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Abstract

Recent progress on probabilistic modeling and statisti-
cal learning, coupled with the availability of large training
datasets, has led to remarkable progress in computer vision.
Generative probabilistic models, or “analysis-by-synthesis”
approaches, can capture rich scene structure but have been
less widely applied than their discriminative counterparts, as
they often require considerable problem-specific engineering
in modeling and inference, and inference is typically seen
as requiring slow, hypothesize-and-test Monte Carlo meth-
ods. Here we present Picture, a probabilistic programming
language for scene understanding that allows researchers
to express complex generative vision models, while auto-
matically solving them using fast general-purpose inference
machinery. Picture provides a stochastic scene language that
can express generative models for arbitrary 2D/3D scenes,
as well as a hierarchy of representation layers for compar-
ing scene hypotheses with observed images by matching not
simply pixels, but also more abstract features (e.g., contours,
deep neural network activations). Inference can flexibly
integrate advanced Monte Carlo strategies with fast bottom-
up data-driven methods. Thus both representations and
inference strategies can build directly on progress in discrim-
inatively trained systems to make generative vision more
robust and efficient. We use Picture to write programs for
3D face analysis, 3D human pose estimation, and 3D object
reconstruction – each competitive with specially engineered
baselines.

1. Introduction
Probabilistic scene understanding systems aim to pro-

duce high-probability descriptions of scenes conditioned on
observed images or videos, typically either via discrimina-
tively trained models or generative models in an “analysis
by synthesis” framework. Discriminative approaches lend
themselves to fast, bottom-up inference methods and rela-
tively knowledge-free, data-intensive training regimes, and
have been remarkably successful on many recognition prob-
lems [9, 23, 26, 30]. Generative approaches hold out the
promise of analyzing complex scenes more richly and flex-

ibly [11, 12, 51, 7, 19, 29, 31, 16, 21], but have been less
widely embraced for two main reasons: Inference typically
depends on slower forms of approximate inference, and
both model-building and inference can involve considerable
problem-specific engineering to obtain robust and reliable
results. These factors make it difficult to develop simple
variations on state-of-the-art models, to thoroughly explore
the many possible combinations of modeling, representation,
and inference strategies, or to richly integrate complemen-
tary discriminative and generative modeling approaches to
the same problem. More generally, to handle increasingly
realistic scenes, generative approaches will have to scale not
just with respect to data size but also with respect to model
and scene complexity. This scaling will arguably require
general-purpose frameworks to compose, extend and auto-
matically perform inference in complex structured generative
models – tools that for the most part do not yet exist.

Here we present Picture, a probabilistic programming
language that aims to provide a common representation lan-
guage and inference engine suitable for a broad class of
generative scene perception problems. We see probabilistic
programming as key to realizing the promise of “vision as
inverse graphics”. Generative models can be represented
via stochastic code that samples hypothesized scenes and
generates images given those scenes. Rich deterministic and
stochastic data structures can express complex 3D scenes
that are difficult to manually specify. Multiple representation
and inference strategies are specifically designed to address
the main perceived limitations of generative approaches to
vision. Instead of requiring photo-realistic generative mod-
els with pixel-level matching to images, we can compare
hypothesized scenes to observations using a hierarchy of
more abstract image representations such as contours, dis-
criminatively trained part-based skeletons, or deep neural
network features. Available Markov Chain Monte Carlo
(MCMC) inference algorithms include not only traditional
Metropolis-Hastings, but also more advanced techniques for
inference in high-dimensional continuous spaces, such as el-
liptical slice sampling, and Hamiltonian Monte Carlo which
can exploit the gradients of automatically differentiable ren-
derers. These top-down inference approaches are integrated
with bottom-up and automatically constructed data-driven

1



Scene 
Language

Approximate 
Renderer

Representation Layer
Scene

ID

⌫(.)
IR

e.g. Deep Neural Net, 
Contours, Skeletons, Pixels

⌫(ID)⌫(IR)

(a)

S⇢

�(⌫(ID), ⌫(IR))

Likelihood or Likelihood-free 
Comparator

or
P (ID|IR, X)

Rendering
Tolerance

X⇢

Observed
Image

(b)

Given 
current

Inference Engine
Automatically 

produces
MCMC, HMC, 
Elliptical Slice,

Data-driven 
proposals

.

.

