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A search for the rare decays B0
s → π+π−μ+μ− and B0 → π+π−μ+μ− is performed in a data 

set corresponding to an integrated luminosity of 3.0 fb−1 collected by the LHCb detector in proton–
proton collisions at centre-of-mass energies of 7 and 8 TeV. Decay candidates with pion pairs that have 
invariant mass in the range 0.5–1.3 GeV/c2 and with muon pairs that do not originate from a resonance 
are considered. The first observation of the decay B0

s → π+π−μ+μ− and the first evidence of the 
decay B0 → π+π−μ+μ− are obtained and the branching fractions, restricted to the dipion-mass range 
considered, are measured to be B(B0

s → π+π−μ+μ−) = (8.6 ± 1.5 (stat) ± 0.7 (syst) ± 0.7 (norm)) ×
10−8 and B(B0 → π+π−μ+μ−) = (2.11 ± 0.51 (stat) ± 0.15 (syst) ± 0.16 (norm)) × 10−8, where the 
third uncertainty is due to the branching fraction of the decay B0 → J/ψ(→ μ+μ−)K ∗(892)0(→ K +π−), 
used as a normalisation.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Decays of the B0
s and B0 mesons into a π+π−μ+μ− fi-

nal state with the muons not originating from a resonance are 
flavour-changing neutral-current transitions,1 which are expected 
to proceed mainly from the B0

s → f0(980)(→ π+π−)μ+μ− and 
B0 → ρ(770)0(→ π+π−)μ+μ− decays, in analogy to what is ob-
served in B0

(s) → J/ψπ+π− decays [1,2]. In the standard model 
(SM) these decays are governed by the b → s and b → d weak 
transitions and are described by loop diagrams. They are sup-
pressed due to the Glashow–Iliopoulos–Maiani mechanism [3] and 
the small values of the Cabibbo–Kobayashi–Maskawa matrix ele-
ments involved [4,5]. This feature makes the B0

s → f0(980)μ+μ−
and B0 → ρ(770)0μ+μ− decays sensitive probes of several SM ex-
tensions, since potential non-SM amplitudes may dominate over 
the SM contribution [6–10]. Current SM predictions of the B0

s →
f0(980)μ+μ− branching fraction vary from 10−7 to 10−9 [11–13]; 
similar values are expected for the B0 → ρ(770)0μ+μ− branching 
fraction [14–16]. The predictions suffer from uncertainties in the 
calculation of the hadronic matrix elements associated with the 
transitions. For the B0

s → f0(980)μ+μ− decay, the limited knowl-
edge of the quark content of the f0(980) meson results in addi-
tional uncertainties. No experimental information exists on these 
decays to date.

1 The inclusion of charge-conjugate processes is implied throughout.

In this Letter, a search for the B0
(s) → π+π−μ+μ− decays is 

reported. The analysis is restricted to events with muons that 
do not originate from φ, J/ψ , and ψ(2S) resonances, and with 
pion pairs with invariant mass in the range 0.5–1.3 GeV/c2. This 
mass range is set to include both f0(980) and ρ(770)0 reso-
nances, which overlap because of their large widths [17]. Other 
resonances, as well as non-resonant pions, might contribute [1,2]. 
However, due to the limited size of the data sample, an ampli-
tude analysis of the π+π− mass spectrum is not attempted. The 
analysis is performed in a data set corresponding to an integrated 
luminosity of 3.0 fb−1, collected by the LHCb detector in proton–
proton (pp) collisions. The first 1.0 fb−1 of data was collected in 
2011 with collisions at the centre-of-mass energy of 7 TeV; the 
remaining 2.0 fb−1 in 2012 at 8 TeV. The signal yields are ob-
tained from a fit to the unbinned π+π−μ+μ− mass distribu-
tion of the decay candidates. The fit modelling and the methods 
for the background estimation are validated on data, by fitting 
the π+π−μ+μ− mass distribution of B0

(s) → J/ψ π+π− decays, 
while the branching fractions of B0

(s) → π+π−μ+μ− decays are 
normalised using B0 → J/ψ K ∗(892)0 decays reconstructed in the 
same data set.

