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Abstract

This thesis presents the design, modeling, implementation, and control of a mag-
netically suspended reaction sphere with one-axis hysteresis drive (1D-MSRS). The
goal of this project is two fold: (a) exploring the design for a reaction sphere in 3D
for spacecraft’s attitude control, and (b) studying the performance of the hysteresis
motor in reaction wheel applications.

The 1D-MSRS is a motor with a spherical rotor with its rotor magnetically sus-
pended in all translational directions, and is driven about the vertical axis by hys-
teresis drive. The magnetic suspension of the sphere is realized by arranging one
electromagnet on top of the sphere, and a bearingless motor on the equator of the
sphere. In this thesis, a complete mathematical model for the sphere’s magnetic sus-
pension, in both vertical and lateral directions, is derived. There is a good match
between the calculated and measured system dynamics, which verified our modeling.
The feedback control for the sphere’s magnetic suspension in all translation degrees
of freedom are studied in this thesis as well.

The hysteresis drive is chosen for the 1D-MSRS because its advantages of simple
structure, moderate self-starting toque, and vibration-free operation. The hysteresis
motor in 1D-MSRS consists of a conventional stator arranged on the sphere’s equa-
tor and a spherical rotor of magnetically hard steel. In this thesis, an equivalent
circuit model of the hysteresis motor based on an elliptical hysteresis model is used
to analyze the motor’s dynamic behavior. Good agreement between computed and
measured sphere speed data validated the motor model. Experimental data shows
that a starting torque of 8.15 mNm is achieved at 0.7 A peak excitation current.
Under this excitation, the sphere arrives synchronous speed of 1,800 rpm within 6 s.
The sphere can reach 12,000 rpm in lab, with the existence of air drag.

In order to suppress the hunting dynamics of the hysteresis motor, a feedback
control loop on the sphere’s rotational speed is implemented on the 1D-MSRS. A
control scheme is designed for this nonlinear system, and its effectiveness is validated
by both simulation and experiment. Through this speed feedback control, the 1D-
MSRS can reach a minimum speed rise time while satisfying the constraints on its
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excitation amplitude, showing lower power consumption during steady state, and the
hunting dynamics of the motor are effectively suppressed. As a result, when the motor
is operating in steady state with a speed of 1,800 rpm, the power consumption of the
1D-MSRS hardware is 3.44 W.

In this thesis, we also explored the design concepts for a magnetically suspended
reaction sphere in 3D. A study of 3D spherical motors are presented in this thesis. We
also demonstrated our understanding on the driving principle selection for spherical
motors, and presented several magnetic design concepts for a 3D spherical motor
design.

Thesis Supervisor: David L. Trumper
Title: Professor of Mechanical Engineering
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Chapter 1

Introduction

1.1 Motivation

In a spacecraft’s flight control, the Attitude and Orbit Control System (AOCS) of

the spacecraft is responsible for the high precision of control in orbit. When the

spacecraft is maneuvering, it requires an external force, or torque, which is often

provided by thrusters. As an alternative for torque inputs, a minimum of three

reaction wheels (often 4-5 wheels are used for optimization and redundancy [1]) can

be used. By accelerating the appropriate wheels, the system can produce a zero-mean

torque about any axis to the spacecraft without the consumption of precious fuel, and

momentum can be stored as well [2]. Such wheels are often used for both spacecraft

attitude control [3] and large angle slewing maneuvers [4]. Other applications include

vibration compensation and orientation control of solar arrays [5], as well as energy

storage.

As an alternative to a combination of several reaction wheels, in this project we

propose to use a magnetically levitated reaction sphere (MSRS) for small satellite

attitude control. Our vision is that the sphere can be angularly accelerated about

any axis by a three dimensional (3D) spherical motor, making the attitude of the

spacecraft in all axes controllable by a single device.

A MSRS is attractive for its many obvious advantages. Due to its symmetry, a

sphere always gives the same inertia, independent of its rotational axis. Also, because
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only one rotor (although spherical) is appearing in this attitude control actuator, we

envision that using a reaction sphere can yield a smaller total size and mass compared

with using three reaction wheels. Also, magnetic suspension can eliminate imbalance,

therefore the vibrations emitted by the reaction wheel that degrade the performance

of precision instruments in space are reduced. Mechanical friction is also eliminated by

the magnetic bearing, and thus low steady-state power consumption may be possible.

This also enables the suspension to operate without lubrication and can be expected

to have a longer maintenance-free lifespan. Furthermore, the rotation of a sphere has

no gyroscopic coupling between the rotations about the three axes, which potentially

enables simpler control possibilities.

Among many motor driving principles, the hysteresis motor is receiving increasing

attention due to its advantages of simple structure, vibration-free operation, self-

starting and constant torque production in starting. Another distinct feature of this

motor is that its rotor can be made out of a single piece of hard and strong steel, which

allows the rotor to stand large stresses and makes this motor concept attractive for

high-speed applications. In the PhD thesis by Dr. Imani Nejad [6], several hysteresis

motors of different scales are designed, built, and tested, and the results make us

believe that this kind of motor concept may demonstrate good performance in reaction

wheels.

To the best of our knowledge, the hysteresis motor has not been introduced to the

development of reaction wheels until now. To our understanding, this is mainly due

to the relatively low torque generation ability, nonlinearity in torque production and

its speed hunting behavior. According to our studies, there is no reported evaluation

of hysteresis motor’s performance on reaction wheels yet.

Aiming at the dual goal of exploring the design for a magnetically suspended reac-

tion sphere and evaluating hysteresis motor performance for reaction wheels applica-

tion, we decide to focus this project on the development of a magnetically suspended

reaction sphere with one-axis hysteresis drive (1D-MSRS). The hardware demon-

strates a motor with a spherical rotor driven by hysteresis motor, and is magnetically

suspended in all translation directions.
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Figure 1-1: MicroWheel 200 (MW200) Reaction Wheel from Microsat Systems
Canada Inc. Figure taken from [7]

Table 1.1: Specifications for MicroWheel 200 (MW200) Reaction Wheel from
Microsat Systems Canada Inc.

Size 100× 90× 90 mm

Mass 1.0 kg

Imbalance Static: < 0.2mg.m

Dynamic: < 0.03mg.m2

Torque capacity 30 mNm

Angular momentum capacity 0.18 Nms

Power consumption 0 RPM: 3.0 W;

Average: 7 W

In order to evaluate the performance of hysteresis motors for reaction wheels, a

baseline that demonstrates the target specifications is needed. Since our goal is to

design a reaction sphere for small satellite applications, a commercial reaction wheel

assembly for typical small satellites is chosen as a benchmark. Figure 1-1 shows a

MicroWheel 200 (MW200) Reaction Wheel from Microsat Systems Canada Inc. This

is a commercially available reaction wheel that has flown in more than 10 satellites

since 2001 [7]. Table 1.1 shows the specifications for a single MW200 reaction wheel.

At the end of this thesis, we would like to demonstrate a comparison in performance

between this reaction wheel and the 1D-MSRS that we developed.
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Figure 1-2: Reaction sphere design concept shown in patent from Honeywell Inc.,
taken from [8].

In the next section, a study of prior works in the design and development of

reaction spheres are presented. More literature reviews on general spherical motor

design for other applications are presented in Chapter 7.

1.2 Prior art in reaction spheres

The idea of a reaction sphere was proposed more than two decades ago by Honeywell

Inc. in reference [8]. Figure 1-2 shows the design in this patent. However, in this

design the stator segments are only covering a very small portion of the rotor’s surface

area, which reduces the system’s efficiency. Other major challenges for building such

a spherical actuator include (a) sensing of the angular position/velocity of the rotor

sphere without adding additional inertia or friction, and (b) field coupling between

the motor and bearing functions. There is no report on development and performance

of such a reaction sphere design.

Several spherical motors for other applications have been developed [9] [10] [11]
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(a) Design concept. (b) Prototype.

Figure 1-3: The induction type reaction sphere design by Noqsi Aerospace, Ltd.
Figure taken from [13].

[12]. More details about these spherical motor designs are presented in Chapter 7.

Although these designs cannot directly be used for an all degree-of-freedom actua-

tor for attitude control, they still lays a good foundation for the exploration of 3D

spherical motor design for reaction sphere application.

One induction drive based reaction sphere assisted with magnetic bearings is pro-

posed by Noqsi Aerospace, Ltd. in [13]. However, the development of such a reaction

sphere hardware is not reported. Figure 1-3 shows the design concept and its initial

prototype.

Another reaction sphere design, also magnetically suspended, is the ESA reaction

sphere that is presented in [14]. This is a permanent-magnet-motor-based reaction

sphere, as is shown in Figure 1-4. The performance of this sphere is also reported

in reference [14]: with a reaction sphere mass of 14.1 kg spinning at 6000 rpm, a

torque of 0.2 N.m and an angular momentum of 23 Nms is achieved. This design

successfully solved the problem of sphere’s angular position sensing and the coupling

between bearing and motor functions, which makes it a good actuator about all axes.

But the complexity of its magnetic structure may prevent it from being suitable for

small satellites application, and the strength of the rotor with glued on magnets limits
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(a)Stator design. (b) Rotor design.

Figure 1-4: Reaction sphere designed presented by Onillon et al. Figure taken
from [14].

its maximum rotational speed, which may limit the performance of the actuator.

Despite its promising performance and many attempts, to the best of our knowl-

edge, there is no ready-for-commercialization technology developed for such a reaction

sphere. As mentioned before, to our understanding, this is mainly due to the difficul-

ties of 3D angular position/velocity sensing for spherical rotor, the complexity due to

coupling of fields by stator segments and between bearing and motor functions, and

the challenge in magnetic design to reach a good efficiency and torque ability.

1.3 Thesis overview

This thesis takes initial steps to study the performance of a high-speed magnetically

suspended reaction sphere (MSRS) for small satellites application. At the same time,

this project also evaluates the performance of hysteresis motors for this application.

The major efforts and a summery of key results in this thesis are briefly presented in

this section.
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Figure 1-5: CAD design of 1D-MSRS.

1.3.1 1D-MSRS design, development and testing

We designed, built and tested a magnetically suspended reaction sphere with one-axis

hysteresis drive (1D-MSRS), which is a one-axis demonstration of the reaction sphere

to test the performance of hysteresis motor’s performance.

Figure 1-5 shows the CAD design of 1D-MSRS. The rotor is a 54 mm diameter

sphere of hardened D2 steel. Four induction position sensors are placed around the

rotor to measure the sphere’s position in three translational degrees of freedom. The

sensors are arranged 45o from the vertical axis and are separate by 90o in the azimuthal

coordinate. The rotor sphere is magnetically levitated in the vertical direction by a

reluctance actuator placed at the north pole. The stator is arranged around the

sphere’s equator line, and serves both for levitating the sphere in the horizontal

plane and for generating torque about vertical-axis simultaneously with a bearingless

motor configuration. A reflective optical tachometer is used for speed detection of

the reaction sphere. A photograph of the device is presented in Figure 1-6.

For the motor operation of the 1D-MSRS, the magnetic hysteresis of the rotor ma-

terial is used for torque production. In the design of 1D-MSRS, D2 steel is selected for
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(a) (b)

Figure 1-6: Photograph of 1D-MSRS.
(a) Structure; (b) stator and rotor.

the rotor. D2 steel is a high carbon, high chromium type tool steel. Figure 1-7 shows

the B-H curve measured by Dr. Mohammad Imani-Negad under different excitation

frequencies, and the original data and its measuring procedures are presented in [6].

The stator for the 1D-MSRS is a custom-made stator with 24 slots and a height

of 9.50 mm, which is made by stacking 12 layers of motor stator laminations cut

from AWG 24 non-oriented electrical steel. Since the stator needs to work as a

magnetic bearing and motor stator simultaneously, the multiple winding approach

of a bearingless motor is used, with its 4-pole winding being used for rotation and

2-pole winding for sphere’s lateral suspension. Figure 1-8 shows a diagram of the

winding pattern for 1D-MSRS, and Figure 1-9 shows the picture of the stator for the

1D-MSRS, where (a) shows the stator laminations without winding, and (b) shows

the wound stator.

We integrated the 1D-MSRS and tested the motor performances of the sphere.

The sphere is magnetically suspended in all translational directions, and is spinning

about the vertical axis as driven by the rotational stator magnetic field. Figure 1-
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Figure 1-7: Measured B-H loop for D2 steel under different excitation measured by
Dr. Imani Nejad. Figure taken from [6].

10 presents the acceleration curves of the 1D-MSRS under different amplitudes of

excitation current. The data also shows that with an excitation current of 0.7 A

zero-to-peak value, the sphere can reach the synchronous speed of 30 Hz (1800 rpm)

within 6 seconds. The starting torque under this excitation is 8.15× 10−3 Nm.

Speed feedback control is implemented to the 1D-MSRS system. Experiments

shows that in steady state running a current amplitude of 0.2 A is required, which

leads to a steady state power consumption of 3.44 W.

1.3.2 Single-DOF magnetic suspension modeling and control

In this thesis the working working principles and control of the of the 1D MSRS’s

vertical suspension are analyzed, which provides a building block for multi-degrees-

of-freedom magnetic suspension system analysis. Figure 1-11 shows the picture of the

sphere being magnetically suspended in the vertical direction.

In order to reduce the DC current in the actuator coil for sphere’s weight com-

pensation, a thin-disk shape permanent magnetic is placed in the magnetic path of
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Figure 1-8: Multiple winding diagram for bearingless motor in 1D-MSRS. Winding
4u, 4v and 4w represents the 4-pole windings, and 2u, 2v and 2w represents the

2-pole windings. The two sets of windings are configured to be electrically
orthogonal.

(a) (b)

Figure 1-9: Stator for the 1D-MSRS without and with winding.
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Figure 1-11: Single DOF levitation of sphere by reluctance actuator with permanent
magnet.
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Figure 1-12: A cross section of the biased levitation actuation system

the suspension actuate system to add a bias DC flux. Figure 1-12 depicts the system

for the sphere’s vertical suspension. In this thesis we call the actuator a flux-biased

electromagnet, recognizing the bias flus from the permanent magnet.

A complete mathematical model for this flux-biased magnetic suspension system

is derived by means of the magnetic circuit method. The details of the derivation

are presented in Chapter 3. A linearizion of the sphere’s dynamic equation yields

the transfer function from the coil current to sphere’s vertical displacement. Figure

1-13 shows the Bode plot of the derived transfer function and the measured transfer

function. The good match of the two Bode plots verified our derivation. Feedback

control of the sphere’s magnetic suspension is addressed using a loop-shaping point

of view. For this control loop, a crossover frequency of 300 rad/s and a phase margin

of 37o are achieved.

1.3.3 Bearingless motor modeling and control

The lateral suspension of the sphere in 1D-MSRS is realized by means of a bearingless

motor. The bearingless motor is implemented by arranging two sets of windings on a

single stator. By correctly configuring and controlling the current in these windings,
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Figure 1-13: Bode plot of the sphere magnetic levitation system from coil current i
to the sphere’s vertical position output x. Blue: experimental measured data; green:

model.

the machine can generate radial force for suspension as well as a rotational magnetic

field for spinning with only one stator assembly.

One major contribution of this thesis is that we derived a complete dynamic

model for the suspension function in a bearingless motor system. This model can

be generalized for analysis of the bearing function for other electrical motors. The

derived transfer function from the suspension winding current to the rotor’s radial

displacement is

X(s)

I2a(s)
=

Ki

ms2 −Ks

. (1.1)

Here the value ofKs andKi are the negative stiffness [N/m] and the force constant

[N/A] of the lateral suspension system respectively. They can be calculated by

Ks =
2

π

Rlµ0N
2
4 (
√

3/
√

2Im)2

g30
[N/m] (1.2a)

Ki =

√
3√
2

2µ0RlN2N4

πg20
(

√
3√
2
Im)[N/A]. (1.2b)
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Here the value Im is the zero-to-peak current amplitude of the 3-phase current

in the 4-pole motor windings. The meaning of the nomenclatures and the detailed

derivations of these results are presented in Chapter 4. Figure 1-14 shows the Bode

plot of the derived transfer function for sphere’s lateral suspension and a Bode plot

that measured from 1D-MSRS. Good match between the two Bode plots verified the

our derivation.

The plant dynamics of the sphere’s lateral suspension is dependent on the excita-

tion amplitude of the current in the motor winding, which requires us to adjust the

controller accordingly. The detailed controller design is shown in Section 4.3. Figure

1-15 shows the measured plant Bode plot of the lateral suspension system under dif-

ferent motor winding excitation amplitudes, and Figure 1-16 gives the Bode plot of

the corresponding loop return ratios.
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Figure 1-15: Experimentally measured plant frequency response for X direction
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(zero-to-peak).

1.3.4 Hysteresis motor modeling

In this thesis an equivalent circuit model for a hysteresis motor as introduced by

Miyairi and Kataoka in [15] and later studied in [6] is used to analyze the motor

dynamics of the reaction sphere. This motor equivalent circuit model is based on an

elliptical approximation of the hysteresis loop. The values of the components in this

equivalent circuit are dependent on the motor state. We use this model for steady-

state analysis and extend its assumptions to use it to simulate the speed transients of

the hysteresis motor. A detailed discussion and derivation of this model are presented

in Chapter 5.

Simulation of the 1D-MSRS’s motor operation is carried out based on this equiva-

lent circuit model. Figure 1-17 shows the simulated and measured speed step response

of the reaction sphere plotted together. Good agreement between the measured mo-

tor speed data and the simulation results verified the effectiveness of the simulation,

despite violating the sinusoidal steady state assumption of the model.
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1.3.5 Speed control for hysteresis motor

Hysteresis motors can run asynchonously and generate full torque, and when the

torque load drops, they operate as an synchronous motor. Therefore the motor speed

will finally reach the reference speed when load torque is smaller than the maximum

torque. However, when the motor speed is close to the reference speed, a speed os-

cillation about the desired synchronous frequency can occur. This motor dynamics

is called hunting. It is undesirable when a hysteresis motor is used for the develop-

ment of a reaction wheel or reaction sphere, as it will introduces vibrations into the

spacecraft.

In this thesis, a feedback loop on the sphere’s rotational speed is designed to

suppress the motor hunting. This speed control also enables the sphere to accelerate

with a minimum rise time, and helps reduce the drive current amplitude when the

sphere’s speed reaches the reference speed. In this control system, the speed signal

is measured by an optical tachometer, and the control effort is the current amplitude

that we supply to the motor windings. The control design is introduced in Chapter

6 in detail. Figure 1-18 shows the measured step response of the reaction sphere’s
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Figure 1-19: Experimental closed-loop control effort data (peak amplitude for motor
current) of reaction sphere start up.

rotational speed under open-loop and closed-loop operations, respectively. Note the

hunting speed ripple in the open-loop speed data (blue). Figure 1-19 shows the

motor winding current peak amplitude measured when motor is operating in closed-

loop. The speed control scheme can effectively suppress the hunting, enables faster

acceleration, and also significantly reduces the motor current amplitude when the

sphere is operating in steady-state.

1.3.6 Spherical motor design concepts

Although only a reaction sphere with one-axis motor drive is demonstrated in this

thesis, we expanded our scope to the conceptual design of a 3-axis (3D) version by

studying the possible motor driving principles and magnetic design concepts for spher-

ical motors. Chapter 7 of this thesis presents a literature review on the design and

development of spherical motors and some discussions about possible motor driving

principles and magnetic design concepts for 3D spherical motors.

40



Chapter 2

Magnetically Suspended Reaction

Sphere Design and Hardware

Implementation

In this chapter the design and the hardware implementation of the magnetically

suspended reaction sphere with one-axis hysteresis drive (1D-MSRS) are presented in

detail.

2.1 System Overview

The 1D-MSRS is a motor with a magnetically levitated spherical rotor that can

rotate and store momentum about the vertical axis. Figure 2-1 shows the CAD

design of the 1D-MSRS. The rotor is a 54 mm diameter sphere of hardened D2 steel.

Four inductive position sensors are placed around the rotor to measure the sphere’s

position in three translational degrees of freedom. The sensors are arranged 45o

from the vertical axis and are separated by 90o in the angular coordinate. The rotor

sphere is magnetically levitated in the vertical direction by a reluctance actuator

placed at the north pole. The stator is arranged around the sphere’s equator line,

and serves both for levitating the sphere in the horizontal plane and for generating

torque about z axis simultaneously by a bearingless motor configuration. A reflective

41



Figure 2-1: CAD design of 1D-MSRS.

optical tachometer is used for speed detection of the reaction sphere. The structure

of the device is presented in Figure 2-2.

In the design of the magnetic suspension system in 1D-MSRS, the sphere’s motion

in the vertical direction and in the horizontal directions are considered to be indepen-

dent. That is, the motion of the sphere in the vertical direction is solely controlled by

the electromagnet above the sphere, while the lateral suspension of the sphere is only

determined by the bearingless motor stator. To validate this approximation, finite

element method (FEM) is used to find the field coupling between the field generated

by the top electromagnet and the field generated by the stator. Figure 2-3 shows the

magnetic field distribution in the rotor of 1D-MSRS calculated by 3D FEM. This re-

sult shows that the fields generated by the two sources are approximately decoupled.

This calculation also shows that by selecting a suspension electromagnet of a smaller

diameter can reduce the field coupling effect.
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(a) (b)

Figure 2-2: Photograph of the 1D-MSRS.
(a) Structure; (b) stator and rotor.

Figure 2-3: Field distribution in the rotor of 1D-MSRS calculated by 3D FEM.
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Figure 2-4: Inductive sensors for sphere position sensing and their arrangement as 4
symmetrically locate probes.

S1 
S2 

S3 S4 

x 

y 

Figure 2-5: The sensor arrangement and coordinate definition.

2.2 Position Sensors

The spherical rotor’s displacements in all three translational degrees of freedom are

monitored by a redundant set of four position sensors, which are of induction type.

The four sensors are arranged 45o to the vertical axis, and pointing to the center of

the sphere. In this configuration the translation of the sphere in 3 directions (two

horizontal directions and one vertical direction, also x, y and z) are sensed and noise

is mitigated by taking linear combinations of the signals. Figure 2-4 shows the 4

inductive sensors we used to measure the transverse position of the sphere.The range

of the sensor is 0-4 mm. The gain of each sensor is 1.25 V/mm.

