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Abstract. This study analyzes extensive data sets collected

during the twentieth century and defines four modes of natu-

ral variability in the flow of the Nile River, identifying a new

significant potential for improving predictability of floods

and droughts. Previous studies have identified a significant

teleconnection between the Nile flow and the eastern Pacific

Ocean. El Niño–Southern Oscillation (ENSO) explains about

25 % of the interannual variability in the Nile flow. Here, this

study identifies a region in the southern Indian Ocean, with a

similarly strong teleconnection to the Nile flow. Sea surface

temperature (SST) in the region (50–80◦ E and 25–35◦ S) ex-

plains 28 % of the interannual variability in the flow of the

Nile River and, when combined with the ENSO index, the

explained variability of the flow of the Nile River increases

to 44 %. In addition, during those years with anomalous SST

conditions in both oceans, this study estimates that indices of

the SSTs in the Pacific and Indian oceans can collectively ex-

plain up to 84 % of the interannual variability in the flow of

the Nile. Building on these findings, this study uses the clas-

sical Bayesian theorem to develop a new hybrid forecasting

algorithm that predicts the Nile flow based on global model

predictions of indices of the SST in the eastern Pacific and

southern Indian oceans.

1 Introduction

The Nile basin covers an area of 2.9× 106 km2, which is ap-

proximately 10 % of the African continent (Fig. 1). It has two

main tributaries, the White Nile and the Blue Nile, which

originate from the equatorial lakes and Ethiopian highlands,

respectively. The upper Blue Nile (UBN) basin is the main

source of water for the Nile River. It contributes approxi-

mately 60 % of the annual flow of the Nile and 80 % of the

total Nile flow that occurs between July and October at Don-

gola (Conway and Hulme, 1993) (Fig. 2). The UBN basin

extends over an area of 175× 103 km2 (7◦ N to 12◦5′ N and

from 34◦5′ E to 40◦ E). The mean annual rainfall over this

basin is 1200 mm yr−1 (Conway and Hulme, 1993). Almost

60 % of the annual rainfall over the UBN occurs during the

summer between July and August, resulting in a largely pre-

dictable seasonal variability in the flow of the river.

The prediction of interannual variability in the flow of the

Nile is rather challenging. Many studies investigated the tele-

connections between the Ethiopian rainfall and the global sea

surface temperature (SST) in order to find SST indices to

use for Nile flow prediction (e.g., Eltahir, 1996; Abtew et al.,

2009; Melesse et al., 2011). Eltahir (1996) showed that the

SST anomalies over the tropical eastern Pacific Ocean ex-

plain 25 % of the interannual variability of Nile flow for the

period 1872–1972. ElSanabary et al. (2014) showed that the

dominant frequencies of the Ethiopian rainfall ranged from

2 to 8 years and that the scale-averaged wavelet power of

the SSTs over the eastern Pacific and southern Indian and

Atlantic oceans can explain a significant fraction of the rain-

fall variability over Ethiopia using wavelet principal com-

ponent analysis. These correlations between the Nile flow

and SST indices were the basis for new forecast models

that were proposed to predict the Nile flows. For example,

Wang and Eltahir (1999) used a discriminant prediction ap-

proach to estimate the probabilities that the Nile flow will

fall into prescribed categories. ElDaw et al. (2003) and Gis-

sila et al. (2004) used SST over the Pacific, Indian and At-

lantic oceans as predictors within a multiple linear regression

model to predict the Nile flow.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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Figure 1. Topographic map of the Nile basin showing the outlet of

the upper Blue Nile basin (shaded in gray) at Roseiras. The White

and Blue Nile join together at Khartoum to form the main branch of

the Nile that flows directly to Dongola in the north.

The mechanisms behind these teleconnections between

the rainfall over Ethiopia and the global SSTs were exam-

ined in several studies (e.g., Beltrando and Camberlin, 1993).