.

qP ((S⇢, X⇢) ! (S0⇢, X 0⇢))

qhmc(S
⇢
real ! S0⇢

real)

qslice(S
⇢
real ! S0⇢

real)

qdata((S⇢, X⇢) ! (S0⇢, X 0⇢))

New
(S⇢, X⇢) (S0⇢, X 0⇢)

ID

and 
image

3D Face 
program

3D object 
program

Random 
samples

drawn from 
example

probabilistic 
programs

IR

(c)

3D human-pose 
program

Figure 1: Overview: (a) All models share a common template;
only the scene description S and image ID changes across prob-
lems. Every probabilistic graphics program f defines a stochas-
tic procedure that generates both a scene description and all the
other information needed to render an approximation IR of a given
observed image ID . The program f induces a joint probability
distribution on these program traces ρ. Every Picture program has
the following components. Scene Language: Describes 2D/3D
scenes and generates particular scene related trace variables Sρ ∈ ρ
during execution. Approximate Renderer: Produces graphics ren-
dering IR given Sρ and latents Xρ for controlling the fidelity or
tolerance of rendering. Representation Layer: Transforms ID or
IR into a hierarchy of coarse-to-fine image representations ν(ID)
and ν(IR) (deep neural networks [25, 23], contours [8] and pixels).
Comparator: During inference, IR and ID can be compared using
a likelihood function or a distance metric λ (as in Approximate
Bayesian Computation [44]). (b) Inference Engine: Automati-
cally produces a variety of proposals and iteratively evolves the
scene hypothesis S to reach a high probability state given ID . (c):
Representative random scenes drawn from probabilistic graphics
programs for faces, objects, and bodies.

proposals, which can dramatically accelerate inference by
eliminating most of the “burn in” time of traditional samplers
and enabling rapid mode-switching.

We demonstrate Picture on three challenging vision prob-
lems: inferring the 3D shape and detailed appearance of
faces, the 3D pose of articulated human bodies, and the 3D
shape of medially-symmetric objects. The vast majority of
code for image modeling and inference is reusable across

function PROGRAM(MU, PC, EV, VERTEX_ORDER)
# Scene Language: Stochastic Scene Gen
face=Dict();shape = []; texture = [];
for S in ["shape", "texture"]
for p in ["nose", "eyes", "outline", "lips"]
coeff = MvNormal(0,1,1,99)
face[S][p] = MU[S][p]+PC[S][p].*(coeff.*EV[S][p])
end
end
shape=face["shape"][:]; tex=face["texture"][:];
camera = Uniform(-1,1,1,2); light = Uniform(-1,1,1,2)

# Approximate Renderer
rendered_img= MeshRenderer(shape,tex,light,camera)

# Representation Layer
ren_ftrs = getFeatures("CNN_Conv6", rendered_img)

# Comparator
#Using Pixel as Summary Statistics
observe(MvNormal(0,0.01), rendered_img-obs_img)
#Using CNN last conv layer as Summary Statistics
observe(MvNormal(0,10), ren_ftrs-obs_cnn)

end

global obs_img = imread("test.png")
global obs_cnn = getFeatures("CNN_Conv6", img)
#Load args from file
TR = trace(PROGRAM,args=[MU,PC,EV,VERTEX_ORDER])
# Data-Driven Learning
learn_datadriven_proposals(TR,100000,"CNN_Conv6")
load_proposals(TR)
# Inference
infer(TR,CB,20,["DATA-DRIVEN"])
infer(TR,CB,200,["ELLIPTICAL"])

Figure 2: Picture code illustration for 3D face analysis: Modules
from Figure 1a,b are highlighted in bold. Running the program
unconditionally (by removing observe’s in code) produces random
faces as shown in Figure 1c. Running the program conditionally
(keeping observe’s) on ID results in posterior inference as shown
in Figure 3. The variables MU, PC, EV correspond to the mean
shape/texture face, principal components, and eigenvectors respec-
tively (see [36] for details). These arguments parametrize the prior
on the learned shape and appearance of 3D faces. The argument
VERTEX ORDER denotes the ordered list of vertices to render
triangle based meshes. The observe directive constrains the pro-
gram execution based on both the pixel data and CNN features.
The infer directive starts the inference engine with the specified set
of inference schemes (takes the program trace, a callback function
CB for debugging, number of iterations and inference schemes). In
this example, data-driven proposals are run for a few iterations to
initialize the sampler, followed by slice sampling moves to further
refine the high dimensional scene latents.

these and many other tasks. We shows that Picture yields
performance competitive with optimized baselines on each
of these benchmark tasks.