2. Detector and simulation

The LHCb detector [18] is a single-arm forward spectrometer 
covering the pseudorapidity range 2 < η < 5, designed for the 
study of particles containing b or c quarks. The detector includes 
a high-precision tracking system consisting of a silicon-strip vertex 
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detector surrounding the pp interaction region [19], a large-area 
silicon-strip detector located upstream of a dipole magnet with 
a bending power of about 4 Tm, and three stations of silicon-
strip detectors and straw drift tubes [20] placed downstream of 
the magnet. The tracking system provides a measurement of mo-
mentum with a relative uncertainty that varies from 0.4% at low 
momentum to 0.6% at 100 GeV/c. The minimum distance of a 
track to a primary vertex (PV), the impact parameter (IP), is mea-
sured with a resolution of 20 μm for charged particles with high 
transverse momentum (pT). Different types of charged hadrons are 
distinguished using information from two ring-imaging Cherenkov 
detectors (RICH) [21]. Photon, electron and hadron candidates are 
identified by a calorimeter system consisting of scintillating-pad 
and preshower detectors, an electromagnetic calorimeter and a 
hadronic calorimeter. Muons are identified by a system composed 
of alternating layers of iron and multiwire proportional cham-
bers [22].

Samples of simulated events are used to determine the effi-
ciency of selecting B0

(s) → π+π−μ+μ− and B0 → J/ψ K ∗(892)0

decays, and to study backgrounds. In the simulation, pp collisions 
are generated using Pythia [23,24] with a specific LHCb config-
uration [25]. Decays of hadronic particles are described by Evt-

Gen [26], in which final-state radiation is generated using Pho-

tos [27]. The model of Refs. [12,28,29] is used to describe B0
(s) →

π+π−μ+μ− decays. The interaction of the generated particles 
with the detector and its response are implemented using the
Geant4 toolkit [30,31] as described in Ref. [32].

3. Event selection

The online event-selection (trigger) consists of a hardware 
stage, based on information from the calorimeter and muon sys-
tems, followed by a software stage, which applies a full event re-
construction [33]. For this analysis, the hardware trigger requires at 
least one muon with pT > 1.48 (1.76) GeV/c, or two muons with √

pT(μ1)pT(μ2) > 1.3 (1.6) GeV/c, in the 2011 (2012) data sam-
ple. In the software trigger, at least one of the final-state particles 
is required to have pT > 1 GeV/c and IP > 100 μm with respect 
to all the primary pp interaction vertices in the event. Finally, the 
tracks of two or more final-state particles are required to form a 
vertex that is significantly displaced from the PVs. A multivariate 
algorithm is used to identify secondary vertices consistent with the 
decay of a b hadron [34].

In the offline selection, all charged particles are required 
to have pT > 0.25 GeV/c and trajectories not consistent with 
originating from the PVs. Two oppositely charged muon candi-
dates compatible with originating from the same displaced ver-
tex are considered. To reject φ → μ+μ− , J/ψ → μ+μ− , and 
ψ(2S) → μ+μ− decays, candidates having invariant mass in the 
ranges 1.010–1.030, 2.796–3.216, or 3.436–3.806 GeV/c2 are re-
moved; contributions from other resonances in the μ+μ− mass 
spectrum such as ρ(770)0, ω(782), and ψ(4160) [35] are negligi-
ble. The muon candidates are combined with a pair of oppositely 
charged pions with invariant mass in the range 0.5–1.3 GeV/c2

to form B0
(s) → π+π−μ+μ− candidates. For the B0 → J/ψ(→

μ+μ−)K ∗(892)0(→ K +π−) candidates, the dimuon invariant 
mass is required to be in the range 2.796–3.216 GeV/c2, and 
the invariant mass of the pion and kaon system in the range 
0.826–0.966 GeV/c2. The four tracks are required to originate from 
the same B0

