte Carlo p value reported), under the null hypothesis

that these two variables are independent. Because the rats spent a significant

amount of time at the ends of the track facing away from the track, the chance

level for replay trajectories lying behind the animal is higher than for those lying

ahead of the animal.

The same approach is used to analyze the relationship between the rat’s

location and the start and end locations of detected replay trajectories. The

test statistic in this case is the fraction of start or end locations within 50 cm

of the rat’s true location. Similar results were obtained for thresholds ranging

from 25 cm to 2 m.

Ripple Detection and Ripple-Triggered Analyses

We used a variation of Skaggs’ (Skaggs et al., 2007) ripple-detection proce-

dure, which allows for the detection of closely spaced ripples. The ripple ampli-

tude at each recording site was estimated by band-pass filtering the local field

potential (LFP) signal between 150 and 250 Hz, then taking the absolute value

of the Hilbert-transformed signal (Siapas et al., 2005). The mean ripple

amplitude across all recording sites was then smoothed (Gaussian kernel,

SD = 12.5 ms) to give a single continuous measure of ripple activity. Individual

ripples were detected as local peaks in this signal with an amplitude larger than

2.5 SD above the mean (mean and SD measured during STOP epochs). Ripple

emission rates were calculated separately for each replay event and compared

with the mean ripple emission rate across all non-CAND STOP periods using

a one-sample t test. For plots in Figures 5B and 5D (but not for any statistical

analysis), ripple times were aligned (±�2 ms) to the closest ripple cycle peak of

the channel being plotted, in order to show local ripple structure.

Comparisons between ripple and nonripple times during replay events were

performed using either: a one-sided two-sample t test assuming unequal

variances (used for MUA; single-unit firing rate); or, if the data did not appear

to be normally distributed, the Mann-Whitney U test (used for mode of esti-

mate; replay line error). For all tests, we used the same 20 ms nonoverlapping

time bins used for position reconstruction, and the comparison was between

bins that contained a detected ripple and those that did not.

SUPPLEMENTAL DATA

Supplemental Data include Supplemental Experimental Procedures, Supple-

mental Results, nine figures, and two movies and can be found with this article

online at http://www.cell.com/neuron/supplemental/S0896-6273(09)00582-0.
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Håberg, A.K. (2009). A specific role of the human hippocampus in recall of

temporal sequences. J. Neurosci. 29, 3475–3484.

Marshall, L., and Born, J. (2007). The contribution of sleep to hippocampus-

dependent memory consolidation. Trends Cogn. Sci. 11, 442–450.

McNaughton, B.L., Barnes, C.A., and O’Keefe, J. (1983). The contributions of

position, direction, and velocity to single unit activity in the hippocampus of

freely-moving rats. Exp. Brain Res. 52, 41–49.

Mehta, M.R., Lee, A.K., and Wilson, M.A. (2002). Role of experience and oscil-

lations in transforming a rate code into a temporal code. Nature 417, 741–746.

Mölle, M., Yeshenko, O., Marshall, L., Sara, S.J., and Born, J. (2006). Hippo-

campal sharp wave-ripples linked to slow oscillations in rat slow-wave sleep.

J. Neurophysiol. 96, 62–70.

Muller, R.U., Bostock, E., Taube, J.S., and Kubie, J.L. (1994). On the direc-

tional firing properties of hippocampal place cells. J. Neurosci. 14, 7235–7251.

Nadásdy, Z., Hirase, H., Czurko, A., Csicsvari, J., and Buzsáki, G. (1999).
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between neocortex and hippocampus during sleep in rodents. Proc. Natl.

Acad. Sci. USA 100, 2065–2069.

Skaggs, W.E., McNaughton, B.L., Wilson, M.A., and Barnes, C.A. (1996). Theta

phase precession in hippocampal neuronal populations and the compression

of temporal sequences. Hippocampus 6, 149–172.

Skaggs, W.E., McNaughton, B.L., Permenter, M., Archibeque, M., Vogt, J.,

Amaral, D.G., and Barnes, C.A. (2007). EEG sharp waves and sparse ensemble

unit activity in the macaque hippocampus. J. Neurophysiol. 98, 898–910.

Steriade, M. (2006). Grouping of brain rhythms in corticothalamic systems.

Neuroscience 137, 1087–1106.

Stickgold, R. (2005). Sleep-dependent memory consolidation. Nature 437,

1272–1278.

Suzuki, S.S., and Smith, G.K. (1987). Spontaneous EEG spikes in the normal

hippocampus. I. Behavioral correlates, laminar profiles and bilateral

synchrony. Electroencephalogr. Clin. Neurophysiol. 67, 348–359.

Toft, P.A. (1996). The radon transform — theory and implementation. PhD

thesis, Technical University of Denmark. URL: http://petertoft.dk/PhD/

http://petertoft.dk/PhD/


Neuron

Hippocampal Replay of Extended Experience
Wilson, M.A., and McNaughton, B.L. (1993). Dynamics of the hippocampal

ensemble code for space. Science 261, 1055–1058.

Wilson, M.A., and McNaughton, B.L. (1994). Reactivation of hippocampal

ensemble memories during sleep. Science 265, 676–679.

Wolansky, T., Clement, E.A., Peters, S.R., Palczak, M.A., and Dickson, C.T.

(2006). Hippocampal slow oscillation: a novel EEG state and its coordination

with ongoing neocortical activity. J. Neurosci. 26, 6213–6229.
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G. (1995). Sharp wave-associated high-frequency oscillation (200 Hz) in the

intact hippocampus: network and intracellular mechanisms. J. Neurosci. 15,

30–46.

Zhang, K., Ginzburg, I., McNaughton, B.L., and Sejnowski, T.J. (1998). Inter-

preting neuronal population activity by reconstruction: unified framework

with application to hippocampal place cells. J. Neurophysiol. 79, 1017–1044.
Neuron 63, 497–507, August 27, 2009 ª2009 Elsevier Inc. 507


	Hippocampal Replay of Extended Experience
	Introduction
	Results
	Extended Replay Detected by Neural Decoding
	Speed and Location of Replayed Trajectories
	Locally and Remotely Initiated Replay
	Forward- and Reverse-Ordered Replay
	Relationship between Extended Replay and Ripples

	Discussion
	Experimental Procedures
	Electrophysiology and Behavior
	Place/direction Tuning and Unit Selection
	Candidate Replay Events
	Position Estimation and Validation
	Replay Detection
	Replay Trajectory Analysis
	Ripple Detection and Ripple-Triggered Analyses

	Supplemental Data
	Acknowledgments
	References


