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Abstract

For the class of nondispersive, nonabsorbing, multilayer thin-�lm optical systems, this
thesis work develops a parallel branch-and-bound computational system on Amazon's
EC2 platform, using the Taylor model mathematical/computational system due to Berz
and Makino to construct tight rigorous bounds on the merit function on subsets of the
search space (as required by a branch-and-bound algorithm). This represents the �rst, to
the best of our knowledge, deterministic global optimization algorithm for this important
class of problems, i.e., the �rst algorithm that can guarantee that a global solution to
an optimization problem in this class has been found. For the particular problem of
reducing re
ection using multilayer systems, it is shown that a gradient index constraint
on the solution can be exploited to signi�cantly reduce the search space and thereby
make the algorithm more practical. This optimization system is then used to design a
broadband omnidirectional antire
ection coating for silicon solar energy. The design is
experimentally validated using RF sputtering, and shows performance that is competitive
with existing solutions based on impractical sophisticated nano-deposition techniques, as
well as the more practical but also more narrowly applicable solutions based on texturing.
This makes it arguably the best practical solution to this important problem to date. In
addition, this thesis develops a mathematical theory for cheaply (in the computational
sense) and tightly bounding solutions to parametric weakly-coupled semilinear parabolic
(reaction-di�usion) partial di�erential equation systems, as motivated by the design of
tandem organic solar cell structures (which are governed by the drift-di�usion-Poisson
system of equations). This represents the �rst theoretical foundation, to the best of our
knowledge, to enable guaranteed global optimization of this important class of problems,
which includes, but is broader, than many semiconductor design problems. A serial
branch-and-bound algorithm implementation illustrates the applicability of the bounds
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on a pair of simple examples.
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Chapter 1

Introduction

This work represents a modest set of theoretical and applied contributions to determinis-

tic nonconvex programming algorithmics, more speci�cally the branch-and-bound frame-

work, arising from my interest in developing an overview and an assessment to self of the

state of the theory and applicability of such methods at the time of this writing. In par-

ticular, this interest arose from my sense of the potentially large impact such an overview

could have given the prevalent opinion in modern engineering system design textbooks

(and among practitioners) that engineering system design is an art. The potential of such

an algorithm to locate a global solution to an engineering design problem with surety (to

within a user-speci�ed tolerance that is based on model accuracy) could be harnessed

to convert engineering system design into a science. Of course, inverse problems, i.e.,

�tting models to data, is another place where such methods could be extremely useful.

For instance, when doing hypothesis testing, it is crucial to make conclusions based on a

true global optimum rather than some local optimum. When calibrating models to data

while optimizing deposition conditions for device fabrication, the frustration and cost of

being deceived by local minima is well-known (to me personally through the fabrication

experience in this work). Below I outline my understanding of the contributions of this

work.

This work takes the development of such an algorithm from the very beginning, i.e.,
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the development of the underlying pure mathematics, through nontrivial algorithm/software

engineering and to the very end, i.e., application to an important engineering system. For

a class of problems for which the critical mathematical theoretical component, namely

the construction of su�ciently cheap and tight bounds on any given subset of the search

space, does not exist, it is created. The class of problems chosen for this purpose is the

class of weakly-coupled semilinear parabolic partial di�erential equation systems (PDEs)

(traditionally referred to as reaction-di�usion systems in the literature) as motivated by

design and model calibration of both organic and inorganic semiconducting devices. More

speci�cally, this work was motivated by my interest in optimizing tandem organic solar

cells. The contribution of this mathematical theory is potentially broader than this class

of problems, the novel approach to developing the theory being chosen to potentially serve

as a solution program for other classes of di�erential equations by drawing from a large

set of analogous results available through the method of lower and upper solutions. For a

class of problems for which such an algorithm has not been engineered but the necessary

mathematical and computational tools exist, namely nondispersive nonabsorbing multi-

layer thin-�lm optical systems, a parallel branch-and-bound computational system is de-

veloped on Amazon's EC2 platform using the Taylor model mathematical/computational

system due to Berz and Makino. For the particular problem of reducing re
ection using

multilayer systems, it is shown that the special structure on the solution, namely the

gradient index constraint, can be exploited to signi�cantly reduce the search space and

thereby make the algorithm much more practical (an argument that naturally generalizes

to other important gradient index systems, including, but not limited to, gradient index

optical �bers and gradient index lenses). The branch-and-bound computational system

is then used to design an important engineering system, namely a broadband omnidirec-

tional antire
ection coating for silicon solar energy, the theoretical guarantee of global

optimality on the obtained solution providing some interesting and arguably useful con-

clusions. This result is experimentally validated using RF sputtering, and is competitive

with existing solutions that employ sophisticated nano-deposition techniques, as well as
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the more practical but also more narrowly applicable solutions based on texturing. This

makes it arguably the best practical solution to this problem to date.

The rest of this work is organized as follows. Minimal relevant background is pre-

sented at the beginning of each chapter. The background is kept minimal and high quality

sources are cited for the interested reader so as to focus the write-up on the novel contri-

butions of this work rather than prior art. The chapter that follows describes the parallel

branch-and-bound algorithm for nondispersive nonabsorbing multilayer systems that was

developed using the Taylor Arithmetic bounding framework due to Berz and Makino on

Amazon's EC2 platform. In the same chapter it is demonstrated how the gradient index

constraint on the solution to the antire
ection design problem can be exploited to reduce

the search space and make the algorithm more practical from a computational perspec-

tive. The chapter that follows describes the broadband omnidirectional antire
ection

coating for silicon solar cells that was experimentally demonstrated based on the theory

that came out of the branch-and-bound work, arguably the best practical solution to

that problem to date. How does one develop a theoretical bounding foundation for a

class of problems for which one does not exist? This question is addressed next for the

class of semilinear parabolic PDEs, as motivated by my interest in optimizing tandem

organic solar cells (which are governed by the drift-di�usion-Poisson parabolic system of

equations). The thesis concludes with a chapter brie
y outlining future directions, many

of which are already in progress.
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Chapter 2

Parallel Branch-and-Bound

Optimization of Multilayer Optical

Systems, and Application to

Broadband Omnidirectional

Antire
ection Coating Design for

Silicon

2.1 Overview

In this chapter, a deterministic (alternatively veri�ed or rigorous) global optimization

algorithm for thin-�lm optical �lters is developed for a grid computing parallel envi-

ronment. This algorithm enables locating a global solution to a thin-�lm optical �lter

optimization problem with surety (to within a user-speci�ed tolerance, which is governed

by model accuracy). More speci�cally, the algorithm is a parallel branch-and-bound

method that requires a lower bound for the cost function (some function of the front-
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interface re
ectance computed using the transfer-matrix model) on subintervals of the

search space. An interval bound is constructed using Taylor arithmetic. Moreover, the

algorithm is characterized by best-bound subinterval and relative-width bisection direc-

tion selection rules, midpoint evaluation for incumbent search and a hybrid scheduling

approach in the parallelization process (static scheduling at the level of servers and dy-

namic scheduling via a single work queue within each server). An implementation of the

algorithm on Amazon's EC2 parallel computing platform is applied to two antire
ection

coating design problems. To the best of our knowledge, this is the �rst demonstration

that su�ciently interesting thin-�lm optical �lters can be optimized in a veri�ed fashion

at a reasonable cost. Thus, contrary to the opinion of some designers, this chapter shows

that it may be feasible to �nd with surety a global solution to a multilayer �lter design

problem. Said somewhat di�erently, this chapter shows that the design of multilayer

�lters, an activity popularly regarded as an art, can be made into a science using an

algorithm of the class described. It is hoped that the demonstration in this chapter will

stimulate further research into more e�cient algorithms of this kind.

2.2 Introduction

Multilayer �lters are an integral component of modern optical systems. They function

to determine the spectral composition and intensity of light re
ected and/or transmitted

by an optical system. A thin �lm is generally considered to vary between a fraction of a

nanometer and a couple micrometers in thickness [20]. Thin �lms were �rst discovered

in the late 1600s by Robert Hooke in the phenomenon known as Newton's rings (these

were later named after Isaac Newton who was the �rst to provide an analysis). The

�rst antire
ection coatings were made by Josef von Fraunhofer in 1817. He noticed

that corroded glasses re
ected less light, making his devices the precursor to today's

surface texturing approaches to reducing re
ection. In 1880 Lord Rayleigh was the �rst

to recognize the potential of gradient index antire
ection coatings, by making an analogy
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to the way sunlight travels through the atmosphere. This is captured by his statement

that \No one would expect a ray of light to undergo re
ection in passing through the

earth's atmosphere as a consequence of the gradual change of density with elevation."

[35] The modern era of thin �lm manufacturing began in the 1930s with the invention

of reliable vapor deposition techniques, such as electron beam deposition and sputter

deposition.

A schematic representation of a multilayer �lter is shown in Figure 2-1. In the �gure,

R represents the front-interface re
ectance (ratio of re
ected to incident intensity at any

given incident wavelength �, incident angle � and polarization s or p) while dk and �k

respectively denote the physical thickness and the complex refractive index of the kth

layer. The complex refractive index of the kth layer is explicitly written as

�k = nk + j�k; (2.1)

with nk and �k respectively denoting the phase speed and extinction coe�cient of the k
th

layer. In general nk is wavelength dependent, but all problems considered in this work

are nondispersive so that nk is not a function of wavelength. Moreover, all examples

considered feature approximately nonabsorbing materials, so that �k is 08k.

ηk ηsub

dk

k ∈ {1, ..., L}

θ ... ...

η1

d1R

ηL

dL

Figure 2-1: A schematic representation of a thin-�lm optical �lter.

The task of optimizing a thin-�lm optical �lter generally involves �nding a system

con�guration that most closely approximates the desired response (re
ectance over the
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relevant bandwidth, incident angle range and speci�ed polarization). For a �xed number

of layers L, this task may be posed as

popt = argmin
p2P

�
O
��
fRp (p; �i; �j) ;Rs (p; �i; �j)gmi=1

	n
j=1
; L
��
: (2.2)

Here, the design variable (or parameter) vector p is speci�ed by some subset of fdk; �kg
L
k=1

(i.e., by some subset of the thicknesses and complex refractive indices of the layers in

the stack) and the subscripts of R denote the polarization of incident light. The cost

(alternatively objective or merit) function O measures how closely a given con�guration

p approximates the ideal response and perhaps penalizes more complex designs. It is

usually a numerical approximation for a de�nite integral over speci�ed wavelength and

incident angle ranges. The objective function O should be increasing in the number

of layers L to re
ect the fact that a simpler system is preferable (since it is less ex-

pensive to manufacture, for instance, but also since it is less prone to manufacturing

errors and failure due to high tensile stress). If O does not explicitly penalize a more

complex system through dependence on L, one can do better (i.e., achieve a lower global

solution O
��
fRp (popt; �i; �j) ;Rs (popt; �i; �j)gmi=1

	n
j=1

�
) by increasing the number of de-

grees of freedom through increasing L (and thereby the dimension of the search space

P ). When using the algorithm outlined in this chapter to address this case, one should

start with as few layers as is reasonable and repeat the optimization process for incre-

mentally more layers until an acceptable performance is achieved or until adding more

layers does not appreciably improve performance (the issue of diminishing returns with

increasing number of layers is well-known). Hence, we de�ne the global solution to be

the solution corresponding to the number of layers immediately after diminishing returns

set in. Technically, this is a Mixed Integer Nonlinear Program (MINLP) since O is non-

linear in p and the entries of p may be continuous (i.e., take values on intervals) or be

discrete/integers (i.e., be restricted to a �nite number of choices, as in the case where

some library of materials is available in the laboratory). However, in this work attention
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is restricted to continuous problems for simplicity.

Many methods for solving the problem (2.2) have been used. Design methods can

be broken into two broad classes, re�nement and synthesis. Re�nement methods are

basically local optimization techniques that improve an initial guess by a designer. Ev-

erything depends on the intuition of the designer since it drives the initial guess and

thereby the quality of the �nal solution. Synthesis techniques create a design to some

speci�cation using some arbitrary procedure, no initial guess is required (some people

refer to these as \black magic", rightfully so, as it is often not clear why one would

expect such a procedure to produce good results). Workers in this �eld tend to call

mathematical optimization techniques \digital design methods". A comparative analysis

of popular algorithms is presented in [7]. The problem is well-known to be noncon-

vex on P (nonconvexity is demonstrated in the context of the �rst numerical example),

motivating the use of global optimization algorithms to avoid suboptimal local minima

being adopted as the solution. Global optimization algorithms are divided into two gen-

eral classes, namely stochastic (e.g., genetic algorithms, simulated annealing, variants

of multistart optimization) and deterministic (e.g., branch-and-bound, inner approxima-

tion, outer approximation, sums-of-squares). Stochastic global optimization algorithms

have been used extensively to optimize thin-�lm optical �lters (see [23] for an example

application of genetic algorithms, [9] for an example application of Multi Level Single

Linkage, abbreviated as MLSL, an intelligent variant of the multistart algorithm which

is also used here to benchmark our novel algorithm). However, convergence of this class

of algorithms to a global solution is only guaranteed asymptotically but not in practice

(a maximum number of iterations or function evaluations is set, or the user decides that

the current solution is \good enough" and terminates execution). Thus, although these

algorithms can do well in avoiding suboptimal local minima, one can never know for sure

whether a global solution has been found in practice.

Problem-speci�c heuristics, such as the gradient index pro�le concept for designing

antire
ection coatings (the problem we will be interested in, in this work) are also avail-

21



able and can do quite well. Based on Lord Rayleigh's analogy, by varying the refractive

index gradually from that of the free medium to that of the substrate, maximum transmis-

sion can be attained. In the context of inhomogeneous layers, theory has been developed

to �nd an index pro�le which is optimal [35]. Inhomogeneous layers are unfortunately

not practical so in practice discrete layers are used to approximate these pro�les. Using

oblique angle deposition of SiO2 and co-sputtering of SiO2 and TiO2, it is possible to

vary refractive indices continuously in the interval [1:09; 2:60] [19], striking very closely

any index needed to approximate a selected pro�le. Oblique angle deposition varies the

porosity of the material and thereby varies its index. Co-sputtering varies the index be-

tween the indices of the two materials being co-sputtered by varying relative deposition

rates.

In this work, minimizing average re
ection from silicon over the incident angle range

[0; 60] degrees and the wavelength range [400; 1600] nm is the problem of particular

interest. Untreated silicon normal incidence re
ection is greater than 30%. The goal

here is to search for a \perfect" antire
ection coating for a silicon solar cell, one that

can transmit all/most of the light that is incident on it to maximize the e�ciency of

the solar cell in its relevant wavelength and incident angle range of operation. Although

silicon absorption is approximately 0 above 1100nm, reducing re
ection there may still

be important for upconversion and silicon photonic applications. There is a good solution

to this problem in terms of average re
ection (it seems to be the lowest value reported

in the literature for this problem) that achieves an average re
ection of 3:79%, a seven

layer design that approximates the quintic pro�le

n (z) = nmin + (nmax � nmin)
�
10z3 � 15z4 + 6z5

�
: (2.3)

This result, whose SEM image from the original reference [19] is shown in Figure 2-

2, although performs well, is not a practical solution because the porous �lms are not

weather resistant (when it rains, water gets into the pores and modi�es the desired

properties of the material). The slanted (oblique angle deposited) nanorods of SiO2
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can be seen in the �rst two layers of that image. Arguably the most widely applicable

practical solution in use today on a large scale is a single layer quarter-wave antire
ection

coating, typically made of silicon nitride (Si3N4), achieving normal incidence re
ection

of approximately 15%. Surface texturing solutions also exist, minimizing re
ections by

\roughening" the surface of the substrate (by etching pyramids into it, for instance),

thereby increasing the chance that re
ected light can be reabsorbed. These typically

quote �gures of around 2% at normal incidence (see, for instance, [45] for texturing

based on subwavelength surface Mie resonating nanocylinders etched into the silicon

surface). We note, brie
y, that �gures this low also include a single quarter-wave layer,

typically made of silicon nitride, on top of the textured surface. The texturing approach,

unfortunately, has some disadvantages. For instance, it requires corrosive chemicals,

such as the notoriously toxic hydro
uoric acid, during etching of the silicon surface (even

if we can do this, should we, given the inherent environmental costs and workplace

hazards?). Perhaps more importantly, texturing works well only for a small fraction

of the solar market, i.e., monocrystalline silicon such as the one manufactured by the

popular company SunPower. It is well-known that polycrystalline silicon, which forms

the majority of the solar cell industry at the time of this writing, doesn't texture as easily.

For these reasons, we think a better solution is needed, which motivated this work. We

believe the theory developed here points to such a solution.

Figure 2-2: Presently best broadband omnidirectional antire
ection coating for silicon solar energy,
SEM image.

Unlike any of the previously outlined algorithms, deterministic global optimization
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algorithms can provide a guarantee that a global solution to an optimization problem

has been found to within a user-speci�ed tolerance. In this chapter, a deterministic (al-

ternatively veri�ed or rigorous) global optimization algorithm for thin-�lm optical �lters

is developed. More speci�cally, the algorithm is a parallel branch-and-bound method

that requires a lower bound for the cost function (some function of the front-interface re-


ectance computed using the transfer-matrix model) on subintervals of the search space.

The general framework of branch-and-bound was �rst proposed in 1960 by Land and

Doig [15]. In our algorithm, an interval bound is constructed using Taylor arithmetic.