However, a clear distinction must be made between rain-

fall over the UBN basin in Ethiopia and rainfall over east-

ern Africa, defined as the region along the coast, east of the

Ethiopian highlands (Fig. 1). The UBN basin has one rainy

season (May to September) during which more than 80 %

of the rainfall occurs, while along the eastern coast of Africa

and depending on the location from the Equator, the seasonal

cycle of rainfall can have two rainy seasons (Black et al.,

2003; Hastenrath et al., 2011). This pattern in the seasonal

cycle of rainfall is related to the migration of the intertrop-

ical convergence zone (ITCZ) across the Equator. Camber-

lin (1995) showed that the rainfall over eastern Africa, in-

cluding the UBN basin, is strongly coupled with the dynam-

ics of the Indian monsoon. During strong Indian monsoon

seasons, the sea level pressure over India decreases signifi-

cantly, which enhances the pressure gradient between east-

ern Africa and India. As a result, westerly winds increase
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Figure 2. Annual Nile flow (top panel) and seasonal cycle (bottom

panel) of the flow at Dongola for the period from 1900 to 2000.

over eastern Africa and enhance transport moisture from the

Congo basin to Ethiopia, Uganda and western Kenya. Giro

et al. (2011) also showed that the warming over the Pacific

Ocean, during El Niño events, reduces these westerly winds,

which reduce the rainfall over eastern Africa. In addition, the

monsoon circulation is weaker during El Niño events due to

modulation of the Walker circulation and enhanced subsi-

dence over the western Pacific and southern Asia; thus, the

rainfall over Ethiopia decreases (Ju and Slingo, 1995; Kawa-

mura, 1998; Shukla and Wallace, 1983; Soman and Slingo,

1997). The reduced Nile flows during El Niño events were

also attributed to the enhanced tropical-scale subsidence that

suppresses rainfall, as a consequence of the increased up-

welling over the eastern Pacific Ocean (Amarasekera et al.,

1996).

The physical mechanism of the teleconnection between

the Nile flow and SSTs of the northern and middle Indian

Ocean and ENSO is described in another paper by the authors

(Siam et al., 2014). Nile flow is strongly modulated by ENSO

through ocean currents. During El Niño events, the warm

water travels from the Pacific Ocean to the Indian Ocean

through the Indonesian through flow and advection by the

Indian Equatorial Current (Tomczak and Godfrey, 1995). As

a result, SSTs in the northern and middle Indian Ocean warm

up following the warming of the tropical eastern Pacific, and

force a gill-type circulation anomaly with enhanced westerly

winds over the western Indian Ocean (Yang et al., 2007). The

latter enhances the low-level divergence of air and moisture

away from the upper Blue Nile, resulting in a reduction of

rainfall over the basin. On the other hand, the warming over

the southern Indian Ocean generates a cyclonic flow in the

boundary layer, which reduces the cross-equatorial merid-

ional transport of air and moisture towards the UBN basin,

favoring a reduction in rainfall and river flows. The telecon-

Hydrol. Earth Syst. Sci., 19, 1181–1192, 2015 www.hydrol-earth-syst-sci.net/19/1181/2015/
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Figure 3. World map showing areas that cover the ENSO and northern and southern Indian Ocean SST indices. El Niño 3 and 3.4 are outlined

in black and green, respectively. The whole Nile basin is outlined in black.

nections between the Pacific Ocean and the Nile basin and

between the Indian Ocean and the Nile basin are reflected

in different modes of observed natural variability in the flow

of the Nile River, with important implications for the pre-

dictability of floods and droughts.

The objectives of the study are (i) to investigate the

strength of the teleconnection between the Indian Ocean and

the Nile basin and its role in explaining observed natural

modes of variability in the flow of the Nile River, and (ii) to

develop a new hybrid forecasting algorithm that can be used

to predict the Nile flow based on indices of the SST in the

eastern Pacific and southern Indian oceans.

2 Data

In this study, we use observed SSTs over the Indian and

Pacific oceans from the monthly global (HadISST V1.1)

data set on a 1◦ latitude–longitude grid from 1900 to 2000

(Rayner et al., 2003). The monthly flows at Dongola from

1900 to 1984 were extracted from the Global River Dis-

charge Database (RivDIS v1.1) (Vörösmarty et al., 1998) and

from 1984 to 2000 through personal connection. The aver-

age monthly anomalies from September to November of the

SSTs averaged over the eastern Pacific Ocean (6–2◦ N, 170–

90◦W; 2◦ N–6◦ S, 180–90◦W; and 6–10◦ S, 150–110◦W)

are used as an index of ENSO. This area has shown the high-

est correlation with the Nile flows, and it almost covers the

same area as the Niño 3 and 3.4 indices (Trenberth, 1997).