2. Picture Language
Picture descends from our earlier work on generative

probabilistic graphics programming (GPGP) [31], and also
incorporates insights for inference from the Helmholtz ma-
chine [17, 6] and recent work on differentiable renderers [29]
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Figure 3: Inference on representative faces using Picture: We
tested our approach on a held-out dataset of 2D image projections
of laser-scanned faces from [36]. Our short probabilistic program
is applicable to non-frontal faces and provides reasonable parses as
illustrated above using only general-purpose inference machinery.
For quantitative metrics, refer to section 4.1.

and informed samplers [19]. GPGP aimed to address the
main challenges of generative vision by representing visual
scenes as short probabilistic programs with random vari-
ables, and using a generic MCMC (single-site Metropolis-
Hastings) method for inference. However, due to modeling
limitations of earlier probabilistic programming languages,
and the inefficiency of the Metropolis-Hastings sampler,
GPGP was limited to working with low-dimensional scenes,
restricted shapes, and low levels of appearance variability.
Moreover, it did not support the integration of bottom-up
discriminative models such as deep neural networks [23, 25]
for data-driven proposal learning. Our current work extends
the GPGP framework in all of these directions, letting us
tackle a richer set of real-world 3D vision problems.

Picture is an imperative programming language, where
expressions can take on either deterministic or stochastic val-
ues. We use the transformational compilation technique [46]
to implement Picture, which is a general method of trans-
forming arbitrary programming languages into probabilistic
programming languages. Compared to earlier formulations
of GPGP, Picture is dynamically compiled at run-time (JIT-
compilation) instead of interpreting, making program execu-
tion much faster.

A Picture program f defines a stochastic procedure that
generates both a scene description and all other information
needed to render an approximation image IR for compari-
son with an observed image ID. The program f induces a
joint probability distribution on the program trace ρ = {ρi},
the set of all random choices i needed to specify the scene
hypothesis S and render IR. Each random choice ρi can
belong to a familiar parametric or non-parametric family of
distributions, such as Multinomial, MvNormal, DiscreteU-
niform, Poisson, or Gaussian Process, but in being used to
specify the trace of a probabilistic graphics program, their

effects can be combined much more richly than is typical for
random variables in traditional statistical models.

Consider running the program in Figure 2 unconditionally
(without observed data): as different ρi’s are encountered
(for e.g. coeff ), random values are sampled w.r.t their under-
lying probability distribution and cached in the current state
of the inference engine. Program execution outputs an image
of a face with random shape, texture, camera and lighting
parameters. Given image data ID, inference in Picture pro-
grams amounts to iteratively sampling or evolving program
trace ρ to a high probability state while respecting constraints
imposed by the data (Figure 3). This constrained simulation
can be achieved by using the observe language construct
(see code in Figure 2), first proposed in Venture [32] and
also used in [35, 47].

2.1. Architecture

In this section, we will explain the essential architectural
components highlighted in Figure 1 (see Figure 4 for a sum-
mary of notation used).
Scene Language: The scene language is used to describe
2D/3D visual scenes as probabilistic code. Visual scenes
can be built out of several graphics primitives such as: de-
scription of 3D objects in the scene (e.g. mesh, z-map,
volumetric), one or more lights, textures, and the camera
information. It is important to note that scenes expressed
as probabilistic code are more general than parametric prior
density functions as is typical in generative vision models.
The probabilistic programs we demonstrate in this paper
embed ideas from computer-aided design (CAD) and non-
parametric Bayesian statistics[37] to express variability in
3D shapes.
Approximate Renderer (AR): Picture’s AR layer takes in
a scene representation trace Sρ and tolerance variables Xρ,
and uses general-purpose graphics simulators (Blender[5]
and OpenGL) to render 3D scenes. The rendering tolerance
Xρ defines a structured noise process over the rendering and
is useful for the following purposes: (a) to make automatic
inference more tractable or robust, analogous to simulated
annealing (e.g. global or local blur variables in GPGP [31]),
and (b) to soak up model mismatch between the true scene
rendering ID and the hypothesized rendering IR. Inspired by
the differentiable renderer[29], Picture also supports express-
ing AR’s entire graphics pipeline as Picture code, enabling
the language to express end-to-end differentiable generative
models.
Representation Layer (RL): To avoid the need for photo-
realistic rendering of complex scenes, which can be slow
and modeling-intensive, or for pixel-wise comparison of
hypothesized scenes and observed images, which can some-
times yield posteriors that are intractable for sampling-based
inference, the RL supports comparison of generated and ob-
served images in terms of a hierarchy of abstract features.