Moreover, the algorithm is characterized by best-bound subinterval and relative-width

bisection direction selection rules, midpoint evaluation for incumbent search and a hy-

brid scheduling approach in the parallelization process (static scheduling at the level of

servers and dynamic scheduling via a single work queue within each server). An imple-

mentation of the algorithm on Amazon's EC2 parallel computing platform is applied to

two antire
ection design problems.

To the best of our knowledge, this is the �rst time that a problem within the class of

thin-�lm optical �lters has been optimized in a veri�ed fashion. Thus, contrary to the

opinion of some designers, this chapter shows that it may be feasible to �nd with surety a

global solution to a multilayer �lter design problem. Said di�erently, this chapter shows

that the design of multilayer �lters, an activity popularly regarded as an art (see the

Foreword in [20] for an example of a recurring view in standard references on design being

as much an art as a science, due to the necessity for a good initial guess for re�nement

by local optimization algorithms and the arbitrariness of most synthesis methods), can

be made into a science using an algorithm of the class described. This chapter can also

be viewed to provide an overview and an assessment of the current state of knowledge

within the evolving �eld of global optimization for this important class of problems, an

overview that thin-�lm engineers could �nd useful.

The rest of the chapter is organized as follows. The algorithm and the bounding

procedure are described in Section 2.3. Section 2.4 presents the numerical examples.
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The numerical results are discussed and the chapter is concluded in Section 2.5.

2.3 Deterministic Global Optimization Algorithm

In this section, the branch-and-bound algorithm is presented. First, the parallelized

method is outlined. Then, a procedure for bounding functions of the front-interface

re
ectance (assuming all parameters are interval-valued) on subintervals of P , as required

by the branch-and-bound method, is described. We brie
y mention how the bounding

procedure can be used for uncertainty analysis, an approach superior to other approaches

which have been used for uncertainty analysis of multilayer �lters in the literature. For a

thorough exposition of deterministic global optimization theory the interested reader is

referred to [15]. Simple examples used to illustrate concepts in this section are well-known

in the deterministic global optimization literature.

2.3.1 Parallel Branch-and-Bound Method

Choose the search space P to enclose all physically realizable system con�gurations or

choose a smaller search space of interest (to enclose all of the best-known historical

designs, for instance). If good prior solution information is available (from a database of

notable historical designs, or as an output of a stochastic global optimization method, for

instance) initiate the candidate global solution (referred to as the incumbent solution)

to this. This is not done in this work though, since we are interested in the performance

of our algorithm without prior knowledge. Create a stack on each running process in

the parallel environment of choice (in this work, we use Amazon's EC2 platform - other

services, notably Microsoft's Windows Azure, and Pro�tBricks are also available, more

tightly coupled supercomputers such as IBM's Blue Gene Q are also common in academic

environments and large companies) to hold subintervals/partitions of the search space

along with corresponding merit lower bound, merit upper bound and level values. The

level of an interval is de�ned as the number of times the original space was bisected
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to arrive at it. The concept of level is illustrated for a unidimensional search space

in Figure 2-3. The procedure we use for computing the merit lower bound for each

partition is described in the next subsection. We consider the simplest procedure for

computing the merit upper bound for each partition (computation of upper bounds could

also be referred to as incumbent search since the minimum upper bound observed up to

any iteration corresponds to the incumbent solution). This is to evaluate the merit at

the midpoint of each partition. Choose the absolute convergence tolerance " to re
ect

practical considerations (beyond which point does optimizing the merit make no practical

signi�cance?). For all the results presented in this work, " is set to 0:001 (optimizing

problems considered in this work beyond this point, or 0:1%, amounts to optimizing

within modeling error, as demonstrated in the context of the second numerical example).

Statically schedule a region of the search space to each server. On each server, dis-

cretize the assigned partition and assign each running process one of the resulting subin-

tervals (this process of assigning chunks of the search space to each process is usually

referred to as ramp up in the branch-and-bound literature). In our algorithm, this is

done by running a serial version of the branch-and-bound method until the number of

partitions becomes equal to the square of the number of running processes on each server

times the number of servers (the reason for this particular number will become clear in

the remainder of the description of the algorithm). Then, each process on each server is

assigned the number of running processes on each server partitions at iteration one.

Once this initial static assignment is performed, each server works independently (the

reason why this is necessary is clari�ed later on in this write-up). At every iteration (with

the exception of the �rst, where subintervals from the initial discretization are assigned

to a process and all relevant quantities corresponding to that interval are computed,

as described in the previous paragraph) select a subinterval for each process from the

stacks of the processes on that given server (we henceforth refer to these as the global

stack for that server) to bisect along a parameter into 2 new subintervals. We considered

three rules for selecting subintervals for bisection. The �rst involves picking the �rst
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subintervals on the global stack corresponding to the least remaining lower bound (LRLB)

of the partitions on the global stack. This rule is referred to as the best-bound rule in

the deterministic global optimization literature. The second involves picking the �rst

subintervals on the global stack corresponding to the least remaining upper bound of

the partitions on the global stack. This rule is referred to as the best-estimate rule in

the literature. The third rule involves picking the �rst subintervals on the global stack

corresponding to the least level of the subintervals on the global stack. This rule is referred

to as the breadth-�rst rule in the literature. Call the selected intervals fIigNPROCESSESi=1 �

P . Here, NPROCESSES is the number of processes on any given server (in our case,

this number will be 16). The selected intervals we refer to as active intervals for any

given iteration. They are selected as follows.

On any given process (on any given server), select NPROCESSES candidate active

intervals (in case all active intervals for the next iteration on that server are on the present

process) according to the active selection rule. Communicate these across all processes

on that server for a total of NPROCESSES2 candidate active intervals. Select the best

NPROCESSES candidates to be the active intervals for the next iteration according

to the active selection rule. This routine is the reason why we ramp up to the square

of the number of running processes (i.e., NPROCESSES2) on each server times the

number of servers (so that there are NPROCESSES intervals on each process at the

�rst iteration, to serve as su�cient number of candidate active intervals for the second

iteration).

We considered two rules for selecting which direction of the selected subintervals to

bisect on, on every process, on every server, at every iteration. The �rst involves bisecting

on a uniformly randomly selected direction and the second involves selecting the direction

i 2 f1; 2; :::; 2L� 1; 2Lg that maximizes the quantity

w (Ii)

w (Pi)
: (2.4)

This quantity we call the relative-width. The width w is de�ned as the di�erence between
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the upper and lower bounds of the corresponding interval and the normalization by the

width of the original space handles dimension di�erences between di�erent parameters

(always normalizing possible measures into the interval [0; 1] regardless of dimension).

We found empirically that the best-bound rule coupled to the relative-width rule worked

best (we choose to leave out details of this comparison, for brevity). The best-bound rule

is motivated by the desire to increase least lower bound value as fast as possible since

this is critical to convergence (another motivation might be the potential of �nding a

good candidate solution on such a subinterval) while the relative-width rule is motivated

by the desire to divide things up in a uniform way. The bisection of a simple nonconvex

univariate objective is illustrated in Figure 2-4 to aid visualization.

Place each of the two resulting subintervals (with the exception of the �rst iteration,

when a subinterval from the initial discretization is processed instead) on the stack local

to the process where bisection occurred along with computed merit lower bound and

merit upper bound information. If either upper bound on the new subintervals is better

(i.e., lower) than the incumbent, update the incumbent accordingly. Then, communicate

local incumbent information across all processes on that server and extract the global

incumbent information on each process. Execute pruning of partitions from the stack,

where partitions with lower bound greater than the global least upper bound (i.e., the in-

cumbent) are eliminated from the stack (the reason being that the global solution clearly

cannot exist on such a partition). This exclusion step alleviates the so-called \curse of

dimensionality" (i.e., the exponential explosion of computational cost with increasing

problem complexity). This step is also the reason why branch-and-bound is more ef-

�cient than what is sometimes called \scanning" (alternatively \brute-force" search or

\grid search"), a nonrigorous global optimization approach involving �ne discretization

of the search space into a grid along which the merit is evaluated and the best merit value

taken as the solution (if all the parameters were discrete, evaluating every single point

on a grid representing every possible parameter combination would be called \exhaustive

enumeration"). Also make sure to get rid of the subinterval that was bisected while
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pruning. Extract the LRLB on each process. Communicate this across processes on this

server and extract the global (least) LRLB value. If the global incumbent is closer than

" to the global LRLB, then convergence has been achieved on that server. In this case,

terminate execution of every process on that server and return the global incumbent as a

globally optimal system con�guration on that server. Otherwise, begin another iteration.

Once every server has converged to the global solution, pick the minimum and return

that as the global solution for the problem. If at any point of the execution, the LRLB

on any server becomes greater than the best incumbent among all servers, terminate

execution on that server - the chunk of the search space which was initially statically

assigned to it is infeasible.

It should be clear that this procedure represents a constructive proof for identifying

a solution su�ciently close to a global solution. We see that we need to lower bound the

objective to be able to globally minimize it in a veri�ed fashion. An applicable lower

bounding procedure is outlined in the next subsection. The algorithm is visualized thor-

oughly in the context of the �rst numerical example. Before concluding this subsection,

we note that this parallelization strategy is classi�ed as static scheduling to a single dy-

namically scheduled work queue per server, with prioritization based on the best-bound

rule on every such queue. Hence, it is a mixed static-dynamic parallelization strategy,

with the static component being made necessary by the limitations of the loosely-coupled

EC2 parallel environment coupled to the limitations on the parallelization tools available

in the environment needed to lower bound our merit function. This is touched on in

more detail at the beginning of Section 2.4.
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Figure 2-3: An illustration of the concept of level for a one-dimensional search space.
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Figure 2-4: The bisection of a simple univariate objective.

2.3.2 Lower Bounding Procedure

Taylor Arithmetic

The solution to the problem of bounding the ranges of functions on intervals began

with interval arithmetic (which originated with the work of Ramon E. Moore [28] in the

1960s). Interval arithmetic has been automated in many software packages, such as the

MATLAB toolbox INTLAB [40] and the C++ library C-XSC [14]. It is applicable to

factorable functions, i.e., functions which can be computed in a �nite number of simple

steps. The function of relevance here is some function of the front-interface re
ectance R,

which for any given wavelength and incident angle is a function of p composed entirely

of the binary operations +;�;�; = and trigonometric functions sin and cos, polynomial

functions and roots (see [20], for instance, for the general expression). This function is

made available by the transfer matrix model (the solution to Maxwell's equations relevant

for the thin-�lm optical �lter architecture). Interval arithmetic employs a set of rules
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corresponding to each step in the computation of the function, e.g.,

�
aL; aU

�
+
�
bL; bU

�
=
�
aL + bL; aU + bU

�
; (2.5)

and can be used to compute an interval bound
�
RL;RU

�
of R on P . As a simple

example, consider the expression p2 + p, where p can take values on the interval [�1; 1].

Employing the simple rule that the lower and upper bounds of the square of an interval

are respectively the square of the smallest and largest absolute values in the interval,

together with the addition rule (2.5), interval arithmetic can be applied to bound the

expression as follows:

[�1; 1]2 + [�1; 1] = [0; 1] + [�1; 1] = [�1; 2] : (2.6)

These bounds, together with the expression, are plotted in Figure 2-5.
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Figure 2-5: Illustration of the non-exactness of interval arithmetic bounds for a simple expression.

Note that the lower bound, although valid rigorously and hence theoretically applicable,

is not exact (�1 is signi�cantly lower than the true/exact lower bound of �1
4
). Now,

rearrange the expression as
�
p+ 1

2

�2� 1
4
. Applying interval arithmetic to this yields exact

31



bounds: �
�1 + 1

2
; 1 +

1

2

�2
� 1
4
=

�
0;
9

4

�
� 1
4
=

�
�1
4
; 2

�
: (2.7)

In general, it can be shown that rearranging the expression such that each interval-valued

variable appears only once yields exact bounds. The following extreme example further

illustrates this issue:

�
pL; pU

�
�
�
pL; pU

�
=
�
pL; pU

�
+
�
�pU ;�pL

�
=
�
pL � pU ; pU � pL

�
6= 0: (2.8)

In other words, even though we know that the expression above should always be zero

(as the di�erence between a quantity and itself), naive application of interval arithmetic

yields a signi�cantly wider interval bound for the expression. Rearranging this expression

such that the interval-valued variable appears only once eliminates this problem (using a

self-explanatory interval arithmetic rule for the product of an interval by a nonnegative

scalar): �
pL; pU

�
� (1� 1) =

�
pL; pU

�
� 0 =

�
pL � 0; pU � 0

�
= [0; 0] : (2.9)

For most practical expressions, such a rearrangement is unfortunately not entirely pos-

sible. This issue is referred to as the dependency problem in the deterministic global

optimization literature. This terminology re
ects the fact that the problem arises from

the inability of interval arithmetic to account for the dependency (or sensitivity) of each

term on the underlying independent variables.

The dependency problem is a serious issue for thin-�lm optical �lters. Consider the

closed-form expression for re
ectance in the relatively simple case of a two layer device at

normal incidence (assuming all materials are nonabsorbing so that the refractive indices
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are real):

R (p) =

�
(1� nsub) cos �1 cos �2 �

�
n2
n1
� nsub n1n2

�
sin �1 sin �2

�2
+
��

nsub
n1
� n1

�
sin �1 cos �2 +

�
nsub
n2
� n2

�
cos �1 sin �2

�2
�
(1 + nsub) cos �1 cos �2 �

�
n2
n1
+ nsub

n1
n2

�
sin �1 sin �2

�2
+
��

nsub
n1
+ n1

�
sin �1 cos �2 +

�
nsub
n2
+ n2

�
cos �1 sin �2

�2
: (2.10)

Here,

�k =
2�nkdk
�

(2.11)

is the phase change experienced by electromagnetic radiation in passing through layer k.

Note multiple occurrences of the refractive index and thickness variables, which cannot

be eliminated by simply rearranging the expression (at least not in a way we are aware

of). However the following simple rearrangement is possible to reduce it, and this is done

in our implementation.

By Snell's law,

sin �k =
n0 sin �0
nk

: (2.12)

Then,

cos �k =

s
1� n

2
o sin

2 �0
n2k

: (2.13)

But since there are several appearances of the term nk cos �k (see expression in [20], for

instance, if not convinced), always computing it as

nk cos �k =
q
n2k � n2o sin2 �0 (2.14)

reduces dependency (since nk appears only once).

To alleviate the dependency problem, one can employ an approach referred to as

Taylor arithmetic and automated in the (extensively veri�ed) system COSY INFINITY

[4] that is based on Fortran 77 (other techniques, mentioned in Section 2.5, can also
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be applied to alleviate the dependency problem, but Taylor arithmetic appears to be

the most mature technique for this purpose, being automated in an extensively veri�ed

software package. For this reason, Taylor arithmetic is today the \state-of-the-art" for

globally optimizing an arbitrary engineering system (characterized by a model given by

an explicit expression of su�cient di�erentiability) in a veri�ed fashion and so is a natural

choice for the study in this work. It applies Taylor's theorem to bound an o + 1 times

continuously partially di�erentiable (on the interval under consideration) function f of

the interval-valued variable p by applying interval arithmetic to the following expression

(the square brackets [] denote an interval bound for the enclosed quantity):

[f ] ([p]) = f (p0) +
oX
i=1

1

i!
Dif (p0) ([p]� p0)i + [r] ([p] ; p0) ; (2.15)

with Dif (p0) being the i
th order partial derivative of f at p0. An explicit expression

for the remainder is available for such functions, it being the main tool for obtaining [r]

(the interested reader is referred to the COSY INFINITY manual [4] and the references

therein for further mathematical detail). In other words, after expressing the function as

the sum of its Taylor expansion of some speci�ed order o around some reference point

p0 and a remainder term r, interval arithmetic is applied to that expression. In an

intuitive sense, the reason this works in reducing the dependency problem is that (2.15)

attempts to explicitly express the function in terms of its dependencies (the derivatives, at

p0) on p. Derivatives are computed using automatic di�erentiation [11] (the automatic

computational equivalent of the forward rule of di�erentiation). Again, consider the

simple extreme example (2.8) for illustration purposes. For o = 0, the expression (2.15)

is written as follows (the second part comes from the remainder term):

f (p0) +
df

dp
(p0) ([p]� p0) : (2.16)
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For p 2 [�1; 1], choosing p0 = 1 one obtains exact bounds as follows:

(1� 1) +

df
dp
=0z }| {

(1� 1) ([�1; 1]� 1) = [0; 0] : (2.17)

In general, higher o yields tighter bounds at a higher computational cost and is chosen

empirically (we choose it arbitrarily in this work, as reported in Section 2.4), while p0

may be chosen arbitrarily (in this work, we henceforth choose the midpoint of the interval

for this purpose). A set of rules is then de�ned for binary operations on a pair of such

representations, allowing one to build up such representations for complex expressions

computed in an iterated fashion in long code lists. Beyond simple application of interval

arithmetic to (2.15), more intelligent use of the Taylor expansion can lead to tighter

bounds. In this work, we employ the Linear Dominated Bounder (LDB) as such an

intelligent alternative (the interested reader is referred to the COSY INFINITY manual

[4] for details pertaining to the LDB, as well as any other details of interest, including

other such intelligent alternatives).