3 Relation between the variability in the flow of the

Nile River, ENSO and the Indian Ocean SST

Based on extensive correlation analysis of the Nile River flow

at Dongola and the observed SST in the Indian Ocean, this

study identifies a region over the southern Indian Ocean (50–

80◦ E and 25–35◦ S) (see Fig. 3) as the one with the highest

correlation between SST and the Nile flow. This correlation

is especially high for river flow (accumulated for July, Au-

gust, September and October) and SST during the month of

August. An earlier study by ElDaw et al. (2003) used SST

indices over the Indian Ocean to predict the Nile flow; how-

ever, they focused on regions of the Indian Ocean that are

different from the region that we use in defining the southern

Indian Ocean (SIO) index. In other words, the region of the

SIO was not used by ElDaw et al. (2003). Table 2 describes

the regions of the Indian Ocean identified in both studies.

This study emphasizes that the proposed forecasting

methodology for the Nile flow is motivated by the physical

mechanisms proposed by Siam et al. (2014) and described in

Sect. 1. In contrast, the forecasting approach of some of the

previous studies was based on purely statistical correlations

found between the Nile flow and SSTs globally.

Figure 4 shows the observed and simulated time series

of the average July-to-October Nile flow at Dongola, which

accounts for approximately 70 % of the annual Nile flow.

The Nile flow is predicted by three different linear regres-

sion models using either ENSO averaged from September to

November (Fig. 4a) or SIO August (Fig. 4b) indices, or both

(Fig. 4c) as covariates. It is clear from this figure that the

addition of the SIO index increases the explained variability

of the Nile flow to 44 %, compared to only 30 % when the

ENSO index is used alone. This indicates that the SIO index

can explain almost 14 % of the variability of the Nile flow

that is independent of ENSO. The north and middle of the

Indian Ocean have also exhibited a high correlation between

their SST and the Nile flow. However, the additional variabil-

ity explained by the SST over the northern and middle Indian

Ocean, when combined with the ENSO index, is negligible

(not shown here). This is mainly because the SSTs over the

northern and middle Indian Ocean are dependent on ENSO,

while the SST over the southern Indian Ocean (i.e., the SIO

index) is not, as described in Sect. 1.

In further analysis, we define ±0.5 ◦C as the threshold be-

tween non-neutral and neutral years in the eastern Pacific

Ocean, based on the ENSO index. This value is about two-

thirds of 1 standard deviation of the anomalies of the ENSO

index. The same threshold has been used to identify non-

neutral and neutral years using the El Niño 3.4 index, which

is similar to our ENSO index (Trenberth, 1997). This indi-

cates that if the ENSO index anomaly is greater than 0.5 ◦C

www.hydrol-earth-syst-sci.net/19/1181/2015/ Hydrol. Earth Syst. Sci., 19, 1181–1192, 2015
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Figure 4. Observed (solid blue lines) and simulated (dashed red lines) average Nile flows in million cubic meters per day (MCM day−1)

from July to October at Dongola using the (a) ENSO index, the (b) SIO index and the (c) ENSO and SIO indices as predictors for the period

1900 to 2000. The simulated flows are calculated based on the equations shown in each figure, in which the predictands are the average

observed SSTs over the ENSO and SIO regions in degrees Celsius and the predictor is the average Nile flow from July to October in million

cubic meters per day (MCM day−1).

or less than−0.5 ◦C, it is considered a non-neutral condition;

otherwise, it is considered a neutral condition. Similarly, a

±0.3 ◦C value is used as a threshold between non-neutral and

neutral years in the southern Indian Ocean using the SIO in-

dex. This value is also about two-thirds of 1 standard devia-

tion for the anomalies of the SSTs over this region. Thus, if

both ENSO and SIO indices are used together, four different

combinations can be defined based on these classifications.

