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Flaw tolerance refers to a state in which a pre-existing crack-like flaw does not propagate
even as the material is stretched to failure near its theoretical strength. Such an optimal
scenario can be achieved when the characteristic length scale is reduced to below a critical
value. So far, the critical conditions to achieve flaw tolerance have been discussed mostly
for homogeneous materials or for two dissimilar materials in frictionless or perfectly
bonded adhesion. In this paper, we consider the role of friction in flaw tolerant adhesion
between two dissimilar elastic solids. We adopt a frictional contact model in which slip
is allowed wherever the shear stress along the interface reaches a threshold value defined
as the friction strength. The critical length scale for flaw tolerance is derived analytically for
a penny-shaped crack and for an external circular crack. Compared to the cases of friction-
less contact, we find that interfacial friction can reduce the critical length scales for flaw
tolerance by up to 12.5%.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The theoretical strength of brittle solids, defined as the stress required to simultaneously break all atomic bonds across a
failure plane, is around one tenth of Young’s modulus. In reality, however, such a high strength is rarely observed due to the
presence of crack-like flaws. Upon external loading, stress concentration tends to occur near crack tips. As the applied load is
increased to a value usually much lower than the theoretical strength, a critical crack-like flaw begins to propagate and the
solid fails by crack propagation instead of simultaneous failure of all bonds along the prospective failure plane. Similar pro-
cess can be observed in adhesion. For two solids sticking to one another via, for example, the van der Waals interaction,
crack-like flaws induced by surface roughness, impurities and contaminants induce severe stress concentration near the
edges of contact zones. As the applied load is increased to a critical value, the adhesion joint fails by crack propagation rather
than simultaneous failure of interface at the theoretical strength of van der Waals interaction. In these failure processes
dominated by crack propagation, the load carrying capacity of material has not been fully utilized since only a small fraction
of material is highly stressed at any instant of time.

The state of flaw tolerance is defined as such that a pre-existing crack does not propagate even as the material is stretched to
failure near the theoretical strength. In this case, material around the crack fails not by crack propagation but rather by uniform
rupture at the theoretical strength. How can we achieve such an optimal scenario? This question has aroused considerable
interest in recent studies on the mechanical properties of biological materials. For example, Gao et al. (2003, 2004) investigated
the nanoscale mechanical properties of bone and bone-like materials, and showed that the nanometer size of ‘‘mineral” crystals
plays a critical role in the strength and toughness of bone. Gao and Chen (2005) considered the tensile strength of a cracked elas-
tic strip and showed that the strip becomes flaw tolerant as long as its half-width h meets the condition
. All rights reserved.
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h 6 hcr ¼
CE

S2 ; ð1Þ
where E is Young’s modulus, S and C stand for the theoretical strength and fracture energy of the strip, respectively. For brit-
tle materials, C is commonly taken as twice of the surface energy, i.e. C = 2c.

Studies on biological attachment systems (Autumn et al., 2000; Arzt et al., 2003; Gao and Yao, 2004) have also inspired
interests in flaw tolerant adhesion. Gao et al. (2005) performed finite element calculations to show that the adhesion
strength of a flat-ended cylindrical punch in partial contact with a rigid substrate would saturate at its theoretical strength
when the size of the punch is reduced to below a critical radius. Such saturation of adhesion strength at small length scale
has also been reported by Persson (2003) for a rigid cylindrical punch on an elastic half-space and by Tang (2005) for an elas-
tic cylindrical punch in perfect bonding with a rigid substrate. All these models agree on the point that there exists a critical
length scale for flaw tolerant adhesion which is proportional to DcE�=r2

th, where Dc is the work of adhesion,
E� ¼ ½ð1� m2

1Þ=E1 þ ð1� m2
2Þ=E2��1 is the compound modulus and rth is the theoretical adhesion strength. In reality, however,

adhesive contact is neither frictionless nor perfectly bonded. Interfacial slip is expected to occur along the interface wherever
shear stresses are too high. To understand the role of friction in flaw tolerant adhesion, in this paper we consider adhesive
contact between two dissimilar elastic solids in which slip is allowed along the contact interface wherever the shear stress
reaches a threshold value defined as the friction strength of the interface. The critical length scale for flaw tolerant adhesion
will be determined analytically for a penny-shaped crack and an external circular crack along a frictional interface between
two dissimilar elastic solids.