Figure 2-5 shows a top view figure of the sensor arrangement, and a Cartesian

coordinate is defined as shown by the axes. The z axis is pointing out from the
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paper. Let us number the four sensors in counter-clock wise direction. Based on the

four displacement measurements s1, s2, s3 and s4, we use the following signals as the

rotor’s displacements measurements in three translational axes:

Vz =
1

4
(s1 + s2 + s3 + s4) (2.1a)

Vx = (s1 + s4)− (s2 + s3) (2.1b)

Vy = (s1 + s2)− (s3 + s4). (2.1c)

As a result, the sensor gains in the vertical direction (z-axis) is 1.25 V/mm, while

the equivalent sensor gains in the lateral direction (x- and y-axes) is
√

2×1.25 V/mm.

These sensor gain values are used in the sphere displacement measurements in later

chapters.

2.3 Rotor

Figure 2-6 shows the spherical rotor of the 1D-MSRS. The rotor is a 54 mm diameter

solid sphere of magnetically hard material. According to the analysis of hysteresis

motor torque, the torque is proportional to rotor material’s hysteresis loop area [16].

Although materials with better hysteresis properties exists, we selected D2 steel for

the rotor of 1D-MSRS for the proof of our design, as this material was readily avail-

able. D2 steel is a kind of high Carbon, high Chromium type tool steel. It contains 11

to 15 percent Chromium, which makes it a deep hardening, highly wear resistant and

magnetically hard alloy. Figure 2-7 shows the B-H curve measured by Imani-Nejad [6]

under different excitation frequencies (original data and its measuring procedures are

presented in [6]). Notice that the loop widening effect with frequency can be recog-

nized in the hysteresis data.
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Figure 2-6: Rotor sphere for magnetic suspended reaction sphere prototyping.

Figure 2-7: Measured B-H loop for D2 steel under different excitation.
Measurement is taken by Dr. Imani Nejad. Original data and measurement process

are shown in [6].
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(a) (b)

Figure 2-8: Stator for the 1D-MSRS without and with winding.

2.4 Stator

The stator for the 1D-MSRS is a custom-made stator with 24 slots and a height of

9.50 mm, which is achieved by stacking 12 layers of motor stator laminations cut

from AWG 24 non-oriented electrical steel. We cut the motor laminations from sheet

material using a waterjet cutter. Since the stator needs to work as a magnetic bearing

and motor stator simultaneously, the multiple winding approach of a bearingless

motor is used, with its 4-pole winding for rotation and 2-pole winding for stabilization

[17]. Figure 2-8 shows the stator for the reaction sphere, where (a) shows the stator

laminations without winding, and (b) shows the wound stator.

2.5 Vertical levitation actuator

An electromagnet actuator is used for the position control of the reaction sphere in the

vertical direction. Figure 2-10 shows the rotor sphere being levitated in the vertical

direction by this actuator.

To make the system more energy efficient, a permanent magnet thin disk is em-

bedded in the magnetic path of the levitation actuator. With this design, most of

the weight is carried by the permanent magnet flux and the required excitation coil
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(a)Electromagnet and

flux biasing permanent magnet. (b) Levitating actuator assembly.

Figure 2-9: Electromagnet actuator for magnetic leviation.

current can be greatly reduced. Also, the nonlinearity of the operation characteristic

is attenuated by the additional reluctance associated with the permanent magnet.

However, these benefits are achieved by sacrificing the dynamic force capability of

the coil due to the increased air gap [18].

2.6 Controller

The digital controller is selected as a high speed digital signal processing computer,

with the capability of hardware real-time interrupt processing. In the development of

the 1D-MSRS prototype, an NI PXI chassis with real-time controller is used and is

running at a sampling and processing frequency of 10 kHz. Five A/D and seven D/A

converter channels with 14 bits precision are used. The controller’s functions are:

• Receive signals for displacement from inductive probes and motor rotational

speed from tachometer;

• Receive control commands from the host computer to change parameters of the

levitation and self-bearing motor system;

• Generate and send the current control signals for vertical suspension and for

4-pole/2-pole motor according to the control algorithms;

• Generate acceleration trajectory for the sphere’s rotation;
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Figure 2-10: Single DOF levitation of sphere by reluctance actuator with permanent
magnet.

• Diagnose the state of the elements of the self-bearing motor system and transmit

messages to the host computer.

2.7 Power amplifier

In order to directly drive the current in the actuators for the reaction sphere, 7

separate relatively large bandwidth current control amplifiers are used. Though the

driving efficiency of a linear amplifier is not as high as a switching amplifier, it can

avoid generating high frequency switching waveforms, which can be a source of noise.

For research and prototyping purposes we decided to use linear amplifiers to reach

a better system performance. In the design of the 1D-MSRS, one current control

amplifier is used for the sphere’s levitation and its vertical position control, three

amplifiers are used for the 4-pole-3-phase winding in the stator for motor driving,

and three amplifiers are used for the 2-pole-3-phase winding for horizontal levitation

control. Figure 2-11 shows a picture of the PCB of current control amplifier. These

amplifiers were designed and built by Dr. Imani Nejad [6].

The current control power amplifier is built around a PA12 amplifier from APEX
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Figure 2-11: Current control amplifier for reaction sphere excitation. Figure taken
from [6].

[19]. Usually the power amplifiers can be easily destroyed by inductive flyback effect.

When the current changes in the inductor, a reverse voltage is being created. This

flyback voltage can damage the power amplifiers. The PA12 we are using has a

built-in flyback diode that protects the output from over-voltage due to the flyback

effect.

The power amplifier is configured as unity gain. The current that passes through

the load is converted to a representative voltage by a sense resistor value of 0.1Ω.

This voltage is input to a differential amplifier with a gain of 100. A analog lead-lag

controller is designed in the circuit to control the current loop. Figure 2-12 shows

the circuit diagram for the current control amplifier. In this diagram, the left-most

op-amp is configured as a differential amplifier for the input signal. The other two

op-amps are used to implement a lead-lag controller. The design and specifications

for the current control amplifiers are described in [6] in detail.
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Figure 2-12: The circuit for the current control amplifier for reaction sphere
designed by Dr. Imani Nejad.

2.8 Speed sensor

In order to feedback control the rotational speed of the reaction sphere, measurement

of the sphere’s speed in real-time is necessary. With a black mark on the sphere, the

optical tachometers can give a TTL pulse when an edge of mark is detected. The

sensing range of this optical tachometer is 1-250,000 RPM.

2.9 Summary

This chapter gives a brief introduction to the hardware of the 1D-MSRS. In the fol-

lowing several chapters, the design details, analysis and test results of the subsystems

of the 1D-MSRS are presented. Chapter 3 introduces the sphere’s vertical suspen-

sion and position control. Chapter 4 introduces the lateral suspension of the sphere.

Chapter 5 presents the motor operation of the 1D-MSRS. Chapter 6 demonstrates

the speed control for the 1D-MSRS.
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Chapter 3

Single DOF Magnetic Suspension of

Reaction Sphere

This chapter analyzes the working principles and control of the of the vertical suspen-

sion of the spherical rotor in the 1D-MSRS system. Figure 3-1 shows a photograph

of the sphere being magnetically suspended. This single degree-of freedom magnetic

levitation is the building block for multi-degrees-of-freedom magnetic suspension sys-

tems, such as magnetically levitated stages and bearingless motor systems.

Figure 3-2 shows a cross-section diagram of the magnetic suspension of the reaction

sphere, which is comprised of the actuator core, the sphere, a permanent magnet, and

excitation coil windings. In the design of the 1D-MSRS’s vertical suspension actuation

system, in order to reduce the DC current amplitude in the actuator coil and thus

make the levitation more energy efficient, a disk-shape permanent magnet (PM) is

arranged in the magnetic path of the suspension electromagnet to add a DC bias flux

for sphere weight compensation. A photograph of the suspension actuator is shown

in Figure 2-9. In this thesis let us call it a flux-biased actuator.

Another benefit of this flux-biased actuator design is that it allows a smaller

actuator core diameter. As a result, the flux for vertical levitation can have less

interaction with the flux generated by the stator around the equator of the sphere,

and the vertical suspension and the torque generation can be better decoupled. An

earlier larger electromagnet had problem with these effects.
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Figure 3-1: Vertical levitation of sphere by reluctance actuator with permanent
magnet.

Figure 3-2: A cross section of the permanent-magnet biased vertical levitation
actuation system.
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In the rest of this chapter, a complete analysis of the levitation system for the

reaction sphere is presented. We first calculate the force generated by the permanent

magnet by means of a magnetic circuit model (Section 3.1). Then the suspension

force from the coil, both DC and AC, is calculated (Section 3.2 and 3.3). What

follows is the calculation of the dynamic equation and further the transfer function

model for this magnetic levitation system (Section 3.4). Finally the control design to

stabilize the magnetic suspension is discussed (Section 3.5).

3.1 Permanent magnet DC flux analysis

In this section the suspension force generated by the bias magnetic flux from the

permanent magnet is calculated. Since the suspension of the sphere is using reluctance

forces, the electromagnet can only generate attractive force to the sphere. Besides,

based on the fact that at moderate size scale, a permanent magnet has much larger

flux generation ability compared to a coil, if the sphere touches the actuator, the

coil cannot provide sufficient repelling force to separate them. In order to avoid this

sticking between the sphere and the actuator from happening, the DC suspension force

generated by the permanent magnet need to be smaller than the sphere’s weight. To

achieve this design goal, the geometry of the permanent magnet and the air gap

lengths needed to be carefully chosen based on magnetic force calculations. This was

developed as an iterative process. In this thesis, only the calculations based on the

final design parameter choice are presented.

Figure 3-3 shows the geometry and the dimension of the levitation actuation

system. Here the actuator core’s diameter is Da = 25.4 mm. The actuator core

height at the center is shorter than that at the periphery by 1 mm. The length of

the permanent magnet is Lpm = 0.8 mm. What is not shown in the figure is that the

sphere’s radius Rs = 27 mm. Let us define the nominal air gap length at center of

the actuator as g10, and the nominal air gap length in the periphery of the actuator

as g20. Note here the length of the permanent magnet is not considered as a part

of the central air gap length. The angle between the vertical axis and the line from
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Figure 3-3: Geometry of the magnetic levitation actuation system.

the peripheral air gap to the sphere center is defined as θ. Based on the geometry

relationships shown in Figure 3-3, we can have

sin θ ≈ Da/2

Rs

;

Rs cos θ + g20 + 1mm = g10 +Rs.

(3.1)

Based on these relationships, we can find that the air gap lengths g10 and g20 need

to satisfy the following equation:

g20 = g10 + 2.2 mm. (3.2)

In the final design of the reaction sphere levitation system, the nominal air gap

lengths at the center and at the periphery are selected to be g10 = 0.8 mm and

g20 = 3 mm, respectively. In the below text in this section, the suspension force

generated by the DC flux from the PM is calculated based on these selections.

In the calculation of the suspension force generated by the PM, a magnetic circuit

model is being used. Because the permeability of the sphere and actuator core is

56



Figure 3-4: Equivalent magnetic circuit model for flux distribution in flux-biased
levitation actuator. Φpm is the remanence flux of the permanent magnet. Φpm

t0 is the
total flux that flows out from the permanent magnet. Rg10 and Rg20 are the

magnetic reluctances of air gap in the center and in the periphery, respectively. RL

and RL20 are the reluctances for leakage paths.

much larger than that of air, we can assume that the magnetic reluctances in the

core and the in the sphere are zero. Based on the design shown in Figure 3-3, a

magnetic circuit model shown in Figure 3-4 is built. Reference [20] gives a complete

introduction to magnetic circuit modeling.

In the magnetic circuit model shown in Figure 3-4, the permanent magnet is

modeled as a constant magnetic flux source Φpm with an internal reluctance Rpm.

According to the permanent magnet model we are using ( given in detail in Appendix

A of [18]), Φpm = Apm · Br, where Apm is the pole face area of the permanent

magnet, and Br = µ0M is the remanence of the permanent magnet. Here M is

the magnetization of the permanent magnet. For neodymium magnets Br = 1.2 T.

The total flux that flows into the remaining reluctances defined as Φpm
t0 , where the

superscript “pm” means they are the fluxes generated by the permanent magnet, and

the subscript “0” means they are DC magnetic fluxes. The difference between Φpm
t0

and the air gap fluxes goes through the major leakage path, which is modeled as

a magnetic reluctance RL. The two air gaps are modeled as reluctances Rg10 and

Rg20. As we have calculated before, the air gap length g20 is larger than g10 due to
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the spherical geometry of the rotor. Therefore there is another leakage path with

a reluctance of RL20 paralleling the reluctance Rg20, meaning some of the flux lines

that goes through the air gap in the center does not flow through the air gap on

the periphery. For the sake of simplicity, let us assume the cross-section area of the

actuator core Ac is a constant along all the magnetic path, and it is also equal to

the pole-face area of the permanent magnet Apm, that is, Ac = Apm. According to

electromagnetic theory, the air gap and magnet reluctances in the magnetic circuit

can be calculated as

Rg10 =
g10
µ0Ac

; (3.3a)

Rg20 =
g20
µ0Ac

; (3.3b)

Rpm =
Lpm
µ0Ac

. (3.3c)

Here µ0 is the vacuum permeability. In the design of the reaction sphere levitation

system, the actuator core has cross-section area of Ac = 1.27×10−4 m2, which is also

the pole face area of the permanent magnet Apm. By selecting the air gap lengths to

be g10 = 0.8 mm, g20 = 3 mm, and the length of magnet to be Lpm = 0.8 mm, we

can calculate the magnetic reluctances as

Rg10 =
g10
µ0Ac

=
0.8× 10−3

1.27× 10−4 × 4π × 10−7
= 5.03× 106 1

H
; (3.4a)

Rg20 =
g20
µ0Ac

=
3× 10−3

1.27× 10−4 × 4π × 10−7
= 1.89× 107 1

H
; (3.4b)

Rpm =
Lpm
µ0Apm

=
0.8× 10−3

1.27× 10−4 × 4π × 10−7
= 5.03× 106 1

H
. (3.4c)

In the calculation of the leakage path reluctances, finite element method (FEM)

is used to get an estimation of the ratio of the leakage flux and the flux in the air

gaps. Figure 3-5 shows a field plot of the permanent magnet flux by the open source

finite element analysis package FEMM [21].
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Figure 3-5: FEA solution of permanent magnet generated flux density distribution
in levitation actuate system using actual design parameters. The permeability of

both the actuator core and sphere material are assumed as 5000µ0.

From the FEM solution shown in Figure 3-5, we can see that the numbers of the

flux lines that flow through the two air gaps are not identical. Figure 3-5 shows that

the total flux that flows out from the permanent magnet Φpm
t0 corresponds to 19 flux

lines. The flux that goes into the air gap in the center has 12 flux lines, and the flux

goes through the air gap in the periphery only has 4 flux lines. From this estimation,

we can calculate the leakage reluctances as

Rg20

RL20

=
12− 4

4
−→ RL20 =

4

8
Rg20 = 9.43× 106 1

H
(3.5)

Rg10 +Rg20//RL20

RL

=
19− 12

12
−→ RL =

12

7
(Rg10 +Rg20//RL20) = 1.94× 107 1

H
.

(3.6)

With the cross-section area Apm = Ac = 1.27×10−4m2 and remanence flux density

Br = 1.2T, the flux source strength Φpm can be calculated as
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Φpm = BrApm = 1.2× 1.27× 10−4 = 1.45× 10−4 Wb. (3.7)

With the source strength and all the reluctance values calculated, we can now

apply the circuit theory to calculate the flux in the air gaps with the magnetic circuit

model in Figure 3-4. The total flux flows out from the permanent magnet Φpm
t0 can

be calculated as:

Φt = Φpm
Rpm

Rpm +RL//(Rg10 +Rg20//RL0

) = 6.27× 10−5 Wb. (3.8)

Then the flux that goes into the air gap in the center is

Φpm
g10 = Φt

RL

RL + (Rg10 +Rg20//RL20

) = 3.96× 10−5 Wb. (3.9)

As before, the superscript “pm” means that this is the flux generated by the

permanent magnet, and the subscript “0” means this is the DC part of the magnetic

flux. Similarly, the flux that flows into the air gap in the periphery is

Φpm
g20 = Φg1

RL20

Rg20 +RL20

= 1.32× 10−5 Wb. (3.10)

The flux density in the two air gaps can be calculated by

Bpm
g10 =

Φpm
g10

Ac
= 0.31 T; (3.11a)

Bpm
g20 =

Φpm
g20

Ac
= 0.10 T. (3.11b)

Then the reluctance force for magnetic levitation is calculated by Maxwell stress

tensor method. Since all the fluxes in the air gaps are approximately in the vertical

direction, the The total levitation force generated by the permanent magnet can be

calculated as

fPM0 = Ac
(Bpm

g10)
2

2µ0

+ Ac
(Bpm

g20)
2

2µ0

= 5.43 N. (3.12)
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By checking with the force calculation result of 5.35 N given by finite element

method, we conclude that the suspension force calculation by the magnetic circuit

model has acceptable accuracy.

A comparison between the calculated suspension force and the sphere’s weight is

needed to show that the sphere will not stick to the actuator. The weight of the rotor

sphere is

Wsphere = gρsteel
4

3
πR3

s. (3.13)

Here ρsteel is the density of the rotor material, Rs is the rotor sphere’s radius,

g is the gravitational acceleration. By substituting in Rs = 27 × 10−3 m, ρsteel =

7.9× 103 kg/m3, and g = 9.8 m/s, we can get

Wsphere = 6.38 N. (3.14)

Based on these calculation, we can see that that the sphere’s weight is greater

than the suspension force generated by the permanent magnet, and this bias flux

compensated 85% of the sphere’s weight. The rest of the sphere’s weight is balanced

by the levitation force generated by the DC current of the coil, which is calculate in

the next section.

3.2 Coil DC flux analysis

In this section the DC part of the coil current and its corresponding suspension

force generation are analyzed. The levitation actuator for the sphere’s suspension is

modified from a commercial electromagnet, therefore the exact number of turns of

the coil is unknown. However, an estimation of the number of turns can be achieved

by the DC current measurement and the analysis in this section.

Figure 3-6 shows a magnetic circuit model of the levitation actuation system with

only the permanent magnet and the DC part of the coil current considered. The

total Ni0 Ampere-turns of the coil is modeled as a voltage source in the magnetic

circuit, where N is the number of turns of the coil, and i0 is the DC coil current
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Figure 3-6: Equivalent magnetic circuit model of DC flux distribution in the
flux-biased levitation actuator. Φpm is the remanence flux of the permanent magnet.
Ni0 is the total Ampere-turn of the DC current of the coil. Φt0 is the total DC flux
that flows out from the DC flux sources. Rg10 and Rg20 are the magnetic reluctances

of air gap in the center and in the periphery respectively. Rpm is the internal
reluctance of the permanent magnet. RL and RL20 are the reluctances for leakage

paths.

amplitude. In this model we assume that this voltage source is connected in series

with the permanent magnet, which means all the magnetic flux generated by the coil

is flowing through the permanent magnet. As a result, all the reluctances are of the

same values as in the previous section.

The flux generated by the DC coil current should compensate the weight of the

sphere together with the permanent magnet. In the following derivation, we calculate

the required flux to compensate the sphere’s weight, and thus calculate the needed

Ampere-turns of the actuator coil.

Define the total DC flux density in the center and periphery air gaps are Bg10 and

Bg20 respectively, and the corresponding fluxes are Φg10 and Φg20. To compensate the

total weight of the sphere, the following equation needs to be satisfied:

Wsphere = Ac
B2
g10

2µ0

+ Ac
B2
g20

2µ0

. (3.15)

Define the total DC flux that flows into the magnetic circuit is Φt0, which is also

shown in Figure 3-6. From the magnetic circuit model, we can calculate the total DC
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air gap fluxes by

Φg10 = Φt0
RL

RL +Rg10 +Rg20//RL20

; (3.16a)

Φg20 = Φg10
RL2

RL20 +Rg20

. (3.16b)

By substituting in the values of the reluctances, we can get the values of the air

gap fluxes as

Φg10 = 0.63× Φt0; (3.17a)

Φg20 = 0.21× Φt0. (3.17b)

With both air gaps having the same area of Ac, the total DC levitation force can

be written as

f0 = Ac
B2
g10

2µ0

+ Ac
B2
g20

2µ0

=
Φ2
g10

2µ0Ac
+

Φ2
g20

2µ0Ac

=
0.632 + 0.212

2µ0Ac
Φ2
t0.

(3.18)

This total DC levitation force should be balanced with the total weight of the

sphere, that is

f0 =
0.632 + 0.212

2µ0Ac
Φ2
t0 = Wsphere. (3.19)

Substitute in the values of Ac, µ0 and Wsphere, we can calculate the value of the

total DC flux as

Φt0 = 6.78× 10−5 Wb. (3.20)
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This is the total needed DC flux for sphere weight compensation. We have cal-

culated in the previous section that the total flux that generated by the permanent

magnet is Φpm
t0 = 6.27× 10−5 Wb. Therefore the total DC flux that generated by the

coil’s DC current should be

Φcoil
t0 = Φt0 − Φpm

t0 = 4.95× 10−6 Wb. (3.21)

Then the needed voltage source strength in the magnetic circuit (magnetic poten-

tial) Ni0 can be calculated as

Ni0 = Φcoil
t0 × (Rpm +RL//(Rg10 +Rg20//RL20)) = 60.27 V · s/m. (3.22)

Since the exact number of turns of the coil is unknown, we can use the calculated

result to identify the value of N approximately. When the sphere being levitated, the

experimental measured DC coil current value is i0 = 0.24 A. Therefore the number

of turns is approximately N = 250 turns. This is a reasonable estimation according

to the size of the actuator and the wire gauge of the coil. This approximate value

will be used in the derivation in the later sections.

3.3 AC flux by coil

Aside from the DC suspension force for sphere’s weight compensation, AC suspension

force is needed to control the sphere’s vertical position. This force is generated by

the AC fluxes in the magnetic levitation actuation system.

Figure 3-7 shows a magnetic circuit model of the flux-biased magnetic levitation

system with only the components related to the AC flux generation. In Figure 3-7, the

coil is excited by the varying current of ĩ, so that the total AC voltage source in the

magnetic circuit is Nĩ Ampere-turns. The air gap reluctances Rg1 and Rg2 become

adjustable because the variation of the air gap length is included in the model. This

air gap length variation can influence the air gap fluxes for levitation force generation.
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Figure 3-7: Magnetic circuit model of the AC flux in flux-biased levitation actuator.
Nĩ is the total Ampere-turns of the AC current of the coil. Rg1 and Rg2 are the

magnetic reluctances of air gap in the center and in the periphery respectively, with
the air gap length variation considered. Rpm is the internal reluctance of the

permanent magnet. RL and RL2 are the reluctances for leakage paths.