(s) decay vertex. The B0
(s) momentum vector is required 

to be within 14 mrad of the vector that joins the PV with the B0
(s)

decay vertex (flight distance vector).
The information from the RICH, the calorimeters, and the muon 

systems is used for particle identification (PID), i.e., to define a 

likelihood for each track to be associated with a certain parti-
cle hypothesis. Requirements on the muon-identification likeli-
hood are applied to reduce to O(10−2) the rate of misidentified 
muon candidates, mainly pions, whilst preserving 95% signal ef-
ficiency. In the case of B0 → J/ψ K ∗(892)0 decays, PID require-
ments on kaon candidates are applied to suppress any contribu-
tions from B0

(s) → J/ψ π+π− decays with pions misidentified as 
kaons. In the case of B0

(s) → π+π−μ+μ− decays, a requirement 
on the PID of pion candidates is applied to reduce the contami-
nation from B0 → K ∗(892)0(→ K +π−)μ+μ− decays with kaons 
misidentified as pions; this background peaks around 5.25 GeV/c2

in the π+π−μ+μ− mass spectrum. A large data set of B0 →
J/ψ π+π− decays is used to optimise the PID requirement of 
pion candidates, assuming that the proportion between misidenti-
fied B0 → J/ψ K ∗(892)0 and B0 → J/ψ π+π− decays is similar 
to the proportion between misidentified B0 → K ∗(892)0μ+μ−
and B0 → π+π−μ+μ− decays. The requirement retains about 
55% of the signal candidates. Simulations show that additional 
contributions from B0

s → φ(→ K +K −)μ+μ− decays with dou-
ble kaon-pion misidentification are negligible. A requirement on 
the proton-identification likelihood of pion candidates suppresses 
the contamination from decays with protons misidentified as 
pions, with a 95% signal efficiency. After this selection, sim-
ulations show that contributions from �0

b → �(→ pπ−)μ+μ−
and �0

b → pπ−μ+μ− decays are negligible, as are contributions 
from �0

b → �(1520)(→ pK −)μ+μ− and �0
b → pK −μ+μ− de-

cays, where both the proton and the kaon are misidentified as 
pions.

In addition to the above requirements, a multivariate selection 
based on a boosted decision tree (BDT) [36,37] is used to sup-
press the large background from random combinations of tracks 
(combinatorial background) present in the π+π−μ+μ− sample. 
The BDT is trained using simulated B0

s → π+π−μ+μ− events to 
model the signal, and data candidates with π+π−μ+μ− mass 
in the range 5.5–5.8 GeV/c2 for the background. The training is 
performed separately for the 2011 and 2012 data, and using sim-
ulations that reproduce the specific operational conditions of each 
year. The variables used in the BDT are the significance of the dis-
placement from the PV of pion and muon tracks, the fit χ2 of 
the B0

(s) decay vertex, the angle between the B0
(s) momentum vec-

tor and the flight distance vector, the pT of the B0
(s) candidate, 

the sum and the difference of the transverse momenta of pions, 
the difference of the transverse momenta of muons, the B0

(s) decay 
time, and the minimum pT of the pions. The resulting BDT out-
put is independent of the π+π−μ+μ− mass and PID variables. 
A requirement on the BDT output value is chosen to maximise 
the figure of merit ε/(α/2 + √

Nb ) [38], where ε is the signal 
efficiency; Nb is the number of background events that pass the 
selection and have a mass within 30 MeV/c2 of the known value 
of the B0

s mass [17]; α represents the desired significance of the 
signal, expressed in terms of number of standard deviations. The 
value of α is set to 3 (5) for the 2011 (2012) data set. The resulting 
selection has around 85% efficiency to select signal candidates. The 
same BDT is used to select B0 → J/ψ K ∗(892)0 candidates. The se-
lected samples consist of 364 B0

(s) → π+π−μ+μ− candidates and 
52 960 B0 → J/ψ K ∗(892)0 candidates.