2. Frictional contact model

Penny-shaped cracks and external circular cracks are two typical crack configurations that can arise along a contact inter-
face between two elastic solids. While the former represents a circular unbonded region along an otherwise bonded interface
(Fig. 1a), the latter (Fig. 2a) refers to a circular ligament that connects two otherwise separate solids. For simplicity, we treat
the contacting solids as two elastic half-spaces and adopt Dugdale’s interaction law (1960)
Flaw tolerant solution for a penny-shaped crack along a frictional contact interface between two dissimilar elastic solids. (a) The crack configuration
coordinate systems adopted in the study. (b) Surface tractions on material #1 in the flaw tolerance state. The normal traction at pull-off is uniform
al to the theoretical strength rth over the entire contact region outside the crack. The friction stress is equal to sf in the slip region (a 6 r 6 c) and

s to be determined in the non-slip region (c < r <1). (c) Superposition of a uniform pressure rth converts the original problem into a simpler one.

Flaw tolerant solution to frictional contact between two dissimilar elastic solids over a circular ligament. (a) The crack configuration and the
ate systems adopted in the study. (b) Surface tractions on material #1 in the flaw tolerance state. The normal traction at pull-off is uniform and
o the theoretical strength rth over the entire circular ligament. The friction stress is equal to sf in the slip region (c 6 r 6 a) and remains to be
ined in the non-slip region (0 6 r 6 c).
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r ¼
rth ðd 6 Dc=rthÞ;
0 ðd > Dc=rthÞ;

�
ð1Þ
for the normal traction r along the interface, where d is the surface separation between the two solids. Use of more realistic
interaction laws generally yields results qualitatively similar to those derived based on the Dugdale model (Barthel, 1998).
We consider a frictional contact model in which slip is allowed along the interface wherever the shear stress reaches the
friction strength sf. Therefore, the contact area is divided into a slip region, in which the shear stress is equal to the friction
strength sf and a non-slip region, in which the shear stress is smaller than sf. We are interested in the flaw tolerance solution
in which the normal traction outside the crack region is uniform and equal to the theoretical strength rth, as depicted in Figs.
1b and 2b for a penny-shaped crack and an external circular crack, respectively. According to Dugdale’s interaction law, the
flaw tolerant solution exist as long as
dtip 6
Dc
rth

; ð2Þ
where dtip stands for the crack tip opening displacement. Since dtip is usually a monotonically increasing function of the crack
size a, Eq. (2) suggests that there might be a critical crack size acr below which flaw-tolerant adhesion becomes possible. In
the following, we show that this is indeed the case and will determine the critical length scales of flaw tolerance for a penny-
shaped crack and for an external circular crack along a frictional contact interface.

3. Flaw tolerant solution to a penny-shaped crack along a frictional contact interface

Consider the flaw tolerance state of a penny-shaped crack along a frictional contact interface. Fig. 1b shows the tractions
acting on the surface of material #1 at pull-off. While the normal traction is uniform and equal to the theoretical strength of
adhesion rth over the entire contact region (a 6 r 61), the shear traction is equal to the friction strength sf in the slip region
(a < r < c) but remains to be determined in the non-slip region (c < r <1). Before proceeding to calculate the shear stress in
the non-slip region, we superpose a uniform pressure rth on the whole surface (Fig. 1b). This treatment does not affect the
condition for flaw tolerance but converts the original problem into a simpler one shown in Fig. 1c.

According to the general solutions to axisymmetric problems of an elastic half-space (see Appendix A), the displacement
and stress components on the surfaces (z = 0) of material #1 and #2 can be expressed in terms of their Hankel transforms as
uð1Þr ðr; 0Þ ¼
1

2l1
H1½n�1C1; n! r�; ð3aÞ

sð1Þzr ðr;0Þ ¼ �H1½ð1� 2m1ÞA1 þ C1; n! r�; ð3bÞ
rð1Þzz ðr;0Þ ¼ �H0½ð2� 2m1ÞA1 þ C1; n! r�; ð3cÞ
and
uð2Þr ðr; 0Þ ¼
1

2l2
H1½n�1C2; n! r�; ð4aÞ

sð2Þzr ðr;0Þ ¼ �H1½ð1� 2m2ÞA2 þ C2; n! r�; ð4bÞ
rð2Þzz ðr;0Þ ¼ �H0½ð2� 2m2ÞA2 þ C2; n! r�; ð4cÞ
where l1,l2 are shear moduli, m1,m2 are Poisson’s ratios and A1,A2,C1,C2 are functions of n to be determined from boundary
conditions. It should be pointed out that the displacement and stress components in Eqs. (3) and (4) are referred to separate
coordinate systems for each material as shown in Fig. 1a. Since the tractions on the two contacting surfaces are equal and
opposite, we have
rð1Þzz ðr;0Þ ¼ rð2Þzz ðr;0Þ; sð1Þzr ðr;0Þ ¼ �sð2Þzr ðr;0Þ: ð5Þ
Inserting Eqs. (3) and (4) into Eq. (5) gives rise to
ð2� 2m1ÞA1 þ C1 ¼ ð2� 2m2ÞA2 þ C2; ð6Þ
ð1� 2m1ÞA1 þ C1 ¼ �ð1� 2m2ÞA2 � C2; ð7Þ
which suggest that C2 can be expressed in terms of A1 and C1 as
�C2 ¼
A1