Let us define the air gap lengths at the center and the periphery by

g1 = g10 + g̃1; (3.23a)

g2 = g20 + g̃2. (3.23b)

Here g10, g20 are the average air gap length in the center and the periphery respec-

tively, and g̃1, g̃2 are the variation of the corresponding air gap length. Since the goal

of the sphere’s magnetic levitation control is to keep its vertical position a constant,

then the air gap variations g̃1 and g̃2 should be much smaller than the average air

gap lengths. The corresponding reluctances are

Rg1 =
g10 + g̃1
µ0Ac

(3.24a)

Rg2 =
g20 + g̃1
µ0Ac

. (3.24b)

In our modeling of the AC flux magnetic circuit, the major leakage reluctance RL

is designed to be a constant, since the major leakage flux that goes through RL is
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Figure 3-8: Magnetic circuit model of total flux distribution in flux-biased levitation
actuator. Φpm is the remanence flux of the permanent magnet. Ni is the total

Ampere-turn of the current of the coil, both DC and AC. Φt is the total flux that
flows out from the flux sources. Rg1 and Rg2 are the magnetic reluctances of air gap
in the center and in the periphery respectively, with the variation of the air gap
lengths considered. Rpm is the internal reluctance of the permanent magnet. RL

and RL2 are the reluctances for leakage paths, where RL is constant while RL2 is
varying with Rg2.

mainly determined by the geometry of the actuator core, which is not changing with

the variation of the air gap lengths. On the other hand, the reluctance RL2 is modeled

as adjustable, since the variation of the air gap length in the periphery should have

a significant influence on the leakage flux that flows through RL2. In the analysis of

this thesis, it is modeled as having a constant ratio with the air gap of Rg2, that is,

the ratio of the flux in air gap 2 and the flux that leaks is constant. This model is

being used in the derivation of the dynamic model of the sphere’s magnetic levitation,

which is presented in detail in the next section.

3.4 Magnetic levitation system modeling

In this section, the total flux in the flux-biased magnetic levitation actuation system is

considered, and the transfer function from the coil current to the sphere’s displacement

is derived. After that, experimental measured plant frequency response data of the

sphere’s magnetic suspension is being used to verify the calculated result.

Figure 3-8 shows a magnetic circuit model of with both DC and AC fluxes con-
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Figure 3-9: Equivalent magnetic circuit model of total flux in the flux-biased
levitation actuation system. Nie is the equivalent total Ampere-turn in the coil.

sidered. The air gap reluctances Rg1 and Rg2 are defined in (3.24). The modeling of

the leakage path reluctances follows the discussion in the AC flux section. The coil

current i contains both DC and AC current, and can be written as i = i0 + ĩ. The

model of the permanent magnet is the same as the model in Section 3.1.

In the model shown in Figure 3-8, there are two sources of DC flux: the permanent

magnet and the DC current in the coil. The two sources are connected in series,

working together to generate the DC flux for sphere’s weight compensation. To make

the model simpler, we can use an equivalent coil with DC current ie0 to replace these

two sources. Figure 3-9 shows the new magnetic circuit model with this equivalent

voltage source of Nie, with the current defined by ie = ie0 + ĩ.

To make the model in Figure 3-9 equivalent with the one in Figure 3-8, the gen-

erated total flux should be equal. We have calculated in Section 3.2 that the total

flux generated by the two DC flux sources is Φt0 = 6.78 × 10−5 Wb. Let us define

a magnetic reluctance value Rtotal as Rtotal = Rpm + Rl//(Rg1 + Rg2//RL2), and its

average value is then R0
total = Rpm+Rl//(Rg10 +Rg20//RL2) = 1.22×107 1

H
. To make

the two model equivalent in the DC flux generation, the following equation should

hold:
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Figure 3-10: Magnetic levitation diagram of the reaction sphere. Incremental z̃ is
the rotor sphere’s vertical displacement variation, with its positive direction

pointing downward. Air gap lengths at the center and the periphery are then g10 + z̃
and g20 + z̃.

Nie = Φt0 ×R0
total

= 6.78× 10−5 × 1.22× 107

= 824.22V · s/m.

(3.25)

As calculated in Section 3.2, the number of turns of the coil is approximately

N = 250. Then the DC part of the equivalent current is approximately ie0 = 3.30A.

These values, together with the equivalent magnetic circuit model shown in Figure

3-9, are used to derive the plant transfer function for the magnetic levitation system

in this section.

Figure 3-10 shows a diagram of the magnetic levitated reaction sphere. flev is the

levitation force. Wsphere is the weight of the sphere. z̃ is the rotor sphere’s vertical

displacement variation, with its positive direction pointing downward. Air gap lengths

at the center and the periphery are g10 + x̃ and g20 + z̃ respectively. We also assume
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the sphere’s displacement is small compared to the nominal air gap lengths.

Based on the air gap reluctance models in (3.24) and the air gap lengths given

above, we can write the air gap reluctances as

Rg1 =
g10 + z̃

µ0Ac
; (3.26a)

Rg2 =
g20 + z̃

µ0Ac
. (3.26b)

Equation (3.24) shows that the air gap reluctances are linear to the rotor sphere’s

vertical position variation z̃.

Then the total suspension force is calculated based on the equivalent model shown

in Figure 3-9. The total flux, DC and AC, that flows through the air gap in the center

can be calculated as

Φg1 =
Nie
Rtotal

RL

RL +Rg1 +Rg2//RL2

, (3.27)

and the flux that flows through the air gap in the periphery is

Φg2 = Φg1
RL2

Rg2 +RL2

. (3.28)

In the calculation of the air gap magnetic fluxes and further the levitation force,

we follow the assumptions in the previous section for the leakage reluctances by letting

RL2 keep proportional to the reluctance of Rg2, while let the major leakage reluctance

RL keep a constant value. Another assumption for this calculation is that the total

magnetic reluctance Rtotal is not varying with the sphere’s vertical position variance,

since by looking at the definition of Rtotal = Rpm+RL//(Rg1 +Rg2//RL2), we can see

that the total reluctance is mainly determined by Rpm and RL. These assumptions

will significantly simplify the derivation of the magnetic force derivation. Based on

the assumption for the leakage path reluctance and the flux ratio given in Section 3.1,

we can find the relationship between RL2 and Rg2 as
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RL2

Rg2

=
Rg20

RL20

=
1

2
. (3.29)

Then Equation 3.28 becomes

Φg2 = Φg1
RL2

Rg2 +RL2

=
1

3
Φg1. (3.30)

As a result, the total magnetic suspension force can be calculated by Maxwell

stress tensor as

f = Ac
B2
g1

2µ0

+ Ac
B2
g2

2µ0

=
Φ2
g1

2Acµ0

+
Φ2
g2

2Acµ0

=
10

9

Φ2
g1

2Acµ0

=
5

9

Φ2
g1

Acµ0

(3.31)

By substitute the value of Φg1 in (3.27) and the magnetic reluctances for the air

gaps in (3.26), the magnetic suspension force is

f =
5

9Acµ0

N2i2e
R2
total

R2
L

(RL +Rg1 +Rg2/3)2

=
5

9Acµ0

N2i2e
R2
total

R2
L

(RL +Rg10 +Rg20/3 + 4x̃
3µ0Ac

)2
.

(3.32)

Equation (3.32) shows that the magnetic suspension force acting on the sphere

rotor is nonlinear respect to both the exciting current in the coil i and the sphere’s

vertical displacement x̃. The dynamic equation of the sphere in Figure 3-10 is

mg − f = m¨̃z, (3.33)

where m is the mass of the sphere, and g is the gravitational acceleration.

In the following derivation, a linearized model is developed for this second-order

suspension system shown in Figure 3-10. Following the notation of the operating
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points and incremental quantities in previous sections, we let ie = ie0 + ĩ, z = 0 + z̃,

and f = f0 + f̃ . The subscript “0” indicates the operating point value, and the tilde

indicates the incremental value of the variable.

A linearized model of the magnetic suspension force in (3.32) is reached by taking

a Taylor expansion of f respect to i and x̃:

f = f0 +
∂f

∂z̃

∣∣∣
z=0,i=ie0

z̃ +
∂f

∂i

∣∣∣
z=0,i=ie0

ĩ (3.34)

Let us define variablesKi andKs by lettingKi = ∂f
∂i

∣∣∣
z=0,i=ie0

andKs = ∂f
∂z̃

∣∣∣
z=0,i=ie0

.

By taking a appropriate partial derivatives to (3.32) and evaluating them at the

operating point yields these values as

f0 = f
∣∣∣
z=0,i=ie0

=
5

9Acµ0

N2i2e0
R2
total

R2
L

(RL +Rg10 +Rg20/3)2
= 6.38 N; (3.35a)

Ks = −∂f
∂z̃

∣∣∣
z=0,i=ie0

= − 5

9Acµ0

N2i2e0R
2
L

R2
total

−2 4
3µ0Ac

(RL +Rg10 +Rg20/3)3
= 6.97e× 103 N/m;

(3.35b)

Ki =
∂f

∂i

∣∣∣
z=0,i=ie0

=
5

9Acµ0

N2R2
L

R2
total

2ie0
(RL +Rg10 +Rg20/3)2

= 7.74 N/A. (3.35c)

Notice that in this system the DC part of the suspension force f0 is equal to the

sphere’s weight. Then the linearized dynamic equation of the sphere can be written

as

−Kiĩ+Ksx̃ = m¨̃z. (3.36)

Take a Laplace transform to Equation (3.36), the transfer function from current

to sphere’s position is given by

Z(s)

I(s)
= − Ki

ms2 −Ks

. (3.37)

Here a negative sign exists in the transfer function, meaning a positive current
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input will tend to decrease the displacement variation z̃. With the sign in front of

Ks being negative in the denominator, the transfer function have real axis poles at

s = ±
√

Ks
m
. The pole at +

√
Ks
m

is of course unstable, and will need feedback control

to stabilize this system. In magnetic suspension systems, the value of Ks is often

called “negative stiffness”.

With the value of m, Ki and Ks substituted into (3.37), we can get the numerical

value of the transfer function from the current to the sphere’s incremental displace-

ment as

X(s)

I(s)
= − 7.74

s2 − 6968
. (3.38)

To verify the calculated model given above, a comparison between an experimental

measured Bode plot and the Bode plot from the model is performed. In the 1D-MSRS

hardware, the displacement sensor for the sphere has a gain of 1.25 V/mm, and the

current control amplifier has a gain of 0.2 A/V . So when comparing the two Bode

plots, a gain of 1.25 V/mm× 1000 mm/m× 0.2 A/V = 250 A/m must be taken into

account. The Bode plot is measured by a Dynamic Signal Analyzer with the magnetic

suspension under closed-loop control. Figure 3-11 shows the experimental measured

Bode plot of this magnetic suspension system (with the sensor and actuator gains

removed) and the Bode plot of the modeled system in (3.37) together. Good match

between the measured data and the model validates the calculation.

3.5 Magnetic suspension control of the reaction sphere

This section introduces the control for the magnetic suspension for the reaction sphere.

As discussed in the previous section, there is one right plane pole in the plant transfer

function, and this make the system inherently unstable. As a result, feedback control

is needed to stabilize the system.

The controller’s design is based on the plant transfer function from the previous

section, both the model and the identified Bode plot. The plant transfer function is

depicted in Figure 3-11. By removing the negative sign in the plant transfer function

72



10
1

10
2

10
−4

10
−3

ω [rad/s]

|−
| 
[m

/A
]

10
1

10
2

−260

−240

−220

−200

−180

−160

−140

−120

−100

ω [rad/s]

∠
−

 [
d

e
g

]

 

 

Measured Bode plot

Model Bode plot

Figure 3-11: Bode plot of the plant transfer function of the sphere magnetic
levitation system from the coil current i [A] to the sphere’s vertical displacement

z [m]F. Blue: experimental measured data; green: model.
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Figure 3-12: Block diagram of the levitation control loop for the reaction sphere.

without loss of generality, the numerical value of the transfer function is given by

Z(s)

I(s)
=

1936

s2 − 6968
. (3.39)

We use series compensation to stabilize this magnetic suspension system. This is

the approach that is generally used in practice as it only assumes the measurement

of the sphere’s vertical position. Lead-lag form of the PID controller is used for both

stabilization and providing better disturbance rejection ability.

For the controller design, the lead network is chosen to have a pole-zero separation

factor α = 10. The loop is designed to cross over at 300 rad/s, thus we can calculate

the lead time constant τ = 0.0014 s to place the phase maximum at the desired

crossover frequency. The integral gain for the system Ki is chosen to be 50. Figure

3-12 shows a block diagram of the control loop for this magnetic suspension system.

One thing worth pointing out is that for the levitation control for the reaction

sphere we choose to place the lead compensator in the feedback path. Compared to

the step response of a loop with a forward path lead compensator, placing the lead

controller in the feedback path helps reduce the peak control effort by a factor of 10

( the α value of the lead network), and further reduce the overshoot of the position

signal. A prefilter is also added to the loop to achieve a smoother step response. [22]

gives a great reference on the controller design for a magnetic suspension system.

74



10
1

10
2

10
−2

10
0

10
2

ω [rad/s]

|−
|

10
1

10
2

−250

−200

−150

−100

−50

0

50

ω [rad/s]

∠
−

 [
d

e
g

]

 

 

Plant

Controller

Loop

Figure 3-13: Bode plot for levitation plant, controller and loop return ratio.
Crossover frequency is 300 rad/s with a phase margin of 37o.

Figure 3-13 shows the Bode plot for the controller, plant and the loop return

ratio for this control loop. By the controller we are showing in the plot, a crossover

frequency of 300 rad/sec is reached, with a phase margin of 44o.

3.6 Summary

In this chapter, a complete calculation for the magnetic suspension for the reaction

sphere is presented. In the design of the levitation actuator, a piece of permanent

magnet is added in the magnetic path of the actuator to add bias DC flux. The bias

flux from the permanent magnet compensates 85% of the sphere’s weight. This DC

bias flux significantly reduces the DC current amplitude in the coil in the actuator

slot to i0 = 0.24 A in steady state. The dynamic equation of the sphere’s magnetic
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suspension is derived, and a transfer function is achieved by linearizing the equation.

The model is verified by experimental measured Bode plot. In the transfer function,

there is one stable pole and one unstable pole, so that the system will need closed-loop

control to be stable. The controller design is also presented in this chapter, and a

crossover frequency of 300 rad/s and a phase margin of 37o is achieved.

The vertical suspension of the sphere is a typical single degree-of-freedom magnetic

levitation system system. This is the foundation for studying magnetic suspension

with multi degrees-of-freedom. The radial magnetic suspension of the reaction sphere

is achieved by bearingless motor, which is discussed in the next chapter.
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Chapter 4

Bearingless Motor System Modeling

and Control

In order to drive the rotation and lateral suspension of the reaction sphere simulta-

neously, a bearingless motor is adopted in the 1D MSRS’s design. The bearingless

motor is implemented using two sets of windings on a single stator. By correctly

configuring and controlling the current in these windings, the machine can generate

radial force for suspension as well as a rotational magnetic field for spinning with only

one stator assembly.

The first primitive electromagnet, i.e. motor drive, with stator windings having

pole numbers of P and P ± 2 was proposed by Hermann [23] in the middle of 1970s.

This electromagnet was proposed as a motor which has a radial magnetic bearing func-

tion. Later, in 1990 Chiba and Fukao introduced a general concept for the bearingless

motor [17]. Based on field-oriented theory, they concluded that most electrical ma-

chines can be used in a bearingless drive with additional suspension windings driven

by a 3-phase inverter. The general concept is well explained in [24].

In this chapter, the principle of the suspension force generating in bearingless

motors is introduced first. Then a complete mathematical model of the bearingless

motor’s lateral suspension is derived, and this model is used to analyze the reaction

sphere’s lateral suspension. Finally the AC excitations and the controller design for

the sphere’s lateral suspension based on analysis and experimental results are pre-
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sented. The motor operation of the reaction sphere is presented in the next chapter.

4.1 Radial force generation principle of bearingless

motor

In this section, the principles of magnetic suspension of bearingless machines are

introduced. The multiple winding type bearingless motor uses the so-called P ± 2

principle. This means the motor has two sets of windings of P poles and P ± 2 poles

respectively. Let us use a typical bearingless stator with 4-pole and 2-pole windings

with a cylindrical rotor made of solid steel are described to demonstrate the concept,

where the 4-pole winding is for rotational drive, while the 2-pole winding works for

suspension control. That is, we use P = 4 for the motor windings and P = 4-2 = 2

for the suspension windings. The mechanical phase shift between the two windings

is 45o so that they are electrically orthogonal. For the sake of simplicity, we assume

2-phase windings without loss of generality.

Figure 4-1 shows a diagram of the bearingless motor under different conditions. In

Figure 4-1 (a), there is a symmetrical 4-pole flux distribution around the motor. The

green circles in the stator denote the conductors of the phase a in the 4-pole winding.

The solid curves illustrate the flux paths circulating around the four concentrated

conductors 4a. These conductors are located in the stator slots. The 4-pole flux

wave Φ4a produces magnetic poles in the order N, S, N and S on the rotor at the air

gaps 1, 2, 3 and 4 respectively. Since the flux distribution is symmetrical, the flux

density magnitudes in the air gaps 1 to 4 are of the same value. There are attractive

magnetic forces between the rotor poles and the stator iron, and under this condition

the amplitudes of these attractive radial forces are the same, but the directions are

equally distributed so that the sum of radial force acting on the rotor is zero in this

center case.

Figure 4-1 (b) shows the principle of suspension force generation in x-direction.

The blue circles denote phase a in the 2-pole winding. The two concentrated con-
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ductors 2a are located in the stator slots. With the current directions shown in the

figure, a 2-pole flux wave Φ2a is generated. Under this condition, the flux density is

increased in air gap 1 because the direction of the 4-pole fluxes and the 2-pole fluxes

are the same. However, in air gap 3 the flux density is decreased since the direction

of these two fluxes is opposite. The amplitude of the magnetic forces in the air gap 1

and 3 are no longer equal. Instead, the force in air gap 1 is greater than the force in

air gap 3. Hence a radial force is generated on the rotor in the x-direction. Reversing

the current direction in the 2a windings reverses the direction of this force. It follows

that the amplitude of the radial force increases as the current value in the 2a winding

increases.

Figure 4-1 (c) shows the radial suspension force generation in the y-direction.

Two conductors 2b, which is the other phase of the assumed 2-phase-2-pole winding,

generates a two-pole flux centering at the y-axis as shown. Similarly, a flux density

imbalance occurs, but this time trading between air gap 4 and air gap 2, hence

producing a radial force on the rotor to the y-direction. The polarity of the 2-pole

current will dictate the direction of the force, and the amplitude of the 2-pole current

can control the force amplitude.

These are the principles of the radial suspension force generation in x- and y-

directions. A vector sum of the two radial forces can produce a radial suspension force

in any direction, and the suspension force amplitude is approximately proportional

to the current in the 2-pole suspension control windings. With only the 4-pole motor

windings excited, an destabilizing radial force will act on the rotor if the rotor is not

perfectly centered. Thus the suspension force is needed to compensate this instability

and thus make sure that the rotor stays in the center. Feedback control is required in

this process. In the next section, the modeling of the bearingless motor is presented

in detail.

80



4.2 Bearingless motor system modeling and analysis

In this section a complete mathematical model of the lateral suspension of the reaction

sphere by means of a bearingless motor is derived. This derivation of the air gap

permeance distribution and the inductance matrix are based on the analysis by Chiba

in [24]. Our contribution in this derivation are the modeling of the negative stiffness

of a bearingless motor and further deriving the transfer function of a bearingless

motor system, which provide a reliable basis for the controller design of the lateral

suspension system. This modeling process is also suitable for a general electrical motor

with magnetic or mechanical bearings. We also verified the model with experimentally

measured data from the 1D-MSRS.

In the derivation in this section, we assume the spherical rotor’s motion in the

vertical direction is small, and that this axis is independently controlled by the levi-

tation electromagnet introduced in the previous chapter. With this assumption, the

bearingless motor for the reaction sphere is reduced to a cylindrical motor, and the

motor length is the length of the stator. In addition, for the sake of simplicity, a

2-phase excitation is assumed in the analysis without loss of generality. This anal-

ysis can be easily changed to a 3-phase system actually used in the experiment by

performing a coordinate transformation, which is introduced in Section 4.3.2.

In this modeling process, the derivation of MMF and air gap variation of the

bearingless motor system is presented in Section 4.2.1. The derivation of the magnetic

flux distribution is given in Section 4.2.2. The derivation of the unstable radial force

and further the negative stiffness of the bearingless motor system is presented in

Section 4.2.3. The derivation of the induction matrix and further the force constants

for the radial suspension in bearingless motor systems are presented in Section 4.2.4.

Finally, the transfer function of the lateral suspension of a bearingless motor is derived

in Section 4.2.5.
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4.2.1 MMF and airgap variation

In this section, the magneto-motive force (MMF) distribution in a bearingless motor

system and the permeance variations caused by air gap length variation due to x-y

rotor displacements are derived to provide a basis for the modeling in further sections.

In this derivation, the following assumptions are made:

• The spatial distribution of the magneto-motive force (MMF) is approximated

as its sinusoidal fundamental component.

• The air gap permeance distribution is smooth. Thus stator slot harmonics are

neglected.

• The magnetic reluctance of the iron core and rotor are negligible. That is,

their magnetic permeability is infinite. The rotor’s magnetic hysteresis is not

considered in this analysis for the lateral suspension.

• Lateral eccentric rotor displacements are small with respect to the air gap length

between the rotor surface and stator inner surface. This displacement is also

assumed small compared to the rotor radius.