Modules Functional Description
Scene Representation S:

light_source { <0, 199, 20>  
               color rgb<1.5,1.5,1.5> }
camera { location <30,48,-10> angle 40
         look_at <30,44,50> }

object{leg-right vertices ... 
       trans  <32.7,43.6,9>}
object{arm-left vertices scale 0.2 
       ... rotate x*0}
...
object{arm-left texture}

Friday, April 3, 15

Program trace: ρ = {ρi}
Rendering tolerance: Xρ ∈ ρ
Stochastic Scene: Sρ ∈ ρ
Approximate Rendering: IR
Approximate Renderer: render : (S,X)→ IR
Image data: ID
Data-driven Proposals: (f, T, νdd, θνdd)→ qdata(.)
Data representations: ν(ID) and ν(IR)
Comparator: λ : (ν(ID), ν(IR))→ R

P (ν(ID)|ν(IR), X)
Rendering Differentiator: ∇Sρreal : ρ→

grad model density(Sreal; ID)

Figure 4: Formal Summary: The scene S can be concep-
tualized as a program that describes the structure of known
or unknown number of objects, texture-maps, lighting and
other scene variables. The symbol T denotes the number
of times the program f is executed to generate data-driven
proposals (see section 3.2 for details). The rendering dif-
ferentiator produces gradients of the program density with
respect to continuous variables Sreal in the program.

The RL can be defined as a function ν which produces sum-
mary statistics given ID or IR, and may also have internal
parameters θν (e.g. weights of a deep neural net). For nota-
tional convenience, we denote ν(ID; θν) and ν(ID; θν) to be
ν(ID) and ν(IR) respectively. RL produces summary statis-
tics (features) that are used in two scenarios: (a) to compare
the hypothesis IR with observed image ID during inference
(RL denoted by ν in this setting), and (b) as a dimensionality
reduction technique for hashing learned data-driven propos-
als (RL denoted by νdd and its parameters θνdd). Picture
supports a variety of summary statistic functions including
raw pixels, contours [8] and supervised/unsupervised convo-
lutional neural network (CNN) architectures[23, 25].
Likelihood and Likelihood-free Comparator: Picture
supports likelihood P (ID|IR) inference in a bayesian setting.
However, in the presence of black-box rendering simulators,
the likelihood function is often unavailable in closed form.
Given an arbitrary distance function λ(ν(ID), ν(IR)) (e.g.
L1 error), approximate bayesian computation (ABC) [44]
can be used to perform likelihood-free inference.

3. Inference
We can formulate the task of image interpretation as ap-

proximately sampling mostly likely values of Sρ given ob-

served image ID (L stands for P (ID|IR, Xρ)):

P (Sρ|ID) ∝
∫
P (Sρ)P (Xρ)δrender(Sρ,Xρ)(IR) L dXρ

Automatic inference in Picture programs can be espe-
cially hard due to a mix of discrete and continuous scene
variables, which may be independent a priori but highly cou-
pled in their posterior distributions (“explaining away”), and
also because clutter, occlusion or noise can lead to local
maxima of the scene posterior.

Given a program trace ρ, probabilistic inference amounts
to updating (Sρ, Xρ) to (S′ρ, X ′ρ) until convergence via
proposal kernels q((Sρ, Xρ) → q(S′ρ, X ′ρ)). Let K =
|{Sρ}| + |{Xρ}| and K ′ = |{S′ρ}| + |{X ′ρ}| be the
total number of random choices in the execution before
and after applying the proposal kernels q(.). Let the log-
likelihoods of old and new trace be L = P (ID|IR, X)
and L′ = P (ID|I ′R, X ′) respectively. Let us denote the
probabilities of deleted and newly created random choices
created in Sρ to be P (Sρdel) and P (Sρnew) respectively.
Let q(S′,X′)→(S,X) := q((S′ρ, X ′ρ) → (Sρ, Xρ)) and
q(S,X)→(S′,X′) := q((Sρ, Xρ) → (S′ρ, X ′ρ)). The new
trace (S′ρ, X ′ρ) can now be accepted or rejected using the
acceptance ratio:

min
(

1,
L′ P (S′ρ)P (X ′ρ) q(S′,X′)→(S,X) K P (Sρdel)

L P (Sρ)P (Xρ) q(S,X)→(S′,X′) K ′ P (Sρnew)

)
.