2
½j1j2 � 1� þ j2C1; ð8Þ
where ji = 3 � 4m (i = 1,2).
In the non-slip region, the relative displacement between the two surfaces should vanish, i.e.
uð1Þr ðr; 0Þ � uð2Þr ðr;0Þ ¼ 0 ðr > cÞ: ð9Þ
Substituting Eqs. (3a) and (4a) into Eq. (9) yields
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H1 n�1 C1

l1
� C2

l2

� �
; n! r

� �
¼ 0 ðr > cÞ: ð10Þ
Recalling Eq. (8), Eq. (10) can be rewritten as
H1½n�1ðC1 þ aA1Þ; n! r� ¼ 0 ðr > cÞ; ð11Þ
where a ¼ ðj1j2 � 1Þl1

2ðl2 þ l1j2Þ
.

For material #1, the stress boundary conditions are given by
rð1Þzz ðr;0Þ ¼ Tðr=cÞ ð0 6 r <1Þ; ð12Þ
sð1Þrz ðr;0Þ ¼ Qðr=cÞ ð0 6 r 6 cÞ; ð13Þ
where
Tðr=cÞ ¼
0 ða < r <1Þ;
�rth ð0 6 r 6 aÞ;

�
ð14Þ
and
Qðr=cÞ ¼
�sf ða 6 r 6 cÞ;
0 ð0 6 r 6 aÞ:

�
ð15Þ
Inserting Eqs. (3b) and (3c) into (12) and (13) yields
rð1Þzz ðr;0Þ ¼ �H0½ð2� 2m1ÞA1 þ C1; n! r� ¼ TðqÞ ð0 6 r <1Þ; ð16Þ
sð1Þzr ðr;0Þ ¼ �H1½ð1� 2m1ÞA1 þ C1; n! r� ¼ QðqÞ ð0 6 r 6 cÞ; ð17Þ
where q = r/c.
Introducing two auxiliary functions /(n) = C1(n/c), w(n) = A1(n/c), Eqs. (11), (16) and (17) can be normalized as
H1½n�1½/ðnÞ þ awðnÞ�; n! q� ¼ 0 ð1 < q <1Þ; ð18Þ
H0½ð2� 2m1ÞwðnÞ þ /ðnÞ; n! q� ¼ �c2TðqÞ ð0 6 q <1Þ; ð19Þ
H1½ð1� 2m1ÞwðnÞ þ /ðnÞ; n! q� ¼ �c2QðqÞ ð0 6 q 6 1Þ: ð20Þ
As Eq. (19) holds for the whole surface, substituting Eq. (14) into Eq. (19) and then performing inverse Hankel transform
on both sides gives the following relationship between w(n) and /(n) as
ð2� 2m1ÞwðnÞ þ /ðnÞ ¼ carthn
�1J1ðan=cÞ ð0 6 q <1Þ: ð21Þ
Substituting Eq. (21) back into Eqs. (18) and (20) to eliminate function /(n) results in two equations with respective to
w(n) as
H1½n�1wðnÞ; n! q� ¼ � a2rth

2½a� ð2� 2m1Þ�q
ðq > 1Þ; ð22Þ

H1½wðnÞ; n! q� ¼ c2QðqÞ þ acrthH1
J1ðan=cÞ

n
; n! q

� �
ð0 6 q 6 1Þ: ð23Þ
Eq. (23) implies that the function w(n) should have the form
wðnÞ ¼ acrth
J1ðan=cÞ

n
þ �wðnÞ; ð24Þ
where function �wðnÞ, according to Eqs. (22) and (23), is determined by
H1½�wðnÞ; n! q� ¼ c2QðqÞ ð0 6 q 6 1Þ; ð25Þ