Figure 4-2 shows the winding arrangement for the bearingless motor being ana-

lyzed. Two sets of 2-phase windings are wound on the stator: the 4-pole windings are

4a and 4b and the 2-pole windings are 2a and 2b. The positive current directions of

each winding are shown by the crosses and dots in the figure. Note that the current

in the 2-pole windings are arranged such that the MMF directions are aligned on the

x and y axis directions respectively. The 4a winding is arranged so that the MMF

direction in air gap 1 is also aligned to the x-axis, and 4b winding is arranged to

be perpendicular to the 4a winding in electrical terms with a phase-lead angle of 90

electrical degrees in the counter-clockwise direction. If sinusoidal and cosinusoidal

currents with an electrical frequency of 2ω are supplied to the 4-pole windings, then a

magnetic field, revolving in a counter-clockwise direction with mechanical frequency

ω, is generated. A similar field distribution is generated by the 2-pole windings, but
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Figure 4-2: 4-pole and 2-pole winding arrangement of bearingless motor assuming a
2-phase configuration. The real hardware of 1D-MSRS is implimented with a

3-phase configuration.

for 2-pole field generation the electrical frequency and the mechanical frequency are

equal. The flux lines in Figure 4-2 shows the case for a point in time when there are

positive currents in 2a and 4a and zero current in 2b and 4b.

Let us assume the instantaneous currents that flow in the windings 4a, 4b, 2a

and 2b are i4a, i4b, i2a and i2b respectively, and assume N4 and N2 are the numbers

of turns per phase per pole of the 4-pole and 2-pole windings respectively. In the

following we calculate the fundamental component of the MMF wave distribution of

all windings.

Figure 4-3 shows the MMF wave that is generated by the winding 2a and its

fundamental component. In the figure, the horizontal axis corresponds to the angular

coordinate φs in Figure 4-2, which is a counter-clockwise rotational angular position

starting from the x-axis. We also can think of this as stretching the cylindrical motor

into a linear one. The positive direction of MMF, which generates air gap fluxes in the

same direction, is defined in the radial direction from the rotor to the stator. With

concentrated conductors 2a at φs = π
2
and 3π

2
, the MMF distribution is a square wave
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Figure 4-3: The MMF distribution generated by the winding 2a. The horizontal
axis is the spatial angle φs. The black line shows the MMF of a concentrated

winding, which is a square wave of N2i2a
2

amplitude. The dark green line shows the
fundamental component of the MMF, with an amplitude of 2N2i2a

π
.

of amplitude 1
2
N2i2a. By neglecting all the higher order harmonics of this MMF wave

and only considering its fundamental component, we can calculate the magnitude of

the approximated sinusoidal MMF wave, which is the first Fourier coefficient of the

square wave, as shown in the Figure 4-3. For more detailed derivation of the harmonic

analysis of electric motors see Fitzgerald and Kingsley [25]. Following this approach,

the sinusoidal MMF space distributions for all the four windings can be written as

F4a =
2

π
N4i4acos(2φs) (4.1a)

F4b =
2

π
N4i4bsin(2φs) (4.1b)

F2a =
2

π
N2i2acos(φs) (4.1c)

F2b =
2

π
N2i2bsin(φs). (4.1d)

Here N4 and N2 are the numbers of turns per phase per pole of the 4-pole and

2-pole windings respectively. The angular coordinate φs is a counter-clockwise rota-

tional angular position starting from the x-axis, as shown in Figure 4-2.
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Figure 4-4: Air gap length variation with rotor eccentric displacement.

Figure 4-4 shows a rotor having an eccentric displacement from the stator center.

The x-y coordinate is fixed to the stator center. The rotor center is displaced in

the positive direction along the x and y axes. We define the nominal air gap length

between the rotor and stator as g0 when the rotor is centered in the stator bore. If

the rotor’s radial displacements are x and y in the corresponding directions, then the

air gap length g between the rotor and the stator will become

g(φs) = g0 − xcos(φs)− ysin(φs). (4.2)

To calculate the permeance of the air gap, the inverse of the air gap length distri-

bution is needed. Based on the assumption that the displacements x and y are small

compared to the nominal air gap length g0, the inverse of the air gap length can be

calculated by ignoring second and higher order terms in its Taylor expansion via

1

g
=

1

g

∣∣∣∣
x=0,y=0

−

(
−cos(φs)

g2

∣∣∣∣
x=0,y=0

)
x−

(
−sin(φs)

g2

∣∣∣∣
x=0,y=0

)
y + h.o.t.

=
1

g0

(
1 +

x

g0
cos(φs) +

y

g0
sin(φs)

)
+ h.o.t..
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(a)Winding and coordinate diagram (b) Magnetic circuit model diagram.

Figure 4-5: Magnetic equivalent circuit of the bearingless motor with 2a winding
current.

Then the magnetic permeance of the air gap P0 at an angular position φs is given

by

P0(φs) =
µ0Rl

g
=
µ0Rl

g0

(
1 +

x

g0
cos(φs) +

y

g0
sin(φs)

)
. (4.4)

Here R and l are the rotor radius and motor length respectively. For the reaction

sphere, R is the sphere’s radius, and the motor length l is the length of the stator

iron.

4.2.2 Magnetic potential and flux distribution

In this section, the air gap flux distribution is derived using the MMF and air gap

permeance distribution calculated above. Here we assume that the magnetic potential

of the rotor is not zero because the flux distribution is unsymmetrical when a rotor

has radial displacement.

Let us demonstrate the calculation of the air gap flux generated by the 2a windings

first. Figure 4-5 shows a simplified magnetic circuit diagram for the bearingless motor
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with only winding 2a excited. Figure 4-5 (a) shows the winding position and the

coordinate system. Winding 2a is located in slots on the stator side. With current i2a

in this winding, we model that a space sinusoidal distribution of MMF is generated.

Figure 4-5 (b) shows the magnetic circuit model of this system. The distributed

reluctances represent the air gap, and their value distribution is the inverse of the

air gap permeance given by (4.4). The reluctance values are not equal; they are

dependent on the rotor radial displacement and angular position φs. In series with

the air gap reluctances are DC voltage sources. These voltage sources represent the

MMF of the winding 2a. The values of the voltage sources are also dependent on φs.

The voltage value distribution the MMF distribution F2a varies as given in (4.1d).

The voltage sources are not included at φs = 90o and 270o because F2a is zero at

these two points. The ground symbols connected to the voltage sources indicate that

the stator yoke magnetic potential is assumed to be zero.

The ring circuit that connects all air gap reluctances represents the rotor surface

reluctance, which is assumed to be zero in this analysis. The voltage V2a is the

magnetic potential of the rotor generated by the current in winding 2a. The magnetic

flux Φ2a that goes through the permeance P0 as a function of the angular position φs

can then be written as

Φ2a(φs) = P0(φs) (F2a(φs) + V2a) . (4.5)

According to the Gauss’ law, taking a closed surface around the rotor, an integral

of the flux through this surface should be zero, which means

∫ 2π

0

Φ2a(φs)dφs = 0. (4.6)

Substituting in (4.5) and (4.4) into (4.6), we can calculate the magnetic potential

of the rotor induced by winding 2a as

V2a = −
∫ 2π

0
P0F2adφs∫ 2π

0
P0dφs

= −N2i2a
πg0

x. (4.7)
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Equation (4.8) implies that the magnetic potential of the rotor is zero if the rotor

is centered, and when there is an eccentric displacement, the magnetic potential pro-

duced by the 2a winding V2a is proportional to the rotor displacement in x-direction.

Note that the variable y does not appear in the expression of V2a, since the conduc-

tors of 2a windings are configured at φs = 90o and 270o, hence this winding cannot

influence the field in y-direction.

Similarly, we can calculate the rotor magnetic potential induced by all sets of

windings 2a, 2b, 4a, 4b as

V2a = −N2i2a
πg0

x (4.8a)

V2b = −N2i2b
πg0

y (4.8b)

V4a = 0 (4.8c)

V4b = 0. (4.8d)

Notice that the calculation results of V4a and V4b are zero and not depend on the

rotor radial displacement. This can be simply explained by way of example: 2a in

(4.8) is substituted by 4a, which is a periodic function of 2φs. The air gap permeance

given in (4.4) is a periodic function of φs; therefore the integration of this product is

zero.

Substituting the derived rotor magnetic potential value V2a in (4.8) into (4.5), we

can calculate that when the winding 2a is excited by current i2a, the generated air

gap flux resulting from winding 2a has a distribution of

Φ2a(φs) = P0(φs)

(
F2a(φs)−

N2i2a
πg0

x

)
. (4.9)

Similarly, when windings 2b, 4a and 4b are excited by the corresponding currents

separately, the generated air gap magnetic flux distributions are
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Φ2b(φs) = P0(φs)

(
F2b(φs)−

N2i2b
πg0

y

)
(4.10a)

Φ4a(φs) = P0(φs)F4a(φs) (4.10b)

Φ4b(φs) = P0(φs)F4b(φs). (4.10c)

Here P0(φs) is the air gap permeance distribution given in (4.4). F2a, F2b, F4a and

F4b are the MMF distributions generated by the corresponding winding excitations,

whose values are given in (4.1). Notice that in these air gap flux distributions the air

gap permeance P0 is a common factor, while the MMF distributions terms and the

terms that related to the rotor displacements are linear to the corresponding current

amplitudes. As a result, a flux distribution generated with several windings excited

together can be expressed as a linear combination of the flux distributions generated

by the windings separately.

4.2.3 Negative stiffness of lateral levitation system

This section introduces the calculation of the radial destabilization force on the rotor

when only the motor windings, in this analysis the 4-pole windings, are excited.

When an electrical motor is operating, the motor windings are driven by symmetric

AC currents to generate a rotating magnetic field and further generate a torque to the

rotor. Under this condition, the rotor is unstable in the radial directions since radial

forces are generated to the rotor at the magnetic poles to the same direction with

the rotor displacements. In this section we calculate this destabilization radial force

and further find the “negative stiffness” of the lateral levitation plant of bearingless

motor. This value will be used in the derivation of the plant transfer function in

the lateral suspension control loop. This calculation can also be extended to other

electrical machines with separate magnetic or mechanical bearings.

In the design 1D-MSRS, the 4-pole windings are the motor winding. When the mo-

tor operating under DC excitations, the 4-pole windings are excited by co-sinusoidal
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Figure 4-6: Unstable radial force generation with only the motor windings (4-pole
windings) excited. Attractive forces are generated in the air gaps 1, 2, 3, and 4. The
rotor has an eccentric displacement s towards the air gap 1 direction, which induces

a radial force in this direction.

and sinusoidal distributed currents as

i4a = I4 cos(2θ) (4.11a)

i4b = I4 sin(2θ). (4.11b)

Here I4 is the peak amplitude for the 2-phase excitation current, and θ is a fixed

spatial angle, indicating the angular position of the magnetic poles. With the 4-pole

windings being excited by the current above, sinusoidal MMF distributions along the

stator is generated as

F4a =
2

π
N4I4 cos(2θ) cos(2φs) (4.12a)

F4b =
2

π
N4I4 sin(2θ) sin(2φs). (4.12b)
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Note that in (4.12) the angle θ is fixed, while φs is the angular coordinate that

starting from x-axis. With the MMF distribution given in (4.12), 4 magnetic poles will

be generated on the rotor at φs = θ, φs = θ+ 90o, φs = θ+ 180o and φs = θ+ 270o, as

shown in Figure 4.23. Unstable attractive magnetic forces between the rotor and the

stator iron are generated at these positions, so that the rotor’s eccentric displacement

driven by this force is more likely towards one of these directions. In this analysis,

let us assume the rotor’s eccentric displacement is toward the direction of φs = θ

without loss of generality. We define the length of the displacement of the rotor to

be s. Hence the rotor’s displacement in x- and y-directions are

x = s cos(θ) (4.13a)

y = s sin(θ). (4.13b)

Here we assume that the rotor’s displacement s is small comparing to the nominal

air gap length g0. Then the air gap permeance distribution can be calculated by

substituting (4.13) into (4.4) as

P0(φs) =
µ0Rl

g0

(
1 +

s

g0
cos(θ) cos(φs) +

s

g0
sin(θ) sin(φs)

)
. (4.14)

Based on the results derived in the previous section, the rotor’s magnetic potential

keeps zero when there is only 4-pole excitation in the system, despite the existence

of rotor eccentric displacement. With both the MMF distribution and the air gap

permeance distribution identified, the magnetic flux in the air gap that generated by

the 4a windings can then be calculated as

Φ4a(φs) = P0(φs) · F4a(φs)

=
µ0Rl

g0

(
1 +

s

g0
cos(θ) cos(φs) +

s

g0
sin(θ) sin(φs)

)
· 2

π
N4I4 cos(2θ) cos(2φs).

(4.15)
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Similarly, the air gap flux induced by 4b winding is

Φ4b(φs) = P0(φs) · F4b(φs)

=
µ0Rl

g0

(
1 +

s

g0
cos(θ) cos(φs) +

s

g0
sin(θ) sin(φs)

)
· 2

π
N4I4 sin(2θ) sin(2φs).

(4.16)

The total flux distribution that generated by the 4-pole windings can be achieved

by adding the two flux distributions in (4.15) and (4.16) together as

Φ4(φs) =
µ0Rl

g0

(
1 +

s

g0
cos θ cosφs +

s

g0
sin θ sinφs

)
·2N4I4

π
(cos(2θ) cos(2φs) + sin(2θ) sin(2φs)) .

(4.17)

In the following derivation, the radial force between the rotor and the stator iron

is calculated by means of the Maxwell stress tensor method. Based on the assumption

that the magnetic flux in the air gap is in the radial direction (this is not true when

the motor is running), we can use the formula F =
B2

4

2µ0
to calculate the force per unit

area between the rotor and the stator in the radial direction, where B4 is the air gap

flux density generated by 4-pole excitations. The area between the stator and the

rotor per unit radian is Rl. For the reaction sphere, R is the rotor’s radius, and l

is the length of the stator. Based on these results, we can calculate the force in the

half-circle on the air gap 1 side (shown in Figure 4.23) to the direction of φs = θ as:

f+ =

∫ θ+π
2

θ−π
2

Rl
B2

4

2µ0

cos(φs − θ)dφs

=

∫ θ+π
2

θ−π
2

Φ2
4

2Rlµ0

cos(φs − θ)dφs.
(4.18)

Substitute (4.17) into (4.18), we can calculate the force as
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f+ =
1

2Rlµ0

∫ θ+π
2

θ−π
2

(
2µ0RlN4I4

πg0

)2(
1 +

s

g0
cos θ cosφs +

s

g0
sin θ sinφs

)2

(cos(2θ) cos(2φs) + sin(2θ) sin(2φs))
2 cos(φs − θ)dφs

=
2µ0RlN

2
4 I

2
4

π2g20

(
76s2

105g20
+
πs

2g0
+

14

15

)
.

(4.19)

Note that the force f+ has no dependency on the angle θ due to the symmetry

of motor. Similarly, the flux in the half circle of the air gap 3 side generates a force

toward the direction of φs = θ + 180o on the rotor. This force can be calculated as

f− =

∫ θ+ 3π
2

θ+π
2

Rl
B2

4

2µ0

cos(φs − π − θ)dφs

=

∫ θ+ 3π
2

θ+π
2

Φ2
4

2Rlµ0

cos(φs − π − θ)dφs.
(4.20)

Substitute the expression of flux distribution into (4.20), we can calculate the

value of f− as

f− =
1

2Rlµ0

∫ θ+ 3π
2

θ+π
2

(
2µ0RlN4I4

πg0

)2(
1 +

s

g0
cos θ cosφs +

s

g0
sin θ sinφs

)2

(cos(2θ) cos(2φs) + sin(2θ) sin(2φs))
2 cos(φs − π − θ)dφs

=
2µ0RlN

2
4 I

2
4

π2g20

(
76s2

105g20
− πs

2g0
+

14

15

)
.

(4.21)

The total radial force that acting on the rotor towards the direction of φs = θ,

which is also the direction of the rotor’s incremental displacement, can be calculated

as
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f = f+ − f− =
2µ0RlN

2
4 I

2
4

π2g20
· πs
g0

=
2µ0RlN

2
4 I

2
4

πg30
· s.

(4.22)

The above equation demonstrates the relationship between the radial force f gen-

erated by the motor windings and the eccentric displacement of the rotor s. This

relation resembles the force and motion relation of a spring: the force is proportional

to the length (displacement). However, different from a mechanical spring, as the

displacement increases, the force produced by this “spring” tends to make the dis-

placement even larger, making the rotor unstable in the center of the stator bore. Let

us define the coefficient in (4.22) to be the Negative Stiffness of this bearingless

motor:

Ks =
2µ0RlN

2
4 I

2
4

πg30
. (4.23)

Therefore the total radial force acting on the rotor is f = Ks · s.

Similar to the single degree-of-freedom magnetic suspension system that we stud-

ied in the previous chapter, the lateral magnetic suspension of the reaction sphere in

the bearingless motor system has a transfer function of the same form. This negative

stiffness value will be used to develop the plant transfer function of the sphere’s lateral

suspension system.

4.2.4 Force constant of the lateral levitation system

In this section, the motor inductance matrix is derived first using the air gap flux

distributions found in the Section 4.2.2. Some elements of the inductance matrix

are shown to be a function of the rotor’s radial displacement. Then the suspension

forces in the bearingless motor are derived by taking partial derivatives of the stored

magnetic energy, where the magnetic energy is calculated from the inductance func-

tions. From this calculation we can find the force constant of the suspension forces
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generation in a bearingless motor system, which is also a key element of forming the

transfer function of the lateral magnetic suspension system.

We continue to analyze the 2-phase 4-pole 2-pole bearingless motor. Assume that

the flux linkages of the winding 2a, 2b, 4a, and 4b are λ2a, λ2b, λ4a and λ4b respectively,

and the instantaneous currents in these windings are i2a, i2b, i4a and i4b. Then the

flux linkage and current relationships can be expressed in a matrix form as



λ4a

λ4b

λ2a

λ2b


=



L4a4a M4a4b M4a2a M4a2b

M4a4b L4b4b M4b2a M4b2b

M4a2a M4b2a L2a2a M2a2b

M4a2b M4b2b M2a2b L2b2b


·



i4a

i4b

i2a

i2b


. (4.24)

The inductances defined in the above matrix can be derived by integration of

the product of air gap flux under unity current excitation and the according MMF

distribution under unity current excitation such that

L4a =

∫ 2π

0

Φ4a(φs)
∣∣∣
i4a=1
F4a(φs)

∣∣∣
i4a=1

dφs (4.25a)

L4b =

∫ 2π

0

Φ4b(φs)
∣∣∣
i4b=1
F4b(φs)

∣∣∣
i4b=1

dφs (4.25b)

M4a4b =

∫ 2π

0

Φ4b(φs)
∣∣∣
i4b=1
F4a(φs)

∣∣∣
i4a=1

dφs (4.25c)

L2a =

∫ 2π

0

Φ2a(φs)
∣∣∣
i2a=1
F2a(φs)

∣∣∣
i2a=1

dφs (4.25d)

L2b =

∫ 2π

0

Φ2b(φs)
∣∣∣
i2b=1
F2b(φs)

∣∣∣
i2b=1

dφs (4.25e)

M2a2b =

∫ 2π

0

Φ2a(φs)
∣∣∣
i2a=1
F2b(φs)

∣∣∣
i2b=1

dφs (4.25f)

M4a2a =

∫ 2π

0

Φ2a(φs)
∣∣∣
i2a=1
F4a(φs)

∣∣∣
i4a=1

dφs (4.25g)

M4b2a =

∫ 2π

0

Φ2a(φs)
∣∣∣
i2a=1
F4b(φs)

∣∣∣
i4b=1

dφs (4.25h)
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M4a2b =

∫ 2π

0

Φ2b(φs)
∣∣∣
i2b=1
F4a(φs)

∣∣∣
i4a=1

dφs (4.25i)

M4b2b =

∫ 2π

0

Φ2b(φs)
∣∣∣
i2b=1
F4b(φs)

∣∣∣
i4b=1

dφs. (4.25j)

Here Φ4a, Φ4b, Φ2a and Φ2b are the air gap flux distribution given in (4.10), and F4a,

F4b, F2a and F2b are the MMF distribution given in (4.1). Substituting their values

into the above equation and solving the integrations results in a simple mathematical

form. Denoting them in a matrix form we can get the following relations:

 L4a M4a4b

M4a4b L4b

 =
4µ0RlN

2
4

πg0

1 0

0 1

 (4.26)

 L2a M2a2b

M2a2b L2b

 =
4µ0RlN

2
2

πg0

1 0

0 1

 (4.27)

M4a2a M4a2b

M4a2b M4b2b

 =
2µ0RlN4N2

πg20

x −y
y x

 . (4.28)

From the above-calculated results, we can see the following:

1. The self-inductances L4a, L4b, L2a and L2b are a product of air permeability,

stator’s axial length, rotor radius and winding turns of 4-pole motor winding,

and the inverse of the air gap length.

2. The mutual inductanceM4a4b between the 4-pole windings is zero because wind-

ings 4a and 4b are perpendicular to each other. The same is true for M2a2b.

3. The mutual inductances M4a2a, M4b2a, M4a2b and M4b2b represent the coupling

between the 4-pole and 2-pole windings. These mutual inductances are propor-

tional to the rotor radial displacements x and y.

4. These mutual inductances are zero when the rotor is positioned at the cen-
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ter. This fact is easily understood because the 4-pole and 2-pole windings are

symmetrically wound and are not coupled when the rotor is centered. If these

inductances are zero, there is no induced voltage in the 2-pole winding when

a 4-pole revolving magnetic field is generated. On the other hand, no induced

voltage appears at the 4-pole terminals when the 2-pole winding current gen-

erates a 2-pole revolving magnetic field. Therefore the voltage requirement for

the suspension winding is low when the rotor’s eccentric displacement is small.

Suspension radial force is associated with the radial-displacement-dependent in-

ductance terms in (4.28) because they represent an imbalance in stored magnetic

energy in the air gap. Under the assumption of magnetic linearity, the derivatives

(with respect to the radial displacement) of (4.28) are constant, producing constant

radial force gains.

For simplicity, let us define a current vector as [i] = [i4a, i4b, i2a, i2b]
T , and denote

the 4× 4 inductance matrix in (4.24) to be [L], which can be written as

[L] =



L4 0 M ′x −M ′y

0 L4 M ′y M ′x

M ′x M ′y L2 0

−M ′y M ′x 0 L2


. (4.29)

Here L4 and L2 are constants, i.e., the self-inductances of 4-pole and 2-pole wind-

ings. M ′ is the coefficient of the mutual inductance in (4.28), that is M ′ = 2µ0RlN4N2

πg20
.

Then the magnetic energy stored in the system is given by

Wm =
1

2
[i]T [L][i]. (4.30)

Expansion of the above equation results in
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Wm =
1

2
L4i

2
4a +

1

2
L4i

2
4b +

1

2
L2i

2
2a +

1

2
L2i

2
2b

+M ′xi4ai2a −M ′yi4ai2b +M ′yi4bi2a +M ′xi4bi2b.