(1)

3.1. Distance Metrics and Likelihood-free Inference

The likelihood function in closed form is often unavail-
able when integrating top-down automatic inference with
bottom-up computational elements. Moreover, this issue is
exacerbated when programs use black-box rendering sim-
ulators. Approximate bayesian computation (ABC) allows
Bayesian inference in likelihood-free settings, where the
basic idea is to use a summary statistic function ν(.), dis-
tance metric λ(ν(ID), ν(IR)) and tolerance variable Xρ to
approximately sample the posterior distribution [44].

Inference in likelihood-free settings can also be inter-
preted as a variant of the probabilistic approximate MCMC
algorithm [44], which is similar to MCMC but with an addi-
tional tolerance parameter ε ∈ Xρ on the observation model.
We can interpret our approach as systematically reasoning
about the model error arising due to the difference of gener-
ative model’s “cartoon” view of the world with reality. Let
Θ be the space of all possible renderings IR that could be
hypothesized and Pε be the error model (e.g. Gaussian). The
target stationary distribution that we wish to sample can be
expressed as:

P (Sρ|ID) ∝
∫

Θ

P (Sρ)Pε(ν(ID)−ν(IR))P (ν(IR)|Sρ)dIR.



During inference, the updated scene S′ρ (assuming random
choices remain unchanged, otherwise add terms relating to
addition/deletion of random variables as in equation 1) can
then be accepted with probability:

min

(
1,
Pε(ν(ID)− ν(I ′R))P (S′ρ)P (X ′ρ) q(S′,X′)→(S,X)

Pε(ν(ID)− ν(IR))P (Sρ)P (Xρ) q(S,X)→(S′,X′)

)
.

3.2. Proposal Kernels

In this section, we will propose a variety of proposal
kernels for scaling up Picture to complex 3D scenes.

Local and Blocked Proposals from Prior: Single
site metropolis hastings moves on continuous variables
and Gibbs moves on discrete variables can be use-
ful in many cases. However, because the latent pose
variables for objects in 3D scenes (e.g., positions and
orientations) are often highly coupled, our inference
library allows users to define arbitrary blocked proposals:
qP ((Sρ, Xρ)→ (S′ρ, X ′ρ)) =

∏
ρ′i∈(Sρ,Xρ) P (ρ′i)

Gradient Proposal: Picture inference supports automatic
differentiation for a restricted class of programs (where
each expression provides output and gradients w.r.t input).
Therefore it is straightforward to obtain ∇Srealρ using
reverse mode automatic differentiation, where Sreal ∈ Sρ
denotes all continuous variables. This enables us to automat-
ically construct Hamiltonian Monte Carlo proposals[34, 45]
qhmc(S

ρ
real → S′ρ

real) (see supplementary material for a
simple example).

Elliptical Slice Proposals: To adaptively propose changes
to a large set of latent variables at once, our inference
library supports elliptical slice moves with or without
adaptive step sizes (see Figure 2 for an example)[4, 33].
For simplicity, assume Sreal ∼ N (0,Σ). We can
generate a new sub-trace S′

real efficiently as follows:
S′
real =

√
1− α2Sreal + αθ, where θ ∼ N (0,Σ) and

α ∼ Uniform(−1, 1).

Data-driven Proposals: The top-down nature of MCMC
inference in generative models can be slow, due to the ini-
tial “burn-in” period and the cost of mixing among multi-
ple posterior modes. However, vision problems often lend
themselves to much faster bottom-up inference based on
data-driven proposals [19, 43]. Arguably the most impor-
tant inference innovation in Picture is the capacity for au-
tomatically constructing data-driven proposals by simple
learning methods. Such techniques fall under the broader
idea of amortizing or caching inference to improve speed
and accuracy [40]. We have explored several approaches
generally inspired by the Helmholtz machine [17, 6], and
indeed Helmholtz’s own proposals, including using deep

learning to construct bottom-up predictors for all or a subset
of the latent scene variables in ρ [49, 25]. Here we focus
on a simple and general-purpose memory-based approach
(similar in spirit to the informed sampler [19]) that can be
summarized as follows: We “imagine” a large set of hypo-
thetical scenes sampled from the generative model, store the
imagined latents and corresponding rendered image data in
memory, and build a fast bottom-up kernel density estimate
proposer that samples variants of stored graphics program
traces best matching the observed image data – where these
bottom-up “matches” are determined using the same repre-
sentation layer tools we introduced earlier for comparing
top-down rendered and observed images. More formally, we
construct data-driven proposals qdata as follows:

(1) Specify the number of times T to forward simulate
(unconditional runs) the graphics program f .
(2) Draw T samples from f to create program traces ρt

and approximate renderings ItR, where {1 ≤ t ≤ T}.
(3) Specify a summary statistic function νdd with model
parameters θνdd . We can use the same representation
layer tools introduced earlier to specify νdd, subject to the
additional constraint that feature dimensionalities should
be as small as possible to enable proposal learning and
evaluation on massive datasets.
(4) Fine-tune parameters θνdd of the representation layer
νdd using supervised learning to best predict program
traces {ρt}Tt=1 from corresponding rendered images
{ItR}Tt=1. If labeled data is available for full or partial
scene traces {Sρp} corresponding to actual observed im-
ages {ID}, the parameters θνdd can also be fine-tuned
further to predict these labels. (see deep convolutional
inverse graphics network [25] as an alternative νdd, which
works in an weakly supervised setting.)
(5) Define a hash function H : ν(ItR) → ht, where ht

denotes the hash value for ν(ItR). For instance, H can
be defined in terms of K-nearest neighbors or a Dirichlet
Process mixture model. Store triplets {ρt, ν(ItR), ht} in a
database C.
(6) To generate data-driven proposals for an observed
image ID with hash value hD, extract all triplets
{ρj , ν(IjR), hj}Nj=1 that have hash value equal to hD. We
can then estimate the data-driven proposal as:

qdata(Sρ → S′ρ|C, ID) = Pdensity({ρj}Nj=1),

where Pdensity is a density estimator such as the multi-
variate gaussian kernel in [19]).

4. Example Picture Programs
To illustrate how Picture can be applied to a wide variety

of 2D and 3D computer vision problems, we present three
sample applications to the core vision tasks of 3D body pose
estimation, 3D reconstruction of objects and 3D face analy-
sis. Although additional steps could be employed to improve



results for any of these tasks, and there may exist better
fine-tuned baselines, our goal here is to show how to solve a
broad class of problems efficiently and competitively with
task-specific baseline systems, using only minimal problem-
specific engineering.

4.1. 3D Analysis of Faces

We obtained a 3D deformable face model trained on laser
scanned faces from Paysan et al [36]. After training with this
dataset, the model generates a mean shape mesh and mean
texture map, along with principal components and eigen-
vectors. A new face can be rendered by randomly choosing
coefficients for the 3D model and running the program shown
in Figure 2. The representation layer ν in this program used
the top convolutional-layer features from the ImageNet CNN
model[20] as well as raw pixels. (Even better results can
be obtained using the deep convolutional inverse graphics
network [25] instead of the CNN.) We evaluated the program
on a held-out test set of 2D projected images of 3D laser
scanned data (dataset from [36]). We additionally produced
a dataset of about 30 images from the held-out set with dif-
ferent viewpoints and lighting conditions. In Figure 3, we
show qualitative results of inference runs on the dataset.

During experimentation, we discovered that since the
number of latent variables is large (8 sets of 100 dimensional
continuous coupled variables), elliptical slice moves are sig-
nificantly more efficient than Metropolis-Hastings proposals
(see supplementary Figure 2 for quantitative results). We
also found that adding learned data-driven proposals signifi-
cantly outperforms using only the elliptical slice proposals
in terms of both speed and accuracy. We trained the data-
driven proposals from around 100k program traces drawn
from unconditional runs. The summary statistic function νdd
used were the top convolutional-layer features from the pre-
trained ImageNet CNN model[20]. The conditional proposal
density Pdensity was a multivariate kernel density function
over cached latents with a Gaussian Kernel (0.01 bandwidth).
Figure 5 shows the gains in inference from use of a mixture
kernel of these data-driven proposals (0.1 probability) and
elliptical slice proposals (0.9 probability), relative to a pure
elliptical slice sampler.

Many other academic researchers have used 3D de-
formable face models in an analysis-by-synthesis based ap-
proach [28, 22, 1]. However, Picture is the only system to
solve this as well as many other unrelated computer vision
problems using a general-purpose system. Moreover, the
data-driven proposals and abstract summary statistics (top
convolutional-layer activations) allow us to tackle the prob-
lem without explicitly using 2D face landmarks as compared
to traditional approaches.

With Data-driven Proposals
Without Data-driven Proposals

Figure 5: The effect of adding data-driven proposals for 3D
face program: A mixture of automatically learned data-driven
proposals and elliptical slice proposals significantly improves speed
and accuracy of inference over a pure elliptical slice sampler. We
ran 50 independent chains for both approaches and show a few
sample trajectories as well as the mean trajectories (in bold).

