
September 1981 LIDS-P-1132

PROTOCOLS FOR ENCODING IDLE CHARACTERS
IN DATA STREAMSt

by

J. A. Roskind*
and

P. A. Humblet**

ABSTRACT

A memoryless source produces one of the characters 1, 0, i (i signifies 'idle")
every unit of time. The probabilities associated with the characters are

P(1) -P(O) Z

P(i) - 1-p

A transmitter encodes these characters as they are produced and generates l's and
O's at a rate of one character per unit time. These l's and O's are then transmitted
over an error free channel. A receiver is only required to reconstruct exactly the
sequence of l's and O's produced by the source. The delay encountered by a bit is
then the length of time between its generation by the source and its reconstruction
by the receiver. For a given transmitter-receiver and a given value of p we can cal-
culate the expected bit delay (if it exists).

The goal of this thesis is to find transmitters and receivers which result in small
bit delay. The main result is the proof of the existence of a class of strategies with

delay growing as log(log(-)) as p - 1.
i-p

tThis paper was sumbitted as a master's thesis in June 1980 at M.I.T.

*Department of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology. Partial support furnished by the John and Fannie
Hertz Foundation.

**Department of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, Support furnished by NSF-ECS 79-19880.

Bell Laboratories

subject: PROTOCOLS FOR ENCODING IDLE date: July 1, 1981
CHARACTERS IN DATA STREAMSt
Charging Case Number 11175-102, from: J. A. Roskind*
Filing Case Number 20878 P. A. Humblet**

TM 81-11217-10

MEMORANDUM FOR FILE

CHAPTER I

INTRODUCTION

1.0 Idle Encoding Problem

A memoryless source produces one of the characters 1, O, i (i signifies sidle") every unit of

time. The probabilities associated with the characters are

P(l) -P(O)- P-
2

P(i) = 1-p q

A transmitter encodes these characters as they are produced and generates l's and O's at a rate

of one character per unit time. These l's and O's are then transmitted over an error free chan-

nel. A receiver is only required to reconstruct exactly the sequence of l's and O's produced by

the source. The delay encountered by a bit is then the length of time between its generation by

the source and its reconstruction by the receiver. For a given transmitter-receiver and a given

value of p we can calculate the expected bit delay (if it exists).

The problem is most interesting when p is near 1 (q near 0). Although for any p, there

exists transmitter-receiver pairs that offer finite expected delay, for all known encoding stra-

tegies the expected delay is forced arbitrarily high by taking p sufficiently close to (but not

equal to) 1. In contrast to this, we note that when p is 1, the problem is obviously solvable

with zero delay! This rather large discontinuity leaves open the question of whether there

°2-

exists a strategy holding the expected delay below some bound not dependent on p. The sec-

tion that follows will, however, show that at least a small discontinuity does exist in the achiev-

able delay.

There are two motivations for studying this problem. The first is a problem encountered

when data is being received at a node synchronously based on one clock and transmitted syn-

chronously based on a second clock. If we take into account the probabilistic relative drift of

the two clock rates, then we are effectively forced to randomly include idles in the data stream.

The second motivating. problem is the efficient encoding of bursty data sources [2]. The prob-

lem was actually formulated by R. R. Boorstyn in this context.

Chapter II of this thesis will provide the necessary background in the use of flags in data

streams. Flags are essential to all idle encoding schemes that will be discussed. Chapter III will

present a description and analysis of a known scheme that has delay log- as q -- 0. Chapter

IV contains the analysis and description of the main result of the thesis. A class of strategies

are shown to exist that have delay growing like log(log-) as q - 0.

1.1 Lower Bounds on Delay

In order to obtain a lower bound, we will assume that the receiver in this system has the

assistance of a genie. The genie su)plies the receiver with a copy of the sources output one

unit of time after it is produced. Clearly any encoding scheme that might have worked without

the genie may still be used. Hence the optimal encoding scheme in this new system has delay

which under bounds that of the original system.