(4.31)

The first four terms represent the stored magnetic energy associated with the self-

inductances. The last four terms are the energy terms of the mutual inductances

between the 4-pole and 2-pole windings. The radial forces can be derived from the

partial derivatives of the stored magnetic energy. Here we assume a magnetically

linear system, where the co-energy is equal to the energy. Then the forces can be

written as

 Fx

Fy

 =


∂Wm

∂x

∂Wm

∂y

 . (4.32)

Substituting (4.28) and (4.31) into (4.32) yields a simple mathematical expression

because the first row in (4.31) disappears since the first 4 terms are not functions of

radial displacement:

 Fx

Fy

 = M ′

 i4ai2a i4bi2b

−i4ai2b i4bi2a

 . (4.33)

Rewrite the above equation in a matrix form yields:

 Fx

Fy

 = M ′

i4a i4b

i4b −i4a


 i2a

i2b

 . (4.34)

whereM ′ is the mutual inductance factor between the 2-pole and 4-pole windings.

When the 4-pole windings are the motor windings, it is driven with symmetical co-

sinusoidal and sinusoidal excitation. At one time instant, the currents in the 4-pole

winding can be written as

98



i4a = I4 cos(2θ) (4.35a)

i4b = I4 sin(2θ). (4.35b)

Here I4 is the peak amplitude for the 2-phase excitation current, and θ is a the

angular position of the magnetic pole. Then the suspension force in (4.34) can be

written as

 Fx

Fy

 = M ′

I4cos(2θ) I4sin(2θ)

I4sin(2θ) −I4cos(2θ)


 i2a

i2b

 (4.36)

This is the expression of the suspension radial force when the magnetic pole is at

φs = θ, and the coefficient in (4.36) demonstrates the force constant of the lateral

suspension force generation. This equation tells us that the radial suspension force

is approximately linear to the suspension winding current, which is often regarded as

the control input of the lateral suspension system in a bearingless motor. This is a

result of the “hard linearization” design of the device. In the bearingless motor system

is an example of the flux steering design, where the current in the two-pole windings

are steering the flux generated by the 4-pole windings. As a result, the current to

suspension force is approximately linear. Reference [18] introduced the concept of the

flux steering device design in detail.

The lateral suspension force that calculated above will be used to derive the plant

transfer function model for the bearingless motor system for the reaction sphere in

the next section.

4.2.5 Transfer function for bearingless motor system

In this section the transfer function of the lateral suspension in a bearingless motor

system is calculated based on the negative stiffness and the force constant that we

derived before. In this analysis, a DC excitation is assumed. It can be also viewed as a
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time instant when the motor is under AC excitation. Since the system is symmetric,

in this analysis let us restrict our attention to the lateral levitation system in the

x-direction without loss of generality. This means we consider a time instant with

θ = 0, and the rotor’s radial eccentric displacement is in the x-direction. Substituting

θ = 0 into (4.35), we can get the 2-phase-4-pole currents under this condition as

i4a = I4 (4.37a)

i4b = 0. (4.37b)

Equation (4.37) shows that in this analysis only the 4a winding is excited with

current I4, and the 4b winding’s current in zero. Similarly, substituting θ = 0 into

the analysis in Section 4.2.3, the rotor’s displacement is x = s and y = 0. Then the

unstable radial force that generated only by the 4-pole windings is

f = Ks · x. (4.38)

This radial force is toward the x-direction, the same direction with the rotor’s

incremental displacement. The coefficient in this equation is the negative stiffness

value Ks =
2µ0RlN2

4 I
2
4

πg30
.

The suspension force can be calculated by substituting θ = 0 into (4.36) as

 Fx

Fy

 = M ′

I4 0

0 −I4


 i2a

i2b

 . (4.39)

From this equation, we can see that the suspension force in x-direction is only

related to the control current in 2a windings i2a. Let us define the force constant in

x-direction as Ki = M ′I4, and thus the suspension force in x-direction is Fx = Ki · i2a.

Hence the total force acting on the rotor can be written as

ΣFx = Ki · i2a +Ks · x. (4.40)
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Let us define the mass of the rotor to be m. Then the dynamic equation of the

rotor in the x-direction can be written as

ΣFx = Ki · i2a +Ks · x = mẍ (4.41)

Applying the Laplace transform to the above equation, we can find the transfer

function from the control current i2a and output rotor displacement x as

X(s)

I2a(s)
=

Ki

ms2 −Ks

(4.42)

Note again the negative sign in front of Ks in this result. This implies the rotor is

unstable in the center since the transfer function has a right plane pole, and feedback

control is needed to stabilize this plant.

Although in this analysis only the x-direction is considered, we can use a rotational

transformation to generalize the above analysis to any radial direction. We can also

see that this transfer function is consistent with the dynamics of the single degree-

of-freedom magnetic levitation system that we studied in the previous chapter, with

both transfer functions exhibit negative stiffness in the suspension dynamics.

This section presents a complete mathematical model for the lateral suspension

of the bearingless motor system. In the next section of this chapter, the reaction

sphere hardware is related to the model we derived via a three-phase-to-two-phase

transformation, and the model derived in this section is verified by the experimental

data from the 1D-MSRS hardware.

4.3 Bearingless motor system in 1D-MSRS

In this section, the lateral suspension of the sphere in the 1D-MSRS system is studied

with the model that we derived above. First the hardware design and the parameters

are presented, and is related to the model that we derived in the previous section via

a three-phase-to-two-phase coordinate transformation. Then the experimental test

results of the lateral magnetic levitation of the reaction sphere are presented and
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compared with the model.

4.3.1 Bearingless motor hardware

First let us present the design of the bearingless motor hardware design in the 1D-

MSRS in detail. Figure 4-7 shows the winding pattern of the stator of the 1D-MSRS

system. The stator has 24 slots. Two sets of 3-phase winding (4-pole and 2-pole) are

distributed in the stator slots. Symbols 4u, 4v and 4w represents the 4-pole windings

of phase u,v and w respectively. The same notation is used for the 2-pole windings.

In the 1D-MSRS design, the 4-pole windings are being used for commutation to

reach a better torque ability, and the 2-pole windings are for levitation. Table 4.1

presents the parameters that describe the bearingless motor system for 1D-MSRS.

Table 4.1: Parameters for MSRS bearingless motor system

parameter value

Rotor sphere radius 27 mm

Stator length 9.5 mm

Rotor mass 0.63 kg

Air gap length between stator and sphere (each side) 0.5 mm

Stator number of slots 24

Number of poles for motor winding 4

Number of wires per slot for motor winding 80

Number of poles for suspension winding 2

Number of wires per slot for suspension winding 40

Figure 4-8 shows a overall hardware configuration of the bearingless motor system

in the reaction sphere design. The controller of the system is a PXI realtime target.
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Figure 4-7: Multiple winding diagram for bearingless motor in 1-D MSRS. Winding
4u, 4v and 4w represents the 4-pole windings, and 2u, 2v and 2w represents the

2-pole windings. The two sets of windings are configured to be electrical orthogonal.

Figure 4-8: Overall hardware connection for the bearingless motor control system in
reaction sphere’s design.
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It generates 6 current signals and goes into the current control amplifiers through the

D/A converters. The amplified currents energize the 6 separated of windings in the

reaction sphere system. The rotor’s radial displacements in x- and y-directions are

measured by 4 induction probes. The sensor signals goes into the controller through

4 channels of A/D converters. For more details of the hardware specifications see

hardware description in Chapter 2.

4.3.2 Three phase system

This section considers the coordinate transformation that links the model of the

bearingless motor that we derived in the previous section with the hardware imple-

mentation of the 1D-MSRS. Although a 2-phase system is being considered in the

modeling for simplicity, 3-phase windings are usually used in real implementations.

The 2-phase coordinate that used in the modeling can be readily transformed into

3-phase coordinates. The current relationships can be related to each other using a

matrix transformation via


i4u

i4v

i4w


= [C32]

T

 i4a

i4b

 . (4.43)

Here [C32]
T is the connection matrix given by

[C32]
T =

√
2√
3


1 0

−1
2

√
3
2

−1
2
−
√
3
2


. (4.44)

Similarly, using an inverse transformation we can also calculate the equivalent

2-phase currents from the symmetrical three-phase current values, that is
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 i4a

i4b

 = [C32]


i4u

i4v

i4w


. (4.45)

This transformation can link the reaction sphere system with a 3-phase imple-

mentation and the dynamic model of the bearingless motor’s lateral suspension that

we derived in before.

4.3.3 Model and measured transfer functions

In this section we study the lateral suspension of the reaction sphere under DC exci-

tations. When the windings are excited with DC currents, there is no torque provided

to the rotor. In this case the bearingless motor is working solely as an active magnetic

bearing. Under DC excitations, the motor windings are driven by stationary three-

phase current with a peak value of Im. The subscript “m” means the motor winding

current. By choosing the phase angle of the current in 4u winding to be zero, we can

get the DC currents in the motor windings 4u, 4v and 4w as

i4u = Im (4.46a)

I4v = −1

2
Im (4.46b)

I4w = −1

2
Im. (4.46c)

To link this design with the dynamic model of the bearingless motor’s lateral

suspension, let us perform the transformation from 3-phase to 2-phase to the above

equations and reach a set of equivalent 2-phase currents of
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i4a =

√
3√
2
Im (4.47a)

I4b = 0. (4.47b)

Thus the 2-phase equivalent peak current amplitude I4 in the model is I4 =
√
3√
2
Im.

From the data in Table 4.1, we know that the number of turns per pole per phase

for the 4-pole winding N4 is 80 × 2 = 160 turns. Rotor radius is R = 27 × 10−3 m.

Motor length is l = 9.5× 10−3 m. Substituting these parameters into the expression

of the system’s negative stiffness in (4.23) we can calculate its numerical value as

Ks =
2

π

Rlµ0N
2
4 I

2
4

g30

=
2

π

Rlµ0N
2
4 (
√

3/
√

2Im)2

g30
= 7.29× 103 · I2m[N/m].

(4.48)

With the number of turns per phase per pole of the 2-pole winding N2 = 40 ×

4 = 160 turns calculated, and a coefficient of
√
3√
2
is added to the system due to the

transformation of the 2-pole currents from 3-phase to 2-phase, the force constant of

the bearingless motor system of MSRS can be calculated as

Ki =

√
3√
2

2µ0RlN2N4

πg20
I4

=

√
3√
2

2µ0RlN2N4

πg20
(

√
3√
2
Im) = 31.74 · Im[N/A].

(4.49)

Here the value Im is the zero-to-peak current amplitude of the 3-phase current in

the 4-pole motor windings. With the above calculation we can figure out the transfer

function of the lateral levitation system of the 1D-MSRS, with input of equivalent

2-phase 2-pole current i2a and output x.

In the following let us compare the derived transfer function and the experimental

measured Bode plot of the bearingless motor system. Figure 4-9 presents the mea-
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Figure 4-9: Experimentally measured plant frequency response for X direction
sphere suspension from signal to amplifier[V] to position sensor output [V] under
different 3-phase-4-pole excitation amplitude Im (zero-to-peak). Note that plant

dynamics are faster as Im is increased.

sured plant Bode plot of the lateral levitation system of the 1D-MSRS under different

motor winding current peak amplitude in 3-phase (Im). Note that this measurement

must be carried with the feedback control loop closed since the open-loop system of

the sphere’s lateral suspension is unstable.

From the measured frequency response data of the lateral suspension plant, we

can see that the break frequency of the Bode plot is increasing as the 4-pole excitation

current amplitude increases. This observation is consistent with the model, where the

negative stiffness of the system Ks is proportional to the square of the 3-phase motor

current amplitude Im.

In the measurement of the frequency response, the signal we are applying is the

command given to the current control amplifier, which has a amplifier gain of gamp =

0.1 A/V. The signal that we are measuring is the output signal of the sensors, which
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Figure 4-10: Measured and modeled plant frequency response of the lateral
levitation system of 1D-MSRS from 2-pole winding current i2a to sphere’s position
x. Green line: modeled plant transfer function. Blue: experimental measured plant

transfer function. Im = 0.5 A.

have a gain of gsensor = 1.25×
√

2 V/mm. We can divide the measured magnitude of

the plant Bode plot with this the total scaling gain to get the transfer function from

i2a to x.

Let us compare the transfer function that we calculated from the model and the

experimental measured transfer function. Selecting Im = 0.5 A, we can calculate the

modeled plant transfer function from i2a to x as

X(s)

I2a(s)

∣∣∣∣∣∣
Im=0.5 A

=
Ki

ms2 −Ks

∣∣∣∣∣∣
Im=0.5 A

=
37.74

0.63s2 − 7290
[m/A].

(4.50)

Figure 4-10 plotted the modeled Bode plot of the transfer function in (4.50) and

the measured frequency response data with Im = 0.5 together. From the plot we can
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see that the model matches with the measured data well. This comparison verifies

the transfer function that we derived before.

4.4 Controller design and AC excitation

In this section the AC excitations of the bearingless motor system in 1D-MSRS and

the controller design for lateral suspension are discussed.

4.4.1 AC excitation

First the AC excitation of the bearingless motor system is introduced in this section.

In order to generate a torque to the rotor, three-phase AC currents are supplied to

the motor winding of the bearingless motor for the 1D-MSRS to generate a revolving

magnetic field. The symmetric three-phase current in the 4-pole winding can be

written as

i4u = Im × cos(2ωt) (4.51a)

i4v = Im × cos(2ωt+
2π

3
) (4.51b)

i4w = Im × cos(2ωt+
4π

3
) (4.51c)

For the simplicity of analysis, we first apply the transformation from three-phase

to two-phase coordinate, as:

 i4a

i4b

 = [C32]


i4u

i4v

i4w


(4.52)

where the [C32] matrix is given in (4.44). This transformation results in an equiv-

alent two-phase AC current of:
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Figure 4-11: Diagram showing bearingless motor control approach under AC
excitation.

i4a = I4 × cos(2ωt) (4.53a)

i4b = I4 × sin(2ωt) (4.53b)

Where I4 is the amplitude of the equivalent 2-phase AC current, and its value is

I4 =
√
3√
2
Im. This 2-phase current is rotating with an angular electrical velocity of 2ω,

and the generated magnetic field is rotating with a mechanical angular velocity of ω.

As a result, all the radial force generations, both the unstable radial magnetic forces

and the suspension forces, are in the rotational coordinate of an angular velocity of ω.

This coordinate is often called d-q coordinate [?]. However, the rotor displacement

measurements and radial position control signals are in the stationary x-y coordinate,

thus a transformation from stationary x-y frame to the rotational d-q frame in needed

to link the two coordinates.

Figure 4-11 presents the block diagram of a bearingless motor under AC excitation.

By exciting the 4-pole motor windings with a symmetric rotational 3-phase current

given in (4.51), a rotational magnetic field with a mechanical angular velocity of ω
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can be created, which will generate an unstable radial force in the d-q coordinate to

the rotor when the rotor has an eccentric displacement.

The air gap lengths in stationary x-y coordinates are measured by displacement

sensors. Rotor’s position error are calculated by ex = xref − x, and ey = yref − y. In

the design of reaction sphere, we set both xref and yref to be zero.

Two controllers in x- and y-directions are designed for the sphere’s lateral suspen-

sion, and the control effort signals are defined as ux and uy. The design details of the

controller are presented in the next section. These two control effort signals are then

transformed to the rotational d-q coordinate via the well-known Park transformation

as

 ud

uq

 =

cos(2ωt) sin(2ωt)

sin(2ωt) −cos(2ωt)


 ux

uy

 . (4.54)

More details about the Park transformation are presented in [25]. The rotational

control effort signals ud and uq are then transformed into 3-phase via the two-phase

to three-phase transformation by


i∗2u

i∗2v

i∗2w


= [C32]

T

 ud

uq

 . (4.55)

The control signals in rotational three-phase coordinate i∗2u, i∗2v and i∗2w are then

fed into the current control power amplifiers and energizes the radial position con-

trol windings (here the 2 pole windings). The combination effect of the two sets of

windings will work in the same way as under DC excitation, except that when the

system under DC excitation the force generations are in stationary x-y coordinate,

while under AC excitation it is in the rotational d-q coordinate.
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4.4.2 Lateral suspension control design

This section discuss the controller design for the lateral suspension of the bearingless

motor system. Since the Park transformation can transform an AC excited system to a

DC excited system, and the three-phase to two-phase transformation can effectively

decouple the x- and y-direction levitation, the control for the bearingless motor is

essentially the same as the control for single degree-of-freedom magnetic levitation.

Based on the plant transfer function that we have derived and the measured plant

dynamics, two PID controllers are designed to stabilize the lateral magnetic levitation

system in x- and y-directions. The control loop is similar to the vertical suspension

we discussed in Chapter 3. However, different from the control loop for a single

degree-of-freedom magnetic levitation, the change of negative stiffness with the motor

current amplitude requires a controller that can stabilize the system with all excitation

amplitudes.

We modify the controller for lateral levitation according to both the model derived

in the above sections and the measured frequency response data. From the transfer

function given in (4.42), it can be observed that the break frequency of the plant

transfer function is the square root of the ratio between negative stiffness and the

rotor mass, or
√
Ks/m, and (4.48) shows that the negative stiffnessKs is proportional

to the square of the peak amplitude of the 4-pole current Im. Based on these facts,

we can predict that the break frequency of the plant Bode plot should have a linear

relationship with Im. Plotting the break frequencies of the measured plant Bode plots

under different driving current amplitudes Im, we get the data shown in Figure 4-12.

Fitting the data with a linear function we can get the relation as

fbreak[Hz] = 3.14× Im[Amp] + 3.19. (4.56)

This change of the break frequency of the lateral levitation plant shows that as

the amplitude of the excitation strength decreases, the unstable radial force is getting

smaller, thus the negative stiffness in this radial suspension system decreases. This

implies that a bearingless motor system requires a minimum driving current amplitude
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Figure 4-12: Break frequency of plant with changing driving current amplitude.

in the motor windings, even when no driving torque is needed, in order to maintain

radial suspension.

This change in the plant frequency response also requires adjustments in the con-

troller to keep the system stable under all driving conditions. To address this, the

PID controllers are designed to adaptively adjust their parameters according to (4.56).

The transfer function of the lead-lag form PID controller for lateral suspension control

of the reaction sphere can be written as

C(s) = Kp

(
1 +

1

Tis

)
· ατs+ 1

τs+ 1
. (4.57)

HereKp is the proportional gain. Ti is the integral time, which determines the zero

position of the lag compensator. α is the separation ratio of the lead compensator,

and τ is the time constant that determines the pole and zero locations in the lead

compensator. In the design of the controller, we decide to crossover at 5 times of the

break frequency. Hence under certain excitation amplitude Im the desired crossover

frequency is ωc = 5× 2π × fbreak(Im).

In the controller design we want to put the phase peak of the lead compensator

at the desired crossover frequency. Let us set the α fixed at 10, thus the τ need to

adjust by
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τ =
1

ωc
√

(α)
. (4.58)

To achieve a fixed phase margin, we also set the zero position of the lag compen-

sator 1
Ti

at one decade before the desired crossover frequency. A fixed proportional

gain Kp = 6 is used. As a result, two parameters in the controller, τ and Ti, are

adjusting in real time with the excitation amplitude Im.

Figure 4-13 shows the measured loop return ratio of the reaction sphere’s lateral

suspension control of the system. From the measured Bode plots we can see that the

proposed controller design can stabilize the lateral suspension control under different

motor current amplitude. With this controller design, the loop reached a bandwidth

varying with the excitation current amplitude and a fixed phase margin of 45o. Under

0.2 A excitation current, the loop has a crossover frequency of 95 rad/s. With 0.7 A

excitation the crossover frequency is is 380 rad/s. In this way the radial position of the

sphere is successfully regulated at the center of the stator under different excitation

amplitudes.

4.5 Summary

This chapter studies the lateral suspension of the reaction sphere, which is achieved

by means of a bearingless motor. By arranging two sets of three-phase windings on

a single stator and control the currents that energize the windings, the sphere can be

successfully driven by a revolving magnetic field while levitated at the center of the

stator bore.

In this chapter, we first introduced the principle of suspension force generation in

a bearingless motor. Then a complete model for a bearingless motor is developed, and

a plant transfer function of the sphere’s lateral suspension is derived. Later on this

model is being verified by experimental data measured from the 1D-MSRS hardware.

Finally the AC excitation of a bearingless motor and the controller design of the

reaction sphere’s lateral suspension are introduced.

This chapter mainly talks about the bearing function of the bearingless motor in
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Figure 4-13: Measured Bode plots of loop-return-ratio of the lateral suspension
control loop under different 3-phase-4-pole peak current amplitudes.
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the reaction sphere designs. The motor operation of the reaction sphere is introduced

in the next chapter.
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Chapter 5

Hysteresis Motor

This chapter presents the motor operation of the 1D-MSRS. The reaction sphere in the

1D-MSRS is driven by a hysteresis motor. In this chapter, we first briefly introduce

the torque production mechanism of the hysteresis motor. Then an equivalent circuit

model for hysteresis motor is introduced and being modified to analyze the reaction

sphere. After that, the test results of the motor operation of the 1D-MSRS are

presented, and the simulation results using the equivalent circuit model are compared

with experimental data from the 1D-MSRS hardware. This comparison verifies the

simulation, which produces a testbed for the speed control design for the 1D-MSRS

system.

5.1 Introduction to hysteresis motor

Among many different kinds of electrical motors, the hysteresis motor is well-known

for its simple structure, constant torque during the starting period, and its quiet

operation. Another distinct feature of this motor is that its rotor can be made out of

a single piece of hard and strong steel, which allows the rotor to stand large stresses

and makes this motor concept attractive for high-speed applications. In this section

we introduce the basic principle of the hysteresis motor.

The hysteresis motor has a very simple motor construction. It consists of a regular

poly-phase stator to produce revolving magnetic fields and a rotor of solid magnetic
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Figure 5-1: Hysteresis motor operation principle: rotor field lags behind stator
excitation due to magnetic hysteresis in rotor material.

hard material. Figure 5-1 shows a diagram of an operating hysteresis motor. The

rotating magneto-motive force (MMF) produced by the stator is in the direction of

axis S-S, and this MMF wave is rotating with a mechanical angular velocity ω. The

hysteresis of rotor material causes a lag angle δ between the direction of the rotor

magnetic fields and the stator fields. This lag in spatial angle generates an tangential

component of magnetic field in the air gap, and thus produce a torque to the rotor.