4.2. 3D Human Pose Estimation

We developed a Picture program for parsing 3D pose
of articulated humans from single images. There has been
notable work in model-based approaches [13, 27] for 3D
human pose estimation, which served as an inspiration for
the program we describe in this section. However, in con-
trast to Picture, existing approaches typically require custom
inference strategies and significant task-specific model engi-
neering. The probabilistic code (see supplementary Figure
4) consists of latent variables denoting bone and joints of
an articulated 3D base mesh of a body. In our probabilistic
code, we use an existing base mesh of a human body, defined
priors over bone location and joints, and enable the armature
skin-modifier API via Picture’s Blender engine API. The la-
tent scene Sρ in this program can be visualized as a tree with
the root node around the center of the mesh, and consists
of bone location variables, bone rotation variables and cam-
era parameters. The representation layer ν in this program
uses fine-grained image contours [8] and the comparator is
expressed as the probabilistic chamfer distance [41].

We evaluated our program on a dataset of humans per-
forming a variety of poses, which was aggregated from
KTH [39] and LabelMe [38] images with significant oc-
clusion in the “person sitting”(around 50 total images). This
dataset was chosen to highlight the distinctive value of a
graphics model-based approach, emphasizing certain di-
mensions of task difficulty while minimizing others: While
graphics simulators for articulated bodies can represent arbi-
trarily complex body configurations, they are limited with
respect to fine-grained appearance (e.g., skin and clothing),
and fast methods for fine-grained contour detection currently
work well only in low clutter environments. We initially used
only single-site MH proposals, although blocked proposals
or HMC can somewhat accelerate inference.

We compared this approach with the discriminatively
trained Deformable Parts Model (DPM) for pose estima-
tion [48] (referred as DPM-pose), which is notably a 2D
pose model. As shown in Figure 6b, images with people sit-
ting and heavy occlusion are very hard for the discriminative
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Figure 6: Quantitative and qualitative results for 3D human
pose program: Refer to supplementary Figure 4 for the proba-
bilistic program. We quantitatively evaluate the pose program on
a dataset collected from various sources such as KTH [39], La-
belMe [38] images with significant occlusion in the “person sitting”
category and the Internet. On the given dataset, as shown in the
error histogram in (a), our model is more accurate on average than
just using the DPM based human pose detector [48]. The histogram
shows average error for all methods considered over the entire
dataset separated over each body part.

model to get right – mainly due to “missing” observation
signal – while our model-based approach can handle these
reasonably if we constrain the knee parameters to bend only
in natural ways in the prior. Most of our model’s failure
cases, as shown in Figure 6b, are in inferring the arm posi-
tion; this is typically due to noisy and low quality feature
maps around the arm area due to its small size.

In order to quantitatively compare results, we project the
3D pose obtained from our model to 2D key-points. As
shown in Figure 6a, our system localizes these key-points
significantly better than DPM-pose on this dataset. However,
DPM-pose is a much faster bottom-up method, and we ex-
plored ways to combine its strengths with our model-based
approach, by using it as the basis for learning data-driven
proposals. We generated around 500k program traces by
unconditionally running the body pose program. We used a
pre-trained DPM pose model [48] as the function νdd, and
used a similar density function Pdensity as in the face ex-
ample. As shown in Figure 7, inference using a mixture
kernel of data-driven proposals (0.1 probability) and single-
site MH (0.9 probability) consistently outperformed pure

With Data-driven Proposals
Without Data-driven Proposals

Figure 7: Illustration of data-driven proposal learning for 3D
human-pose program: (a) Random program traces sampled from
the prior during training. The colored stick figures are the results
of applying DPM pose model on the hallucinated data from the
program. (b) Representative test image. (c) Visualization of the
representation layer ν(ID). (d) Result after inference. (e) Samples
drawn from the learned bottom-up proposals conditioned on the
test image are semantically close to the test image and results are
fine-tuned by top-down inference to close the gap. As shown on the
log-l plot, we run about 100 independent chains with and without
the learned proposal. Inference with a mixture kernel of learned
bottom-up proposals and single-site MH consistently outperforms
baseline in terms of both speed and accuracy.

top-down MH inference in both speed and accuracy. We see
this as representative of many ways that top-down inference
in model-based approaches could be profitably combined
with fast bottom-up methods like DPM-pose to solve richer
scene parsing problems more quickly.