The problem now reduces at ep-h point in time to the following: The transmitter must

encode the character produced by the source (either a 1, a 0, or an i) into the characters 1 and

0 for transmission over the channel. All past information is known by both the transmitter and

the receiver (by way of the genie) and hence is irrelevant to the transmission.

Without loss of generality we can assume the transmitter encodes the source character 1 into

the channel character 1. We then consider the two possible encodings of the source character

-3-

0. If it too is encoded into a channel character 1, then clearly the delay of the system is always

one unit of time. If it is encoded into a channel character 0, then there is a symmetric situation

in which we can encode the i into either 1 or 0. Assume we choose to encode i to a 1. Clearly

then when the source produces a 1, and the transmitter sends it, it will encounter one unit of

delay, whereas a source character 0 will encounter no delay. Since the source produces l's and

O's with equal probability, the expected delay is then .5 units of time. Notice that the above

argument only holds if there is some non-zero probability of an i occurring. This then clearly

establishes the discontinuity of achievable delay as p approaches 1.

Higher order lower bounds may be computed by using a genie that delivers every n units of

time a copy of the previous n source characters. The resulting bounds are piecewise polyno-

mial of order n-1. To generate such a bound requires consideration of all possible mappings

from 3" strings to 2" strings. Such computation is doubly exponential in complexity and hence

not feasible for n beyond 3 or 4.

CHAPTER II

FLAG STRATEGIES

This chapter is devoted to the study of flag strategies. They are essential to our solutions

and will be analyzed in some detail. We will first define them and illustrate their use by some

examples. We later explain the concept of decoding delay associated with flag strategies.

Finally, we will introduce the notion of random flags and analyze the associated decoding delay.

2.0 Fixed Single Flag Strategies

Fixed single flag strategies involve the use of a prespecified sequence of characters (a flag)

on a data channel to indicate the occurrence of some event. If the event does not take place

the characters are used to send some other information. If the information being sent is

accidentally encoded into the beginning of the specified flag sequence, then the transmitter

inserts a character into the data stream to distinguish the sequence from the actual flag. The

receiver on the other hand is able to detect such an insertion and effectively remove it before

decoding the remaining channel sequence.

Such strategies can be understood most simply by examining an example relevant to the idle

encoding problem. Assume the data channel is binary (with characters 1 and 0). The flag

sequence is - defined to be 1000. The information that is to be encoded is a sequence of bits

(l's and O's) which are encoded into channel characters in the obvious way.

Sample Sequence # 1

Information a1 - 0100 1100 0 0 0 ...
Time i - 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Channel contents xi - 1 0 0 1 1 1 10 0 .1 0 0 0

The explanation of this encoding is as follows:

The bits al...a4 = 0100 are placed directly onto the channel (characters xI...x4). At this point

it should be noted that the last 3 bits X2x 3x 4 O 100 very nearly forms a flag sequence. The

transmitter must perform a bit insertion and so x 5 - 1. The receiver also notices sequence

X2X 3X 4 = 100 and can conclude that since xs5 1, it was an insertion and x2x 3x 4 are actually

-5-

data. Information transmission continues as a 5 through a 9 are placed on the channel as x 6

through x1 o (as stated, x 5 is an insertion). Again there is an insertion at xll = 1 (as

xg9xo10=100) and then information aloall a 12 = 000 is sent as characters x12X1 3X14 . Notice

that a convention is assumed here as channel characters xllxl 2 Xl 3 = 100 are not considered to

be even possibly the start of a flag. Channel character xll was an insertion and has been recog-

nized as such by both the receiver and transmitter. The convention is then that insertions are

excluded from use as channel history when checking for flags (Channel history at time 14 is

x lox 12X 13=000).