The strength of the hysteresis torque is correlated to both the strength of the magnetic

field and the lag angle.

Aside from the hysteresis torque production during the steady state operation,

eddy current also works for the torque production when the motor is starting up.

Before the rotor reaches the synchronous speed, each region inside the rotor experi-

ences hysteresis cycle at the slip frequency. At the same time, due to the slip between

stator and rotor field, eddy currents are generated in the rotor. The axial component

of the eddy currents can produce an accelerating torque by interacting with the mag-
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netic field. As the motor speed slip becomes smaller, the eddy currents in the rotor

decays, until the speed of the rotor reaches the synchronous speed. When the motor

is operating in steady state, the eddy currents vanish, and only the hysteresis effect

is producing torque.

To sum up, hysteresis motors use the combination of eddy currents and the hys-

teresis of rotor material for torque production. In this sense, hysteresis motor is a

combination of a weak permanent magnet motor and an induction motor. Being a

synchronous motor, during the start-up, the accelerating torque is due to both eddy

current and reluctance force by hysteresis. Once the rotor becomes synchronous with

stator field, the eddy current vanishes and it resembles a permanent magnet machine.

In the next section, an equivalent circuit model of the hysteresis motor is presented,

and is being modified to analyze the motor operation of the reaction sphere.

5.2 Equivalent circuit model of hysteresis motor

In order to study the dynamic behavior of 1D-MSRS, a model of the hysteresis motor

is necessary. Modeling of the hysteresis motor is difficult due to the nonlinearity of

hysteresis material properties. Researchers have developed several different models

for hysteresis motor. Copeland [26] presented an analytical study of hysteresis motors

and introduced the idea of using the fundamental harmonic response to the magne-

tizing field by simplifying the hysteresis loop into a parallelogram shape. Miyairi and

Kataoka [15] introduced an elliptical hysteresis loop model and derived an equivalent

circuit model for the hysteresis motor under this assumption. Several other papers [27]

and [28] presented different set of hysteresis motor models using the analogies to other

types of motors.

In our work, the elliptical hysteresis model based equivalent circuit of hysteresis

motor developed by Miyairi and T. Kataoka [15] and further presented in [29] and [6] is

used to analyze the dynamic behavior of the 1D-MSRS. This model is used to analyze

both the steady state running and starting up of the reaction sphere, although the

model is built based on sinusoidal steady state assumptions. The reasons that we
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extended this model for hysteresis motor transient analysis are listed below.

1. We are using the self-bearing motor for the lateral suspension of the 1D-MSRS,

thus the sphere is always first levitated in radial directions and then being

driven by rotating magnetic field. In this way, under DC excitation conditions

or rotating under the excitation of rotating magnetic field, the magnetization

pattern and pole distribution of the sphere surface is the same. Therefore we

do not need to model the virgin magnetization curve (B-H curve starting from

zero magnetization) as most hysteresis motor transient simulation does.

2. The reaction sphere is excited below saturation. In this circumstance the real

hysteresis loop has less higher order harmonics, which makes it more similar to

a phase lag between B field and H field.

3. Due to the effect of eddy currents, the hysteresis property is showing dependency

to excitation frequency. The loop widening effect makes the hysteresis loop get

more close to an elliptical model.

4. This model has an assumption that the hysteresis lag angle is held constant and

is equal to it’s maximum when slip is large, which makes the motor hysteresis

starting torque maximum and does not depend on slip during starting up. This

assumption is close to what is really happening when a hysteresis motor is start-

ing spinning, and makes this equivalent circuit model valid for motor transient

behavior simulation, although usually they are not accurate when slip is large.

In the following of this section, the equivalent circuit of hysteresis motor is pre-

sented in detail. The derivation in this thesis follows the paper by Miyairi and

Kataoka [15].

In the hysteresis motor’s equivalent circuit model, a balanced single-frequency,

three-phase source is assumed. The B-H curve of the rotor material is approximated

by a ellipse, with B and H are give by:
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B = Bmcos(θ) (5.1a)

H =
Bm

µ
cos(θ + δ). (5.1b)

Here δ is the lag angle between H and B. In this equation the permeability of

the hysteresis material µ is defined as the ratio of the maximum value of B and H is

µ = Bm
Hm

.

Another assumption in this analysis is that the distribution of the rotating MMF

is pure sinusoid. Higher order harmonics of the MMF and flux distributions are

neglected.

Then we start calculate the value of components in the equivalent circuit from

electromagnetic modeling. In this derivation, let us assume a general hysteresis mo-

tor is being considered. The stator has m-phase, 2p-pole motor winding, and the

conductor distribution of every phase is sinusoid around the rotor. Then the k-th

winding has a distribution of

Zk = Zcos(φ− (k − 1)
2π

m
)[conductors/electricradian]. (5.2)

Here k = 1, 2, ...,m. φ is the angle in the coordinate that fixed to the stator. Z is

the maximum of the conductor density, and its expression is

Z =
2KwN

pπ
. (5.3)

Here Kw is the winding factor, N is the number of turns per phase per pole of

the motor winding, and p is the number of pole pairs. Then the currents that flow

through m-phase stator winding is:

ik = I · cos
(
ωt− (k − 1)

2π

m
+ φ1

)
. (5.4)

In this equation, I is the peak current amplitude of the m-phase current, ω is

the electrical angular velocity, and φ1 is the initial phase of the current. From the
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l  tr 

B 

Figure 5-2: Cross section of the reaction sphere and stator structure. In this
diagram, l is the height of the stator. The region in the dash line shows the
equivalent cross-section area that the magnetic fluxes flow through. tr is the

equivalent depth of the rotor. rr is the equivalent radius of the rotor sphere, which
is the average radius in the rotor where the magnetic fluxes flows along.

winding and current distribution in (5.4) and (5.2), the magneto-motive force (MMF)

distribution generated by the stator winding can be calculated as

FM =
m∑
k=1

Zkik =
m

2
IZcos(ωt− φ+ φ1) (5.5)

We can use the MMF distribution expression in (5.5) to study the flux distribution

in the air gap and the rotor. In this analysis, the permeability of the stator iron

material is assumed to be infinite, thus the magnetic field intensity in the stator back

iron is zero.

Figure 5-2 shows a cross section diagram of the reaction sphere. As shown in

the figure, the motor length is defined to be the length of the stator since the rotor

sphere is much longer than the stator in the z-axis direction. In the cross-section of

the sphere rotor, the region in the dash line shows an equivalent cross-section area
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Figure 5-3: Motor geometry and magnetic path at equator of sphere. dφs is an
incremental angle in the angular coordinate. rr is the equivalent radius of the rotor.

rg is the average radius of the air gap.

that the magnetic flux in the rotor will flows through. The length tr shows the depth

of this area, and rr shows the average radius of this cross section. In the following

derivation, we assume that all the magnetic fluxes in the rotor are flowing along the

radius rr, so the radius rr is also called equivalent radius of the rotor sphere.

Figure 5-3 shows a top-view cross section of stator-gap-rotor of hysteresis motor

with a small angle dφs. The average radius of the air gap is defined to be rg, and

the air gap length is denoted by g. A closed magnetic path that goes through the

equivalent radius in the rotor rr is shown with dotted line in Figure 5-3. By applying

Ampere’s law to the defined closed magnetic path, we can have

FMdφs = −(Hg + dHg)g +Hgg +Hrrr
dφs
p
. (5.6)

In this equation, FMdφs denotes the magneto-motive force provided by the section
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Figure 5-4: A section of rotor with an incremental angle of dφs in the angular
coordinate around the vertical axis. Bg is the flux in the air gap. Br is the magnetic

flux in the rotor.

of stator winding inside the magnetic path. dφs is the incremental angle in the angular

coordinate around the motor. p is the number of pole pairs. g is the length of the

air gap. rr is the radius that the magnetic field that passes through in the rotor. Hg

is the magnetic field strength in the air gap, and dHg is the incremental air gap field

strength. Hr is the field strength in the rotor align to the selected magnetic path.

By dividing (5.6) by dφs, and let dφs → 0, we can have

FM = g
∂Hg

∂φs
+
rr
p
Hr. (5.7)

Figure 5-4 shows a section of the rotor of angle dφs. We can see that the magnetic

fluxes that flow into this section of rotor include the flux in the rotor Br and Br +

dBrand the flux in the air gap Bg. S is a closed surface denoted in the figure by the

dark blue lines. By applying Gauss’s law to the closed surface S, we can have

∫∫
S

BdS = (Br + dBr)trl −Brtrl + µ0Hglrg
dφs
p

= 0. (5.8)
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Here tr is the equivalent thickness of the rotor defined in Figure 5-2. l is the motor

length. rg is the mean radius in the air gap. Br is the magnetic flux that flows in

the cross-section of the rotor. Hg is the magnetic field strength in the air gap. With

dφs → 0 we can get the expression of flux in the air gap as

Bg = µ0Hg = −ptr
rg

∂Br

∂φs
. (5.9)

Substituting the value of Hg give by (5.9) into (5.7), we can get

FM = − gptr
µ0rg

∂2Br

∂φ2
s

+
rr
p
Hr. (5.10)

Let us substitute the material property given in (5.1) and the expression of the

MMF distribution given in (5.5) into the above equation, and apply the sinusoidal

distribution assumption to the flux distributions. Then the below equation is reached:

m

2
IZcos(ωt− φ+ φ1) =

gptr
µ0rg

Bmcos(ωt− φ) +
rr
pµ
Bmcos(ωt− φ+ δ). (5.11)

The equivalent circuit model is developed based on the above equation. The left-

hand side in (5.11) is the MMF generated by the stator winding. The two terms

on the right-hand side can be regarded as the magnetic potential that dissipated in

the air gap and inside the rotor respectively. This equation separated the magnetic

potential into two parts: the air gap part and the rotor part. Based on this equation,

we can separate the stator current of k-th phase as

i = ig + ir, (5.12)

where i is the k-th phase current that flows in the stator winding, and ig and ir

are the equivalent current for air gap and rotor respectively. We know that the k-th

phase current in the stator winding is given by

i = Icos(ωt− (k − 1)
2π

m
+ φ1). (5.13)
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Based on equation (5.11), we can calculate the values of the equivalent air gap

and rotor currents as:

ig =
2gptr
mZµ0rg

Bmcos(ωt− (k − 1)
2π

m
) (5.14a)

ir =
2rr

mZpµ
Bmcosωt− (k − 1)

2π

m
+ δ. (5.14b)

Since the stator current and both the equivalent currents are sinusoidal in time,

we can write them into phasor form, as

İ = İg + İr. (5.15)

Here İ is the phasor of the sinusoidal stator current value. İg and İr are the

phasors of the equivalent air gap and rotor currents respectively. Their values are

İ = Iejφ1 (5.16a)

İg =
πp2gtrBm√
2mKwNµ0rg

ej0 (5.16b)

İr =
πrrBm√

2mKwNµ
ejδ. (5.16c)

Figure 5-5 shows the phasor diagram of the equivalent currents with the phase

of the equivalent air gap current İg set to zero. The phasor ε denotes the stator

voltage of k-th phase winding, which is orthogonal to the air gap current phasor. We

can see from the diagram that the phasor of the stator current İ is a vector sum of

the equivalent currents İg and İr. The phase difference between the two equivalent

current is the lag angle δ.

Based on the current phasors that we have derived, we can calculate an equiva-

lent circuit components of the hysteresis motor by paralleling the two current paths:

equivalent rotor current and the equivalent air gap current. Note that these two cur-

rents are not real current that flows in the air gap or rotor. Instead, they are a part
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Figure 5-5: Phasor diagram of the apparent currents in the equivalent circuit. I is
the current in the stator winding. Ir is the rotor equivalent current. Ig is the air gap

equivalent current.

of the stator current. The equivalent circuit diagram is shown in Figure 5-6. The

values of the equivalent circuit components are:

Lg =
2mKw

2N2µ0lrg
p2πg

(5.17a)

Rr = ωb
mKw

2N2Vrµ

π2rr2
sinδ (5.17b)

Lr = ωb
mKw

2N2Vrµ

π2rr2
cosδ. (5.17c)

Here Vr is the equivalent volume of the rotor, which is calculated as Vr = 2πrrtrl.

Notice that the hysteresis part of the rotor apparent impedances are depending on

the lag angle δ.

Aside from the hysteresis of rotor material, another phenomena that produces

accelerating torque to the rotor is the eddy current effect. When there is slip between

the stator frame and the rotor frame, eddy current will be generated in the rotor,

mainly in the axial direction, and a torque will be produced to the rotor by the

interaction between this current and the stator magnetic field. With the slip becomes

smaller, the eddy current decays. To represent this effect, a resistance Re/s is added

to the hysteresis motor’s equivalent circuit model, where s is the motor slip. Then

the modified rotor current Ir is the total current that flows through the hysteresis

127



Lg 

I 
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Lr 

Figure 5-6: Equivalent circuit model of hysteresis motor. Here I denotes stator
current. Ig and Ir are the equivalent currents for air gap and rotor respectively. Lg
is the equivalent air gap impedance. Zr is the rotor equivalent impedance, which
included both rotor hysteresis impedance Rr and Lr and equivalent impedance

Re/s. Here s is the motor speed slip.

rotor impedances and the eddy current apparent resistance. According to the report

by Livermore National Laboratory [29], the value of Re can be calculated by

Re =
12ρl

104Ah
. (5.18)

where ρ is the specific resistivity of the rotor material, and Ah is the axial cross-

section area of the rotor. In our analysis, the cross section area is Ah = π(R2 − (R−

tr)
2), with the R being the radius of the rotor sphere.

Then torque production of the hysteresis motor, including both the hysteresis

torque and eddy current torque, can be calculated by:

Te =
m

2

P

2
LgIrIgsinδ. (5.19)

Here Ir and Ig are the equivalent current values that calculated by the equivalent

circuit model in Figure 5-6. Then the motor’s mechanical speed can be calculated by

the rotor’s dynamic equation:
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Te − Td =
J

p

dωr
dt

+ A|ωr|2. (5.20)

Here ωr is the mechanical angular speed of the rotor, J is the inertia of the rotor,

and the air drag to the rotor is expressed as proportional to the square of the angular

velocity with a coefficient of A. The lag angle between electrical angular position and

mechanical angular position is given by:

ω − ωr
p

=
dδ

dt
. (5.21)

The above equations present a dynamic model to a hysteresis motor, with its

torque production calculated by the equivalent circuit model. We will use this model

to simulate the motor behavior of the 1D magnetic suspended reaction sphere.

5.3 Identification of motor equivalent circuit param-

eters

In order to simulate the motor dynamics of the 1D-MSRS, we need to identify the

parameters of the reaction sphere that are required for the calculation. Most of

the numbers are motor design parameters, which are determined by the 1D-MSRS

hardware. Table 5.1 shows the design parameters for the 1D reaction sphere.
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Table 5.1: Parameters for equivalent circuit model simulation

parameter value

Sphere radius 27 mm

Stator height 9.5 mm

Stator back iron length 12mm

Stator pole width 3 mm

Air gap length between stator and sphere (each side) 0.4 mm

Stator number of slots 24

Number of poles for motor winding 4

Number of wires per slot for motor winding 80

Number of poles for suspension winding 2

Number of wires per slot for suspension winding 40

Aside from the above listed design parameters, there are still several system pa-

rameters of the reaction sphere that will be used in the modeling. These parameters

will need to be identified by either calculation or measurement. These parameters

are: permeability µ and lag angle of hysteresis loop δ of the rotor material, average

radius of magnetic path in rotor rr and the rotor’s equivalent thickness tr. In the

following text in this section, the identification of these parameters are introduced.

Hysteresis material approximation

In the derivation of the equivalent circuit model of the hysteresis motor, an ellipti-

cal assumption of hysteresis loop is adopted. The flux density and field under this

assumption can be written as
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B = Bmcos(θ) (5.22a)

H =
Bm

µ
cos(θ + δ). (5.22b)

Here δ is defined as the lag angle between H and B, and the permeability µ is

defined as the ratio of the maximum value of B and H, and can be written as

µ =
Bm

Hm

. (5.23)

Figure 5-7 presents the hysteresis loops of D2 steel measured from a ring of D2

steel. The original data and the measurement process are given in the doctoral thesis

of Dr. Mohammad Imani Nejad [6]. In the figure, the red and blue lines are the

data measured under 3 Hz and 50 Hz excitations and their elliptical approximations

respectively. We can clearly see that the loop shapes that measured under different

excitation frequencies are different. This effect is called loop widening effect, which

means that the magnetic hysteresis loop gets widen as the excitation frequency goes

up. Reference [30] gives a general introduction about the physics of the loop widening

effect.

Figure 5-8 shows the measured D2 steel magnetic properties as a function of

excitation frequency. In this figure, the blue line shows the relative permeability µ,

and the green line shows the lag angle δ. The data is taken from the doctoral thesis

of Dr. Mohammad Imani Nejad [6].

The measured data in Figure 5-7 and 5-8 allow us to choose the rotor mate-

rial property parameters in the simulation according to the excitation frequency. In

the simulation shown in this thesis, the reaction sphere is running at an electrical fre-

quency of 60 Hz. As a result, the material property parameters used in the simulation

are µ = 150 and δmax = 42◦.
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Figure 5-7: D2 steel linear model approximation.

Figure 5-8: D2 steel magnetic properties as a function of frequency.
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Figure 5-9: Magnetic field of the motor calculated by the 2D finite element method.
Figure shows the motor geometry of the cross-section along the equator of the

sphere.

Equivalent magnetic path in rotor

In the derivation of the equivalent circuit model of hysteresis motor, there are two

parameters about the geometry of the magnetic path in rotor: (a) the equivalent

rotor thickness tr, and (b) the mean radius rr. In Miyari’s paper [15], the hysteresis

motor being considered has a ring type rotor, thus radius is defined as the radius

of the mid-line in the rotor ring, and the thickness is also determined by the rotor’s

geometry. However, when the rotor becomes a solid sphere, these definitions are

no longer suitable. In order to make the simulations more accurate, finite element

method is used to identify the equivalent thickness and the average radius of the

magnetic path in the rotor sphere. Figure 5-9 presents the calculation result of the

finite element analysis of the motor magnetic field using FEMM [21]. From the

magnetic field shown in the figure, we can determine the average thickness of the

rotor is tr and the mean radius of the magnetic path in rotor rr. In the simulation,

the parameters being chosen are tr = 10 mm and rr = 21.5 mm.
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5.4 Simulation

In this section the simulation of the hysteresis motor of the reaction sphere is de-

scribed. Matlab/Simulink is used for the simulation of the motor system. This model

is originally created by Dr. Mohammad Imani Nejad following the simulation pro-

cedure described in a technical report from Livermore National Laboratory [29], and

is modified for the reaction sphere’s simulation. The steps of this simulation can be

summarized as:

1. Assign appropriate initial conditions: in this simulation we define the proper

initial condition for angular velocity and lag angle in order to solve the governing

differential equations of the motor dynamics.

2. Solve equivalent circuits for apparent currents: once we have the equivalent

impedances, we can use Kirchhoff’s circuit laws to find the rotor and gap apparent

currents for given excitation current amplitude and electrical frequency.

3. Calculate motor torque: the torque that produced by the motor can be com-

puted as

Te =
m

2

P

2
LgIrIgsinδ (5.24)

4. Calculate motor speed: the motor’s mechanical speed can be calculated by the

rotor’s dynamic equation

Te − Td =
J

p

dωr
dt

+ A|ωr|2 (5.25)

5. Calculate lag angle: The lag angle is given by

ωb − ωr
p

=
dδ

dt
(5.26)

Figure 5-10 and 5-11 shows the Simulink model for the 1D-MSRS simulation. The

simulation results are compared with the experimental measured motor operation

data of the reaction sphere in the next section.
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5.5 Experimental and simulated motor operation

In this section, the measured starting transient speed data of the magnetic suspended

reaction sphere is presented. The measurement of input power of the1D-MSRS when

running in open-loop is also demonstrated. After that, the simulation results from the

above described model are presented and are compared with the experimental data.

Good agreement between the experimental data and the simulation results verified

the effectiveness of the simulation, and this model will provide a reliable platform to

study the speed control scheme for the reaction sphere.

The magnetic suspended reaction sphere is running by exciting the 4-pole motor

windings with a symmetrical 3-phase current, and is magnetically suspended in all

translational directions. Figure 5-12 presents the acceleration curves of the 1D-MSRS

under different amplitudes of excitation current. We can see that all curves locks into

the reference speed after acceleration, and a 3-5 Hz oscillation occurs when the speed

reaches synchronous due to the hunting nature of hysteresis motor. The data also

shows that with an excitation current of 0.7 A zero-to-peak value, the sphere can

reach the synchronous speed of 30 Hz (1800 rpm) within 6 seconds. The starting

torque under this excitation is 8.15× 10−3 N.m.

The power specifications of 1D-MSRS is also tested. The currents in the motor

and suspension windings are controlled through current control amplifiers following

the current command that we assigned, therefore the measurement of power can be

achieved by measuring the rms voltage value of the windings. In this measurement,

we kept the motor winding currents to be a sinusoidal signal with a zero-to-peak

value of 0.6 A (thus rms current value 0.42 A). The measurement is taking when

the reaction sphere is spinning synchronously. The measured data are listed in Table

5.2. Note that these values are tested under constant motor current amplitudes.

When the speed control is added to the 1D-MSRS system that enables the current

amplitude changes with speed error or torque requirements, the power consumption

of the sphere running in steady state can be greatly reduced.
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Figure 5-12: Acceleration curves of 1D-MSRS under different excitation current
amplitudes. Synchronous speed is 30 Hz.

Table 5.2: Motor power consumption measurement of 1D-MSRS.

Excitation

(electrical)

frequency

Motor

winding

current

(rms)

Motor

winding

voltage

(rms)

Suspension

winding

current

(rms)

suspension

winding

voltage

(rms)

Total mo-

tor power

consump-

tion

60 Hz 0.42 A 10.41 V 0.052 A 6.32 V 14.63 W

120 Hz 0.42 A 16. 85 V 0.082 A 7.12 V 21.55 W

Then let us compare the simulated speed data with the experimental measured

speed data under different excitation conditions. Figure 5-13, 5-14, 5-15, 5-16, 5-

17 and 5-18 present the simulated and experimentally measured speed during the

starting transient of the hysteresis motor of the reaction sphere plotting together

under different driving current amplitude. In the figure (a) of these figures, the blue

line is the simulated data of the hysteresis motor with the Matlab/Simulink model
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that presented before, and the red line is showing the the speed of the reaction

sphere measured by the optical tachometer during the sphere is stating up. Good

agreement between simulation and experimental speed data confirms the validity of

the equivalent circuit model for analysis of the 1D-MSRS. The figure (b) in these

figures, the simulated results of the electrical torque production of the hysteresis

motor under the given conditions are plotted. Note that although the plots are

having similar shapes, the time scale shows that the rise time of the sphere’s speed

and the torque production ability is very sensitive to excitation current amplitude.