The efficiencies of all selection requirements are estimated 
with simulations, except for the efficiency of the PID selection 
for hadrons. The latter is determined in data using large and 
low-background samples of D∗+ → D0(→ K −π+)π+ decays; the 
efficiencies are evaluated after reweighting the calibration sam-
ples to match simultaneously the momentum and pseudorapid-
ity distributions of the final-state particles of B0

(s) → π+π−μ+μ−
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Table 1
Selection efficiencies of the 2011 and 2012 data sets; εs for the B0

s → π+π−μ+μ−
decay, εd for the B0 → π+π−μ+μ− decay, and εn for the B0 → J/ψ K ∗(892)0

decay.

2011 2012

εs [%] 36.1 ± 0.3 (stat) ± 2.4 (syst) 36.9 ± 0.3 (stat) ± 2.3 (syst)
εd [%] 29.8 ± 0.2 (stat) ± 2.0 (syst) 27.5 ± 0.2 (stat) ± 1.7 (syst)
εn [%] 9.33 ± 0.05 (stat) ± 0.35 (syst) 9.74 ± 0.08 (stat) ± 0.27 (syst)

(B0 → J/ψ K ∗(892)0) candidates, and the distribution of the track 
multiplicity of the events. The final selection efficiencies for 2011 
and 2012 data are reported in Table 1. The statistical uncertain-
ties are due to the size of the calibration and simulation samples; 
systematic uncertainties are described in what follows. The total 
efficiency varies by approximately 15% in the π+π− mass range 
considered and it is parametrised with a second-order polynomial. 
The signal candidates are weighted in order to have a constant ef-
ficiency as a function of the π+π− mass spectrum.

Systematic uncertainties of the efficiencies are dominated by 
the limited information about the signal decay-models; the main 
contribution comes from the unknown angular distributions of 
B0

(s) → π+π−μ+μ− decay products. To estimate this uncertainty, 
the difference in efficiencies between decays generated accord-
ing to a phase-space model and to the model of Refs. [12,28,29]
is considered. The resulting relative uncertainty is 5.4%. A rela-
tive uncertainty of 3.7% (2.8%) for 2011 (2012) data is estimated 
by considering the difference of the efficiencies evaluated in the 
simulation and in data for B0 → J/ψ K ∗(892)0 decays. The same 
relative uncertainty is assigned to the efficiency associated with 
B0

(s) → π+π−μ+μ− decays, as the cancellation of this uncertainty 
in the ratio of the efficiencies of signal and normalisation decays 
may not be exact. This is due to the fact that the pT distributions 
of the final-state particles are different between the decay modes. 
An additional 1.6% relative uncertainty is assigned to εs , due to the 
unknown mixture of B0

s mass eigenstates in B0
s → π+π−μ+μ−

decays, which results in a B0
s effective lifetime that could differ 

from the value used in the simulations [39].

4. Determination of the signal yields

The ratio of the branching fractions

Rq ≡ B(B0
(s) → π+π−μ+μ−)

B(B0 → J/ψ(→ μ+μ−)K ∗(892)0(→ K +π−))
,

with q = s (d) for B0
s → π+π−μ+μ− (B0 → π+π−μ+μ−) decays, 

is the quantity being measured; it is used to express the observed 
yields of B0

(s) → π+π−μ+μ− decays as follows:

NBq = fq

fd

εq

εn
NnRq, (1)

where Nn is the B0 → J/ψ K ∗(892)0 yield, f s/ fd is the ratio of the 
fragmentation probabilities for B0

s and B0 mesons [40], εq is the 
selection efficiency of B0

s → π+π−μ+μ− (B0 → π+π−μ+μ−) 
decays, and εn the one of B0 → J/ψ K ∗(892)0 decays.