As a second example we will encode the same information, with flags placed on the channel

after channel characters x3 and x 13-

Sequence #2

Information a, - 0 1 0 0 1 1 1 0 0
Time i - 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Channel controls xi # - 1 0 1 0 00001 1 1 00 11 01 0 0

Here we have bits ala 2a 3 = 010 placed on the channel as x 1x 2x 3. At this point, some temporal

event has occurred and it is desired that a flag be sent. The channel characters x 4... X7. = 1000

represent that flag. Data bits a 4... a9 are then placed on the channel as characters x8... xl 3. At

this point it is desired that another flag be placed on the channel. Channel character X14 must

be an insertion. Channel characters x 5--xl 8 = 1000 form the flag.

From these examples it can be seen that the convention of precluding the use of insertions

in a flag sequence has various effects. In the first example we saved one bit insertion by not

having to insert xl 4 - 1. In the second problem the convention cost an extra bit of transmis-

sion as x 14 could not be part of the flag (alternative convention would allow xl4xl5xl 6 x 171000

to be a flag). There is also some uncertainty in the receiver in the second example as to

whether the event which triggered the flag transmission occurred after xl 3 or x 14 (both would

result in the same channel sequence).

Although the convention just mentioned had little effect on a strategy with a well chosen

flag, it can have a tremendous effect on performance with an ill chosen flag. By "well chosen"

-6-

we mean bifix free [1], in the sense that no prefix of the flag root ("root" A first F bits of an

F+I bit flag) is a suffix of the flag root. The niceness of a bifix free flag lies in the fact that

insertions can never occur during a flag transmission, and so an insertion would also imply that

the next possible insertion is at least F bits away.

As an example of difficulty arising from an ill chosen flag consider the extreme case where a

channel with binary characters and binary information has the flag 1110 (Convention-insertions

can be part of a flag).

Sample Sequence # 3

Information ai 10 0 1 1 1 0 0 1 0 ...
Time i = 12 3 4 5 6 7 8 9...
Channel Characters xi 1 0 0 1 1 1 1J1 I 1

Notice that ao...a6 are transmitted straightforwardly. However, when this alternate convention

is applied, we see that not only is X7 = 1 an insertion (x 4xx 6t'-111), but so is x 8 - 1 an inser-

tion as X5X6X7 111, and x9 and x1lo ad infinitum. The point of this example is that the choice

of what convention to use and what flag sequence to use can heavily impact upon the associated

strategy's performance.

As final examples we will examine the application of the former convention to a fixed flag

which has a root which is not bifix free. This convention is that an insertion bit (once detected

by the receiver) is effectively delet ;d from the data stream. All further flag transmissions

would skip by the bit insertion as though there were no such bit. For this example assume a

flag of the form l0100 (note: the root 1010 has a suffix 10 which is also a prefix) with binary

information.

Sample Sequence #4

Information ai 1 0 0 0 0 ..
Time i 1 2 3 4 5 6 7
Channel Data xi 1 0 1 0 1 0 0 ...

Explanation: Information bits a1... a 4 are placed directly on the channel (xl...x4 --1010). The

channel character x 5 - 1 is an insertion. Since x 5 is an insertion, it is no longer possible for a,

to be the first bit of a flag and so a 5 is sent as x 6 = 0. Notice that the effective past history of

the channel is now x lx2 x3x,x 6 = 10100 with the provision that xl is not the first bit of a flag.

-7-

(Note: x 5 is deleted). With this in mind we see that a 6 = 0 is placed directly on the channel as

X7 without the need for an insertion.

As a further example suppose the same sequence of information bits are transmitted but it

is desired that a flag be sent starting at channel character 3.

Sample Sequence # 5

Information ai 1 0 1 0 0 0 ...
Time i 1 23456 7 8 9 10 11 12
Channel data xi 1 0 1 0 1 0 0 1 0 0 0 ...

Explanation: Information bits ala 2 = 10 are placed immediately onto the channel as xlx 2 = 10.