We must now check whether di�erentiability requirements are satis�ed. These re-

quirements are satis�ed by merit functions which are smooth functions of R (in technical

lingo, of class C1) for any o, since the composition of smooth functions is a smooth

function, and both the numerator and the denominator of R are built up entirely from

smooth function of p (polynomial functions, the trigonometric functions and roots) and

binary operations which preserve smoothness. Since both terms are positive, the lower

bound on the result of the division is obtained as the division of the lower bound on the

numerator and the upper bound of the denominator. The upper bound on the result of

the division is obtained as the division of the upper bound on the numerator and the

lower bound of the denominator. This can then be used as an interval to construct a

bound on the merit function (we note that this is not necessary for the examples we look

at in this work, since both involve minimizing re
ection, so that only the lower bound of

this interval is required).
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COSY INFINITY has been used for rigorous global optimization of some abstract

functions which have traditionally been used for testing optimization algorithms (e.g.,

the Beale function in [3]) and some problems in charged-particle optics (e.g., a triple

bend achromat located at Lawrence Livermore National Laboratory in [22]), but not

on multilayer �lter problems and using a branch-and-bound algorithm di�ering in many

details of its development (details of that implementation can be found in [3] and the

references therein). COSY INFINITY has been used for a variety of other purposes

by over 1000 people worldwide, including, but not limited to, high-order multivariate

automatic di�erentiation, solution of ODEs (also validated solution of ODEs, where a

rigorous bound on the ODE solution is constructed pointwise in time) and advanced

particle beam dynamics simulations. Note that all bounds are guaranteed to be rigorous,

despite the roundo� errors that are inherent in �nite machine arithmetic.

Incorporating Natural Bounding Information

The last-but-one step in the computation of R involves the application of the square

function (division of two such squares being the �nal step). Algebraically then R cannot

be negative (which corresponds to the physical observation that re
ectance cannot be

negative). However, because the square in the current version of COSY INFINITY is

evaluated as multiplication by self [4], a negative lower bound on R is actually possible.

As an illustration of this fact, consider the square of the interval [�1; 1]. The lower bound

of that quantity is certainly 0, but interval arithmetic would evaluate the lower bound of

[�1; 1] � [�1; 1] to be �1! Thus, it is important to truncate the lower bound on R to 0

following computation, whenever possible, to yield a tighter bound in general.

Experimental Uncertainty Analysis

Techniques for bounding ranges of functions on intervals are natural tools for performing

experimental uncertainty analysis. Given an interval range for the expected experimental

variability in thickness/refractive indices, one can readily compute an interval bound for
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the variation in the merit function that one can expect experimentally. This conceptually

simple approach is superior to sampling techniques which have been used for uncertainty

analysis of multilayer �lters in the literature. These typically involve generating random

device architectures in the thickness/refractive index interval and statistically analyzing

these samples (see [46], [20] for example applications of this approach). Such an approach

is of course not rigorous and signi�cantly more computationally expensive than simply

computing a merit function bound using Taylor arithmetic. We have not seen anyone

make a reference to rigorous bounding tools for uncertainty analysis in the multilayer

system literature, which is why we do so here. We do not discuss this approach further

for now.

2.4 Numerical Examples

The parallel branch-and-bound algorithm was implemented using Amazon's EC2 plat-

form and the COSY INFINITY system (in particular, single work queue dynamic schedul-

ing components of the algorithm on any given server were implemented using the schedul-

ing construct PLOOP made recently available by COSY INFINITY's authors, this con-

struct providing an interface to the Message Passing Interface or MPI but restricted to

all-to-all communication between processes).

It is emphasized, brie
y, that because this construct only allows all-to-all communi-

cation between running processes, the communication and synchronization costs prohibit

dynamic scheduling of tasks across multiple servers. In fact, when we attempted doing

this, we found the communication cost to be several times larger than computational

time (showing negative speedup in moving from a single server to multiple servers, de-

tails of this test are presented in the context of the �rst numerical example). Traditional

approaches to reducing communication cost, by granulating communication (communi-

cating more intervals to each process to be bisected at each iteration, so as to commu-

nicate less often) do not work here because doing so merely introduces a trade-o� with
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synchronization cost under the all-to-all communication paradigm (it is now more likely

that some processes are done with their work signi�cantly earlier than others, and since

communication cannot happen until all processes are done, this translates into a higher

synchronization time). Suggestions for future work to circumvent this constraint are

outlined in the �nal chapter of this thesis.

The instance type we used on Amazon was the cc2.8xlarge high memory (80 GB)

instance. These instances possess 16 physical cores each and come with hyperthreading

enabled for a total of 32 virtual cores. However, our tests indicated that our algorithm

su�ers a slowdown from this feature (a factor of about 2:5 slower when moving from

16 to 32 threads on any one server, we omit the details of this test for brevity). This

is consistent with the experience of many workers in high performance computing (see

for instance [25]). Hence, we disabled hyperthreading and so have only 16 threads per

cc2.8xlarge server.

Models were tested against analytic examples in the literature while also being vali-

dated against real data (see the second numerical example for details of the comparison

to real data, other details are omitted for brevity). Merit lower bounding code was tested

for consistency (a notion from deterministic global optimization theory, theoretical guar-

antees of convergence require merit lower bounds to possess this property), i.e., it was

checked that the bounds become tighter (meaning larger, given that we focus here on

minimization problems) as the parameter interval on which the lower bound is computed

is made smaller, and that the merit value is attained on a thin/degenerate interval. This

allows us to conjecture that our algorithm is provably convergent (details of this test are

omitted for now for brevity). All materials are assumed to be nondispersive, so that their

refractive indices are assumed to be constant over the wavelength ranges of interest. We

believe this to be reasonable, since it is well-established that the refractive indices of most

dielectrics do not change appreciably over the wavelength ranges considered in this work.

Thin-�lm materials are assumed to be nonabsorbing as well, for the design problems

considered in this work, this is a valid assumption (an antire
ection coating material
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must transmit all or at least most of the incident radiation to the substrate). Moreover,

the model is tested against real data in the context of the second numerical example and

found to be fairly accurate, which validates our modeling assumptions. In the compu-

tation, the substrate is assumed to be semi-in�nite. Concurrent dollar costs of running

each example using the EC2 service are reported along with solution times. Comparison

with stochastic global optimization methods is made where appropriate, the goal of such

a comparison being to gauge what advantage this algorithm has over \state-of-the-art"

existing methods. We choose to compare with variants of multistart optimization, where

randomly sampled initial guesses for the optimal system con�guration are repeatedly lo-

cally optimized for some user-speci�ed number of iterations, and the best solution found

over all iterations reported in the end. The reason for choosing this class of stochastic

methods (over, say, genetic algorithms or simulated annealing) is that there is a preva-

lent belief among experts in the literature [39] that this is the most promising subclass of

stochastic methods. Comparisons employs the C++ interface to the package NLopt (writ-

ten by Steven G. Johnson, and freely available at http://ab-initio.mit.edu/nlopt)

for the intelligent Multi Level Single Linkage (MLSL) multistart algorithm [39] (which

employs a clustering heuristic to reduce redundancy in the initial guess choice at every

iteration, rather than just picking a uniformly randomly selected one each time, and is

guaranteed to �nd all local minima in a �nite number of iterations). In particular, we

use the derivative-based sequential quadratic programming (SQP) algorithm for the local

optimization component, with the gradient being derived explicitly (again, details of this

are omitted for brevity). Termination criteria for MLSL is maximum number of merit

function evaluations and an absolute convergence tolerance on the merit function value

(whichever is reached �rst, speci�c values selected for these are given in the numerical

examples below). The midpoint of the search space is used as an initial guess for the

search. In each case, speci�c values for these termination criteria are given. CPU times

reported for serial stochastic optimization tests are given for an Intel CPU with clock

speed of 1:79 GHz and 2 GB of RAM. All results are reported to within 3 signi�cant
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�gures (except for inherently integer quantities, such as the number of iterations for

convergence, which are reported without any approximation).

2.4.1 Broadband Normal Incidence Antire
ection Coating for

Silicon Solar Cells

We �rst consider the problem of designing an antire
ection coating for silicon solar cells,

with the goal of minimizing average normal incidence re
ectance over a broad range of

wavelengths (� 2 [400; 1600]nm). This is captured by minimizing the objective

O (p) =
1

1200

Z 1600nm

400nm

R (p; �; 0) d�;

� 1

1200

1200

10

i=10X
i=1

R (p; �i; 0) ; �i = 400 + (i� 1)
1200

10
nm; (2.18)

where the numerical approximation for the de�nite integral is performed using the rect-

angle method (using 10 rectangles and the top-left corner approximation, corresponding

to m = 10 and n = 1 in (2.2)). We use a 3rd order Taylor expansion (chosen arbitrarily)

for constructing the lower bound on the merit function for this example. Thicknesses

and refractive indices of every layer are used as design variables (thereby specifying the

design vector p). Thicknesses are assumed variable in [5; 500]nm, which we believe to be

representative of con�gurations reliably realizable on our sputtering system (described in

detail in the next chapter). Refractive indices are assumed to be variable in the interval

[1:09; 2:60]. This is consistent with the recent demonstration of refractive index variabil-

ity achievable through oblique angle deposition of SiO2 and co-sputtering of SiO2/TiO2

[19]. The refractive index of Silicon is obtained by averaging refractive index data (ob-

tained from http://www.filmetrics.com/) over the wavelength range of interest on a

uniform grid of 103 points. This yields a refractive index of 3:73 (with the imaginary

part being 0:02). Absolute convergence tolerance is �xed at 0:1%, justi�cation for which

will be presented in the next design example by comparison to real data.
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Before proceeding, we would like to demonstrate that our algorithm is correct. We

do this by thoroughly visualizing its behavior in the context of the one layer (i.e., two

parameter) problem. With only two parameters, it is possible to visualize the merit

function and pick the global optimum approximately visually. We show this plot in Figure

2-6. It is clear that this problem is highly nonconvex, even in this small dimensional

case, the issue can be expected to become much worse in larger dimensions. We see

that the global solution is approximately popt =
h
1:95 145

i
which corresponds to

a merit function value of 10:6%. This problem is simple enough for our branch-and-

bound algorithm to solve relatively quickly on a single process. Doing this yields the

solution popt =
h
1:93 148

i
and a corresponding merit function value of 10:6%, in

2424 iterations, 6:91 seconds CPU time and 7:07 seconds wall clock time. This design

can be realized approximately experimentally using a material such as yttrium oxide

(Y2O3). The convergence information (the incumbent and the least remaining lower

bound evolution) is shown in Figure 2-7. This exercise validates our code.

We further visualize algorithm behavior on multiple processes in this simple example.

We run the algorithm on 16 processes (for convergence in 3:92 seconds wall clock time)

and visualize in three dimensions what the algorithm is doing on every process. This is

shown in Figure 2-8. Corresponding two dimensional convergence information is shown in

Figure 2-9. Finally, we perform a full visualization of the stack evolution for the refractive

index interval [1:09 1:50] and the thickness interval [5 50] nanometers in Appendix A. For

this proper subset of the search space, it only takes the algorithm 8 iterations to converge

on two processes, making it ideal for such a detailed evaluation (however, only the �rst

four iterations are shown).

Next, we increase the complexity of the problem to two layers (i.e., 4 parameters) but

increase the absolute convergence tolerance to 2%. This yields a problem that is complex

enough to analyze for scaling with number of processes, but simple enough for this to be

done in reasonable time. Results of scaling tests are reported in Table 2.1. E�ciency of
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parallelization is measured as

E =
T1

NPTNP
: (2.19)

Here, T1 is the serial CPU time, TNP is the wall clock time for execution on NP proces-

sors. It is well-established that ideal (linear) scalability would be represented by e�ciency

of 1 8NP , but many practical algorithms show an e�ciency that declines with larger NP

due to more e�ort spent on synchronization and communication (with e�ciency reaching

0 for an in�nite number of processors) [21]. E�ciency numbers greater than one indicate

superlinear speedup. We see that our algorithm is arguably quite e�cient on a single

server. In moving from a single process to multiple processes on a single server (i.e., up to

16 processes) we see e�ciency numbers greater than 1. This means we are experiencing

superlinear speedup. In moving from one to 12 processes, for instance, the speedup is

T1
T12

� 28 which is much larger than 12 (expected speedup under ideal circumstances).

This e�ect is less dramatic when considering moving from 8 to 16 processes, for instance

(in that case, speedup is only negligibly superlinear, being only slightly larger than 2).

Indeed, if the serial run is eliminated, the speedup appears to be slightly superlinear

most of the time. When considering speedup based on iteration number, it is always

slightly superlinear, but approximately linear. Superlinear speedup is a well-documented

phenomenon in the parallel computing community. Combined with the only slight cor-

responding superlinear speedup in iteration number, we can conclude that the massive

superlinear speedup in moving from one to multiple processes is due to memory e�ects,

i.e., on multiple processes the space complexity on any one server is smaller, making any

smaller piece of memory easier to access and search [21]. The slight superlinear speedup

the rest of the time can be attributed to another well-known e�ect. With a higher num-

ber of processes, the tree is searched in a di�erent order leading to faster convergence

[21]. This e�ect can be directly exploited by simulating multiple threads via oversub-

scription, provided the context switching cost is not signi�cantly larger than the bene�t

from searching the tree in a di�erent order. In our case, since the superlinear e�ect is

only slight, we found that this exercise yields no bene�t. In moving from 16 processes
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on one server to 32 on two servers we observe a sublinear speedup (approximately 1:61

which is less than the 2 we expect in the ideal scenario). This can be easily attributed

to the static assignment of work to each server. The decision tree is unbalanced and one

server �nishes earlier than the second one, some computing power is wasted sitting idly

by while work remains to be done (in this case one server took 187 seconds while the

second took 136 seconds).

We next try the harder two layer problem on one server (with the absolute convergence

tolerance set back at 0:1%). We solve this problem in 179098 iterations and 84080

seconds (23:4 hours, costing $7:2) wall clock time. The solution is 0:0462 and the solution

vector is
h
1:56 2:38 100 66:1

i
. We then try to statically schedule to 16 servers to

see if we can signi�cantly speed it up. Doing this yields the same solution in 161854

iterations and 81381 seconds (22:6 hours) wall clock time. This represents a saving

of approximately 3:21% in wall clock time. While this represents a positive speedup,

it is very low due to the necessity for static scheduling to servers made necessary by

the all-to-all communication constraint on the parallelization construct in our software

environment. Statically scheduling to a multitude of servers would allow one to leverage

vast amounts of computing power and use this tool as a dynamic mesh search engine by

simply using it in nonveri�ed fashion to search for candidate solutions, with the lower

bounding component hopefully providing a useful lower bound (not necessarily large

enough to ensure convergence to a global solution). We do not concern ourselves with this

further for now though, and all results are henceforth reported for a run on 16 processes

(i.e., on one server). In other words, for the remainder of this work, the dynamically

scheduled component of the described algorithm is treated as a shared memory algorithm

being tested on a small scale.

Results of branch-and-bound algorithm execution for two layers with varying upper

bound for thicknesses are shown in Table 2.2. We vary this to study the sensitivity of

convergence and solution information to the thickness interval. Absolute convergence

tolerance is set at 0:1%. Problems with greater numbers of layers are not executed due
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to what we categorize as diminishing returns in solution quality in moving from two

to three layers. Dollar costs could have been computed at concurrent EC2 on-demand

instance price of $2:0 per 16 processes per hour, but we actually used the 
exible spot

instance pricing model, so this cost is the one that is presented. This 
exible pricing

model is market based, i.e., price varies depending on demand and supply of instances in

this pricing pool. At the time we ran our tests, the market worked out to approximately

$0:3 per 16 processes per hour, which appears to be the lower bound on price overall at

the time of this writing.

Results of MLSL runs are reported in Table 2.3 for comparison. The termination

criterion for this test was an absolute convergence tolerance 10�10 and 105 maximum

function evaluations (which ever one is reached �rst). This was selected to obtain a so-

lution that we felt was \reasonably good" in a \reasonable" amount of time, as is often

done in practice with stochastic global optimization tools. We see that the stochastic

methods �nd the global solution as well, even if this is done without the guarantee of

global optimality.
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Figure 2-6: Simple test function for deterministic algorithm. One layer normal incidence problem
visualized showing the approximate global optimum.
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NPROCESSES Wall Clock (sec) E�ciency Iterations Solution (optimal merit, popt)
1 10800 1 127731 0:0465;

�
1:57 2:42 102 63:0

�
4 1410 1:92 31930 0:0465;

�
1:57 2:42 102 63:0

�
8 608 2:22 15960 0:0465;

�
1:57 2:42 102 63:0

�
12 384 2:35 10634 0:0465;

�
1:57 2:42 102 63:0

�
16 302 2:24 7969 0:0465;

�
1:57 2:42 102 63:0

�
32 187 1:81 5717 0:0465;

�
1:57 2:42 102 63:0

�
Table 2.1: Deterministic algorithm scaling test.

2.4.2 Broadband Omnidirectional Antire
ection Coating for Sil-

icon Solar Cells

Next, we consider a more important but harder practical design problem, the problem of

minimizing average re
ectance from a silicon solar cell over a broad range of incident an-

gles (
�
0; �

3

�
) in addition to wavelengths ([400; 1600]nm). This is captured by minimizing

the objective

O (p) =
3

�

1

1200

Z �
3

0

Z 1600nm

400nm

R (p; �; �) d�;

where the numerical approximation for the de�nite integral is again performed using the

rectangle method (using 10 rectangles for each independent variable and the top-left cor-
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L dU Wall Clock Time Iterations Solution (merit, popt) EC2 Cost
1 500 7:07 2424 0:106;

�
1:93 148

�
$0:30

2 500 84080=23:4 179098 0:0462;
�
1:57 2:38 100 65:9

�
$6:90

2 250 29866=8:30 90764 0:0462;
�
1:57 2:38 100 65:9

�
$2:48

3 250 1047237=291=12:1 808148 0:0136;
�
1:32 1:86 2:60 120 77:5 60:7

�
$87:3

Table 2.2: Deterministic algorithm solution information. Wall clock time is presented in the format
seconds/hours/days, with some of that information ommitted whenever it is redundant. The thickness
upper bound dU is given in the units of nanometers.