The number of events Nn in Eq. (1) is obtained from an ex-
tended maximum likelihood fit to the unbinned μ+μ−K +π−
mass distribution of the B0 → J/ψ K ∗(892)0 candidates in the 
range 4.97–5.77 GeV/c2. The μ+μ−K +π− mass distribution is 
shown in Fig. 1 with fit projections overlaid. A sum of two Gaus-
sian functions, with a power-law tail on either side derived from 
simulations, is used to describe the dominant B0 → J/ψ K ∗(892)0

peak and the small B0
s → J/ψ K ∗(892)0 contribution. All function 

Fig. 1. Mass distribution of B0 → J/ψ K ∗(892)0 candidates with fit projections over-
laid. The 2011 and 2012 data sets are combined.

parameters are in common between the B0 and B0
s signal func-

tions, except for the mass; the mass difference between B0
s and 

B0 mesons is fixed to the known value [17]. An exponential func-
tion is used to model the combinatorial background. A small con-
tamination of B+ → J/ψ K + decays combined with an additional 
charged pion is modelled with an ARGUS function [41]. Partially 
reconstructed B0 decays at masses lower than the B0 signal are 
described with another ARGUS function. The fitted yields of B0 →
J/ψ K ∗(892)0 decays are corrected by subtracting a (6.4 ± 1.0)%
contribution of B0 → J/ψ K +π− decays [42], where the K +π−
pair is in a S-wave state and does not originate from the de-
cay of a K ∗(892)0 resonance. The numbers of B0 → J/ψ K ∗(892)0

decays are 9821 ± 110 (stat) ± 134 (syst) ± 97 (S wave) and 
23 521 ± 175 (stat) ± 172 (syst) ± 243 (S wave) in the 2011 and 
2012 data sets, respectively, where the third uncertainty is due to 
the S-wave subtraction. The systematic uncertainty accounts for 
the uncertainties in the parameters fixed in the fit to the values 
determined in simulations, and are calculated with the method de-
scribed at the end of this section.

The ratios Rs and Rd are measured from an extended max-
imum likelihood fit to the unbinned π+π−μ+μ− mass distri-
bution, where the signal yields are parametrised using Eq. (1), 
and all other inputs are fixed. The different centre-of-mass en-
ergies result in different bb̄ production cross sections and se-
lection efficiencies in the 2011 and 2012 data samples. There-
fore, the two samples are fitted simultaneously with different 
likelihood functions, but with the parameters Rs and Rd in 
common. We also fit simultaneously the B0

(s) → π+π−μ+μ−

and B0
(s) → J/ψ π+π− samples. The latter are selected with the 

B0
(s) → π+π−μ+μ− requirements, except for the dimuon mass, 

which is restricted to the 2.796–3.216 GeV/c2 range. The B0
(s) →

J/ψ π+π− fit serves as a consistency check of the fit modelling, 
since the B0

(s) → π+π−μ+μ− and B0
(s) → J/ψ π+π− mass distri-

butions are expected to be similar. In both samples, the fit range 
is 2 GeV/c2 wide and starts from 5.19 GeV/c2. This limit is set 
to remove partially reconstructed decays of the B0 mesons with 
an unreconstructed π0. The stability of the fit results is checked 
against the extension of the fit range in the lower mass region 
of the B0

(s) → π+π−μ+μ− and B0
(s) → J/ψ π+π− mass distri-

butions, where an additional component is needed in the fit to 
describe the partially reconstructed B0 decays below 5.19 GeV/c2. 
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Fig. 2. Mass distributions of (a) the B0
(s) → J/ψ π+π− and (b) the B0

(s) → π+π−μ+μ− decay candidates in the range 5.19–5.99 GeV/c2 with fit projections overlaid. The 
2011 and 2012 data sets are combined. In (b), the contribution from B0

s → φμ+μ− and B+ → K +μ+μ− decays are included in the fit, but they are not visible in the 
projection, because the corresponding yields are small.
Fig. 2 shows the π+π−μ+μ− mass distributions of the B0
(s) →

J/ψ π+π− and B0
(s) → π+π−μ+μ− decay candidates in the 

range 5.19–5.99 GeV/c2 with fit projections overlaid, where the 
2011 and 2012 data sets are combined.