H1½n�1 �wðnÞ; n! q� ¼ � a2rthb
q

ðq > 1Þ: ð26Þ
Here
b ¼ 1
2
ðj1 � 1Þ=l1 � ðj2 � 1Þ=l2

ðj1 þ 1Þ=l1 þ ðj2 þ 1Þ=l2
ð27Þ
is one of Dundurs’ constants (1969) for the bimaterial, which has an admissible range of �0.25 6 b 6 0.25. The more dissim-
ilar the materials, the larger the absolute value of b.
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Eqs. (25) and (26) are typical dual integral equations, whose solution can be obtained directly from Sneddon’s general
solution (1966) as (see Appendix B)
�wðnÞ ¼ �sf c2 2
p

Z 1

a=c

1
t

sin nt
nt
� cos nt

� �
dt
Z t

a=c

s2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � s2
p ds� a2rthb sin n

n
: ð28Þ
According to Eqs. (3b), (21) and (24), the friction stress can be expressed in terms of �wðnÞ as
sð1Þzr ðr;0Þ ¼
1
c2 H1½�wðnÞ; n! q�; ð29Þ
which upon the substitution of Eq. (28) yields
sð1Þzr ðr;0Þ ¼
1
c2

2c2sf

pq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � 1

p Z 1

a=c

t2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p

q2 � t2 dt � a2rthb

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � 1

p
" #

ðq > 1Þ: ð30Þ
The continuity of friction stress in the contact region requires that the singularity in Eq. (30) at q = 1 vanish, which gives the
following implicit relationship between the ratio of a/c and prthb=sf :
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2

a2 � 1

r
þ c2

a2 cos�1 a
c

� 	
¼ prthb

sf
: ð31Þ
In addition, Eq. (31) also demands that b/sf P 0, which means that the sign (or direction) of the frictional stress is correlated
with the sign of b. The stress directions depicted in Fig. 1a corresponds to b P 0. In our analysis we assume b P 0 and sf > 0,
which does not lead to any loss of generality considering the exchangeability of material #1 and #2.

Substituting Eq. (31) into Eq. (30) gives the friction stress in the non-slip region as
sð1Þzr ðr;0Þ ¼
2sf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � 1

p
pq

cos�1 a
c

� 	
� sf

p
cos�1 qa� c

qc � a

� �
þ cos�1 qaþ c

qc þ a

� �� �
ðq > 1Þ: ð32Þ
We have thus obtained all of the tractions acting on material #1:
rzzðr;0Þ ¼ �rth ð0 6 r 6 aÞ;

szrðr; 0Þ ¼
2sf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � 1

p
pq

cos�1 a
c

� 	
� sf

p
cos�1 qa� c

qc � a

� �
þ cos�1ðqaþ c

qc þ a
Þ

� �
ðc < r <1Þ;

szrðr; 0Þ ¼ �sf ða 6 r 6 cÞ:

8>>><
>>>:

ð33Þ
The normal surface displacement of material #1 at crack tip r = a is (Johnson, 1985)
dð1Þtip ¼
4rthað1� m2

1Þ
pE1

þ ð1� 2m1Þð1þ m1Þsf c
pE1

cos�1 a
c

� 	
: ð34Þ
Considering the fact that the tractions applied on material #2 are equal and opposite to those on material #1, according to
Eq. (34), the surface displacement of material #2 at r = a is
dð2Þtip ¼
4rthað1� m2

2Þ
pE2

� ð1� 2m2Þð1þ m2Þsf c
pE2

cos�1 a
c

� 	
: ð35Þ
The total crack tip opening displacement is thus
dtip ¼ dð1Þtip þ dð2Þtip ¼
4rtha
pE�

þ 4bsf c
pE�

cos�1 a
c

� 	
; ð36Þ
where E� ¼ ½ð1� m2
1Þ=E1 þ ð1� m2

2Þ=E2��1. Substituting Eq. (36) into Eq. (2) yields the critical radius of the penny-shaped crack
to achieve flaw tolerance as
afn
cr ¼

1

1þ cbsf

arth
cos�1 a

c

� 	 afl
cr; ð37Þ
where afl
cr ¼ pE�Dc=4r2

th is the critical radius in the frictionless case bsf = 0. Note that the ratio a/c has been determined
from Eq. (31). Variation of a/c as a function of b for different values of shear-to-normal strength ratio sf/rth is shown in
Fig. 3a.

4. Flaw tolerant solution to frictional contact between two dissimilar elastic solids over a circular ligament

Similar solution process applies to the problem of frictional contact between two dissimilar elastic solids over a circular
ligament, corresponding to an external circular crack. In this case, the boundary conditions can be expressed in terms of Han-
kel transforms as



Fig. 3. Variation of a/c (or c/a) as a function of Dundurs’ constant b for different values of shear-to-normal strength ratio sf/rth: (a) the penny-shaped crack
and (b) external circular crack.