The first is when both ENSO and SIO indices are neutral

(29 out of 100 events), the second is when both ENSO and

SIO indices are non-neutral (19 out of 100 events), the third

when SIO is non-neutral and ENSO is neutral (26 out of 100

events) and, finally, when SIO is neutral and ENSO is non-

neutral (26 out of 100 events). Each of these combinations

is considered a mode of natural variability in the flow of the

Nile River. Then, the Nile flow is calculated as a predictand

using multiple linear regression, with the ENSO and SIO in-

dices of each mode as predictors.

Four different modes are identified for describing the nat-

ural variability in the flow of the Nile River and are sum-

marized in Table 1. The ENSO and SIO indices do not ex-

plain a significant fraction of the interannual variability in

the flow of river when they are both neutral (Fig. 5a). The

variability of the Nile flow in such years can be regarded as

a reflection of the chaotic interactions between the biosphere

Table 1. Summary of the coefficient of determination (R2) between

the average Nile flow from July to October and different combina-

tions of indices of ENSO and SIO.

Mode ENSO SIO ENSO, Number of

ENSO SIO SIO events

(observed

variance

of Nile flow)

Neutral Neutral 0.04 0.03 0.08 29

(6.76)

Neutral Non-neutral 0.05 0.28a 0.31a 26

(10.24)

Non-neutral Neutral 0.4a 0.02 0.43a 26

(5.8)

Non-neutral Non-neutral 0.64a 0.6a 0.84a 19

(12.3)

Note: the values between parentheses are for the observed variance of Nile flow of each mode in

units of MCM2 day−2. SIO: southern Indian Ocean SST index; ENSO: ENSO index. a Values

that are significant at the 1 % significance level.

and atmosphere and within each of the two domains. For this

mode, the predictability of the Nile flow is rather limited.

The other two intermediate modes include non-neutral con-

ditions in the eastern Pacific and neutral conditions in the

southern Indian Ocean, or vice versa (Fig. 5b and c). For

Hydrol. Earth Syst. Sci., 19, 1181–1192, 2015 www.hydrol-earth-syst-sci.net/19/1181/2015/
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Figure 5. A comparison between the observed and simulated Nile flow showing the different modes of variability for the period from 1900 to

2000: (a) neutral ENSO (29 events) and SIO, (b) neutral ENSO and non-neutral SSTs in SIO (26 events), (c) non-neutral ENSO and neutral

SSTs in SIO (26 events) and, finally, (d) non-neutral ENSO and non-neutral SSTs in SIO (19 events).

Table 2. Comparison between regions in the Indian Ocean used in

ElDaw et al. (2003) and this study to predict the Nile flow.

Region Location Study

1 (35–44◦ S, 115–130◦ E)

ElDaw et al. (2003)
2 (0–7◦ S, 90–130◦ E)

3 (35–44◦ S, 20–60◦ E)

4 (10–20◦ S, 110–125◦ E)

5 (50–80◦ E, 25–35◦ S) This study

these two modes, a significant fraction (i.e., 31 and 43 %) of

the variance describing interannual variability in the flow is

explained. Hence, these modes point to a significant poten-

tial for predictability of the flow. Finally, indices of ENSO

and SIO can explain 84 % of the interannual variability in

the Nile flow when non-neutral conditions are observed for

both the eastern Pacific and southern Indian oceans (Fig. 5d).

Therefore, the SIO index can be used to predict the flow to-

gether with the ENSO index, as collectively they can explain

a significant fraction of the variability in the flow of the Nile

River. This result indicates that, during years with anoma-

lous SST conditions in both oceans, floods and droughts in

the Nile River flow can be highly predictable, assuming ac-

curate forecasts of those indices are available.

4 A hybrid methodology for long-range prediction of

the Nile flow

A simple methodology is proposed to predict the Nile flow

with a lead time of about a few months (∼ 3–6 months).