The B0
(s) → π+π−μ+μ− and B0

(s) → J/ψ π+π− signals are de-

scribed by a model similar to that used for the B0 → J/ψ K ∗(892)0

signal in the fit of the μ+μ−K +π− mass distribution. The B0

peak position is a common parameter for the B0
(s) → π+π−μ+μ−

and B0
(s) → J/ψ π+π− fits, as well as the signal resolutions; 

the difference between the B0 and the B0
s masses is fixed to 

the known value. The B0
(s) → π+π−μ+μ− signal widths are 

multiplied by scale factors, derived from simulations, which ac-
counts for the different momentum spectra between non-resonant 
muons and muons from J/ψ meson decays. In both fits, the 
combinatorial background is modelled with an exponential func-
tion.

Backgrounds from B0 → K ∗(892)0μ+μ− (B0 → J/ψ K ∗(892)0) 
decays, where kaons are misidentified as pions, are estimated us-
ing control samples of these decays reconstructed in data. They 
are selected as B0

(s) → π+π−μ+μ− (B0
(s) → J/ψ π+π−) candi-

dates, except for different requirements on the PID variables of 
the kaon and pion candidates, as for the normalisation decay 
mode. To obtain the yields and the shapes of the mass distri-
bution of the misidentified decays, the kaon candidates are as-
signed the pion mass, and the resulting π+π−μ+μ− mass dis-
tribution is reweighted to reproduce the PID selection of the 
B0

(s) → π+π−μ+μ− sample. In the final fit, the yields of the 
two backgrounds are constrained using Gaussian functions with 
means fixed to the values obtained with this method, and widths 
that account for a relative uncertainty in the 2011 (2012) data 
sample of 15% (10%) for B0 → K ∗(892)0μ+μ− decays, and of 
2% (1%) for B0 → J/ψ K ∗(892)0 decays. The shape of the B0 →
K ∗(892)0μ+μ− background is modelled with a Gaussian function 
with a power-law tail on the low-mass side; the shape of the B0 →
J/ψ K ∗(892)0 background is modelled with a sum of two Gaussian 
functions with different means. All parameters of these functions 
are fixed from the values obtained in the fit to the control sam-
ples. The background from B0

s → J/ψ K ∗(892)0 decays is expected 
to be less than 0.5% [17] of the B0 → J/ψ K ∗(892)0 yield and 
is neglected. Similarly, the background from B0

s → K ∗(892)0μ+μ−
decays is not considered.

Table 2
Summary of systematic uncertainties on Rs and Rd .

Source σ(Rs) [10−3] σ(Rd) [10−3]
Shape of misidentified decays 0.003 0.004
Partially reconstructed decays 0.003 0.004
Combinatorial background 0.029 0.014
Signal shapes 0.020 0.014
Efficiencies 0.061 0.013
Normalisation decay yields 0.055 0.014
f s/ fd 0.093 –

Quadratic sum 0.130 0.028

Backgrounds from decays B0
s → φ(→ π+π−π0)μ+μ− with an 

unreconstructed π0, B0
s → η′(→ π+π−γ )μ+μ− with an unre-

constructed γ , and B+ → K +μ+μ− or B+ → π+μ+μ− com-
bined with an additional charged pion, are estimated from sim-
ulations. The mass distributions of these backgrounds are mod-
elled with ARGUS functions with parameters fixed from fits 
to simulated events. Backgrounds from similar decay modes, 
where the muons come from the J/ψ meson, are described 
in the B0

(s) → J/ψ π+π− fit using the same methods. An ad-
ditional contribution is given by B+

c → J/ψπ+π−π+ decays, 
where a pion is not reconstructed. This background is mod-
elled with a sum of two Gaussian functions, one of which 
has a power-law tail on the low-mass side. Backgrounds from 
semileptonic B0 → D−(→ ρ0μ− X)μ+ X decays with ρ0 → π+π− , 
give a negligible contribution at π+π−μ+μ− mass greater than 
5.19 GeV/c2.