H. Yao, H. Gao / International Journal of Solids and Structures 46 (2009) 860–870 865
H1½n�1ðC1 þ aA1Þ; n! r� ¼ 0 ð0 6 r 6 cÞ; ð38Þ
rð1Þzz ðr;0Þ ¼ �H0½ð2� 2m1ÞA1 þ C1; n! r� ¼ TðqÞ ð0 6 r <1Þ; ð39Þ
sð1Þzr ðr;0Þ ¼ �H1½ð1� 2m1ÞA1 þ C1; n! r� ¼ QðqÞ ðc < r <1Þ; ð40Þ
where
Tðr=cÞ ¼
0 ða < r <1Þ;
rth ð0 6 r 6 aÞ;

�
ð41Þ
and
Qðr=cÞ ¼
sf ðc 6 r 6 aÞ;
0 ða < r <1Þ:

�
ð42Þ
Likewise, by introducing the auxiliary functions /(n) = C1(n /c) and w(n) = A1(n/c), Eqs. (38)–(40) can be normalized as
H1½n�1½/ðnÞ þ awðnÞ�; n! q� ¼ 0 ð0 6 q 6 1Þ; ð43Þ
H0½ð2� 2m1ÞwðnÞ þ /ðnÞ; n! q� ¼ �c2TðqÞ ð0 6 q <1Þ; ð44Þ
H1½ð1� 2m1ÞwðnÞ þ /ðnÞ; n! r� ¼ �c2QðqÞ ð1 < q <1Þ: ð45Þ
Since Eq. (44) is defined over the whole surface, substituting Eq. (41) into (44) and then performing inverse Hankel trans-
form on both sides lead to the following relationship between functions w(n) and /(n):
ð2� 2m1ÞwðnÞ þ /ðnÞ ¼ �c2rth

Z a=c

0
qJ0ðqnÞdq ¼ �carthn

�1J1ðan=cÞ: ð46Þ
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Inserting Eq. (46) back into Eqs. (43) and (45) to eliminate the function /(n), we have
H1½n�1wðnÞ; n! q� ¼ c2rthq
2½a� ð2� 2m1Þ�

ð0 6 q 6 1Þ; ð47Þ

H1½wðnÞ; n! q� ¼ c2QðqÞ � carthH1½n�1J1ðan=cÞ; n! q� ð1 < q <1Þ: ð48Þ
Eq. (48) implies that w(n) should have the form
wðnÞ ¼ �carthn
�1J1ðan=cÞ þ �wðnÞ; ð49Þ
where �wðnÞ, according to Eqs. (47) and (48), satisfies
H1½n�1 �wðnÞ; n! q� ¼ c2rthbq ð0 6 q 6 1Þ; ð50Þ
H1½�wðnÞ; n! q� ¼ c2QðqÞ ð1 < q <1Þ: ð51Þ
For dual integral equations (50) and (51), the solution can also be derived directly from Sneddon’s general solution (1966).
The result is given by (see Appendix C)
�wðnÞ ¼ 2
p

c2sf

Z a=c

1
t ln

a
tc
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

c2t2 � 1

s2
4

3
5 sinðntÞdt þ 4

p
c2rthb

sin n

n2 �
cos n

n

� �
: ð52Þ
The friction stress can be obtained as
sð1Þzr ðr;0Þ ¼
1
c2 H1½�wðnÞ; n! q� ¼ 2

p
� sf qffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2
p Z a=c

1

ðt2 � 1Þ1=2dt
t2 � q2

þ 2rthb
qffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2
p

" #
: ð53Þ
The continuity of friction stress in the ligament implies no singularity in Eq. (53) as q ? 1, giving the following implicitly
relationship
a
c
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

c2 � 1

r
¼ exp

2rthb
sf

� �
ð54Þ
between 2rthb=sf and a/c. Since a/c > 1 in Eq. (54), it follows that b/sf P 0, indicating that the frictional stress should have the
same sign as b. The direction of friction stress shown in Fig. 1b corresponds to b P 0, which is assumed without loss of
generality.