L Convergence Time (sec) Solution (optimal merit, popt)

1 11:9 0:106;
�
1:93 148

�
2 42:1 0:0462;

�
1:57 2:38 100 65:9

�
3 104 0:0135;

�
1:32 1:86 2:60 120 77:5 60:8

�
Table 2.3: Stochastic algorithm solution information for the �rst design problem.

ner approximation, corresponding to m = 10 and n = 10 in (2.2)). We use a 3rd order

Taylor expansion (chosen arbitrarily) for constructing the lower bound on the merit func-

tion for this example, as for the last example. Thicknesses and refractive indices of every

layer are used as design variables (thereby specifying the design vector p). Thicknesses

are assumed variable in [5; 500]nm, which we believe to be representative of con�gura-

tions reliably realizable on our sputtering system (described in detail in the next chapter),

although we do make the thickness interval narrower for the harder problems (observe

that in moving from a thicker interval to a smaller one in the previous example, as in this

example, the global solution does not change provided the original solution was contained

in it). As before, refractive indices are assumed to be variable in the interval [1:09; 2:60].

For this merit function, we compare our model to data from the literature (the result in

[19]) and found the discrepancy to be only 0:13% (3:66% versus 3:79% measured in that

work). This suggests that our modeling error is less than 0:2% and leads us to set the

absolute convergence tolerance to 0:1%. Deterministic algorithm solution information is

shown in Table 2.4 and stochastic in Table 2.5. Note again that the stochastic tool �nds

the solution, albeit without any guarantee. Also, observe that the three layer solution can

be approximated fairly closely using the practical materials MgF2, Y2O3 and the rutile
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phase of TiO2 (these exact refractive indices have been reported in the literature for these

materials). MgF2 could be substituted by other 
uorides such as LiF and NaF, Y2O3 by

other oxides such as HfO2 (hafnium oxide) and TiO2 by high index materials such as ZnS.

L dU Wall Clock Time Iterations Solution (merit, popt) EC2 Cost

1 500 22:5 136 0:112;
�
1:93 153

�
$0:30

2 500 118513=32:9 202134 0:0526;
�
1:55 2:37 109 68:3

�
$6:90

2 250 44093=12:2 110744 0:0526;
�
1:55 2:37 109 68:4

�
$3:90

3 200 1663253=462=19:3 935599 0:0182;
�
1:31 1:85 2:60 131 80:8 61:9

�
$159

Table 2.4: Deterministic solution information for the second numerical example. Wall clock time
is presented in the format seconds/hours/days, with some information omitted when redundant. The
thickness upper bound dU is given in the units of nanometers.

L Convergence Time (sec) Solution (optimal merit, popt)
1 66:6 0:112;

�
1:93 153

�
2 295 0:0526;

�
1:55 2:37 109 68:4

�
3 918 0:0182;

�
1:31 1:85 2:60 131 81:0 61:5

�
Table 2.5: Stochastic algorithm solution information for the second design problem.

2.5 Discussion and Conclusion

This chapter engineered the �rst ever, to the best of our knowledge, deterministic global

optimization algorithm for thin-�lm optical systems. Two important broadband problems

pertaining to reducing re
ection from silicon were looked at. In both the normal incidence

and the omnidirectional cases, the global solutions could be realized using practical (i.e.,

naturally occurring) materials, thereby not requiring the sophisticated nano-deposition

technology that has been used to realize the best performing devices for this problem in

recent times. This means that the use of sophisticated nanotechnology is not necessary

for this particular problem. Moreover, the solution does not require any toxic chemicals

and would work equally well for both polycrystalline and monocrystalline silicon, unlike

solutions based on texturing. Current state-of-the-art stochastic global optimization
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tools �nd the solution anyway, in every case we have looked at to date, but having the

rigorous guarantee provided by the algorithm developed in this work enables one to make

interesting rigorous theoretical statements (like the one just made previously/above). It

also must be emphasized that the stochastic tools do need to be used correctly to �nd the

global optimum. One can always construct a use case scenario where a global solution

has not been found when the stochastic algorithm terminates, for instance by picking

a termination criterion that is too loose. As problem complexity increases, we expect

the guarantee of global optimality to become more important (making it less likely that

a global solution was missed because the stochastic tool was terminated too early, for

instance). Moreover, di�erent design problems in this class, of similar complexity but a

higher degree of nonconvexity, may bene�t from improved solution information as well,

not just the guarantee. This work has demonstrated that it is possible to optimize

important practical problems in this class in a veri�ed fashion, with relatively small

branch-and-bound implementations. With further work (some potential directions are

outlined in the �nal chapter) it may become possible to have bigger implementations of

more e�cient algorithms, thereby solving even harder problems and making this class of

algorithms increasingly important.

We note also that all global solutions observed are gradient-index ones, i.e., the re-

fractive indices increase monotonically and thicknesses similarly decrease monotonically

from air to substrate. This has been widely conjectured to be true for antire
ection coat-

ings in the literature (provided the bandwidth is su�ciently wide, see for instance [33]).

This structural feature can be exploited to make the algorithm more e�cient as follows.

Create for every variable, other than those associated with the �rst layer, a variable to

lie on the interval [0; 1]. Call these, 8i > 1; p
ngi
i . Then, 8i > 1, set ni+1 = p

ngi
i ni. An

analogous constraint can be implemented for the thickness variables. In doing this, the

domain is reduced to a fraction that is 1

2
2(
PL�1
i=1

i)
of the original space. Here, the factor

of 2 in the exponent of the denominator is due to the fact that such conditions hold for

both the thickness and refractive index variables, while the summation term in the expo-
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nent of the denominator is due to the fact that for every inequality in the monotonicity

constraint, the space is reduced to half of its original size. This fraction is equal to 1, 1
4

and 1
64
for one, two and three layer problems respectively, promising signi�cant reduction

in convergence time. The refractive index fraction is shown for the three layer case, to

aid in visualization, in Figure 2-10. The inequalities in question here are

n1 � n2 � n3:

Three planes can be seen in the Figure, one for each inequality between the refractive

index variables (hence the reduction is 1
2
� 1

2
� 1

2
= 1

8
due to the refractive indices

and thereby 1
64
overall). For four layers, consider that this reduction is 1

4096
overall. This

exponential domain reduction mechanism promises to provide for very e�cient algorithms

for gradient-index systems. Consider, also, that there are other classes of optical systems

(for instance, gradient-index �bers and gradient-index lenses) where this constraint is

imposed a priori for practical reasons, so that this domain reduction mechanism may be

more widely applicable than thin-�lm antire
ection coatings. Finally, observe that the

domain reduction can be used by any optimization algorithm, not just a branch-and-

bound or even a deterministic one.
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Figure 2-10: Visualization of domain reduction mechanism of refractive index subset of the search
space for the three layer case. For each inequality constraint, there is a reduction of the original domain
by a factor of two, so in this case there are three factors leading to a reduction by a factor of one-eighth.
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Chapter 3

Experimental Realization of

Optimized Broadband

Omnidirectional Antire
ection

Coatings for Silicon

3.1 Overview

In this chapter, an important engineering system is experimentally demonstrated using

the algorithms and theory developed in the previous chapter as a guide. More speci�cally,

some e�cient broadband omnidirectional antire
ection coatings for silicon are demon-

strated.

To harness most of the solar energy over the course of the day, the surface of a silicon

solar cell must achieve low re
ection at all relevant angles of incidence and over the entire

wavelength range relevant to the operation of the cell. For design purposes in this chapter,

the incident angle range is selected to be between 0 and 60 degrees since at higher angles,

the intensity of sunlight is low and the light is more likely to be blocked from reaching

the panel by obstacles such as trees. The wavelength range is selected to be between
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400nm and 1600nm. Although silicon absorbs little to no radiation above 1100nm,

higher wavelengths might be important for solar upconversion applications. Moreover,

wavelength below 1600nm but above 1100nm may also be important for silicon photonic

applications, such as reducing injection losses into silicon waveguides. We however also

specialize our result for wavelengths between 400nm and 1100nm for the case of silicon

photodetectors exclusively, while also weighing di�erent incident angles and wavelengths

di�erently depending on energy content of incident sunlight, for the case of silicon solar

cells exclusively. The reader is referred to the beginning of the previous chapter for some

discussion of current state-of-the-art in solving that problem.

In this chapter, a practical coating, approximating the global solution to this problem,

is demonstrated to achieve average re
ection that is competitive with the best devices

that have been realized prior to this work. We believe this coating is the most widely

applicable one of the lot, since it should work well for both monocrystalline and poly-

crystalline silicon. It is also realized using materials that have widely been reported to be

susceptible to low-cost atmospheric deposition techniques such as spray-coating (vacuum

systems are used in this work, mostly due to convenience).

The rest of this chapter is organized as follows. A representative sample of the appa-

ratus used in the experiment is documented in the �rst section. Then, the experimental

procedure is detailed in the second section. The experimental results obtained are pre-

sented and discussed in the third section. Some modi�cations to the design problem and

corresponding experimental results are addressed in the subsequent section before the

chapter is concluded.

3.2 Apparatus

The �gures below visually catalog a representative sample of the apparatus used in the ex-

periment. Figure 3-1 shows the control panel of the AJA International Inc ATC ORION

sputtering system used in the majority of the experiment, located in the Microsystems
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Technology Laboratories (MTL) at MIT (two other systems, one located in the Crystal

Physics and Electroceramics Laboratory and the other in the Organic and Nanostruc-

tured Electronics Laboratory, were used as supplements). Figure 3-2 shows the vacuum

chamber of the system. Figure 3-3 shows a close-up view of the inside of the vacuum

chamber during deposition. Material targets (bottom) are bombarded by high energy

particles (visible as plasma in the image) leading to the ejection of particles from the

target and unto the rotating silicon wafer substrate. The setup used to characterize

wide angle re
ection (between 20 degrees and 70 degrees, the bounds being hardware

constraints on the equipment) from the device prototype is shown in Figure 3-4. This

setup is a VARIAN Cary 500 Spectrophotometer, �tted with one of its variable angle

specular re
ectance accessories (VASRA), located in the Center for Material Science and

Engineering (CMSE) at MIT. A p16 stylus pro�lometer used to determine the thick-

nesses of single �lms mechanically (for refractive index characterization, once a step edge

had been appropriately created), located in CMSE, is shown in Figure 3-5. A Filmet-

rics re
ectometer (model F20), used to extract refractive index values from single �lms

whose thickness had already been determined using pro�lometry (mathematically, this

step amounts to reducing the number of parameters for the relevant inverse problem

thereby making it more identi�able), located in MTL, is shown in Figure 3-6 (a model

F40 located in CMSE was used as a supplement). It performs this extraction by �tting

a model to normal incidence re
ection from the �lm. This tool was also used to char-

acterize the normal incidence re
ection from the device, as documented in the section

after the next. A spectrophotometer made by Aquila instruments (nkd-8000), which is

not shown, was used to check for consistency in wide angle measurement data from the

Cary spectrophotometer at 30 degrees incident radiation for both polarizations of light.
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Figure 3-1: AJA sputtering system control panel.

Figure 3-2: AJA sputtering system vacuum chamber.

55



Figure 3-3: Closeup view of a vacuum chamber during deposition, showing plasma emanating from
target onto a silicon substrate.

Figure 3-4: VARIAN Cary 500 wide angle measurement setup.
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Figure 3-5: p16 stylus pro�lometer.

Figure 3-6: Filmetrics re
ectometer.
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3.3 Experimental Procedure

Material targets (Y2O3, TiO2 and MgF2) were circular with radius of 25mm. These

were obtained from the Kurt J. Lesker company and had a 99:9% purity. Silicon wafers

were obtained from MTL. They were not Piranha cleaned with HF prior to deposition as

simulations revealed that the approximately 2nm native oxide layer only leads to around

0:2% change in re
ection, which was considered to be negligible given big picture values

attainable and not worth the HF safety hazard and extra cost. Targeted deposition times

were determined iteratively using pro�lometry on single layers. TiO2 was deposited in

Argon at 500 degrees Celsius substrate temperature (this was done to achieve a signif-

icantly higher index than would be achieved at room substrate temperature, i.e., 2:33)

and at 160 Watts applied power. This was done for 46 minutes to achieve the required

thickness on the system described (the targeted thicknesses are given precisely in the

previous chapter). During the characterization process, the materials were assumed to

be nondispersive and nonabsorbing, consistent with the modeling assumptions in the

previous chapter. Refractive index of the deposited TiO2 was measured to be 2:55. Y2O3

was deposited in Argon at room substrate temperature for 64 minutes at 140 Watts ap-

plied power to achieve the desired thickness. Index was measured to be 1:90. MgF2 was

deposited in 25% O2 and 75% Argon at 180 Watts at room substrate temperature for a

duration of 7 hours and 18 minutes. The index was measured to be 1:40. It is hereby

noted that the introduction of oxygen is necessary to eliminate absorption of sputtered

MgF2 (without oxygen, the extinction coe�cient was measured to be approximately 0:13,

which is signi�cant), but it does increase the deposition time and thereby processing cost.

Accepting some absorption for a lower cost might be worthwhile in practical scenarios

when sputtering needs to be used. It is also worthwhile to note that relatively high de-

position power is necessary, to keep targets at a relatively high temperature and induce

sputtering in the form of molecules [16], otherwise sputtering in the form of atoms may

occur leading to a reaction of magnesium with oxygen and the formation of MgO (the

resulting �lm has a signi�cantly higher index than what is needed, which was experienced
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during process development described in this work). During the characterization process,

all three materials were found to be nonabsorbing.

3.4 Results and Discussion

In Figure 3-7 can be seen the normal incidence re
ection from our device. There is some

discrepancy between the experimental data and model-based prediction of the experi-

mental result (labelled as \Simulated Experimental Re
ection" in that �gure - this is

the model prediction for refractive index �gures listed in the previous section together

with the thicknesses 130nm, 86nm and 46nm, as determined by re
ectometry and con-

�rmed by transmission electron microscopy, as shown in Figure 3-8). This di�erence can

probably be attributed to some dispersion in the materials and some characterization

error (recall that the thin-�lm materials were treated as nondispersive nonabsorbing in

the previous chapter). There is clearly a discrepancy between experimental re
ection of

3:84% at normal incidence and the theoretically attainable 1:51%. This di�erence can be

attributed to the signi�cant discrepancy between targeted and attained refractive indices,

as well as the signi�cant error in thicknesses (the worst thickness error, in the TiO2 layer

thickness, is 15nm). Note, however, that the performance of 3:84% is competitive with

the nanotech result of 3:79% (recall also that the nanotech solution is less practical).

This appears to suggest that the design is quite robust to experimental error, i.e., it has

good sensitivity properties and shows good performance despite signi�cant experimental

error.

The wide angle re
ection measurements are shown in Figures 3-9 and 3-10. This is

done between angles of 20 degrees and 70 degrees (not 0 and 60) as dictated by con-

straints on the wide angle characterization hardware. This data shows that the excellent

performance of the coating is maintained at even higher angles than were designed for.

Note the exceptionally good performance for p polarized incident light. An average re-


ection of 4:2% is achieved. In contrast, the seven layer nanoporous coating achieves
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3:79% re
ection on average. These �gures are strongly competitive with currently best-

known solutions, such as [36], which quotes �gures around 3:9% at normal incidence in

the range 400 to 700 nm and 6:1% in the same range but over incident angles between

40 and 90 degrees. Again, this competing three layer design is made with impractical

materials. Finally, we show what the silicon surface looks like visually in Figure 3-11,

con�rming that it looks \dark" to the eye, relative to untreated silicon, indicating low

re
ection visually.

While these preliminary results are promising, we clearly need to improve them. The

�rst obvious factor that needs to be addressed is thickness control. The second clear factor

is the discrepancy in matching practical refractive indices to the ideal ones. The third

factor is the nondispersive assumption of the modeling process in the previous chapter.

Moreover, we want to see how much more performance can be attained by narrowing the

wavelength range to [400nm; 1100nm] and weighting di�erent wavelengths and incident

angles di�erently depending on energy content. The next section reports on experiments

we did to address these issues.
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Figure 3-7: Normal incidence re
ection from antire
ection coating and relevant comparisons.
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Figure 3-8: Transmission electron microscopy cross-section of coating.

Figure 3-9: Wide angle re
ection from antire
ection coating for s polarization of incident radiation.
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Figure 3-10: Wide angle re
ection from antire
ection coating for p polarization of incident radiation.