5. Results

We measure Rs = (1.67 ± 0.29 (stat) ± 0.13 (syst)) × 10−3

and Rd = (0.41 ± 0.10 (stat) ± 0.03 (syst)) × 10−3. Systematic un-
certainties are discussed below. These values correspond to 55 ±
10 (stat) ±5 (syst) B0

s → π+π−μ+μ− decays and 40 ±10 (stat) ±
3 (syst) B0 → π+π−μ+μ− decays. The significances of the ob-
served signals are calculated using Wilks’ theorem [43], and are 
7.2σ and 4.8σ for the B0

s → π+π−μ+μ− and B0 → π+π−μ+μ−
decays, respectively. The B0

s → π+π−μ+μ− (B0 → π+π−μ+μ−) 
significance is obtained by considering the B0 → π+π−μ+μ−
(B0

s → π+π−μ+μ−) yield as a floating parameter in the fit. The 
systematic uncertainties are included by multiplying the signif-
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Fig. 3. Background-subtracted distributions of the π+π− invariant mass for (a) B0
s → π+π−μ+μ− and (b) B0 → π+π−μ+μ− candidates (triangular markers). The uncer-

tainties are statistical only. The data are compared with the background-subtracted π+π− mass distributions of (a) B0
s → J/ψ π+π− and (b) B0 → J/ψ π+π− candidates 

(histograms).
icance by the factor 1/
√

1 + (σ(syst)/σ(stat))2, where σ(stat) is 
the statistical uncertainty, and σ(syst) is the sum in quadrature 
of the contributions in Table 2, except for the uncertainty on 
f s/ fd .

Fig. 3 compares the π+π− mass spectra of B0
(s) → π+π−μ+μ−

and B0
(s) → J/ψ π+π− candidates, separately for the B0

s and the 
B0 decays. The background is subtracted using the sPlot tech-
nique [44] with the π+π−μ+μ− mass as the discriminating vari-
able. The data show the dominance of the f0(980) resonance in 
the case of B0

s → J/ψ π+π− decays, and of the ρ(770)0 reso-
nance in the case of B0 → J/ψ π+π− decays, as expected from 
previous LHCb analyses [1,2]. The B0

(s) → π+π−μ+μ− data show 
indications of a similar composition of the π+π− mass spectrum, 
although the size of the sample is not sufficient to draw a definite 
conclusion.

Several systematic uncertainties on Rs and Rd are considered, 
as summarised in Table 2. The contribution due to the uncertain-
ties on parameters that are fixed in the fit, and on the efficien-
cies and the yields of B0 → J/ψ K ∗(892)0 decays that are fixed 
in Eq. (1), is obtained by repeating the fit, each time with the 
relevant parameters or inputs fixed to alternate values. These are 
sampled from Gaussian distributions centred at the nominal value, 
and whose widths correspond to the uncertainties on the fixed 
parameters and inputs. Known correlations between fixed param-
eters are taken into account. The r.m.s. spreads of the resulting 
Rs and Rd values are taken as the systematic uncertainties. The 
uncertainties associated with efficiencies are the sums in quadra-
ture of their statistical and systematic uncertainties, reported in 
Table 1. The uncertainty on the B0 → J/ψ K ∗(892)0 yield is the 
sum in quadrature of the statistical uncertainty, the systematic 
uncertainty, and the uncertainty due to the S-wave subtraction. 
A systematic uncertainty is assigned on the estimation of the com-
binatorial background with the following method; pseudo experi-
ments are generate in an extended mass range from 4.97 GeV/c2, 
where an additional peaking component is also added to simu-
late the partially reconstructed B0 decays, and the pseudo data 
are fitted in the nominal range from 5.19 GeV/c2. The shifts be-
tween the average fitted values and the input values of Rs and 
Rd are taken as the systematic uncertainties. The contribution to 
the systematic uncertainty of Rs due to the uncertainty on the 
values of f s/ fd is also included. The final systematic uncertainties 