Inserting Eq. (54) into (53) leads to
sð1Þrz ðr;0Þ ¼
sf

p
sin�1 ra� c2

ac � rc

� �
þ sin�1 raþ c2

ac þ rc

� �� �
: ð55Þ
The tractions acting on material #1 are given by
rð1Þzz ðr;0Þ ¼ rth ð0 6 r 6 aÞ;

sð1Þzr ðr;0Þ ¼
sf

p
sin�1 ra� c2

ac � rc

� �
þ sin�1 raþ c2

ar þ rc

� �� �
ð0 6 r < cÞ;

sð1Þzr ðr;0Þ ¼ sf ðc 6 r 6 aÞ:

8>>>><
>>>>:

ð56Þ
The corresponding normal surface displacements on materials #1 and #2 are (Johnson, 1985)
uð1Þz ðr; 0Þ ¼ �
4rtha
pE�1

E
r
a

� 	
� 2ðj1 � 1Þsf ða� cÞ

pðj1 þ 1ÞE�1
� 2ðj1 � 1Þsf c

p2ðj1 þ 1ÞE�1

� p� r
c

sin�1 ra� c2

ac � rc

� �
� r

c
sin�1 raþ c2

ac þ rc

� �
� 2

a
c

sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � r2

a2 � r2

r !" #
ð0 6 r < cÞ; ð57Þ

uð1Þz ðr; 0Þ ¼ �
4rtha
pE�1

E
r
a

� 	
� 2ðj1 � 1Þsf ða� rÞ

pðj1 þ 1ÞE�1
ðc 6 r 6 aÞ; ð58Þ
where E�1 ¼ E1=ð1� m2
1Þ and E(�) is the complete elliptical integral of the second kind.

For the external circular crack, the crack tip opening displacement contributed by material #1 is equal to the relative nor-
mal displacement between contact edge (r = a) and center (r = 0), i.e.
dð1Þtip ¼ ju
ð1Þ
z ða;0Þ � uð1Þz ð0; 0Þj: ð59Þ
Inserting Eqs. (57) and (58) into Eq. (59) leads to
dð1Þtip ¼
2rtha

E�1
1� 2

p

� �
þ 2ðj1 � 1Þsf a

pðj1 þ 1ÞE�1
1� 2

p
sin�1 c

a

� 	� �
: ð60Þ
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Likewise, the crack opening contributed by material #2 is obtained as
Fig. 4.
strengt
dð2Þtip ¼
2rtha

E�2
1� 2

p

� �
� 2ðj2 � 1Þsf a

pðj2 þ 1ÞE�2
1� 2

p
sin�1 c

a

� 	� �
: ð61Þ
The total crack tip opening displacement is
dtip ¼ dð1Þtip þ dð2Þtip ¼
2rtha
pE�

ðp� 2Þ þ 8sf ab
p2E�

cos�1 c
a

� 	
: ð62Þ
Substituting Eq. (62) into Eq. (2) gives rise to the critical size for the circular ligament to achieve flaw tolerance as
afn
cr ¼

ðp� 2Þ
ðp� 2Þ þ 4bsf

prth
cos�1ðc=aÞ

afl
cr; ð63Þ
where afl
cr ¼ pE�Dc=2r2

thðp� 2Þ is the critical radius in the frictionless case b sf = 0. Note that the ratio c/a has been deter-
mined by Eq. (54). Variation of c/a as a function of b for different values of shear-to-normal strength ratio sf /rth is shown
in Fig. 3b.

5. Discussions and conclusions

For both internal and external circular crack configurations along a frictional contact interface, Eqs. (37) and (63) show
that the critical length scales for flaw tolerance are proportional to DcE�=r2

th, in agreement with previous results based on
the frictionless assumption (Persson, 2003; Gao et al., 2005). The influence of friction on the critical length scales for flaw
tolerance can be seen from the ratio afn

cr=afl
cr which is plotted in Fig. 4 as a function of the Dundurs’ constant b for different
The normalized critical length scale for flaw tolerance afn
cr=afl

cr as a function of the Dundurs’ constant b for different values of the shear-to-normal
h ratio sf/rth: (a) penny-shaped crack and (b) external circular crack.
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values of the shear-to-normal strength ratio sf/rth. Considering the symmetry of the results with respect to b = 0, here we
just show the results in the range of 0 6 b 6 0.25. For both internal and external circular cracks, it can be seen that the exis-
tence of interfacial friction can reduce the critical length scale for flaw tolerance by up to 12.5%. For fixed b, higher sf/rth

leads to smaller critical length scale, implying that friction is unfavorable for flaw tolerance. On the other hand, for sf/rth,
the critical length scale for flaw tolerance decreases as b increases, suggesting that elastic dissimilarity is also unfavorable
for flaw tolerance. These results suggest that the concept of flaw tolerant adhesion at sufficiently small length scales is valid
also for frictional contact two dissimilar elastic solids. Furthermore, friction and elastic dissimilarity can have moderate ef-
fects (up to 12.5%) on the critical length scales for flaw tolerance.