Figure 3-11: Image of surface of a silicon wafer coated with �rst prototype. Note how dark the surface
looks compared to the uncoated silicon wafer underneath.
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3.5 Modi�cations and Improvements

Wavelengths were �rst limited to the range between 400nm and 1100nm, for the purposes

of a general silicon photodetector, and the optimization procedure was reran. This yielded

the solution vector

popt =
h
1:15 1:66 2:60 139 87:3 56:2

i
;

which corresponds to the average re
ectance value of 1:02%. Matching practical mate-

rials with closest refractive indices, we get MgF2, Al2O3 and rutile TiO2. In order to

achieve better thickness control, fabrication was moved to the sputtering system located

in the Organic and Nanostructured Electronics Laboratory. This system is equipped

with a quartz crystal monitor (QCM) for �ner thickness monitoring but does not possess

a substrate heating capability. To address this drawback, we attempted post deposi-

tion annealing of TiO2 at a variety of temperatures (100, 200, 300, 400 and 500 degrees

Celsius), with the maximum index attained at 300 degrees. MgF2 was deposited using

thermal evaporation to explore better ways to control absorption. Refractive indices were

characterized as a function of wavelength to account for dispersion using a spectroscopic

ellipsometer. Before annealing, the index of TiO2 was measured to be 2:49 on average,

increasing to 2:52 after annealing. Clearly, the index of TiO2 was found to be relatively

high on this system (which is probably why annealing only had a marginal e�ect). The

indices of MgF2 and Al2O3 were measured to be 1:38 and 1:68 on average respectively.

Every material took under an hour to deposit. All materials were found to be nonabsorb-

ing. Annealing was eliminated from the process to save cost and time. The optimization

was reran with indices constrained to these values (only the thicknesses varied) to yield

the solution vector

popt =
h
1:38 1:68 2:49 79:2 42:4 53:7

i
;
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and a merit function (average re
ection) value of 2:13%. A stack was deposited to ap-

proximate this, its normal incidence re
ection and wide angle re
ection (for a subset of

the wavelength range, for practical reasons) shown in Figures 3-12 and 3-13 respectively.

Visual inspection is shown in Figure ??. While the surface indeed looks very dark to the

naked eye, hints of violet are consistent with the rapid increase in re
ectance below 460

nm. Thicknesses were measured to be
h
74:9 44:0 58:8

i
. It is clear that while this

device is signi�cantly better than the �rst prototype described in the previous section,

in terms of thickness control (maximum error being under 5nm) and match between

theory and experiment, we can do even better. Modeling was adjusted to account for

dispersion. The indices for the three materials, characterized as a function of wavelength

using spectroscopic ellipsometry, are shown in Figure 3-14. The design was specialized

for solar energy as follows. Wavelengths were weighted using the well-known AM1:5

photon 
ux spectrum to account for di�erent levels on energy in terrestrial sunlight and

incident angles were weighted using the benchmark SOLIS model [1]. The SOLIS model

incorporates the sinusoidal variation of energy during the day, with light at higher an-

gles traveling through a longer atmospheric path length and thereby being even further

attenuated. With all this incorporated, the problem was again reoptimized. This yielded

the thickness vector
h
83:5 39:8 51:6

i
with the corresponding weighted merit func-

tion value being 2:43%. The stack was deposited, with the QCM tooled immediately

prior to the deposition, and the resulting thicknesses were measured using spectroscopic

ellipsometry and con�rmed using stylus pro�lometry. The resulting thickness vector was

found to be
h
84:6 39:8 51:3

i
. Normal incidence re
ection is shown in Figure 3-16,

broadband omnidirectional re
ection in Figure 3-17 and visual appearance in Figure 3-

18. Near-perfect �t between theory and experiment is attained and the surface of the

silicon (quite literally) looks black visually. Note that the violet coloring is gone since

the peak is signi�cantly sharper. Moreover, the rapid rise contributes little to the merit

function, since the AM1:5 spectrum decreases rapidly in that regime. Next, we com-

pare our device experimentally to the SunPower texture, which is the state-of-the art

64



texturing solution for solar energy. To give a sense of the texture shape, we show an

atomic force microscopy (AFM) image of the surface roughness in Figure 3-19. Then,

we measure di�use re
ection from the textured surface using an integrating sphere, and

compare it to the experimental re
ection from our device at 30 degree incident radia-

tion. The result is shown in Figure 3-20, showing that our result is signi�cantly better

than the state-of-the-art texturing approach. Finally, we reoptimize theoretically up to

90 degrees incident radiation. This yields the thickness vector
h
83:7 41:3 51:7

i
and

a corresponding merit function value of 2:86%. This shows that higher angles are only

marginally important.
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Figure 3-12: Normal incidence re
ection from next-to-�nal prototype.
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Figure 3-13: Broadband omnidirectional re
ection from next-to-�nal prototype.
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Figure 3-14: Characterization of dispersion using ellipsometry.
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Figure 3-15: Image of surface of a silicon wafer coated with next-to-�nal prototype.
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Figure 3-16: Normal incidence re
ection from �nal prototype.
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Figure 3-17: Broadband omnidirectional re
ection from �nal prototype.

Figure 3-18: Image of surface of a silicon wafer coated with �nal prototype. Note how dark the surface
(on the right) looks compared to the silicon wafer underneath. On the left is the step edge system used
to compare thicknesses of each layer mechanically using stylus pro�lometry
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Figure 3-19: AFM of SunPower texture
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3.6 Conclusion

Arguably the best broadband omnidirectional antire
ection coating technology for silicon

solar energy to date has been demonstrated in this chapter. This claim can be made

because this device is the best practical result in the literature. Moreover, it appears

that the coating is relatively robust to experimental error, the competitiveness with

existing solutions is maintained despite signi�cant experimental error. Not only is this

device practical in the sense that it uses real materials, the realization technology was

chosen to be a mixture of RF sputtering and thermal evaporation because it (together

with the experimental process that was developed) scales up readily industrially and is

susceptible to factory automation. Thus, the industrial infrastructure necessary to build

this device on real solar cells on a large scale is already in place. The experimental

process can be optimized further to lower both the cost and the re
ection value. One

way to achieve this is to increase the index of sputtered TiO2 further by increasing the

substrate temperature during deposition (indices as high as 2:8 have been reported at 600

degrees substrate temperature [26]). Cost can be lowered by optimizing the experimental

process to lower sputtering time for the MgF2, by omitting the introduction of O2 in its

deposition and accepting some absorption. Alternatively, thermally evaporated �lms,

deposited relatively quickly, do not appear to be absorbing.
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Chapter 4

Bounding the Solutions of

Parametric Weakly Coupled

Semilinear Parabolic Partial

Di�erential Equation Systems

4.1 Overview

In this chapter, two novel techniques for bounding the solutions of parametric weakly-

coupled second-order semilinear parabolic PDEs are developed. The �rst provides a the-

orem to construct interval bounds while the second provides a theorem to construct lower

bounds convex and upper bounds concave in the parameter vector. The convex/concave

bounds (which we alternatively refer to as relaxations) can be signi�cantly tighter than

the interval bounds due to the wrapping e�ect su�ered by interval analysis in dynamic

systems. Both types of bounds are computationally cheap to construct, requiring solv-

ing auxiliary systems twice and four times larger than the original system respectively.

Illustrative numerical examples of bound construction and use for deterministic global

optimization within a simple serial branch and bound algorithm, implemented numeri-
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cally using interval arithmetic and a generalization of McCormick's relaxation technique

respectively, are presented. The bounds may also be applicable to rigorously quantifying

parametric uncertainty of problems within this class. To the best of our knowledge, this

is the �rst example of such bounds for this class of problems. The particular motivation

that drove this work is rigorous optimization of semiconductor problems (based on the

drift-di�usion-Poisson system of equations). Particular examples of such problems in-

clude recovery of inorganic semiconductor doping pro�les from data, design of inorganic

semiconductor doping pro�les to minimize leakage currents and thickness optimization

of bulk heterojunction organic photovoltaic devices. More generally, problems within the

important class of reaction-di�usion systems with di�usion coe�cients that are not state

dependent may be optimized rigorously with these tools.

4.2 Introduction

Reaction-di�usion systems with di�usion coe�cients that are not state dependent can be

modeled using semilinear parabolic partial di�erential equations (PDEs) (state depen-

dence of di�usion coe�cients would render the system quasilinear). An important and

well-known example is the heat equation with source term nonlinear in the temperature.

One may be faced with the task of �tting such a model to experimental data by formulat-

ing an optimization problem. The resulting optimization problem is typically nonconvex,

making it desirable to develop a global optimization method for problems involving this

class of di�erential equations, to ensure that the best possible �t can be obtained and

that the descriptive power of this class of important models can be robustly evaluated.

Alternatively, one may be interested in coming up with a global solution to a design

problem involving this important class of di�erential equations. Unlike stochastic global

optimization methods, such as genetic algorithms and simulated annealing, deterministic

global optimization using a branch-and-bound algorithm can provide a guarantee that

the global optimum has been identi�ed to within a �nite tolerance (governed by practical
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considerations such as modeling error). This is achieved when the algorithm converges,

since it represents a constructive procedure for locating the global optimum. The critical

component of such an algorithm is the construction of parametric bounds on the PDE

solution.

The problem of bounding the solutions of parametric ordinary di�erential equations

(ODEs) has received much attention in the literature. Harrison [12] described a technique

to construct interval pointwise in time bounds on the solutions of parametric ODEs. He

used an existence-comparison result due to Walter [47] to achieve this. Unfortunately,

most real systems do not satisfy a stringent condition of quasimonotonicity (which re-

quires the o�-diagonal entries of each source function's Jacobian to preserve its sign in

its domain), in which case these bounds are often too weak to be useful. This is due to

the wrapping e�ect of interval analysis [12] [28], the di�culty stemming from employing

bounds parallel to the coordinate axes. This motivated the demonstration of the con-

struction of a�ne in the parameter bounds on the solutions of parametric ODEs in [44].

These bounds employ McCormick's relaxation technique, are signi�cantly stronger under

nonquasimonotonicity and are trivially both convex and concave in the parameter. Un-

fortunately, they include arbitrary user-speci�ed components that directly in
uence the

quality of the bounds and may be unsuitable under high nonlinearity in the parameter

[42]. This motivated the construction of nonlinear convex lower and concave upper in the

parameter bounds for ODEs using a generalization of McCormick's relaxation technique

in [42]. It is also possible to suppress the wrapping e�ect using validated integrators

based on Taylor models [30], but such an approach is signi�cantly more computationally

expensive than the aforementioned methods (due to the relatively high computational

cost of Taylor models), which only require the regular integration of auxiliary systems

four times larger than the original system.

In this chapter, two novel techniques for bounding the solutions of parametric weakly-

coupled second-order semilinear parabolic PDEs are developed. The �rst provides a the-

orem to construct interval bounds while the second provides a theorem to construct lower
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bounds convex and upper bounds concave in the parameter. The convex/concave bounds

can be signi�cantly tighter than the interval bounds due to the wrapping e�ect su�ered

by interval analysis in dynamic systems. Both types of bounds are computationally

cheap to construct, requiring solving auxiliary systems twice and four times larger than

the original system respectively. Illustrative numerical examples of bound construction

and use for deterministic global optimization within a simple serial branch and bound

algorithm, implemented numerically using interval arithmetic and a generalization of

McCormick's relaxation technique, are presented. The bounds may also applicable to

quantifying parametric uncertainty of problems within this class. To the best of our

knowledge, this is the �rst example of such bounds for this class of problems. The partic-

ular motivation that drove this work is optimization of semiconductor problems (which

are based on the drift-di�usion-Poisson system of equations). Particular examples of such

problems include recovery of inorganic semiconductor doping pro�les from data, design

of inorganic semiconductor doping pro�les to minimize leakage currents (this is arguably

the most important problem in the semiconductor industry) and thickness optimization

of bulk heterojunction organic photovoltaic devices (we hereby note that bilayer organic

photovoltaic devices are described by a quasilinear parabolic PDE system due to the

electric �eld dependence of the di�usion coe�cients, whereas in the bulk heterojunction

case detailed simulations and some experimental evidence have revealed that electric

�eld remains constant in the device [18] [17]). More generally, problems within the im-

portant class of reaction-di�usion systems, where the di�usion coe�cients are not state

dependent, may be optimized with these tools.

We note, before proceeding, that all the results we use to prove the theorems in this

chapter, are taken from the well-studied method of lower and upper solutions (much

like what Harrison did, but broader since we do not address interval bounds only but

also relaxations). This was done on purpose, we believe that the immense body of work

associated with this method, coupled with the solution strategies we develop here, can

provide for a solution program to extend these bounds systematically into other classes
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of di�erential equations.

The rest of this chapter is organized as follows. In Section 4.3, the problem is de�ned

mathematically and the construction of the di�erent types of bounds is motivated by out-

lining how they are used by a simple deterministic branch-and-bound global optimization

procedure. In Section 4.4, theorems for constructing the di�erent types of bounds are

formulated and proved and simple illustrative analytic examples are presented. Finally,

Section 4.5 presents a pair of simple numerical examples.

4.3 Preliminaries

4.3.1 Parametric Semilinear Parabolic PDE System

Theory is developed in one spatial dimension for simplicity, but the same results can

be directly extended to multiple spatial dimensions. Denote the spatial coordinate by

x 2 R. Let 
 be a bounded or an unbounded open spatial domain in R, with boundary

@
 and closure �
. For any tf > 0, denote the temporal domain by T � (0; tf ] and the

temporospatial domain by Q � 
�T , denoting its closure by �Q. Let � � @
�T and let

p 2 P �
�
pL;pU

�
denote the parameter vector. Intervals between vector functions are

componentwise and pointwise in their domain. Denote by C
�
�Q
�
the space of functions

continuous in �Q, and by Cm;l (Q) the space of functions with derivatives up to mth order

with respect to (w.r.t.) x and up to lth order w.r.t. t continuous in Q.

For each p 2 P , and every i 2 Iu � f1; :::; nug, de�ne an operator as follows:

Liui;p (x; t) � ai (x; t)
@2ui;p
@x2

(x; t) + bi (x; t)
@ui;p
@x

(x; t) ; 8 (x; t) 2 Q: (4.1)

Then, de�ne an operator as follows:

Liui;p (x; t) �
@ui;p
@t

(x; t)� Liui;p (x; t) ; 8 (x; t) 2 Q: (4.2)
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If, for every i 2 Iu, ai is positive in Q, the operators Li and Li are said to be elliptic and

parabolic respectively (in multiple spatial dimensions, this requirement dictates that the

corresponding matrix be positive-de�nite). Then, the coupled system of a �nite number

nu of equations

Liui;p (x; t) = fi (up (x; t) ; x; t;p) ; 8 (x; t) 2 Q; (4.3)

Biui;p (x; t) = hi (x; t;p) ; 8 (x; t) 2 �;

ui;p (x; 0) = ui;0 (x;p) ; 8x 2 
:

is parabolic. This system is weakly-coupled in the sense that the coupling source function

f does not depend on state spatial derivatives. Dependence of the state variable up 2 Rnu

on p is denoted by the subscript to indicate that it is implicit. Bi denotes a linear

boundary operator of the form

Biui;p (x; t) � �i (x; t)
@ui;p
@�

(x; t) + �i (x; t)ui;p (x; t) ; 8 (x; t) 2 �; (4.4)

with
@ui;p
@�
(�; t) for each t 2 T denoting the outward normal spatial derivative of ui;p (�; t)

on @
, and

�i (x; t) � 0; �i (x; t) � 0; �i (x; t) + �i (x; t) > 0; 8 (x; t) 2 �: (4.5)

Well-known assumptions required by the existence of a classical solution to (4.3) are

made, the interested reader being referred to Section 2:1:1 of [34], for instance, for a

detailed discussion. These are a set of continuity and consistency assumptions on the

various functions involved, among which H�older continuity in Q of order in (0; 1) is
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particularly important. For notational brevity, it is convenient to rewrite (4.3) as follows:

Liui;p = fi (up; x; t;p) inQ; (4.6)

Biui;p = hi (x; t;p) on �;

ui;p (x; 0) = ui;0 (x;p) in 
:

4.3.2 A Simple Serial Branch-and-Bound Method

Here, a procedure for deterministic branch-and-bound global optimization is outlined, to

motivate the constructions of the bounds on up. The classic reference for branch-and-

bound theory is [15]. Consider an optimization problem of the form

popt = argmin
p2P

8<:O (p) = X
(x;t)2Qm

� (up (x; t) ; x; t;p)

9=; : (4.7)

Here, O denotes a potentially nonconvex on P objective function, e.g. least squares or

maximum likelihood in parameter estimation problems. Standard optimization software

(e.g. fmincon in MATLAB) can only yield a locally optimal solution O (ploc) in the

vicinity of the initial guess. A branch-and-bound algorithm can determine the globally

optimal solution O (popt) to within some �nite �O tolerance, by recursively bounding the

solution on progressively smaller subintervals of the parameter space. A local optimizer

can be used to obtain an upper bound by initializing it anywhere on the subinterval

(another approach is to just evaluate the objective function anywhere on the subinterval).