4.3. 3D Shape Program

Lathing and casting is a useful representation to ex-
press CAD models and inspires our approach to modeling
medially-symmetric 3D objects. It is straightforward to
generate random CAD object models using a probabilistic
program, as shown in supplementary Figure 3. However,
the distribution induced by such a program may be quite
complex. Given object boundaries in B ∈ R2 space, we can
lathe an object by taking a cross section of points (fixed for
this program), defining a medial axis for the cross section
and sweeping the cross section across the medial axis by
continuously perturbing with respect to B. Capturing the
full range of 3D shape variability in real objects will require
a very large space of possible boundaries B. To this end,
Picture allows flexible non-parametric priors over object pro-
files: here we generate B from a Gaussian Process [37] (GP).
The probabilistic shape program produces an intermediate
mesh of all or part of the 3D object (soft-constrained to be in
the middle of the scene), which then gets rendered to an im-
age IR by a deterministic camera re-projection function. The



Figure 8: Qualitative and quantitative results of 3D object re-
construction program: Refer to supplementary Figure 3 for the
probabilistic program. Top: We illustrate a typical inference trajec-
tory of the sampler from prior to the posterior on a representative
real world image. Middle: Qualitative results on representative
images. Bottom: Quantitative results in comparison to [3]. For
details about the scoring metrics, refer to section 4.3.

representation layer and the comparator used in this program
were same as those used for the 3D human pose example.
The proposal kernel we used during inference consisted of
blocked MCMC proposals on all the coupled continuous
variables as described in the supplementary material. (For
more details of the program and inference summarized here,
refer to supplementary Section 1.)

We evaluate this program on an RGB image dataset of
3D objects with large shape variability. We asked CAD
experts to manually generate CAD model fits to these im-
ages in Blender, and evaluated our approach in compari-
son to a state-of-the-art 3D surface reconstruction algorithm
from [3](SIRFS). To judge quantitative performance, we
calculated two metrics: (a) Z-MAE – Shift-invariant surface
mean-squared error and (b) N-MSE – mean-squared error
over normals[3]. As shown in Figure 8, inference using our

probabilistic shape program has a lower Z-MAE and N-MSE
score than SIRFS [3], and we also obtain qualitatively better
reconstruction results. However, it is important to note that
SIRFS predominantly utilizes only low level shape priors
such as piece-wise smoothness, in contrast to the high-level
shape priors we assume, and SIRFS solves a more general
and harder problem of inferring full intrinsic images (shape,
illumination and reflectance). In the future, we hope to com-
bine the best of SIRFS-style approaches and our probabilistic
CAD programs to reconstruct rich 3D shape and appearance
models for generic object classes, robustly and efficiently.

5. Discussion
There are many promising directions for future research

in probabilistic graphics programming. Introducing a de-
pendency tracking mechanism could let us exploit the many
conditional independencies in rendering for more efficient
parallel inference. Automatic particle-filter based inference
schemes [47, 24] could extend the approach to image se-
quences. Better illumination [52], texture and shading mod-
els could let us work with more natural scenes. Procedural
graphics techniques [2, 10] would support far more complex
object and scene models [50, 14, 7, 15]. Flexible scene
generator libraries will be essential in scaling up to the full
range of scenes people can interpret.

We are also interested in extending Picture by taking
insights from learning based “analysis-by-synthesis” ap-
proaches such as transforming auto-encoders [18], capsule
networks [42] and deep convolutional inverse graphics net-
work [25]. These models learn an implicit graphics engine
in an encoder-decoder style architecture. With probabilistic
programming, the space of decoders need not be restricted to
neural networks and could consist of arbitrary probabilistic
graphics programs with internal parameters.

The recent renewal of interest in inverse graphics ap-
proaches to vision has motivated a number of new modeling
and inference tools. Each addresses a different facet of
the general problem. Earlier formulations of probabilistic
graphics programming provided compositional languages
for scene modeling and a flexible template for automatic in-
ference. Differentiable renderers make it easier to fine-tune
the numerical parameters of high-dimensional scene mod-
els. Data-driven proposal schemes suggest a way to rapidly
identify plausible scene elements, avoiding the slow burn-in
and mixing times of top-down MCMC-based inference in
generative models. Deep neural networks, deformable parts
models and other discriminative learning methods can be
used to automatically construct good representation layers
or similarity metrics for comparing hypothesized scenes to
observed images. Here we show that by integrating all of
these ideas into a single probabilistic language and inference
framework, it may be feasible to begin scaling up inverse
graphics to a range of real-world vision problems.
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