Appendix A. Solutions to axisymmetric problems of an elastic half-space via Hankel transform

The Papkovich–Neuber solution (Gladwell, 1980) in the classical theory of elasticity gives the following general displace-
ment solutions to axisymmetric problems in cylindrical coordinate system with z-direction pointing into the solid interior,
ur ¼ �
1

2l
o

or
ðzWþUÞ; ðA1Þ

uz ¼
1

2l
4ð1� vÞW� o

oz
ðzWþUÞ

� �
; ðA2Þ

uh ¼ 0; ðA3Þ
where l is the shear modulus and W,U are two harmonic functions satisfying
r2W ¼ 0; ðA4Þ
r2U ¼ 0: ðA5Þ
The exact forms of W,U are to be determined by the specific boundary conditions.
On the other hand, for an arbitrary harmonic function W(r,z), the following equation is satisfied:
H0½r2Wðr; zÞ; r ! n� ¼ ðD2
z � n2ÞWðn; zÞ ¼ 0; ðA6Þ
where
Wðn; zÞ ¼ H0½Wðr; zÞ; r ! n�; ðA7Þ

Dz ¼
o

oz
: ðA8Þ
Here, Hn is the Hankel transform of order n defined by
Hn½f ðrÞ; r ! n� ¼
Z 1

0
rf ðrÞJnðrnÞdr ðA9Þ
with inverse given by
H�1
n ½HðnÞ; n! r� ¼

Z 1

0
nHðnÞJnðnrÞdn; ðA10Þ
where Jn(r) is the Bessel function of the first kind with order n. Given that W is finite as z ?1, the solution to Eq. (A6) is given
by
Wðn; zÞ ¼ n�1AðnÞ expð�nzÞ; ðA11Þ
where A(n) is an arbitrary function with respect to n.
Performing inverse Hankel transform on Eq. (A11) leads to the expression of an arbitrary harmonic function W(r,z) in

terms of Hankel transform as
Wðr; zÞ ¼ H0½n�1AðnÞ expð�nzÞ; n! r�: ðA12Þ
Similarly, we can also express harmonic function U(r,z) in terms of Hankel transform as
Uðr; zÞ ¼ H0½n�2CðnÞ expð�nzÞ; n! r�; ðA13Þ
where C(n) are arbitrary functions with respect to n.
By substituting Eqs. (A12) and (A13) into Eqs. (A1)–(A3) and then applying the following relationship between Hankel

transforms H0 and H1 for arbitrary function g(n),
o

or
H0½gðnÞ; n! r� ¼ �H1½ngðnÞ; n! r�; ðA14Þ
the displacement and stress fields for an axisymmetric problem of elastic half-space can be expressed as
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urðr; zÞ ¼ H1½Uðn; zÞ; n! r�; ðA15Þ
uzðr; zÞ ¼ H0½Vðn; zÞ; n! r�; ðA16Þ
srzðr; zÞ ¼ H1½Sðn; zÞ; n! r�; ðA17Þ
rzzðr; zÞ ¼ H0½Tðn; zÞ; n! r�; ðA18Þ
where
2GU

2GV

�S

�T

2
6664

3
7775 ¼

ðnzAþ CÞn�1

½ð3� 4mÞAþ nzAþ C�n�1

ð1� 2mÞAþ nzAþ C

ð2� 2mÞAþ nzAþ C

2
6664

3
7775 expð�nzÞ: ðA19Þ
Appendix B. Solution to dual integral equations (25) and (26)

Taking a ¼ �1
2 and v = 1 in Eq. (4.2.21) in Sneddon (1966), the general solution to dual integral equations
Z 1

0
n�wðnÞJ1ðnqÞdn ¼ FðqÞ ð0 < q < 1Þ; ðB1ÞZ 1

0

�wðnÞJ1ðnqÞdn ¼ GðqÞ ðq > 1Þ; ðB2Þ
is given by
�wðnÞ ¼
ffiffiffiffiffiffi
2n
p ffiffiffiffi

p
p

Z 1

0

1ffiffi
t
p J3=2ðntÞdt

Z t

0

s2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � s2
p FðsÞds�

ffiffiffiffiffiffi
2n
p ffiffiffiffi

p
p

Z 1

1
t
ffiffi
t
p

J3=2ðntÞdt
d
dt

Z 1

t

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � t2
p GðsÞds: ðB3Þ
It should be pointed out that the original equation (4.2.21) in Sneddon (1966) contains a typo regarding the integral limits,
which has been corrected in Eq. (B3).