The forecast of global SST distribution based on dynamical

models (e.g., NCEP coupled forecast system model version 2

(CFSv2); Saha et al., 2010, 2013) can be used together with

the algorithm developed in this section to relate the Nile flow

to the ENSO and SIO indices. The proposed method is shown

in Fig. 6 and can be described in two main steps.

– Forecast of SST anomalies in the Indian Ocean and

eastern Pacific Ocean using dynamical models of the

coupled global ocean atmosphere system. Such fore-

casts are routinely issued by centers such as NCEP and

ECMWF.

– Application of a forecast algorithm between the Nile

flow (predictand) and forecasted SSTs in the Indian

www.hydrol-earth-syst-sci.net/19/1181/2015/ Hydrol. Earth Syst. Sci., 19, 1181–1192, 2015
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anomalies over the Southern 

Indian and Eastern Pacific Oceans 

Application of the forecast 

algorithm  

Dynamical models forecasts the 

global SSTs with different lead times 

Predicting the Nile flow at 

different lead times  

Figure 6. Schematic of the hybrid methodology for predicting the

Nile flow using the SST forecasts of the dynamical models and the

proposed forecast algorithm.

and eastern Pacific oceans (predictors) for the identified

mode of variability.

In this paper, we focus on the second step of the proposed

method: the development of the algorithm relating SSTs and

the Nile flow. We develop the forecast algorithm using ob-

served SSTs. We do not describe how this algorithm can be

applied with forecasts of global SST distribution based on

dynamical models, as this step is beyond the scope of this pa-

per. However, we recognize that the overall accuracy of this

method in predicting interannual variability of the Nile flow

is dependent on the skill of global coupled models in fore-

casting the global SSTs (see the Appendix for information

about forecasting models). Thus, the selection of the forecast

model that predicts the SSTs is an important step to ensure

the accuracy of the prediction of the Nile flow. As global

coupled ocean–atmosphere models improve in their skill of

forecasting global SSTs in the Pacific and Indian oceans,

we expect that our ability to predict the interannual variabil-

ity in the Nile flow will improve too. In addition, the accu-

racy in the prediction of the Nile flow on medium and short

timescales (of weeks to 1 month) can be improved by adding

other hydrological variables (e.g., rainfall and stream flow)

over the basin, as demonstrated by Wang and Eltahir (1999).

The proposed method can be described as hybrid since it

combines dynamical forecasts of global SSTs and statistical

algorithms relating the Nile flow and the forecasted SSTs.

The same method can also be described as hybrid since it

combines information about SSTs from the Pacific and In-

dian oceans.

Here, we apply a discriminant approach that specifies the

categoric probabilities of the predictand (Nile flow) accord-

ing to the categories that the predictors (i.e., the ENSO and

SIO indices) fall into. The annual Nile flow is divided into

“low”, “normal”, and “high” categories. The boundaries of

these categories are defined so that the number of points

in each category is about one-third that of the data points

(Fig. 7). On the other hand, the ENSO and SIO indices

are divided into “cold”, “normal” and “warm” categories.

(The words “normal” and “neutral” are used to describe the

same conditions.) The boundaries for the normal category are

−0.5 and 0.5 ◦C for the ENSO index and−0.3 and 0.3 ◦C for

the SIO index (Fig. 7). Any condition below the lower limit

is considered “cold”, and higher than the upper limit is con-

sidered “warm” for both indices.

The Bayesian theorem, described in many statistical books

(e.g., Winkler 1972; West, 1989), states that the probability

of occurrence of a specified flow category (Qi) and given two

conditions (A and B) can be expressed as

P (Qi/AB)=
P (B/Qi,A)P (Qi/A)

P (B/A)
, (1)

where P(Qi/A) is the probability of event Qi given that

event A has occurred, and P(Qi/AB) is the probability of

event Qi given that events A and B have occurred, and

similarly for other shown probabilities. In addition, if the

events A and B are independent, we can rewrite Eq. (1) as

P (Qi/AB)=
P (B/Qi)P (Qi/A)

3∑
i=1

P (B/Qi)P (Qi/A)

. (2)

The advantage of assuming independence between A and

B and using Eq. (2) is that it simplifies the calculation of

P(B/Qi , A), since we do not have to split the data into a

relatively large number of categories, which reduces the er-

ror due to the limitation of the data size (i.e. 100 years of

data). The independence between the ENSO and SIO indices

is a reasonable assumption, as the coefficient of determina-

tion between them is less than 6 %.