The corresponding lower bound can be obtained in one of two ways. If a pointwise in

�Q interval bound
�
uL;uU

�
on up is available, standard interval arithmetic [28] can be

used to propagate it (along with P ) through � to obtain a corresponding interval bound�
OL; OU

�
on O. If a pointwise in �Q bound

�
uCVp ;uCCp

�
on up is available, with u

CV
p

being convex and uCCp being concave on P , a generalization of McCormick's relaxation

technique (which is discussed later on in this chapter) can be applied to obtain an interval
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bound
�
OCV (p) ; OCC (p)

�
on O (p) for each p 2 P , with OCV being convex and OCC

being concave on P . OCV can then be locally optimized on the subinterval to yield the

lower bound (this uses the well-known fact that the local minimum of a convex function is

its global minimum). To aid visualization, the di�erent types of bounds are illustrated in

Figure 4-1 for a univariate objective function. A generalization of McCormick's relaxation

technique will be used to construct
�
uCVp ;uCCp

�
later on in this paper, and will be discussed

in more detail at that time. If the objective lower bound on any subinterval is higher

than the least upper bound known so far (LUB, or incumbent), the global solution cannot

exist on it and the subinterval is excluded from further consideration. If the least lower

bound on the remaining subintervals (LRLB) is not within �O of the LUB, one subinterval

is bisected on a uniformly randomly selected parameter into 2 intervals to be bounded

and added to the active interval list. The process is initiated with P and continued

until the LRLB is within �O of LUB. At this point, an optimal solution is available as

the parameter corresponding to the LUB (this solution, by construction, is known to be

within �O of the global solution). A sample illustrative iteration of the procedure, with

the convex bound being employed to lower bound the objective on each subinterval, is

shown in Figure 4-2. We see that we need to construct bounds for the PDE solution

that are either intervals or convex lower and concave upper in the parameter (bounds

also typically referred to as convex and concave relaxations, or simply relaxations, in the

global optimization literature).

ppL pU

OU

OL

Key

OCC

OCV

O

Figure 4-1: Di�erent types of bounds for the objective function O.
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Figure 4-2: An iteration of the branch-and-bound procedure.

4.4 Bounds

4.4.1 Theorems

Here, key theorems used to construct the bounds, are stated and proved by drawing

on some rather well-known results in the literature. The following existence-comparison

theorem is key for the construction of the interval bounds. Unless made explicit otherwise,

the order relation � should henceforth be taken to be componentwise and pointwise in

the domain for vector functions.

Theorem 1 Consider (4.6) for some p 2 P and assume that a pair of functions v andw

in C2;1 (Q) \ C
�
�Q
�
satisfy the following inequality 8i 2 Iu:

Livi � fi (z; x; t;p)jz2[v;w]; zi=vi in Q; (4.8)

Bivi � hi (x; t;p) on �;

vi (x; 0) � ui;0 (x;p) in 
;

Liwi � fi (z; x; t;p)jz2[v;w]; zi=wi in Q;

Biwi � hi (x; t;p) on �;

wi (x; 0) � ui;0 (x;p) in 
;

with it being assumed that each fi is continuously di�erentiable in the state (with the

derivative being bounded in Q), which implies that it is Lipschitz in the state, on [v;w],
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i.e., 9Ki 2 R+ such that

��fi �y1; x; t;p�� fi �y2; x; t;p��� � Ki

nuX
j=1

��y1j � y2j �� ; 8 �y1;y2� 2 [v;w]� [v;w] : (4.9)
Then, there exists a unique solution up to (4.6), and it is ordered as v � up � w.

Proof. Implicit in the statement of the theorem is that such a pair of functions is

necessarily ordered as v � w. Hence, we �rst show that such a pair of functions is

necessarily ordered as v � w. For this purpose, subtract the top half of (4.8) from the

lower half to obtain the following inequality 8i 2 Iu:

Li (wi � vi) � fi (z; x; t;p)jz2[min(v;w);max(v;w)]; zi=wi (4.10)

� fi (z; x; t;p)jz2[min(v;w);max(v;w)]; zi=vi in Q;

Bi (wi � vi) � 0 on �;

(wi � vi) (x; 0) � 0 in 
:

Then, observe that the following inequality is implied:

Li (wi � vi) �

0@ fi (z; x; t;p)jzi=wi
� fi (z; x; t;p)j zi=vi

1A������
z2[min(v;w);max(v;w)]

in Q; (4.11)

Bi (wi � vi) � 0 on �;

(wi � vi) (x; 0) � 0 in 
:

Whenever wi = vi, the right hand side of 4.11 is 0. Now, whenever wi 6= vi, apply the

mean value theorem to deduce the following inequality:

Li (wi � vi) � @fi
@zi

(z; x; t;p)

����
zi=�

(wi � vi)
�����
z2[min(v;w);max(v;w)]

in Q; (4.12)

Bi (wi � vi) � 0 on �;

(wi � vi) (x; 0) � 0 in 
;
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where � is an intermediate value (pointwise) between wi and vi for each z in [min (v;w) ;max (v;w)].

Now, since @fi
@zi
is bounded in Q for each z in [min (v;w) ;max (v;w)]. Then, by a positiv-

ity lemma for (4.6) (see Lemma 2:2:1 in [34]) that is itself a consequence of the maximum

principle for the parabolic operator (4.2), it follows that wi � vi � 0,8i 2 Iu, i.e., that

v � w. Having shown this, the existence of a unique solution up ordered as v � up � w

is a direct consequence of a theorem due to C.V. Pao (see Theorem 8:9:3 in [34]). That

theorem says that if v � w, then a unique solution up ordered as v � up � w exists,

i.e., having shown the order v � w here, the order v � up � w for the unique solution

up follows from C.V. Pao's theorem. He proved that theorem by constructing a monotone

sequence of functions, with v and w as the initial condition for the iteration, to converge

to up from above and below.

The following theorem is key for the construction of the convex/concave bounds.

Theorem 2 Consider the pair of scalar PDEs:

Liui;p = fi (x; t;p) inQ; (4.13)

Biui;p = hi (x; t;p) on �;

ui;p (x; 0) = ui;0 (x;p) in 
;

i.e., i 2 f1; 2g. Assume that, for some p 2 P , the following inequality holds:

f1 (x; t;p) � f2 (x; t;p) inQ; (4.14)

h1 (x; t;p) � h2 (x; t;p) on�;

u1;0 (x;p) � u2;0 (x;p) in
:

Then, the solutions are ordered as u1;p � u2;p.

Proof. See Theorem 2:2:1 in [34].
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4.4.2 Interval Bound

We next construct an interval bound on the solution to (4.6).

Theorem 3 Consider a pair of functions uL and uU satisfying the following inequality

8i 2 Iu:

LiuLi � inf
uL(x;t)�z�uU (x;t); zi=uLi (x;t); p2P

ffi (z; x; t;p)g inQ; (4.15)

BiuLi � inf
p2P

fhi (x; t;p)g on�;

uLi (x; 0) � inf
p2P

fui;0 (x;p)g in
;

LiuUi � sup
uL(x;t)�z�uU (x;t); zi=uUi (x;t); p2P

ffi (z; x; t;p)g inQ;

BiuUi � sup
p2P

fhi (x; t;p)g on�;

uUi (x; 0) � sup
p2P

fui;0 (x;p)g in
;

with it being assumed that each fi is continuously di�erentiable in the state (with the

derivative being bounded in Q), which implies that it is Lipschitz continuous in the state,

on
�
uL;uU

�
. Then, there exists a unique solution up to (4.6) for each p 2 P , ordered as

uL � up � uU .

Proof. For each p 2 P , uL and uU satisfy the hypotheses of Theorem 1.

Consider the following simple example application of this theorem.

Example 4 Consider the following scalar PDE for some p 2 P :

@up
@t
(x; t)� @

2up
@x2

(x; t) = ep
3

; 8 (x; t) 2 Q; (4.16)

with the boundary and initial conditions not being parameter dependent. An auxiliary
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system satisfying (4.15) is obtained as follows:

@uL

@t
(x; t)� @

2uL

@x2
(x; t) = e(p

L)
3

; 8 (x; t) 2 Q; (4.17)

@uU

@t
(x; t)� @

2uU

@x2
(x; t) = e(p

U)
3

; 8 (x; t) 2 Q;

with the same initial and boundary conditions as the original PDE. Here, we have used

the fact that the source function is monotonically increasing in p to deduce that:

ep
3 2

h
e(p

L)
3

; e(p
U)

3i
; 8p 2 P: (4.18)

In general, standard interval arithmetic can be used to obtain an interval bound for

the range of the right-hand side, thereby obtaining a valid auxiliary system of the form

(4.15), with a variety of software tools (e.g., INTLAB for MATLAB [40]) being available

to automate the process.

4.4.3 Relaxations

In this subsection, it is assumed that an interval bound
�
uL;uU

�
has been constructed as

speci�ed in the previous subsection (this also establishes the existence of a unique solution

up for each p 2 P ). We are interested in constructing convex and concave relaxations

of each ui;p on P , i.e., a pair of functions u
cv
i;p and u

cc
i;p that are respectively convex and

concave on P pointwise in �Q, and respectively lower bounds and upper bounds pointwise

in �Q for each p 2 P . The following theorem is used to achieve this.

Theorem 5 For some p 2 P , consider a pair of functions ucvp and uccp satisfying the
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following equality 8i 2 Iu:

Liucvi;p = fCVi
�
ucvp ;u

cc
p ; x; t;p

�
inQ; (4.19)

Biucvi;p = hCVi (x; t;p) on�;

ucvi;p (x; 0) = uCVi;0 (x;p) in 
;

Liucci;p = fCCi
�
ucvp ;u

cc
p ; x; t;p

�
inQ;

Biucci;p = hCCi (x; t;p) on�;

ucci;p (x; 0) = uCCi;0 (x;p) in
:

Here, the superscripts CV and CC should be taken to mean that these functions are

respectively valid convex relaxations and concave relaxations of the original right-hand

side functions, provided ucvp and u
cc
p are respectively valid convex and concave relaxations

of up. Moreover, assume that each f
CV
i and fCCi is globally Lipschitz in ucvp and uccp ,

i.e., 9KCV
i 2 R+ and 9KCC

i 2 R+ such that

��fCVi �
y1;y3; x; t;p

�
� fCVi

�
y2;y4; x; t;p

��� (4.20)

� KCV
i

 
nuX
j=1

��y1j � y2j ��+ nuX
j=1

��y3j � y4j ��
!
; 8
�
y1;y2;y3;y4

�
2 Rnu � Rnu � Rnu � Rnu ;��fCCi �

y1;y3; x; t;p
�
� fCCi

�
y2;y4; x; t;p

���
� KCC

i

 
nuX
j=1

��y1j � y2j ��+ nuX
j=1

��y3j � y4j ��
!
; 8
�
y1;y2;y3;y4

�
2 Rnu � Rnu � Rnu � Rnu :

Then, ucvp and u
cc
p are valid convex relaxations and concave relaxations of up respectively.

Proof. For each p 2 P , under the assumed global Lipschitz continuity of each fCVi
and fCCi in ucvp and u

cc
p , the sequence in C

2;1 (Q)\C
�
�Q
�
, with successive iterates de�ned
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by

Liucv;k+1i;p = fCVi
�
ucv;kp ;ucc;kp ; x; t;p

�
in Q; (4.21)

Biucv;k+1i;p = hCVi (x; t;p) ; 8 (x; t) 2 �;

ucv;k+1i;p (x;0) = uCVi;0 (x;p) ; 8x 2 
;

Liucc;k+1i;p = fCCi
�
ucv;kp ;ucc;kp ; x; t;p

�
in Q;

Biucc;k+1i;p = hCCi (x; t;p) ; 8 (x; t) 2 �;

ucc;k+1i;p (x;0) = uCCi;0 (x;p) ; 8x 2 
;

8i 2 Iu converges to the unique solution u
cv
p ; u

cc
p to (4.19) from any initial estimate

in C2;1 (Q) \ C
�
�Q
�
. See Theorem 8:9:1 in [34] for proof. The formal reason behind

this is that the mapping between successive iterates is a contraction mapping on the

Banach space C2;1 (Q) \ C
�
�Q
�
. For every p 2 P , choose ucv;0p and ucc;0p to be uL and

uU respectively. Assume that the following inequalities hold at step k for any distinct

parameter pair p1; p2 2 P and any � 2 (0; 1):

ucv;kp � up � ucc;kp ; 8p 2 P; (4.22)

ucv;k�p1+(1��)p2 � �ucv;kp1
+ (1� �)ucv;kp2

;

�ucc;kp1
+ (1� �)ucc;kp2

� ucc;k�p1+(1��)p2 :

Note that these are valid at k = 0. These inequalities capture the fact that ucv;kp ; ucc;kp are

valid relaxations of up, and hence f
CV
i ; hCVi ; uCVi;0 ; f

CC
i ; hCCi and uCCi;0 are valid relaxations

of their respective functions at step k. Simultaneously, consider the following sequence:

Liuk+1i;p = fi
�
ukp; x; t;p

�
in Q; (4.23)

Biuk+1i;p = hi (x; t;p) on �;

uk+1i;p (x; 0) = ui;0 (x;p) in 
;

85



8i 2 Iu, initiated at up such that it remains there 8k. Some algebra implies from (4.21)

that the following:

Li
�
�ucv;k+1i;p1

+ (1� �)ucv;k+1i;p2

�
= �fCVi

�
ucv;kp1

;ucc;kp1
; x; t;p1

�
(4.24)

+ (1� �) fCVi
�
ucv;kp2

;ucc;kp2
; x; t;p2

�
in Q;

Bi
�
�ucv;k+1i;p1

+ (1� �)ucv;k+1i;p2

�
= �hCVi (x; t;p1) + (1� �)hCVi (x; t;p2) on �;�

�ucv;k+1i;p1
+ (1� �)ucv;k+1i;p2

�
(x; 0) = �uCVi;0 (x;p1) + (1� �)uCVi;0 (x;p2) in 
;

and the following:

Liucv;k+1i;�p1+(1��)p2 = fCVi

�
ucv;k�p1+(1��)p2 ;u

cc;k
�p1+(1��)p2 ; x; t;�p1 + (1� �)p2

�
in Q;

Biucv;k+1i;�p1+(1��)p2 = hCVi (x; t; �p1 + (1� �)p2) on �; (4.25)

ucv;k+1i;�p1+(1��)p2 (x;0) = uCVi;0 (x; �p1 + (1� �)p2) in 
;

equalities are valid for any distinct parameter pair (p1; p2) 2 P � P and any � 2 (0; 1).

Analogous equalities are valid for the concave overestimating portion. Then, simply

comparing right-hand side values between (4.24) and (4.25) using Theorem 2, implies

that ucv;k+1�p1+(1��)p2 � �u
cv;k+1
p1

+(1� �)ucv;k+1p2
. Similarly, comparing right-hand side values

between (4.23) and the top half portion of (4.21), also using Theorem 2, implies that

ucv;k+1p � up; 8p 2 P . Analogous comparisons guarantee up � ucc;k+1p ; 8p 2 P; and that

�ucc;k+1p1
+(1� �)ucc;k+1p2

� ucc;k+1�p1+(1��)p2 for any distinct parameter pair (p1; p2) 2 P �P

and any � 2 (0; 1). Thus, we know by induction that ucvp and uccp are valid relaxations,

i.e., that

ucvp � up � uccp ; 8p 2 P;

ucv�p1+(1��)p2 � �ucvp1 + (1� �)u
cv
p2
; (4.26)

�uccp1 + (1� �)u
cc
p2

� ucc�p1+(1��)p2 ;
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for any distinct parameter pair (p1; p2) 2 P � P and any � 2 (0; 1).

The above theorem is readily implemented using a generalization of McCormick's

relaxation technique [43], which was used to construct relaxations of ODE solutions in

[42] and required the same conditions as we require here. We next brie
y describe the

technique in the remainder of this section. The following theorem, originally proved by

McCormick in 1976 [24], but presented here in the form of [27], is the cornerstone of this

technique.

Theorem 6 (McCormick's composition theorem) Let Z � Rn and X � R be nonempty

convex sets. Consider the composite function g = F �o, where o : Z �! R is continuous,

F : X �! R, and let o (Z) � X. Suppose that a convex relaxation oCV : Z �! R and

a concave relaxation oCC : Z �! R of o on Z are known. Let FCV : X �! R be a

convex relaxation of F on X, let FCC : X �! R be a concave relaxation of F on X, let

xmin 2 X be a point at which FCV attains its in�mum on X, and let xmax 2 X be a point

at which FCC attains its supremum on X. Then, gCV : Z �! R,

gCV (z) = FCV
�
mid

�
oCV (z) ; oCC (z) ; xmin

��
; 8z 2 Z; (4.27)

is a convex relaxation of g on Z, and gCC : Z �! R,

gCC (z) = FCC
�
mid

�
oCV (z) ; oCC (z) ; xmax

��
; 8z 2 Z; (4.28)

is a concave relaxation of g on Z. Here, mid is just the median of the three input values.

The well-known fact that the sum of two convex functions is convex provides a rule

for relaxing binary sums. A speci�c rule also exists for relaxing binary products, but

it is not presented explicitly here in the interest of brevity (refer to [24], [27] and [43]

for details). These three rules de�ne McCormick's relaxation technique. Any function

which can be expressed as a �nite recursive composition of binary sums, binary products

and a given library of intrinsic functions, referred to as a factorable function, may be

87



relaxed using this technique. This is a rather general class of functions, including nearly

all functions that can be represented �nitely on a computer [27].

The �rst step in applying this technique is to decompose a given function into a �nite

recursive composition of binary sums, binary products and intrinsic functions. Then, the

interval-valued independent variable in which relaxations are to be constructed is treated

as a function with an interval bound for its range speci�ed by the interval on which

the independent variable can take its values and both convex and concave relaxations

speci�ed by the independent variable value. At each stage of this composition, standard

interval arithmetic is used to obtain an interval bound for the range of that stage, and

McCormick's relaxation rules are used to relax it (making sure to truncate relaxations

to fall on the interval bound after they have been constructed). At the �nal stage, an

interval bound for the range of the original function and its relaxations on the independent

variable interval are available. Consider the following simple example to �x this idea.