Clearly, the dual integral equations (25) and (26) are a special case of (B1) and (B2) with
FðsÞ ¼ c2QðsÞ; GðsÞ ¼ � a2rthb
s

; ðB4Þ
where
QðsÞ ¼
�sf ða=c < s 6 1Þ;
0 ð0 6 s 6 a=cÞ:

�
ðB5Þ
Substituting Eqs. (B4) and (B5) into Eq. (B3) gives rise to
�wðnÞ ¼ � c2sf
ffiffiffiffiffiffi
2n
pffiffiffiffi
p
p

Z 1

a=c

1ffiffi
t
p J3=2ðntÞdt

Z t

a=c

s2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � s2
p dsþ a2rthb

ffiffiffiffiffiffi
2n
pffiffiffiffi
p
p

Z 1

1
t
ffiffi
t
p

J3=2ðntÞdt
d
dt

Z 1

t

1

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � t2
p ds

¼ � c2sf
ffiffiffiffiffiffi
2n
pffiffiffiffi
p
p

Z 1

a=c

1ffiffi
t
p J3=2ðntÞdt

Z t

a=c

s2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � s2
p ds� a2rthb

ffiffiffiffiffiffiffiffiffi
2pn
p

2

Z 1

1

1ffiffi
t
p J3=2ðntÞdt: ðB6Þ
Since
J3=2ðxÞ ¼
ffiffiffiffiffiffi
2
px

r
sin x

x
� cos x

� �
and
 Z 1

1

1ffiffi
t
p J3=2ðntÞdt ¼

ffiffiffiffi
2
p

r
sin n

n3=2 ;
Eq. (B6) can be rewritten as
�wðnÞ ¼ �2c2sf

p

Z 1

a=c

1
t

sin nt
nt
� cos nt

� �
dt
Z t

a=c

s2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � s2
p ds� a2rthb sin n

n
: ðB7Þ
Appendix C. Solution to dual integral equations (50) and (51)

Taking a ¼ 1
2 and v = 1 in Eq. (4.2.27) in Sneddon (1966), the general solutions to dual integral equations
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Z 1

0

�wðnÞJ1ðnqÞdn ¼ FðqÞ ð0 6 q 6 1Þ; ðC1ÞZ 1

0
n�wðnÞJ1ðnqÞdn ¼ GðqÞ ðq > 1Þ; ðC2Þ
is given by
�wðnÞ ¼ 2
p

sinðnÞ
Z 1

0
ð1� t2Þ�1=2t2FðtÞdt þ

Z 1

0
ð1� s2Þ�1=2s2ds

Z 1

0
½sinðntÞ � nt cosðntÞ�FðtsÞdt

�

þ
Z 1

1
t sinðntÞdt

Z 1

1
ðs2 � 1Þ�1=2GðtsÞds



; ðC3Þ
where following relationships have been adopted:
J1=2ðxÞ ¼
ffiffiffiffi
2
p

r
sin xffiffiffi

x
p ; J3=2ðxÞ ¼

ffiffiffiffiffiffi
2
px

r
sin x

x
� cos x

� �
:

Eqs. (50) and (51) are a specific case of dual integral equations (C1) and (C2) with
FðqÞ ¼ c2rthbq;GðqÞ ¼ c2QðqÞ; ðC4Þ
where
QðqÞ ¼
sf ð1 6 q 6 a=cÞ;
0 ða=c < q <1Þ:

�
ðC5Þ
Substituting Eqs. (C4) and (C5) into Eq. (C3) gives rise to
�wðnÞ¼ 2
p

sinðnÞc2rthb
Z 1

0
ð1� t2Þ�1=2t3dtþc2rthb

Z 1

0
ð1�s2Þ�1=2s3ds

Z 1

0
½sinðntÞ�nt cosðntÞ�tdt

�

þsf

Z a=c

1
t sinðntÞdt

Z a=ct

1
ðs2�1Þ�1=2ds



¼ 2

p
2c2rthb

sinn�ncosn

n2

� ��

þc2sf

Z a=c

1
t ln

a
tc
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

t2c2
�1

s2
4

3
5sinðntÞdt

9=
;¼ 2

pc2sf

Z a=c

1
t ln

a
tc
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

c2t2�1

s2
4

3
5sinðntÞdtþ 4

pc2rthb
sinn

n2 �
cosn

n

� �
:

ðC6Þ
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