In order to evaluate the predictions of the Nile flow, we use

a forecasting index (FI) defined by Wang and Eltahir (1999)

as

FP(j)=

3∑
i=1

Pr(i,j)Pp(i,j), (3)

FI=
1

n

n∑
i=1

FP(j), (4)

where FP(j ) is the forecast probability in a certain year (j )

and the FI is the average of the FP over a certain period, n.

The prior probability Pr(i, j) is calculated using Eq. (2) for

a certain year (j ) and category (i= 1, 2, 3) and the poste-

rior probability Pp(i, j) is defined as [1, 0, 0] in a low flow

Hydrol. Earth Syst. Sci., 19, 1181–1192, 2015 www.hydrol-earth-syst-sci.net/19/1181/2015/
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Figure 7. Relations between the annual Nile flow and different indices for the period (1900–2000): (a) ENSO and (b) SIO. The horizontal

lines represent the boundaries for the “high”, “normal” and “low” categories of the annual flow. The vertical lines represent the boundaries

for the “warm”, “normal”, and “cold” conditions for the ENSO and SIO indices.

Table 3. Conditional probability of the Nile flow given SIO condi-

tions.

Nile flow

SIO High Normal Low

Warm 0 0.25 0.75

Normal 0.23 0.39 0.39

Cold 0.57 0.26 0.17

year, [0, 1, 0] in a normal year, and [0, 0, 1] in a high flow

year. Hence, a larger FI indicates a higher accuracy of the

forecast. The FI without any information about SST should

be about one-third, as we have classified flow data into three

categories, each with a similar number of data points.

The data are split into a calibration period (1900–1970)

and a verification period (1970–2000). Tables 3 and 4 sum-

marize the conditional probabilities of Nile flow given certain

conditions of the SIO or ENSO index. It is shown that during

warm and cold conditions of SIO, the probabilities are signif-

icantly higher for low and high Nile flow, respectively. The

same is true for the ENSO, as was described originally by

Eltahir (1996). Table 5 shows the probabilities that are con-

ditioned on both SIO and ENSO, calculated using Eq. (2).

This table illustrates clearly how forecasts of the Nile flow

can be improved by combining the two indices. For example,

warm conditions in both oceans translate into 85 % probabil-

ity of low flow in the Nile, and an insignificant probability of

high flow. On the other hand, cold conditions in both oceans

translate into 83 % probability of high flow in the Nile, and

insignificant probability of low flow. Depending on the accu-

racy of the dynamical forecast models of global SSTs, such

forecasts of the Nile flow can be issued with lead times of

6 months. At present, the Eastern Nile Regional Technical

Office (ENTRO) issues operational forecasts of the Nile flow

based on ENSO forecasts and the probability table described

by Eltahir (1996) (similar to Table 4). We anticipate that use

of Table 5 would represent a significant improvement in these

operational forecasts.

The combined use of the ENSO and SIO indices sig-

nificantly increased the FI to 0.5 (Fig. 8a). Comparison of

Fig. 8b and c illustrates that the SIO index alone has al-

most the same FI value as the ENSO index. Recall that, in

the absence of any information about global SSTs, the FI

should have a value of one-third. The deviations of the FI

using the ENSO index alone (Fig. 8b) or the SIO index alone

(Fig. 8c) from one-third are almost added together to create

the deviation of the FI from the hybrid method from one-third
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a
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Figure 8. Time series of the forecast probability using different indices: (a) ENSO and SIO together, (b) ENSO, and (c) SIO. The period

(1900–1970) is used for calculating the probabilities (shown in crosses) using Eq. (2) and 1970–2000 for validation (shown in stars).

Table 4. Conditional probability of the Nile flow given ENSO con-

ditions.