are the sums in quadrature of all contributions and correspond to 
45% and 28% of the statistical uncertainties of Rs and Rd , respec-
tively.

6. Conclusions

The first observation of the decay B0
s → π+π−μ+μ− and 

the first evidence of the decay B0 → π+π−μ+μ− are ob-
tained in a data set corresponding to an integrated luminosity 
of 3.0 fb−1 collected by the LHCb detector in pp collisions at 
centre-of-mass energies of 7 and 8 TeV. The analysis is restricted 
to candidates with muon pairs that do not originate from φ, 
J/ψ , and ψ(2S) resonances, while the pion pairs are required 
to have invariant mass in the range 0.5–1.3 GeV/c2. About 55 
B0

s → π+π−μ+μ− decays and 40 B0 → π+π−μ+μ− decays 
are observed with significances of 7.2σ and 4.8σ , respectively. 
Their branching fractions relative to the branching fraction of the 
B0 → J/ψ(→ μ+μ−)K ∗(892)0(→ K +π−) decay are measured to 
be

B(B0
s → π+π−μ+μ−)

B(B0 → J/ψ(→ μ+μ−)K ∗(892)0(→ K +π−))

= (1.67 ± 0.29 (stat) ± 0.13 (syst)) × 10−3,

B(B0 → π+π−μ+μ−)

B(B0 → J/ψ(→ μ+μ−)K ∗(892)0(→ K +π−))

= (0.41 ± 0.10 (stat) ± 0.03 (syst)) × 10−3.

From these ratios, the following branching fractions are obtained 
for the decays with the dipion-mass range considered:

B(B0
s → π+π−μ+μ−)

= (8.6 ± 1.5 (stat) ± 0.7 (syst) ± 0.7 (norm)) × 10−8 and

B(B0 → π+π−μ+μ−)

= (2.11 ± 0.51 (stat) ± 0.15 (syst) ± 0.16 (norm)) × 10−8,

where the third uncertainties are due to the uncertainties on the 
branching fraction of the normalisation decay. We use B(B0 →
J/ψ K ∗(892)0) = (1.30 ± 0.10) × 10−3, which is the weighted 
average of measurements where the K +π− S-wave contribu-
tion is subtracted [45–47], B( J/ψ → μ+μ−) from Ref. [17], and 
B(K ∗(892)0 → K +π−) = 2/3.
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Assuming that the decays f0(980) → π+π− and ρ(770)0 →
π+π− are the dominant transitions in the B0

s → π+π−μ+μ−
and B0 → π+π−μ+μ− decays, respectively, and neglecting other 
contributions, the B0

(s) → π+π−μ+μ− branching fractions are cor-
rected to account for the selection efficiencies of the f0(980) and 
ρ(770)0 resonances in the π+π− mass range considered. The fol-
lowing values are obtained: B(B0

s → f0(980)(→ π+π−)μ+μ−) =
(8.3 ± 1.7) × 10−8 and B(B0 → ρ(770)0μ+μ−) = (1.98 ± 0.53) ×
10−8, where all uncertainties are summed in quadrature. These 
values favour SM expectations of Refs. [12,14,15] and disfavour the 
B(B0

s → f0(980)μ+μ−) SM expectation of Ref. [13].
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