5.6 Summary

In this chapter the motor operation of the reaction sphere is being studied. The

1D-MSRS is driven by a hysteresis motor , which uses a combination of magnetic

hysteresis and eddy current effect for torque generation. In this chapter, the principle

of hysteresis operation is introduced. Then an equivalent circuit model for hysteresis

motor based on the model proposed by Miyairi and Kataoka [15] is presented. A

simulation of motor dynamics based on the equivalent circuit model of hysteresis

motor is carried out, and a comparison between the experimental measured sphere

acceleration curves and the simulated result validates the effectiveness of the model.

The experimental measured acceleration curves of the reaction sphere tells us that

with 0.7 A excitation current, the sphere can reach the synchronous speed of 30 Hz

(1800 rpm) within 6 seconds. The starting torque under this excitation condition can

reach 8.15× 10−3 N.m.

In the next chapter, feedback control for the hunting suppression is discussed.
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Chapter 6

Speed Control of Reaction Sphere

with One-axis Hysteresis Drive

In the design of the 1D-MSRS, hysteresis motor is used due to its ability of con-

stant torque, self-start, and quiet operation. These properties are very important

for motors in precision applications such as inertial actuators for satellite attitude

control. However, hysteresis motors also have their drawbacks. As we have shown

in the previous chapter, the speed of the motor fluctuates slightly above and below

the desired synchronous frequency while it operates. This speed oscillation occurs

when the motor speed is getting close to the synchronous speed. This motor speed

variation about the desired synchronous speed is known as hunting.

The hunting phenomena of hysteresis motor may cause errors which could hinder

system performance. For example, when a torque is need to provide to the satellite

by the reaction sphere, this hunting behavior can cause the whole satellite oscillates,

and thus impair the pointing accuracy of the satellite.

In addition, since magnetic suspension eliminated all mechanical frictions, the

torque needed for the reaction sphere during steady state operation is very low. There-

fore we should be able to reduce the current amplitude in the motor winding when

the sphere reaches synchronous speed depending on the torque requirement. This

adjustment in current can reduce the copper loss of the 1D-MSRS in steady state

operations.
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In this chapter of the thesis, the hunting behavior of the hysteresis motor for the

1D-MSRS is studied first. After that, a speed control strategy is proposed for actively

monitors motor activity and compensates for the hunting. With the sphere’s speed

under closed-loop control, the motor current amplitude can be reduced when the

sphere is running synchronously and thus reduce energy consumption. This control

method is tested on the 1D-MSRS hardware and simulated by the hysteresis motor

model for 1D-MSRS presented in the previous chapter.

6.1 Linear model of the hunting

In this section we study the hunting dynamics of the hysteresis motor. A linear

second-order model is used to fit the hunting dynamics of the hysteresis motor. This

linear model is used to design the controller for hunting suppression.

Figure 6-1 shows the open-loop step response speed data for the 1D-MSRS under

an excitation current of fixed peak value 0.35 A. In the measurement, we step the

reference speed, i.e., a half of the electrical speed, from 0 to 20 Hz, and recorded the

speed measurement from the optical tachometer.

From the speed step response data in Figure 6-1, we can see that the hunting is

happening when the motor speed is getting close to the reference speed. By looking at

the enlarged plot of the speed data as the rotor speed first reaches the reference speed,

we can find that the period of the speed oscillation is 1.6 s, and it takes approximately

6 seconds to damp out.

A second-order linear system is used to study the hunting dynamics of the hys-

teresis motor. From the parameters that we observed from the experimental data,

we can calculate that the natural frequency of the fitted second-order linear system

is ωn = 3.93 rad/s, and the damping ratio is ζ = 0.067. The DC gain of the linear

model is determined the amplitude of the hunting. As a result, the linear dynamic

model that fits this hunting speed data will have a transfer function of

H =
0.3

s2 + 0.53s+ 15.42
. (6.1)
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Figure 6-1: Step response of the 1D-MSRS speed with hysteresis drive. Reference
mechanical speed is 20 Hz. Motor winding current peak amplitude is 0.35 A.

Figure 6-2 shows the fitted second-order linear model and the experimentally

measured speed hunting data plotting together. Figure shows that the linear model

basically captured the major features of the hunting dynamics.

From the measurement of the speed step response of the reaction sphere under dif-

ferent motor current amplitude, it is observed that the hunting of the hysteresis motor

demonstrate similar frequency and damping. This linear approximation of hunting

dynamics is being used to determine the controller gains of the speed compensator.

The detailed controller design is introduced in the next section.

6.2 Speed control for reaction sphere

In this section the speed control design for the hysteresis motor in 1D-MSRS is pre-

sented in detail.

Figure 6-3 shows a block diagram of the speed control loop of the reaction sphere.

In the 1D-MSRS hardware, the speed measurement is completed by means of a op-

tical reflective tachometer. It will generate one TTL pulse as the dark mark on the
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sphere passes through the sensor, thus one pulse will be generated per revolution.

By counting the number of pulses in unity time, a measurement of the sphere’s rota-

tional speed can be achieved. This measurement is our variable of interest ωm in the

controller design (in Hz, or rev/s). The reference angular speed ωd is a half of the

electrical speed that we assign to the motor windings, which is also the synchronous

speed of the hysteresis motor. Let us define the error between the reference speed and

the measured motor speed to be eω, which is the input signal of the speed controller.

The control effort in this control loop is defined to be the zero-to-peak amplitude

of the three-phase excitation current, Im. In this analysis let us call it u, denoting

the control effort. This value is used in the generation of symmetrical 3-phase signal

which later energize the motor windings of the reaction sphere after amplified. Note

that in this system the value of u is non-negative, and it cannot go below 0.2 A in

order to maintain lateral suspension. Also note that in this control system a positive

control effort provides decelerating torque when eω is negative.

Since the hysteresis motor is a synchronous motor, the motor speed ωm can ulti-

mately reach the reference speed ωd when the load torque is smaller than the hysteresis
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Figure 6-3: Block diagram of the reaction sphere’s speed control.

torque production ability. However, there are some undesirable motor dynamics, like

hunting that we demonstrated before, existing when the hysteresis motor operates,

thus impair the performance of the reaction sphere. Eliminating these dynamics is

one of the major goal of the speed feedback control loop.

Another target of the speed feedback control of the reaction sphere is to make a

better use the electrical power. When the reaction sphere operating in open-loop, the

excitation amplitude of the currents in motor windings Im is fixed. As shown by the

data in Figure 5-12, this value is directly related to the rise time of the sphere’s speed

step response, thus a relatively large Im value is desirable during the starting phase

to reach a short rise time. However, after the sphere’s speed reaches the reference

speed, the motor current amplitude needed for maintaining the speed is much smaller

than the desired value of Im when the sphere is accelerating. Feedback control of the

angular velocity of the reaction sphere can make the current amplitude Im change

with the speed error, thus save a lot of power when torque production to the sphere

is not needed while maintains a good torque production ability when the sphere is

accelerating.

To sum up, there are three requirements on the speed controller design for the

reaction sphere: (a) suppress the hunting dynamics of hysteresis motor; (b) make the

motor reaches the desired angular velocity with minimum rise time; and (c) reduce

the power consumption when no acceleration torque is needed. In the speed controller
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design for 1D-MSRS, these three specific requirements are being considered.

In the following, let us focus our discussion on the controller design of this speed

control loop for the 1D-MSRS. When the reaction sphere is starting up or breaking,

it is desired that the motor can catch up with the reference angular velocity as fast

as possible. In optimal control theory, the minimum time problem can be solved by

means of Pontryagin’s minimum principle [31], especially in the presence of constraints

for control effort signals. The result shows that a bang-bang controller, which in this

case allows the motor accelerates with its maximum available control effort to the

desired speed, is the best mechanism for achieving minimum speed rise time. For

the 1D-MSRS, this requires the motor to operate in open-loop with the maximum

allowed excitation amplitude, which allows the motor to accelerate or decelerate with

its maximum ability.

In order to add active damping to the system to eliminate hunting, a PD controller

with a low-pass filter for noise rejection, or a lead filter, is used for the speed control

when the hunting is happening. Define the maximum available control effort is umax.

Then the control law can be written as:

u =


umax if eω > ∆ or eω < −∆

ulead if −∆ < eω < ∆

(6.2)

In this controller, ∆ is a small constant number that we define, which sets the

threshold of the controller change. It can also be understood as the hysteresis band of

the bang-bang controller. The controller activity is obvious: when the error’ s absolute

value is larger than the defined threshold ∆, the controller is using its maximum ability

to reduce the error. When the error is small and within the boundary of ∆, which

means the motor speed ωm is close to the reference speed ωd, the lead controller is

activated to add additional damping to the system to get rid of the hunting. When

the speed error is very small, then the control effort signal is almost zero since it is a

linear filter. In this way, all the three goals of the speed control can be achieved.

Let us then consider the design of the lead compensator in the above equation.
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The compensator has a form of

Ulead(s)

Eω(s)
= Kp

ατs+ 1

τs+ 1
. (6.3)

To determine the values of the parameters in the above transfer function, the linear

model approximation of the hunting described in the previous section is used. From

the model of hunting dynamics given in Equation 6.1, we can find the speed oscillation

that we want to damp out has a frequency of ωn = 3.93 rad/s. In the controller

design for the reaction sphere, we selected a cross-over frequency of ωc = 8 rad/s for

the speed control loop, and a typical separation ratio α = 10 is selected for the lead

compensator. By arranging the phase peak of the lead compensator at the desired

crossover frequency, we can calculate the value of τ by

τ =
1

ωc
√
α

= 0.04 s. (6.4)

The Kp value is selected to be 3.5 to let the loop crossover at the desired crossover

frequency. As a result, the lead compensator for the reaction sphere’s speed regulation

is

ulead(s)

Eω(s)
= 3.5

0.4s+ 1

0.04s+ 1
. (6.5)

The simulation and the experimental measured speed data of the reaction sphere

based on this controller design are presented in the following sections.

6.3 Simulation of speed control

In this section the simulation of the speed control of the reaction sphere is presented.

The model that is being used in the simulation is the Matlab/Simulink model of the

reaction sphere based on the equivalent circuit model of hysteresis motor. Figure 6-4

shows the Simulink model of the sphere’s closed loop control. The sub-model shown

in the figure is the model for the motor dynamics, which is being discussed in the

chapter 5. The controller that this model demonstrated follows the design shows in
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Figure 6-4: Simulink diagram of speed closed-loop control for reaction sphere.

the previous section.

In the implementation of the controller in simulation, a current offset of 0.2 A is

added to the control effort signal to maintain the lateral suspension for the bearingless

motor, and to produce a torque to compensate the air drag when the sphere reaches

synchronous speed. The maximum allowed control effort umax is selected to be 0.3 A,

therefore the maximum of the current amplitude is set to be 0.5 A. The controller

threshold value ∆ is selected to be 1 Hz.

Figure 6-5 shows a simulation result of the step response of the reaction sphere

speed. The current amplitude is Im = 0.35 A. The simulation result of the closed-loop

reaction sphere speed step response is shown in Figure 6-6, and the corresponding

control effort signal u, which is also the excitation current amplitude Im, is shown in

Figure 6-7.

Comparing the simulation results in Figure 6-5 and 6-6, we can see that the

controller can effectively damp out the reaction sphere’s speed hunting, and also

drives the sphere reaches the synchronous speed with a smaller rise time.

The controller described in the this chapter is also implemented in the real-time

controller for the 1D-MSRS, and experiments of the closed-loop control for the reac-

tion sphere’s rotational speed are carried out. Figure 6-8 shows a comparison between

open-loop acceleration speed data and the closed-loop controlled speed data. The cor-
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Figure 6-5: Reaction sphere open-loop speed simulation with current 0.35 A.
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Figure 6-7: Reaction sphere closed-loop simulation of current change.

responding current signal is shown in Figure 6-9.

6.4 Experiment of speed control

From the speed data shown in Figure 6-8, we can see that the closed-loop control

of the reaction sphere’s speed effectively suppressed the hunting that exists in the

open loop step response. It also enables the sphere to reach the reference speed

faster since a larger control effort is used during the acceleration period. The current

data in Figure 6-9 shows that the peak value of the 3-phase current in the motor

windings reduced to 0.2 A when the reaction sphere is operating in steady state. The

experimental data shows the effectiveness of the control design.

When the reaction sphere is under the steady stator operation at a mechanical

speed of 30 Hz/1800 rpm, the rms current value in the motor windings is
√
2
2

0.2 =

0.14 A, and the measured rms voltage of the motor windings is 8.2 V. Since the

suspension current rms values are just 0.01 A, we neglected the suspension winding

power consumption in this calculations. There for the electrical power dissipation in
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the motor windings under steady state is P = 3× 0.14 A× 8.2 V = 3.44 W.

6.5 Summary

This chapter introduces the feedback control for the speed of the reaction sphere.

This control loop is designed to reach three goals: (a) suppress the hunting dynamics

of hysteresis motor; (b) make the motor reaches the desired angular velocity with

minimum rise time; and (c), reduce the power consumption when no acceleration

torque is needed.

First, the hunting dynamics of the reaction sphere is fitted by a linear second-order

system. This model is used to design the speed controller for the reaction sphere.

Then the detailed controller design is introduced. The controller is a combination of

a bang-bang controller and a linear lead compensator. After that, the simulated and

measured speed data with and without the speed feedback control are demonstrated.

The data verified the effectiveness of the speed control design. All the three goals for

the speed control are achieved, specifically the hunting of the reaction sphere being

effectively suppressed.
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Chapter 7

Three-dimensional Spherical Motor

Design Concepts

In the prior chapters of this thesis, the design, modeling and test results of the 1D-

MSRS are presented. In this thesis, we also extended our scope to the conceptual

design of a 3D version of MSRS by studying the possible motor driving principles and

magnetic design concepts for spherical motors. This chapter gives a summary of our

exploration in this direction.

In this chapter, first the prior works on the development of spherical motors are

studied. After that, we evaluated several different kinds of motor driving principles,

and discussed that whether they are suitable for the development of a 3D spherical

motor. Finally, several spherical motor magnetic design concepts for reaction spheres

and for other applications are presented.

7.1 Introduction and prior arts in spherical motor

design

In the past several decades, there is a growing interest in high-speed, servo-controlled

spherical actuators in multiple degrees of freedom, mainly for applications in robotics

and automated manufacturing. Achieving multi-degree-of-freedom (DOF) motions
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by separate motor/actuators for each axis is not adequate for some applications. As

a result, researchers begin to explore the design and development of various types

of multi-dimensional spherical motors for the spacecraft attitude control problem,

enables us to directly drive several rotational DOFs simultaneously without suffering

the effect of gyroscopic coupling between axes and backlash and nonlinear friction

from gears.

In this section, some major developments of multi-DOF spherical motors are re-

viewed. Table 7.1 shows a summary of the reported spherical motor designs that we

have studied. They are classified into different categories according to their driving

principles. In the table, we also briefly show the advantages and limitations of the

motor type for spherical actuator design. More discussions will be presented in the

next section.

An early spherical motor is of a induction type, which was conceptualized by

Vachtsevanos et al. in 1987 [39]. Figure 7-1 shows the motor winding in this design.

A detailed analysis was given by Devay and Vachtsevanos [40], where the analytical

expression of the torque production about one axis is derived. This design arranges

windings in a spherical coordinate, therefore all the rotor surface area are involved

in the torque production. However, it is difficult to realize a prototype of this kind

because of its complexity in mechanical and winding design and manufacturing, which

requires inlaying all three transversing windings on the inner spherical surface of the

stator.

A spherical induction motor with two degrees-of-freedom is reported by Dehez et

al. in [41]. Figure 7-2 shows a diagram of the two-DOF induction motor designed

by Dehez. In this motor, a combination of four linear induction stator segments and

one piece of 2-DOF induction stator segment with slots in two directions are used to

generate torques about two axes.

Kumagai and Hollis [32] developed a 3-DOF spherical induction motor for mobile

robot application. The multi-DOF motion is realized by means of a combination of

several linear motors. Figure 7-3 shows a photo of the spherical motor they have

implemented. It has 4 stator segments for linear induction motor, and the rotor is
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Figure 7-1: Winding design of the spherical induction motor by Devay and
Vachtsevanos. Figure taken from [40].

(a) A 2-DOF induction stator segment. (b) Spherical motor design.

Figure 7-2: The two-DOF spherical induction motor presented by Dehez et al.
Figure taken from [41].
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Figure 7-3: Spherical induction motor for mobile robot presented by Kumagai and
Hollis. Figure taken from [32].

a two-layered spherical shell whose inner layer is made of steel and outer layer is of

copper. Servo control for this 3D spherical motor is also realized in their work.

A DC spherical motor design with three-DOFs in rotation was demonstrated by

Kaneko et al. in 1988 [9]. Figure 7-4 shows the winding diagram of their design. This

motor can spin continuously about one axis, and has a maximum inclination of 15o

in other directions.

Lee et al. proposed an spherical motor design based on variable reluctance (VR)

stepper motor [37]. Figure 7-5 shows the design of this motor. This spherical motor

operates by the principle of variable reluctance. When the motor is operating, the

stator coils are energized individually. A magnetic field is established which creates

magnetic energy in the air gaps. The magnetic energy is a function of the relative

position of the rotor and stator. The motion of the VR spherical motor is generated as

the rotor tends to move to a position such that the energy in the air gap is minimized.

A PM based spherical stepper motor is designed and built by Stein et al. from

Johns Hopkins University [36]. Their work focuses on the mathematical optimization

of the magnetic pole configuration and control schemes. Figure 7-6 shows the stator

and rotor assemblies of the spherical stepper motor they developed.

A permanent magnet synchronous type spherical motor is proposed by Yano in
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Figure 7-4: The winding configuration of the spherical DC motor presented by
Kaneko et al. Figure taken from [9].

Figure 7-5: The design of the variable reluctance spherical stepper motor by Lee et
al. Figure taken from [37].
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(a)Stator assembly (b) Rotor assembly.

Figure 7-6: Spherical PM stepper motor designed by Stein et al. Figure taken
from [36].

[34]. Figure 7-7 shows a picture of their motor implementation. There are two

concentrated windings A and B. By driving the two coils with AC current, a torque

can be generated around the mechanical shaft.

Another spherical PM synchronous motor design with all three rotational degrees

of freedoms is the ESA reaction sphere described in Onillon et al. [14]. Figure 7-8

shows the design of this reaction sphere. The distribution of magnetic poles on the

sphere follows the vertices’s of the regular polyhedrons. The rotor has 8 poles, and

the stator has 20 poles. This is a spherical motor with all driving directions.

Toyami et al. have developed a spherical motor by ultrasonic motor’s technol-

ogy [38]. This motor uses a different driving principle: its torque is generated by

ultrasonic vibration. Figure 7-9 shows a schematic for its design. Comparing with

its electromagnetic based counterparts, this motor wins for its high torque density

and fast response, and has a good potential for many special low speed applications.

However, contact mechanics in the motor will likely limit its lifetime.

Above is a brief study on the literatures on the development of spherical motor.

This is still an active area with many ongoing research carrying on. With the advance

in control and computation tools, we believe that more powerful spherical motors

designs will be carried out and one day it may be widely used in industry.
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Figure 7-7: The AC synchronous spherical motor by Yano et al. Figure taken
from [34].

(a)Stator design. (b) Rotor design.

Figure 7-8: Reaction sphere designed presented by Onillon et al. Figure taken
from [14].
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Figure 7-9: The untrasonic spherical motor by Toyami et al. Figure taken from [38].

7.2 Discussion and design concepts

In this section, we will briefly discuss about these motor principles for spherical motor

application and whether they are suitable for a high-speed reaction sphere application.

We will also present several magnetic design concepts for spherical motors, mainly

for reaction sphere application.

7.2.1 Motor driving principles

In this part of the thesis, we will discuss several motor driving principles, and evaluate

their advantages and disadvantages for a reaction sphere design.

Reaction spheres require the 3D motor to produce torque in all the three degrees-

of-freedom and have unlimited angular range. Characteristics of high speed, moderate

torque, smooth running are preferred, and the torque production, or motor angular

speed of the 3D motor, needs to be actively controlled.

The motor types which we will evaluate in this section include DC motor, in-

duction motor, PM synchronous motor,hysteresis motor, reluctance motor. We also

listed two new motor types by combination of different basic motor types: induction-

hysteresis hybrid motor and PM-hysteresis hybrid motor.
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DC motor

A so-called DC motor typically has a stationary set of magnets in the stator and an

armature with a series of two or more windings of wire wrapped in the slots around

iron pole pieces with the ends of the wires terminating on a commutator. This kind

of motor is commonly used in many applications when servos are required due to its

advantages such as low initial cost and simple control of motor speed. This simplicity

in control is greatly favorable for a 3D spherical motor that involves sophisticated

magnetic designs and speed control is required.

However, brushed DC motors are surely not suitable for reaction spheres develop-

ment because it requires regular maintenance and its low life-span for high intensity

uses. The reaction sphere is for satellite use, therefore regularly replacing the brushes

and springs is almost impossible.

Induction motors

An induction motor is an AC asynchronous motor in which the electric current in

the rotor needed to produce torque is induced by electromagnetic induction from the

magnetic field of the stator winding. Three-phase squirrel-cage induction motors are

widely used in industrial drives because they are rugged, reliable and economical.

The vector control scheme makes the speed control of induction machines acces-

sible, even under sensorless conditions. This also enables this motor to be used for

a 3D spherical motor design. In a 3D spherical motor, torque generation is required

in all directions, therefore either wound type or squirrel-cage type rotor will not be

suitable, since they all regulate the eddy current in certain direction.