Example 7 Consider the following function:

g (p) = ep
3

+ p3; 8p 2 P = [�1; 1] : (4.29)

We are interested in obtaining a convex relaxation of g on P , gCV . Then, consider the

�nite recursive composition (the intrinsic functions here being power and exponential):

�1 = p; �2 = �
3
1; �3 = e

�2 ; �4 = �3 + �2; (4.30)

with �4 representing the original function g. Use the speci�ed interval for the interval-

valued independent variable p to specify:

�L1 = �1; �U1 = 1; �CV1 (p) = p; �CC1 (p) = p: (4.31)
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Since �2 is monotonically increasing in �1 deduce:

�L2 =
�
�L1
�3
= �1; �U2 =

�
�U1
�3
= 1: (4.32)

The �BB relaxation rule [2] can be used to obtain the following relaxations for �2:

�cv2 (�1) = �
3
1 + 3

�
�21 � 1

�
; �cc2 (�1) = �

3
1 � 3

�
�21 � 1

�
: (4.33)

Truncate these to lie on
�
�L2 ; �

U
2

�
(recalling that max and min functions preserve convexity

and concavity respectively) as follows:

�CV2 (�1) = max
�
�L2 ; �

cv
2 (�1)

�
= max

�
�1; �31 + 3

�
�21 � 1

��
; (4.34)

�CC2 (�1) = min
�
�U2 ; �

cc
2 (�1)

�
= min

�
1; �31 � 3

�
�21 � 1

��
:

Since the exponential function is convex, its convex relaxation on its domain is also the

exponential function. Moreover, since it is a monotonically increasing function, it attains

its in�mum at the lower bound of its domain. Then, McCormick's composition theorem

can be applied to relax �3 as follows:

�CV3 (�1) = emid(�
CV
2 (�1);�CC2 (�1);�L2 ) (4.35)

= emid(max(�1;�
3
1+3(�21�1));min(1;�31�3(�21�1));�1):

Finally, the convex relaxation of �4 is obtained as follows:

�CV4 (�1) = �CV3 (�1) + �
CV
2 (�1) (4.36)

= emid(max(�1;�
3
1+3(�21�1));min(1;�31�3(�21�1));�1) + max

�
�1; �31 + 3

�
�21 � 1

��
:
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In other words, the convex relaxation of g in p is given by the following:

gCV (p) = emid(max(�1;p
3+3(p2�1));min(1;p3�3(p2�1));�1) (4.37)

+max
�
�1; p3 + 3

�
p2 � 1

��
: (4.38)

The validity of this relaxation is illustrated in Fig. 4-3.
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McCormick Composition Example

d

dCV

dL

dU

Figure 4-3: McCormick's relaxation technique example.

The generalization of McCormick's relaxation technique developed in [43] is analo-

gous to the original McCormick relaxation technique, the exception being that one is

also allowed to treat dependence of the function to be relaxed on intermediate variables

that are known to be functions of the independent variable in which relaxations are to

be constructed (with this dependence not being known explicitly). Assuming that a

valid interval bound for the intermediate variable, along with valid relaxations, on the

independent variable interval is available, by treating each intermediate variable as a

function with the given interval bound and relaxations (making sure the relaxations have

been truncated to lie on the interval bound), one is able to obtain valid relaxations of

the function in the independent variable using the standard McCormick relaxation rules

similarly. Consider the following simple example to �x this idea.
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Example 8 Consider the following function:

g (p) = ep
3

+ up; 8p 2 P = [�1; 1] : (4.39)

Here, up is a function whose dependence on p is not known explicitly, but whose range

is known to be bounded on P by
�
uL; uU

�
and whose relaxations are known to be ucvp

and uccp . Truncate these relaxations to lie on
�
uL; uU

�
as uCVp = max(ucvp ; u

L) and

uCCp = min(uccp ; u
U) (recalling that max and min functions preserve convexity and con-

cavity respectively). We are interested in obtaining a convex relaxation of g on P , gCV .

Then, consider the �nite recursive composition:

�1 = p; �2 = �
3
1; �3 = e

�2 ; �4 = up; �5 = �3 + �4; (4.40)

with �5 representing the original function g. Given that �1, �2 and �3 are the same as in

Example 7, they are not treated explicitly again. Then, the convex relaxation of �5 is:

�CV5 (�1) = �CV3 (�1) + �
CV
4 (�1) (4.41)

= emid(max(�1;�
3
1+3(�21�1));min(1;�31�3(�21�1));�1) + �CV4 (�1) :

In other words, the convex relaxation of g in p, gCV , is given by the following:

gCV (p) = emid(max(�1;p
3+3(p2�1));min(1;p3�3(p2�1));�1) + max(ucvp ; u

L): (4.42)

In order to employ this generalization of McCormick's relaxation technique to apply

Theorem 5, up is treated as an intermediate variable with lower bound, upper bound, con-

vex relaxation and concave relaxation on P being uL; uU ; uCVp = mid
�
uL;uU ;ucvp

�
and

uCCp = mid
�
uL;uU ;uccp

�
respectively. This is used to obtain the relaxations fCVi and fCCi

for each fi. In [43], it is established that these relaxations are Lipschitz in u
CV
p and uCCp

on
�
uL;uU

�
(given a minimal set of assumptions on the various basic elements of the con-
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struction, all of which are satis�ed by the C++ library libMC [27] which automates this

construction for a given library of intrinsic functions). Then, fCVi and fCCi are indeed each

globally Lipschitz in ucvp and u
cc
p (this fact is also used by the analogous ODE relaxation

theory in [42]), satisfying the key hypothesis of Theorem 5. Note that since in the proof to

Theorem 5 ucv;kp � up � ucc;kp ; 8p 2 P; for all k, i.e., ucv;kp � uU and uL � ucc;kp ; 8p 2 P;

for all k, we may rede�ne uCVp = max
�
uL;ucvp

�
and uCCp = min

�
uU ;uccp

�
in the gener-

alized McCormick relaxation construction (as opposed to uCVp = mid
�
uL;uU ;ucvp

�
and

uCCp = mid
�
uL;uU ;uccp

�
). The relaxations hCVi ; uCVi;0 ; h

CC
i and uCCi;0 are constructed using

the standard McCormick relaxation technique since no implicit parameter dependence

is involved. Once uCVp and uCCp have been solved for, the generalized McCormick relax-

ation technique is used to obtain an interval bound
�
OCV (p) ; OCC (p)

�
on O (p) for each

p 2 P , with OCV being convex and OCC being concave on P (recall Equation (4.7)).

Consider the following simple example to help �x this idea.

Example 9 Consider the following PDE for each p 2 P = [�1; 1]:

@up
@t
(x; t)� @

2up
@x2

(x; t) = ep
3

+ up; 8 (x; t) 2 Q; (4.43)

with initial and boundary conditions that do not carry parameter dependence, and assume

that an interval bound
�
uL; uU

�
has already been constructed for up using Theorem 1. The

convex relaxation of up for each p 2 P can then be obtained by solving the following PDE:

@ucvp
@t

(x; t)�
@2ucvp
@x2

(x; t) (4.44)

= emid(max(�1;p
3+3(p2�1));min(1;p3�3(p2�1));�1) + max(ucvp ; u

L); 8 (x; t) 2 Q;

with the same initial and boundary conditions. Here, we have used the generalized convex

McCormick relaxation of the source function obtained in Example 8. Note that in general,

however, that the equations for ucvp and uccp will be coupled.
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4.4.4 The Case of State Spatial Derivatives Coupled to Param-

eter Dependence

When parameter dependence is coupled to the state spatial derivatives, i.e., when the

elliptic operator in (4.1) takes the following form for each p 2 P :

Liui;p (x; t;p) � ai (x; t;p)
@2ui;p
@x2

(x; t) + bi (x; t;p)
@ui;p
@x

(x; t) ; 8 (x; t) 2 Q; (4.45)

the construction of interval bounds does not change much, i.e., one solves the PDE system

de�ned by the following inequalities:

@uLi
@t
(x; t)� inf

p2P

n
ai (x; t;p)

@2uLi
@x2

(x; t) + bi (x; t;p)
@uLi
@x
(x; t)

o
� inf

uL(x;t)�z�uU (x;t); zi=uLi (x;t); p2P
ffi (z; x; t;p)g ; 8 (x; t) 2 Q;

BiuLi (x; t) � inf
p2P

fhi (x; t;p)g ; 8 (x; t) 2 �;

uLi (x; 0) � inf
p2P

fui;0 (x;p)g ; 8x 2 
;

(4.46)

@uUi
@t
(x; t)� sup

p2P

n
ai (x; t;p)

@2uUi
@x2

(x; t) + bi (x; t;p)
@uUi
@x
(x; t)

o
� sup

uL(x;t)�z�uU (x;t); zi=uUi (x;t); p2P
ffi (z; x; t;p)g ; 8 (x; t) 2 Q;

BiuUi (x; t) � sup
p2P

fhi (x; t;p)g ; 8 (x; t) 2 �;

uUi (x; 0) � sup
p2P

fui;0 (x;p)g ; 8x 2 
;

8i 2 Iu in place of 4.15. Maximal and minimal over the spatial domain spatial homo-

geneity can be employed to handle this case for constructing valid relaxations, i.e., for
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any p 2 P one solves the ODE system de�ned by the following equalities:

ducvi;p
dt

(t) = min

0B@ min
x2


�
fCVi

�
ucvp (t) ;u

cc
p (t) ; x; t;p

�	
;

min
x2�

n
@
@t

hCVi
�i
(x; t;p)

o
1CA ; 8t 2 T;

ducci;p
dt

(t) = max

0B@ max
x2


�
fCCi

�
ucvp (t) ;u

cc
p (t) ; x; t;p

�	
;

max
x2�

n
@
@t

hCCi
�i
(x; t;p)

o
1CA ; 8t 2 T; (4.47)

ucvi;p (0) = min
x2�


�
uCVi;0 (x;p)

	
;

ucci;p (0) = max
x2�


�
uCCi;0 (x;p)

	
;

8i 2 Iu in place of (4.19). The proofs for the validity of these bounds are analogous

to what was presented for the case of no parameter dependence coupled to state spatial

derivatives, so there is no need to present them in detail.

4.5 Numerical Demonstration

First, a numerical note. Systems are solved using the method of lines (MOL), discretizing

them on the spatial domain using the three-point-centered �nite di�erence scheme on a

uniform grid of spatial nodes and integrating the resulting coupled ODE system forward

in time using the C + + CVODES ODE solver [13]. McCormick relaxations for the

right-hand sides are constructed by the open source C + + library libMC [27]. Interval

arithmetic is performed using a combination of libMC and INTLAB. The local optimizer

used is the fmincon optimizer in MATLAB. All C++ code was linked to MATLAB using

its mex interface (we are interested in rapid prototyping here, rather than e�ciency).

Note that since in both examples the source function is polynomial in the state, the

continuous di�erentiability hypothesis of Theorem 3 is trivially true.

The following parameter estimation example involves a semilinear parabolic PDE

system of two equations, coupled through a quasimonotone function, so attention is re-

stricted to the interval bounds. This is an example from chemical kinetics, a simpli�ed
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version of the Belousov-Zhabotinskii reaction-di�usion system. Section 12:2 of [34] dis-

cusses the physical meaning behind each state variable as it pertains to the underlying

chemical reaction network.
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Figure 4-4: Objective and bounds over parameter interval for the �rst numerical example.
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Figure 4-5: Convergence information of a sample run of the deterministic global optimization procedure
for the �rst numerical example.

Example 10 Consider the following least squares parameter estimation problem:

min
p2P

8<: X
(x;t)2 �Qm

(um1 (x; t)� u1;p (x; t))
2 +

X
(x;t)2 �Qm

(um2 (x; t)� u2;p (x; t))
2

9=; ; (4.48)
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involving the following system:

@u1;p
@t
(x; t) = @2u1;p

@x2
(x; t) + u1;p (x; t) (p1 � p2u1;p (x; t)� 2u2;p (x; t)) ;

8 (x; t) 2 (0; 1)� (0; 0:01] ;
@u2;p
@t
(x; t) = @2u2;p

@x2
(x; t)� 2u1;p (x; t)u2;p (x; t) ; 8 (x; t) 2 (0; 1)� (0; 0:01] ;

(4.49)

subject to the following time-independent boundary conditions:

u1;p (0; t) = sin (p1) + 1; u2;p (0; t) = sin (p2) + 1; 8t 2 (0; 0:01] ; (4.50)

u1;p (1; t) = sin (p2) + 1; u2;p (1; t) = sin (p3) + 1; 8t 2 (0; 0:01] ;

and initial conditions speci�ed as a line between these boundary values. P is taken to

be [1; 10] � [1; 10] � [1; 10]. The sample u1;p trajectory corresponding to all parameters

set to 2 is used as the data to be �tted, um1 (x; t) and u
m
2 (x; t),

�Qm being speci�ed by the

temporospatial grid on which the PDE is solved, so that this is known to be the global

solution a priori. Visualizing the objective over P (with p3 �xed at 2), along with the

bounds constructed using Theorem 3 as shown in Fig. 4-4 illustrates their validity. Con-

vergence information for a sample run of the deterministic global optimization procedure

is shown in Fig. 4-5.

The following example involves a semilinear parabolic PDE in two variables, coupled

through a nonquasimonotone function, so relaxations are constructed along with the

interval bounds.

Example 11 Consider the following design problem:

min
p2P

(X
x2�
m

u1;p (x; tf )

)
; (4.51)
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Figure 4-6: Objective and its bounds for the second numerical example (the objective is red).

involving the coupled parabolic system de�ned for each p 2 P by the following equations:

@u1;p
@t

(x; t)� @
2u1;p
@x2

(x; t) = p1u1;p (x; t) ; 8 (x; t) 2 (0; 1)� (0; 1] ;

@u2;p
@t

(x; t)� @
2u2;p
@x2

(x; t) = �p2

 
u1;p (x; t)� u2;p (x; t) +

(u2;p (x; t))
3

3

!
;(4.52)

8 (x; t) 2 (0; 1)� (0; 1] ;

(i.e., tf = 1). Time-independent boundary conditions are speci�ed by the following:

u1;p (0; t) = 1; u2;p (0; t) = 1; 8 (t;p) 2 (0; 1]� P; (4.53)

u1;p (1; t) = 1; u2;p (1; t) = 1; 8 (t;p) 2 (0; 1]� P;

and initial conditions speci�ed as a line between these boundary values. P is speci�ed as

[1; 5]� [1; 5]. �
m is speci�ed by the uniform spatial grid of 100 points on which the PDE

is solved. The objective is visualized, along with its interval bounds and relaxations, on

P , in Fig. 4-6. We see that all bounds are valid, and that the relaxations are signi�cantly

better than the interval bounds.
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Chapter 5

Conclusions and Future Directions

This chapter addresses future directions presently under exploration to expand on the

algorithmic and mathematical work that has been done in this thesis. For future direc-

tions pertaining to the antire
ection coating device, please refer to the conclusion section

of Chapter 3. First, issues pertaining to the multilayer system branch-and-bound solver

are discussed.

As discussed in Chapter 2, the parallelization strategy that we were limited to by the

parallelization tools built into COSY INFINITY is better suited for a shared memory sys-

tem. It is prudent then to test algorithm performance on other parallel infrastructures.

These include a tightly coupled IBM Blue Gene Q supercomputer, for instance, and

better suited for this algorithm, than Amazon, distributed-memory (or perhaps more

appropriately, grid-computing) systems like Pro�tBricks. Any one server provided by

this service possesses 64 cores (for a total of 128 threads if hyperthreading were enabled),

which should make it possible to run the algorithm with dynamic scheduling in an envi-

ronment that is four times larger. This latter service is also better because it is subject

to lower communication latency due to In�niBand technology used for communication

between servers (which has been widely been reported to be up to eight times faster

than the ethernet paradigm of services such as Amazon). Developing better scheduling

techniques is a necessary next step that should permit a more e�ciently parallelized algo-
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rithm independent of the nature of the parallel infrastructure being used. The well-known

scheduling technique of work-stealing might be ideal for this application.