Nile flow

ENOSO High Normal Low

Warm 0.15 0.31 0.54

Normal 0.22 0.38 0.41

Cold 0.68 0.32 0

(Fig. 8a). Hence, the new SIO index plays a role independent

of ENSO in shaping the interannual variability in the flow of

the Nile River. Thus, by using these two indices, we explain

a significant fraction of the interannual variability in the flow

of the Nile River, and illustrate a significant potential for im-

proving the Nile flow forecasts.

Table 5. Conditional probability of the Nile flow given SIO and

ENS conditions.

SIO Nile ENSO

flow Warm Normal Cold

SIO warm High 0 0 0

Normal 0.15 0.22 1

Low 0.85 0.78 0

SIO normal High 0.1 0.14 0.57

Normal 0.31 0.4 0.43

Low 0.59 0.46 0

SIO cold High 0.33 0.42 0.83

Normal 0.29 0.33 0.17

Low 0.37 0.25 0
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5 Conclusions

– In this paper, we document that the SSTs in the eastern

Pacific and Indian oceans play a significant role in shap-

ing the natural interannual variability in the flow of the

Nile River. Previous studies have identified a significant

teleconnection between the Nile flow and the eastern

Pacific Ocean. El Niño–Southern Oscillation (ENSO)

explains about 25 % of the interannual variability in

the Nile flow. Here, this study identifies a region in the

southern Indian Ocean with a similarly strong telecon-

nection to the Nile flow. Sea surface temperature (SST)

in the region (50–80◦ E and 25–35◦ S) explains 28 % of

the interannual variability in the Nile flow.

– In addition, four different modes of natural variability

in the Nile flow are identified, and it is shown that dur-

ing non-neutral conditions in both the Pacific and Indian

oceans, the Nile flow is highly predictable using global

SST information. During those years with anomalous

SST conditions in both oceans, this study estimates that

indices of the SSTs in the Pacific and Indian oceans can

collectively explain up to 84 % of the interannual vari-

ability in the flow of Nile. The estimated relationships

between the Nile flow and these indices allow for ac-

curate prediction of the Nile floods and droughts using

observed or forecasted conditions of the SSTs in the two

oceans.

– This study uses the classical Bayesian theorem to de-

velop a new hybrid forecasting algorithm that predicts

the Nile flow based on indices of the SST in the eastern

Pacific and southern Indian oceans. Warm conditions in

both oceans translate into 85 % probability of low flow

in the Nile, and insignificant probability of high flow.

On the other hand, cold conditions in both oceans trans-

late into 83 % probability of high flow in the Nile, and

insignificant probability of low flow. Applications of the

proposed hybrid forecast method should improve pre-

dictions of the interannual variability in the Nile flow,

adding a new tool for better management of the water

resources of the Nile basin.

The proposed forecasting methodology is indeed dependent

on the accuracy of the global SST forecasts from global dy-

namical models. The accuracy of these forecasts is likely

to improve as the models are tested and developed further.

However, in this paper, we test the proposed forecasting al-

gorithm using observed SSTs. Such a test describes an upper

limit of the skill of the proposed algorithm. The assessment

of the same methodology using indices of SST forecasted by

global dynamical models will be addressed in future work.
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Appendix A: Forecast models of sea surface

temperature

Table A1. Summary of some available forecast models of the sea surface temperature.

Model Type of Agency Domain Lead time Resolution Reference

model (up to (km)

months)

NCEP-CFS V2 Dynamical National Centers for Environmental Global 8 200 Saha et al. (2010)

Prediction (NCEP)

NASA-GMAO Dynamical NASA Goddard Space Flight Center Global Global 12 200 Bacmeister et al. (2000)

Modeling and Assimilation Office

ECMWF-System 4 Dynamical European Centre for Medium-Range Global 4 70 Molteni et al. (2011)

Weather Forecasts

UKMO-GCM Dynamical United Kingdom Met Office Global 6 150 Graham et al. (2005)

NOAA-CDC Statistical National Oceanic and Atmospheric Global 12 – Penland and Matrosova (1998)

Administration Climate Diagnostic Center

CPC-Markov Statistical National Centers for Environmental Prediction Niño 3 and 8 – Xue et al. (2000)

Climate Prediction Center Niño 3.4
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