One possible design for an all-degree-of-freedom actuator using induction design

is the spherical motor built by Hollis et al. in [32]. In this design, the rotor is a two-

layer spherical shell, with its outer layer made of conductive material such as copper,

and its inner layer made of ferromagnetic material. This rotor design enables eddy

current in all directions in the conductive shell, and further making torque generation

in all directions to be possible.
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The major limit to this kind of spherical motor that prevents it being directly

used for a reaction sphere is its driving efficiency and torque ability. Since eddy

current is used for torque generation, there will be copper loss induced, making this

motor not as effective as some other motor types. Besides, in this design the effective

area on the rotor surface is very small, which is not good for the torque ability of

this spherical motor. Moreover, in the spherical motor design introduced above, the

direction of the eddy currents are not regulated. As a result, not all eddy currents

contribute to the torque production, and some may induce vibrations. Significant

works in designing the magnetic configuration and control schemes are required to

improve the performance of this spherical motor before it can be used for a high speed

reaction spheres.

Permanent magnet motors

A permanent magnet (PM) motor is a kind of synchronous motor. It consists of a

multi-pole rotor with permanent magnets, and a wound stator to generate a rotational

magnetic field.

Permanent magnet synchronous motors have several distinct advantages: high

efficiency, high power factor, good torque density, and linear current to force relation.

These characteristics of the PM motor makes them being widely used for small motor

applications. The major limitation of PM motors, aside from the high costs of NdFeB

magnets, is the fact that PM motors do not have self-starting torque under open-loop

drive. During the starting period, the magnets may generate an oscillatory torque,

which reduces the motor’s starting ability. In industrial applications, these motors

are usually assisted with cage windings so that they can run in induction mode during

starting.

Among many spherical motor designs that we have studied in the previous section,

many of them are of PM motor type, such as the JHU spherical stepper [36] (if driven

with AC excitation) and the ESA reaction sphere [14].

However, many optimizations are needed to make these motors work as a reaction

sphere. First is the cogging torque of PM motor. In space applications, vibrations
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will induce jitter. Therefore in the motor design the cogging torque of PM motor

needs to be addressed. When the stator has teeth and slots to constrain the magnetic

field, the interaction between the permanent magnets in the rotor and these structure

will produce a ripple in torque production when the motor is operating. This torque

is undesirable, especially for precision applications such as the actuator for satellite

attitude control.

Another challenge to the PM motor being used for space application is its rela-

tively complicated rotor structure and the corresponding rotor strength. All the prior

designs of spherical PM motors that we have studied demonstrate sophisticated rotor

structures, this may lead to imbalance of mass in the rotor. Besides, since for high

speed electric machines the speed limitation is often the centrifugal stress of the rotor.

If the magnets are mounted on the surface of the rotor, as designs in JHU spherical

stepper [36] and the ESA reaction sphere [14], the rotor’s strength may be relatively

low and will become a major limitation for motor speed.

Hysteresis motors

Hysteresis motor is a kind of asynchronous/synchronous AC motor, which uses the

magnetic hysteresis of the rotor material for torque production. Hysteresis motors

have a lot of good properties: simple structure, self-start, smooth operation, and

allows high rotor strength. All these properties makes this motor to be promising in

many applications where high speed, quiet operation motor is needed.

To the best of our knowledge, there is no spherical motor developed that uses

hysteresis drive, and this thesis presents the first project that explores the possibility

for a hysteresis motor for reaction sphere applications.

The rotor of the spherical hysteresis motor need to be a sphere of uniform mag-

netically hard material, either as a solid sphere or a spherical shell. This rotor has a

simple and balanced structure, and will have good rotor stress limits since solid ma-

terial is used for the rotor construction. However, significant consideration is needed

for the magnetic pole design for this motor.
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Reluctance motor

A reluctance motor is a type of electric motor that induces non-permanent magnetic

poles on a ferromagnetic rotor. Torque is generated through the phenomenon of

magnetic reluctance. This kind of motor can deliver very high power density at low

cost, making them ideal for many applications. Its disadvantages are the high torque

ripple induced by the rotor’s saliency.

One literature reported a variable reluctance type spherical motor [37]. However

when this type of motor is being considered for the design of a reaction sphere, its

inherent nonlinearity will make the servo control very challenging. Special consider-

ation will needed to take care of this difficulty. Besides, it large torque ripple may

makes this motor not very suitable for the application of reaction sphere, where quite

and smooth motor operation is desired.

Induction + hysteresis motor

In the discussions above, we evaluated several classical motor driving principles. In

this study, we found that the advantages and limitations of several motor types are

sometimes complimentary. Therefore there is a chance to combine different motor

concepts to let the advantages of one motor type to compensate the drawbacks of

another one, and result in a motor that have a good overall performance for a typical

application. In this thesis let us call this kind of motor "hybrid motors".

One possibility of these hybrid motor designs is a combination of induction motor

and hysteresis motor. The rotor of this hybrid motor can use a two-layer spherical

shell design similar to the rotor design for induction type that we discussed before.

The outer layer of the spherical shell should be made of conductive material such

as copper, and the inner layer can be made out of magnetically hard ferromagnetic

material. In this way, the spherical motor will become a combination of induction

motor and a hysteresis motor. The torque generation of this spherical motor uses these

two principles: the eddy current mainly in the outer shell and the magnetic hysteresis

in the inner shell. During the start up of the spherical motor, the hysteresis torque
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generated by the magnetization of the ferromagnetic core and the induction torque

generated by the eddy currents, mainly in the conductive shell, are working together to

help the sphere accelerates. As the sphere’s speed gets close to the synchronous speed,

the hysteresis torque can bring the sphere to the synchronous operation, and the eddy

current in the outer shell decays. As a result, this hybrid motor is a synchronous

motor.

To the best of our knowledge, no literature has addressed this kind of hybrid motor

design and its performance. Experiments and simulations are needed to evaluate the

performance before it goes further for a 3D spherical motor development. However,

by speculating based on our understandings, we believe that this hybrid motor drive

can inherit the advantages of a hysteresis motor, namely, self-start, quite operation,

and simple and balanced rotor design, and can have a better linearity and torque

ability. Besides, comparing with a pure induction motor, we expect this kind of

hybrid motor can have a better efficiency, since the eddy currents decay when this

spherical motor reaches synchronous speed, therefore the iron loss due to eddy current

will be eliminated when the spherical motor operating in steady state.

The challenge for designing a spherical motor with this driving principle is the

same with a pure induction motor and a pure hysteresis motor, that is, how should

we configure the winding patterns and the magnetic poles. This is a challenging

and interesting problem, and some discussions and design concepts that address this

question are presented in the next section.

Hysteresis + PM motor

Another possible hybrid motor design that has a potential for a high-speed spherical

motor development is a combination between permanent magnet motor and hysteresis

motor. To our knowledge, this motor design is propose by Rahman et al. in [42]

for electric vehicles application. Figure 7-10 shows a cross-section diagram of the

PM-hysteresis motor designed by Rahman. The rotor of the motor is a piece of a

cylindrical ring-shape hysteresis material, with NdFeB permanent magnet inserted in

the pole arc segments inside the inner surface of the hysteresis ring.
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Figure 7-10: A cross-section of the hybrid hysteresis and permanent magnet motor
proposed by Rahman et al. Figure taken from [42].

Experimental test results of this hybrid motor are presented in the paper [42].

According to the author, this hybrid motor demonstrated better torque performance

than a pure hysteresis motor of the same dimension. It also demonstrated self-start

ability, which does not apply for a pure permanent magnet synchronous motor.

Based on the result presented in the reference, we think that this hybrid motor may

have the potential to demonstrate good performance for an application of reaction

wheel or a reaction sphere. The torque generation of this hybrid motor is based

on the principles of both fundamental motor types. When the motor is starting

up, the motor torque consists of the hysteresis torque, eddy current torque, and an

oscillatory torque produced by the permanent magnets. The motor can have self-

start ability when the accelerating torque is larger than the oscillatory torque and

frictions. At the synchronous speed, the motor torque is comprised of the hysteresis

and permanent magnet torques. It has been shown in the paper that the hysteresis

torque has a smoothing effect to the cogging torque, therefore this hybrid motor

demonstrated much smoother operation comparing with its PM counterpart. For

the rotor’s structure, with the permanent magnets lying in the inner surface of the

hysteresis rotor, the smoothness of the rotor outer surface is not impaired. Also, in
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this design, the hysteresis ring basically acts as a retaining ring of the rotor surface-

mounted permanent magnets, which is good for high speed application since the

strength of the rotor won’t suffer from the rotor’s structure.

Compared with some other motor concepts, the hybrid motors are much less

developed. Much more study are needed to reach a good design of this hybrid motor.

There is a huge design space where a lot of optimizations are needed to reach a good

motor design of this kind. More discussion about the magnetic poles are presented

in the next section.

7.2.2 Magnetic design concepts

In this section we present a discussion on magnetic designs for spherical motors.

In this thesis, the magnetic designs for spherical motors, mainly in magnetic pole

distributions and stator geometry, are classified into three categories. They are: (a)

combination of linear motors, (b) Stator of salient and distributed poles, and (c)

meshed distribution of motor windings. In this section, these types of motor designs

are introduced accordingly.

A combination of linear motors

In this section, the 3-axis spherical motor design by combining linear motors is dis-

cussed. In this design, several curved linear stator segments are placed around the

spherical rotor. Each stator segment can generate a shear force on the sphere in

the direction of the segment, and therefore the rotor sphere can be driven about all

axes. Figure 7-11 shows such a spherical motor design with different stator segments

configurations. This concept follows the spherical induction motor design by Hollis

et al. [32].

In a 3D spherical motor, torque generation should be available in all directions.

There are three rotational degrees-of-freedom for the spherical rotor. As a result, at

least three torque directions are needed to span the space. Ideally, the total torque

generated to the rotor will be a linear combination of the torques generated by the
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Figure 7-11: Possible stator segments configurations uses a linear combination of
linear motors.

stator pieces individually. Therefore a minimum of three stator segments are needed.

In this motor design, the torques are only available in the directions along the

stator segments. As a result, a rotor with determined magnetic pole distribution may

not be suitable. To our understanding, this kind of spherical motor design may apply

to induction or hysteresis type of motors.

This is a very straight forward magnetic design to produce torques to the rotor

sphere in all directions, and the experiment results of this design that shows in refer-

ence [32] verified its effectiveness. However, when the motor need to operate in high

speed or need to be used in precision applications, the speed/torque capacity of this

motor and its more subtle dynamics need to be taken into consideration.

There is an drawback of this motor design: the effective area on the rotor for torque

generation is very small. Only the area on the rotor surface that are interacting with

the stator segments are working for the torque generation. As a result, the torque

density of this spherical motor may not be satisfying. We can increase the effective

area by using more stator segments. However, if the stator pieces get too close to each

other, the magnetic fields generated by different stator pieces may interfere with each

other, and thus generate disturbance torques to the rotor. Figure 7-12 shows a flux
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Figure 7-12: Flux distribution of spherical motor with linear stator segments.
Calculated by 3D finite element method.

distribution in such a motor design calculated by 3D finite element analysis. Through

this field calculation result we can see that the stator pieces are close to each other

in the end of the stator segments, and the magnetic field generated by different pole

pieces are having some interaction at this positions. Through field calculation for

different design parameters, we found that using a smaller pole pitch in the winding

design can extenuate the field disturbance.

Distributed salient stator poles

The second kind of spherical motor stator design uses distributed salient stator poles

and concentrated windings. Figure 7-13 shows a cartoon of this kind of motor design.

In this figure, the clear blue parts are the steel cores. Red parts are showing the coils

surround the magnetic poles, and the golden part is the rotor sphere. In this design,

every magnetic pole is surrounded by coil windings. By controlling the current in

these coils, magnetic field can be generated. This stator design resembles the stators

for commonly used DC-brushless motors, with its poles distributed in 3D.
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Figure 7-13: A spherical motor design with concentrated windings. Magnetic poles
are distributed on the inner face of a sphere. The sphere in the middle is the rotor.

Several spherical motors developed before are of this category. In the ESA reaction

sphere [14], a stator of 20 magnetic poles distributed on the spherical surface. The

stator pole positions are placed on the vertices of a dodecahedron, and air core coils

are used in their design in order to reach a analytical expression for torque. The JHU

spherical stepper [36] and the sphreical PM motor developed by Yano [34] also follows

this stator design, with their stator coils assisted by ferromagnetic cores to reduce

flux leakage.

This magnetic design can be versatile. To reach a smooth motor performance, it

is desirable to increase the number of poles to reach a smaller pole pitch. Whenever

the poles covers the sphere surface and are distributed so that torques in all directions

are available, this stator can generated torques in all direction.

All the aforesaid spherical motor designs reported in literatures that of this mag-

netic design are PM motor. It is suitable for those motors with the magnetic poles

fixed on the rotors. When this stator design is used for PM spherical motors, the

pole-pitch matching is required. More research in this direction is needed to develop
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the pole-pitch rule for spherical PM motor that resembles the pole-pitch rule for

cylindrical PM motors.

Meshed windings for spherical motor

The last spherical motor design concept is the spherical motor realized by meshed

windings.

As we have mentioned before, for a induction or hysteresis machine, a stator design

with an uniform air gap and windings embedded in the slots is desired to improve

motor efficiency and reduce torque ripple. This fact motivates us to think about

such a stator design for spherical induction and hysteresis machines. A prior trial in

this direction is the spherical motor with two degrees of freedoms reported by Dehez

et al. in [41]. Figure 7-2 shows a diagram of the 2-DOF induction spherical motor

they developed. In this design, a piece of induction stator segment with windings in

two orthogonal directions is used to realize torque production about two axes. This

spherical induction motor wins in its torque production ability: compared with the

design of a motor uses only a combination of linear stator segments, it has a much

larger effective surface area on rotor. In this thesis let us call this stator segment

design as "meshed winding", namely, the windings that embedded in the stator slots

forms a mesh, thus torque can be generated in multiple directions.

In Dehez’s design, the spherical motor can only generate torque in two rotational

directions. However, with meshed winding method, it is possible to design stators

that can generate torques in all three directions and thus enable the spherical motor

to become an all-DOF actuator. Figure 7-14 shows a diagram of a design concept

of meshed winding spherical motor inspired by the design by Dehez. This spherical

motor can be either induction type or hysteresis type. Figure (a) shows a piece of

stator segment with meshed windings in three directions. When coils are distributed

in the slots are energized, torques can be generated in three directions. With 8 of

this stator segment placed surround a spherical motor at the sections shows in Figure

(b), torques in the directions shown by the arrows can be generated.

A meshed winding motor enables the induction or hysteresis type spherical motor
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(a) (b)

Figure 7-14: A magnetic design concept for 3D spherical motor with distributed
windings. (a) a stator segment with windings in the slots. (b) Positions to place the
stator segments. The sphere is split into 8 quarters. With each of these positions
placed a stator segment, torques in the directions shown by the arrows can be

generated.

to have a larger effective rotor area for torque production than that implemented by a

combination of linear stator segments. However, it requires a much more complicated

stator structure, especially for stator core application, electrical steel laminations or

powder material is needed to limit eddy current. Nowadays the 3D printing technol-

ogy is growing in an amazing speed and now it already allows us to make parts of

complicated geometries out of metal materials [44]. With the cost of manufacturing

such a part keep reducing, we are looking forward to one day in the near future that

this technology to enable much more flexible designs.

Out-runner spherical motor

In the world of single axis electric machines, there are many out-runner motors around,

especially of permanent magnet type (or DC brushless). This type of motor spins

its outer shell around its windings, and are widely used for many applications espe-

cially when direct drive is required, since they eliminate the extra weight, complexity,

inefficiency and noise from a gearbox. Then a natural question to ask will be, is it
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possible to generalize these advantages to spherical motors and thus design a spherical

out-runner motor?

An out-runner spherical motor infinite moving range does not allow cable connec-

tions between outside and inside of the spherical rotor, this prevent it to be used for

reaction sphere application. However, a spherical out-runner motor has many other

special applications. One of them is the spherical rolling robot. This is an active

research direction in the field of mobile robots due to its advantages of highly ma-

neuverable, good collision recover ability, and adaption for multiple terrain. Besides,

since they can be designed to be totally sealed, they are ideal for hazardous envi-

ronments. Reference [45] gives a review on the recent progress on spherical mobile

robots. However, to the best of our knowledge, there has no direct drive spherical

robot being reported. An out-runner spherical motor of infinite moving range can be

a great candidate for the drive for such a mobile robot.

If the out-runner spherical motor is designed to have a limited moving range, then

connections between the inside and outside are allowed. This enables it to be used

for many other applications such as robot joints.

Two design concepts for a out-runner spherical motor are presented in Figure 7-15

and 7-16. Figure 7-15 shows a spherical motor design uses a combination of linear

motor segments for torque generation. Only a half of the rotor shell is drawn in this

figure. If we have the stator side fixed to one link and the rotor shell is connected

to another link, then this motor can be used for a robot joint, which can move in a

certain range of angular positions. If it is used for an spherical motor with no limit

on motion range, then the rotor need to be a full spherical shell. Of course, since no

wired connections are allowed between inside and outside, all other systems, including

controller, power electronics, sensors are needed to be placed inside.

Figure 7-16 shows a out-runner spherical motor that implemented by the design

with distributed salient magnetic poles, where Figure (a) shows the stator design with

20 magnetic poles distributed evenly on a sphere, and Figure (b) shows the spherical

shell shape rotor with magnetic poles on its surface.
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Figure 7-15: Outer runner spherical motor design.

Figure 7-16: Outer runner spherical motor design.
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7.3 Summary

This chapter summarizes our considerations and initial design concepts spherical mo-

tors for a three-axis reaction sphere. In this chapter, a literature review on the design

of spherical motors is presented first. These motor designs can be classified into dif-

ferent into different types by its driving principles. After that, several motor driving

principles are evaluated and a discussion about them for reaction sphere is presented.

At last, several motor magnetic designs for spherical motors are presented. This

study provides a basis for further explorations for the development of a high-speed

magnetically suspended three-axis spherical motor for reaction sphere application.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

In summary, this thesis provides preliminary research for a magnetically suspended

reaction sphere driven by hysteresis machines. The primary contribution of this thesis

include:

1. Designed, built, and tested a magnetically suspended reaction sphere with one-

axis hysteresis drive (1D-MSRS) (Chapter 2).

2. Analyzed single degree-of-freedom magnetic suspension with PM flux biased

actuator (Chapter 3).

3. Presented a complete analytical model for the bearing function for a bearing-

less motor. Designed control for reaction sphere’s lateral suspension under all

excitation conditions (Chapter 4).

4. Simulated motor operation of 1D-MSRS with a equivalent circuit model of hys-

teresis motor and verified simulation with 1D-MSRS test results (Chapter 5).
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5. Developed a speed control method for hysteresis motors for hunting suppres-

sion and minimize speed rise time and demonstrated effectiveness in attenuating

speed oscillation while increasing sphere’s acceleration (Chapter 6).

6. Studied spherical motor design for reaction sphere application. Proposed several

spherical design concepts (Chapter 7).

The tested performance of the 1D-MSRS are summarized and compared with the

specifications of MW200 in Table 8.1.

Table 8.1: Specifications for MicroWheel 200 (MW200) Reaction Wheel from
Microsat Systems Canada Inc.

Specification MSCI MW200 1D-MSRS

Size 100× 90× 90 mm 120× 120× 110 mm

Mass 1.0 kg (assembly for one

wheel)

0.63 kg (rotor)+0.42 kg

(Stator + suspension elec-

tromagnet)

Imbalance Static: < 0.2 mg.m; Dy-

namic: < 0.03 mg.m2

zero due to rotor’s spheri-

cal symmetry and magnetic

suspension

Torque capacity 30 mNm 8.15 mNm

Angular momen-

tum capacity

0.18 Nms 0.23 Nms (running syn-

chronously at 150 Hz /

9000 rpm)

Motor power

consumption

0 rpm: 3.0 W; average:

7 W;

Operating in steady state at

1800 rpm: 3.44 W
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Data in Table 8.1 shows that that the torque capacity of 1D-MSRS is smaller than

that of MW200 reaction wheel. The reasons, to our understanding, are threefold.

First, hysteresis motors are not winning in their torque ability comparing to their

permanent magnet motor counterparts. Second, D2 steel is not the best rotor material

for hysteresis motors. We believe that if material with better hysteresis property is

selected, higher torque can be achieved. Third, in the design of the 1D-MSRS, the

effective surface area on the rotor for torque production is small.

Comparing with the baseline performance of MSCI MW200 reaction wheel, the

1D-MSRS demonstrated smaller imbalance and larger angular momentum capacity.

In fact, the imbalance of the 1D-MSRS can achieve zero because the uniformity of ro-

tor material and the spherical symmetry of rotor, and the improvement in momentum

capacity is because the 1D-MSRS is running at higher speed. We believe that the

sphere can reach a even higher synchronous speed when running in vacuum, where

air drag can be eliminated. Besides, the 1D-MSRS demonstrated low motor power

consumption when operating in steady state (here the power for weight compensation

is not included). This is a direct result of magnetic suspension which eliminated me-

chanical frictions. The above comparisons demonstrated a good potential of hystere-

sis motors for high speed reaction spheres or reaction wheels’ applications, especially

when they are assisted with magnetic suspension.

8.2 Future works

Looking into the future, we outline here some suggested directions for future explo-

rations.

8.2.1 3D magnetically suspended reaction sphere

The project presented in this thesis is a preliminary research for magnetically sus-

pended reaction sphere in 3D, thus a natural future research path is the design for

a 3D spherical motor with good performance. The discussion about motor driving

principles and magnetic designs, as well as the potential challenges are discussed in
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Chapter 7.

8.2.2 Magnetically suspended reaction wheel with hysteresis

drives

In this thesis, we demonstrated that hysteresis motor based 1D-MSRS has a larger

per-unit momentum storage, simpler rotor construction that allows higher rotation

speed and lower vibrations compared with the commercial reaction wheels. One of

the major limits of the hysteresis motor is its hunting dynamics. In this thesis, we

presented one effective scheme to suppress this unfavorable dynamics. Based on these

results, we believe that hysteresis motors have good potential for high-speed reaction

wheels application, especially when they are assisted with magnetic bearings. More

explorations into this direction may result in better solution for reaction wheels with

larger momentum storage, smaller power consumption and less vibrations.

8.2.3 Better bearing and motor function combination design

In Chapter 4, we demonstrated that for bearingless motors, except for permanent

magnet type, there is always a minimum current value in the motor windings in order

to maintain the bearing function. As a result, the motor need a power dissipation

even when no torque generation is needed. This fact makes the bearingless motor

not very energy efficient in low torque operation, and thus makes it not suitable for

spacecraft application where energy is expansive. To resolve this problem, better

bearing and motor function combination designs are needed.
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