Many ideas have been discussed regarding further directions that may improve the

serial branch-and-bound solver, e.g., testing other less mature techniques developed to

address the dependency problem, such as Hansen's generalized interval arithmetic [10],

a�ne arithmetic [6], a more thorough comparison of selection for bisection rules (in par-

ticular, testing gradient-based rules for choosing bisection directions [37] may be a fruitful

exercise). The incumbent search procedure can be improved by locally optimizing from

the midpoint of any given subinterval, for instance (COSY INFINITY does have some

local optimizers built into it). Another popular approach to bounding the range of a

function is �BB [2], if the function is twice-di�erentiable (the resulting lower bound is

convex, and must be locally optimized to obtain the lower bound for the merit on any

given subinterval). It has been used to predict protein structure [8]. This technique re-

quires bounds on entries of the Hessian (the matrix of the second-order partial derivatives

w.r.t. p) of the function, which has traditionally being obtained using interval arithmetic

coupled to automatic di�erentiation techniques. Yet another approach to bounding the

range of a function is McCormick's relaxation technique [24], applicable to factorable

functions (the resulting lower bound is convex). It is similar to interval arithmetic in

that there is a rule for every simple step in the computation of the function, and each

such step is coupled to an interval arithmetic step. It should then be clear that both �BB

and McCormick's relaxation technique are also plagued by the dependency problem in

their traditional form. Exploring the applicability of a hybridization of �BB with Taylor

arithmetic, where Taylor arithmetic is employed to obtain bounds on the Hessian rather

than interval arithmetic coupled to automatic di�erentiation (the derivation of an explicit

expression for the transfer-matrix model Hessian would be necessary for this purpose),

may be a fruitful exercise (how would such bounds compare with bounds from Taylor

arithmetic?). We have numerical evidence that �BB exhibits signi�cantly better con-

vergence than interval bounds (albeit when interval arithmetic, not Taylor arithmetic, is
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used in the comparison, using the toolbox INTLAB to bound the Hessian). Hybridizing

McCormick's relaxation technique with Taylor arithmetic (with Taylor arithmetic replac-

ing interval arithmetic) may similarly be a fruitful exercise. Moreover, a popular set of

domain reduction techniques [41] may further improve the algorithm. Makino's range

reduction technique (see Theorem 9:1 in [31]), in particular, is capable of making branch-

and-bound algorithms based on Taylor arithmetic signi�cantly more e�cient. Finally, it

is stressed that if a coordinate transformation can be found to eliminate or reduce the

dependency problem prior to applying interval arithmetic (another approach that has

been used to alleviate the dependency problem in the literature, and something that we

explored with no success), the algorithm may become signi�cantly better since such an

approach would analytically exploit problem structure to reduce the dependency prob-

lem before applying the signi�cantly cheaper (than Taylor arithmetic) interval arithmetic

(an approach of this type was developed for linear static structural mechanics problems

in [29], although in the context of an interval Finite Element Method). Other analytic

approaches for alleviating the dependency problem prior to applying interval arithmetic,

such as those outlined in [32], some drawing on the analytic properties the transfer-matrix

model may have, may also be possible. Some workers have found that multisection (a par-

tition being subdivided into more than two subintervals at every iteration), rather than

bisection, can have an acceleration e�ect on the convergence of branch-and-bound algo-

rithms, perhaps warranting investigation in this context. Another recently popularized

approach to accelerating branch-and-bound algorithms is exploiting graphical processing

units (GPUs), an approach that we hope to explore in the future (Amazon o�ers GPU

enhanced instances, for instance). More thorough comparison of selection rules (with

regards to space complexity, for instance) may be warranted. Depth-�rst search, for in-

stance, is well-known to take much less memory in a variety of applications, even when

it corresponds to a slower convergence time.

We also aim to explore the intersection of machine learning and branch-and-bound.

In particular, explanation-based machine learning algorithms for learning structure of
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arbitrary problems and thereby alleviating the inherent worst-case exponential complex-

ity of branch-and-bound algorithms [38]. The word arbitrary here is used in the sense

that the special structure of the said problem cannot be exploited analytically at the

time the optimization problem is being tackled, the way in this thesis it was shown one

can improve the e�ciency of an optimization algorithm for gradient-index systems by

reducing the domain accordingly. These algorithms work by learning which control in-

formation leads to faster convergence (which portion of the search space to bisect into

at any given step of the algorithm and along which direction?). One can imagine �rst

solving a few small instances of any given problem to learn this information and then

using this problem solving experience to solve larger, practical instances of the problem.

Alternatively, one can imagine having a lot of users looking at a problem and sharing

this information through a server that aggregates it, learns from it and shares it to all

workers to help improve their solution process. This (machine-learning) we believe to be

the future of the �eld of deterministic nonconvex programming and is something we hope

to explore with future research. We believe this to be the future because it would enable

the exploitation of structure of arbitrary problems without the costly scienti�c process

of discovering structural features for narrow problem subclasses as is done today (and of

which the gradient-index discussion in this thesis is a particular example).

The algorithm developed in this work can be used on a variety of other thin-�lm

design problems. Antire
ection coatings alone present many potential applications, e.g.,

reducing glare from medical glasses. As we have shown that for gradient index systems,

e�cient deterministic algorithms can be developed, a natural next step is to extend

these ideas to other gradient-index optical systems, such as gradient-index lenses and

gradient-index optical �bers used in �ber optic communication.

Now, we discuss extensions to the mathematical theory developed within these pages.

The mathematical theory that was developed in this work needs to be used on a speci�c

practical problem to fully demonstrate its usefulness. We are presently exploring the

application of this theoretical tool to the optimization of the power conversion e�ciency
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of homo-tandem organic solar cells. This problem corresponds to determining how many

layers to compose the device of and how thick to make each layer, given some promising

donor-acceptor combination composing each layer. In particular the combination of the

fullerene C70 and DBP has recently been shown to provide power conversion e�ciencies

approaching 7% in a single bulk heterojunction layer [48]. This is an emerging solar

technology with a lot of potential niche applications - the 
exibility and low cost of these

devices makes them suitable for novel applications such as placement in everyday clothes.

However, low e�ciencies limit the broad adoption of this technology. It is generally

believed that an e�ciency of about 15% is needed for wide scale adoption, while presently

a record e�ciency of 12% has been achieved by the �rst commercial out�t in this domain,

the German company Heliatek. A properly conducted mathematical optimization study

coupled to experiments, which has not yet been done, to the best of our knowledge,

could be the di�erence. Another very important speci�c problem that can be addressed

by these mathematical tools is the design of inorganic semiconductors. This problem

is also based on the drift-di�usion-Poisson system of equations. In particular, arguably

the most important question in the semiconductor industry is how to choose the spatial

doping pro�le to minimize leakage current. There is reason to believe that one can

engineer very e�cient deterministic algorithms for this problem, as the Karush-Kuhn-

Tucker conditions were recently shown to partially decouple [5]. The ability to fabricate

and characterize these devices is available in MTL at MIT. It is prudent to reiterate

that this thesis provides the �rst theoretical foundation, to the best of our knowledge,

to allow rigorous optimization of semiconductor problems like these two. Theoretically

speaking, we intend to back up the conjecture made at the beginning of the thesis that

the mathematical theory can serve as a solution program for bounding other classes of

di�erential equations by extending it accordingly.
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Appendix A

Detailed Stack Evolution for a

Simple Example

In this Appendix, stack evolution for the one layer normal incidence problem for a sub-

set of the search space, i.e., where the refractive index varies in the interval [1:09 1:50]

and thickness varies in the interval [5 50] nanometers, is completely visualized on two

processes. The reason this is done is to make sure there is no ambiguity in the descrip-

tion of the algorithm, following these numbers should help the reader con�rm that our

algorithm is correct in �nding the global optimum with a guarantee (assuming rigor of

the lower bounds). The reason we choose only a subset of the search space is in order to

make convergence relatively fast (only 8 iterations, of which the �rst four iterations are

shown), so as for the amount of information to be analyzed to be limited and tractable.

Before proceeding, we �rst show the evolution of the incumbent at every iteration,

presenting the numbers in detail so that the reader can match with the numbers on the

stack:

0.1951627287405621

0.1889819981410793

0.1826910528334099

0.1797446180783397
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0.1797446180783397

0.1797446180783397

0.1797446180783397

0.1797446180783397

Next, we show the evolution of the least remaining lower bound globally at every

iteration:

0.1490836923045543

0.1537899704751392

0.1613456666575919

0.1616551786607268

0.1722584925402127

0.1725051390631530

0.1779414179602290

0.1791074874851764
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Then, we show the evolution of the stack for the �rst four iterations on the �rst pro-

cess:

***************************************************************

Preliminary debug stu�...

pL:

1.090000 5.000000

pU:

1.500000 100.0000

dL:

5.000000000000000

dU:

100.0000000000000

***************************************************************

Stack after ramp up...

nps:

4.000000000000000

UVAL:

0.3042129694840464

0.2383290232911963

0.2349836471142173

0.1951627287405621

LVAL:

0.1490836923045543

0.1632466322657859

0.1930907180510398

0.1510579154202665

pLstack:
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1.090000 5.000000

1.295000 52.50000

1.397500 52.50000

1.397500 76.25000

pUstack:

1.295000 100.0000

1.397500 100.0000

1.500000 76.25000

1.500000 100.0000

|||||||||||||||||||||

Iteration number:

1.000000000000000

***************************************************************

Stack before pruning...

nps:

2.000000000000000

UVAL:

0.3042129694840464

0.2383290232911963

LVAL:

0.1490836923045543

0.1632466322657859

pLstack:

1.090000 5.000000

1.295000 52.50000

pUstack:

1.295000 100.0000

1.397500 100.0000
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active interval indices:

0.000000 0.000000

active intervals:

pL:

0.000000 0.000000

pU:

0.000000 0.000000

**************************************************************

Stack after pruning...

nps:

2.000000000000000

UVAL:

0.3042129694840464

0.2383290232911963

LVAL:

0.1490836923045543

0.1632466322657859

pLstack:

1.090000 5.000000

1.295000 52.50000

pUstack:

1.295000 100.0000

1.397500 100.0000

|||||||||||||||||||||

Iteration number:

2.000000000000000

|||||||||||||||||||||

indexing into global stack to extract active intervals on 1st process
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partitions extracted on this process->

active interval indices:

1.000000 1.000000

active intervals:

pL:

1.090000 5.000000

pU:

1.295000 100.0000

|||||||||||||||||||||

Iteration number:

2.000000000000000

***************************************************************

Stack before pruning...

nps:

4.000000000000000

UVAL:

0.3042129694840464

0.2383290232911963

0.3237282798328219

0.2808789513449836

LVAL:

0.1490836923045543

0.1632466322657859

0.2704156837017569

0.1920898887374683

pLstack:

1.090000 5.000000

1.295000 52.50000
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1.090000 5.000000

1.090000 52.50000

pUstack:

1.295000 100.0000

1.397500 100.0000

1.295000 52.50000

1.295000 100.0000

active interval indices:

1.000000 1.000000

active intervals:

pL:

1.090000 5.000000

pU:

1.295000 100.0000

**************************************************************

Stack after pruning...

nps:

1.000000000000000

UVAL:

0.2383290232911963

LVAL:

0.1632466322657859

pLstack:

1.295000 52.50000

pUstack:

1.397500 100.0000

|||||||||||||||||||||

Iteration number:
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3.000000000000000

|||||||||||||||||||||

indexing into global stack to extract active intervals on 1st process

partitions extracted on this process->

active interval indices:

1.000000 1.000000

active intervals:

pL:

1.295000 52.50000

pU:

1.397500 100.0000

|||||||||||||||||||||

Iteration number:

3.000000000000000

***************************************************************

Stack before pruning...

nps:

3.000000000000000

UVAL:

0.2383290232911963

0.2577287614722094

0.2227154654695186

LVAL:

0.1632466322657859

0.2210993143197687

0.1834596469663544

pLstack:

1.295000 52.50000
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1.295000 52.50000

1.295000 76.25000

pUstack:

1.397500 100.0000

1.397500 76.25000

1.397500 100.0000

active interval indices:

1.000000 1.000000

active intervals:

pL:

1.295000 52.50000

pU:

1.397500 100.0000

**************************************************************

Stack after pruning...

nps:

0.000000000000000

UVAL:

LVAL:

pLstack:

pUstack:

|||||||||||||||||||||

Iteration number:

4.000000000000000

***************************************************************

Stack before pruning...

nps:

2.000000000000000
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UVAL:

0.2577287614722094

0.2227154654695186

LVAL:

0.2210993143197687

0.1834596469663544

pLstack:

1.295000 52.50000

1.295000 76.25000

pUstack:

1.397500 76.25000

1.397500 100.0000

active interval indices:

2.000000 1.000000

active intervals:

pL:

1.295000 52.50000

pU:

1.397500 100.0000

**************************************************************

Stack after pruning...

nps:

0.000000000000000

UVAL:

LVAL:

pLstack:

pUstack:

|||||||||||||||||||||
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Finally we show the evolution of the stack for the �rst four iterations on the second

process:

***************************************************************

Preliminary debug stu�...

pL:

1.090000 5.000000

pU:

1.500000 100.0000

dL:

5.000000000000000

dU:

100.0000000000000

***************************************************************

Stack after ramp up...

nps:

4.000000000000000

UVAL:

0.3042129694840464

0.2383290232911963

0.2349836471142173

0.1951627287405621

LVAL:

0.1490836923045543

0.1632466322657859

0.1930907180510398

0.1510579154202665

pLstack:

1.090000 5.000000
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1.295000 52.50000

1.397500 52.50000

1.397500 76.25000

pUstack:

1.295000 100.0000

1.397500 100.0000

1.500000 76.25000

1.500000 100.0000

|||||||||||||||||||||

Iteration number:

1.000000000000000

***************************************************************

Stack before pruning...

nps:

2.000000000000000

UVAL:

0.2349836471142173

0.1951627287405621

LVAL:

0.1930907180510398

0.1510579154202665

pLstack:

1.397500 52.50000

1.397500 76.25000

pUstack:

1.500000 76.25000

1.500000 100.0000

active interval indices:
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0.000000 0.000000

active intervals:

pL:

0.000000 0.000000

pU:

0.000000 0.000000

**************************************************************

Stack after pruning...

nps:

2.000000000000000

UVAL:

0.2349836471142173

0.1951627287405621

LVAL:

0.1930907180510398

0.1510579154202665

pLstack:

1.397500 52.50000

1.397500 76.25000

pUstack:

1.500000 76.25000

1.500000 100.0000

|||||||||||||||||||||

Iteration number:

2.000000000000000

|||||||||||||||||||||

indexing into global stack to extract active intervals on 2nd process

partitions extracted on this process->
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active interval indices:

2.000000 2.000000

active intervals:

pL:

1.397500 76.25000

pU:

1.500000 100.0000

|||||||||||||||||||||

Iteration number:

2.000000000000000

***************************************************************

Stack before pruning...

nps:

4.000000000000000

UVAL:

0.2349836471142173

0.1951627287405621

0.2016385899662755

0.1889819981410793

LVAL:

0.1930907180510398

0.1510579154202665

0.1682811872638599

0.1537899704751392

pLstack:

1.397500 52.50000

1.397500 76.25000

1.397500 76.25000
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1.448750 76.25000

pUstack:

1.500000 76.25000

1.500000 100.0000

1.448750 100.0000

1.500000 100.0000

active interval indices:

2.000000 2.000000

active intervals:

pL:

1.397500 76.25000

pU:

1.500000 100.0000

**************************************************************

Stack after pruning...

nps:

2.000000000000000

UVAL:

0.2016385899662755

0.1889819981410793

LVAL:

0.1682811872638599

0.1537899704751392

pLstack:

1.397500 76.25000

1.448750 76.25000

pUstack:

1.448750 100.0000
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1.500000 100.0000

|||||||||||||||||||||

Iteration number:

3.000000000000000

|||||||||||||||||||||

indexing into global stack to extract active intervals on 2nd process

partitions extracted on this process->

active interval indices:

2.000000 2.000000

active intervals:

pL:

1.448750 76.25000

pU:

1.500000 100.0000

|||||||||||||||||||||

Iteration number:

3.000000000000000

***************************************************************

Stack before pruning...

nps:

4.000000000000000

UVAL:

0.2016385899662755

0.1889819981410793

0.1967231422981335

0.1826910528334099

LVAL:

0.1682811872638599
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0.1537899704751392

0.1766074510748749

0.1613456666575919

pLstack:

1.397500 76.25000

1.448750 76.25000

1.448750 76.25000

1.448750 88.12500

pUstack:

1.448750 100.0000

1.500000 100.0000

1.500000 88.12500

1.500000 100.0000

active interval indices:

2.000000 2.000000

active intervals:

pL:

1.448750 76.25000

pU:

1.500000 100.0000

**************************************************************

Stack after pruning...

nps:

3.000000000000000

UVAL:

0.2016385899662755

0.1967231422981335

0.1826910528334099
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LVAL:

0.1682811872638599

0.1766074510748749

0.1613456666575919

pLstack:

1.397500 76.25000

1.448750 76.25000

1.448750 88.12500

pUstack:

1.448750 100.0000

1.500000 88.12500

1.500000 100.0000

|||||||||||||||||||||

Iteration number:

4.000000000000000

|||||||||||||||||||||

indexing into global stack to extract active intervals on 2nd process

partitions extracted on this process->

active interval indices:

2.000000 1.000000

active intervals:

pL:

1.397500 76.25000

pU:

1.448750 100.0000

|||||||||||||||||||||

Iteration number:

4.000000000000000
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|||||||||||||||||||||

indexing into global stack to extract active intervals on 2nd process

partitions extracted on this process->

active interval indices:

2.000000 3.000000

active intervals:

pL:

1.448750 88.12500

pU:

1.500000 100.0000

|||||||||||||||||||||

Iteration number:

4.000000000000000

***************************************************************

Stack before pruning...

nps:

5.000000000000000

UVAL:

0.2016385899662755

0.1967231422981335

0.1826910528334099

0.1857196447674095

0.1797446180783397

LVAL:

0.1682811872638599

0.1766074510748749

0.1613456666575919

0.1684226171666425
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0.1616551786607268

pLstack:

1.397500 76.25000

1.448750 76.25000

1.448750 88.12500

1.448750 88.12500

1.474375 88.12500

pUstack:

1.448750 100.0000

1.500000 88.12500

1.500000 100.0000

1.474375 100.0000

1.500000 100.0000

active interval indices:

2.000000 3.000000

active intervals:

pL:

1.448750 88.12500

pU:

1.500000 100.0000

**************************************************************

Stack after pruning...

nps:

3.000000000000000

UVAL:

0.1967231422981335

0.1857196447674095

0.1797446180783397
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LVAL:

0.1766074510748749

0.1684226171666425

0.1616551786607268

pLstack:

1.448750 76.25000

1.448750 88.12500

1.474375 88.12500

pUstack:

1.500000 88.12500

1.474375 100.0000

1.500000 100.0000

|||||||||||||||||||||

This completes our \complete" stack evolution visualization exercise!
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