Starting at time 3 it is desired that a flag be sent and so this is started by sending X3X4 = 10 (the

first two bits of 10100). At time 5 however an insertion is required and is placed on the chan-

nel x 5 - 1. The receiver's detection of this insertion leaves an effective past history of

xl...x4 - 1010 at time 5 with the provision that xl is not the first bit of a flag. At time 6 the

transmitter resumes sending the flag started at time 3 by sending x 6x7 x8 = 100. At time 8 the

effective past history of the channel is X3X4X 6X7 xs = 10100 which is a flag and is identified as

such. Channel characters x 9...x 12 = 1000 then carry the information a 3... a 6. Notice that this

convention can be used with any flag without ever deadlocking in a continuous insertion state.

The exact reason for using such a convention will become clear later, but a major feature is the

ability to handle (nonambiguously) insertions in the middle of flags. The conventions of the

above example will be used in Section 2.2.

2.1 Decoding Delay of a Fixed Single Flag Strategy

The decoding delay associated with a strategy is defined as the time interval between the

placement of a bit of information on the data channel by the transmitter and its positive decod-

ing by the receiver as a bit of information. Looking back at sample sequence # 1 we see that bit

a 2 = 1 is placed on the data channel as x 2 but is not positively decoded as the data bit 1 until x 5

is received and so it has decoding delay 3. Notice that until x 5 = 1 was received,there was still

a possibility (as far as the receiver is concerned) that x2 was the first bit of a flag. With this in

mind it is clear that a3 = X3 = 0 has delay 2 and a4 = x4 = 0 has delay 1. We also see that

-8-

a5 =x6 1 has delay 1. The reason for this delay is that as a 19, it is potentially the first bit of

flag.

Having defined the decoding delay of a data bit, we can consider the expected decoding

delay for a bit when a specific flag and strategy (with associated conventions) are chosen. For

example if we use an (F+I) bit flag of the form 100...00 and the conventions of sample

sequence # 1 and # 2, the delay encountered by a bit during decoding is no more than the wait-

ing time until a 1 is next transmitted over the channel. If we assume that insertions are rare,

the expected decoding' delay approaches the expected waiting time for the next information bit

to be a 1. If the information source is memoryless with equal a priori probabilities of l's and

O's, we then have the expected decoding delay is 2 bits.

2.2 Fixed Length Random Flags

Although single fixed length flag schemes can be described rather nicely, the analysis of

their performance can bc quite complex. Specifically the probabilities of insertions at close

points in time are very dependent. In order to overcome these dependencies as much as possi-

ble we will introduce the concept of fixed length random flags. The idea is that at each point in

time a sequence defining a flag root is selected randomly (selections are independent with a uni-

form distribution) from all possible sequences of the fixed length. Both transmitter and

receiver know the chosen roots and the necessary insertions and identifications can be made.

The following ALGOL program illustrates the details of such a protocol. It is assumed that

LENGTH and FLAGLST are predefined constants representing the length of the flag root and

the infinite list of randomly generated flag roots. It is assumed without loss of generality (as far

as probabilistic analysis is concernedl that every flag ends with a "09" and that insertions are

always "1". The conventions used here were also used in the end of Section 2.0.

It was somewhat difficult to arrive at a consistent and well defined protocol for this section.

We are supplying the ALGOL program so as to be sure that algorithms used by the receiver

and transmitter are totally defined.

-9-

PROCEDURE MAIN;
COMMENT: This is system environment
BEGIN

STRING FLAGLST [1:co, l:Length];
COMMENT: All flags for all time;

WHILE TRUE DO
BEGIN

READ NEXTCHAR;
ENCODE (NEXTCHAR);

COMMENT: This is the way we
drive the transmitter. NEXTCHAR
may be a "1", a "0", or an "F".

END;

- 10

PROCEDURE ENCODE (ARG); VALUE ARG; STRING ARG;
BEGIN COMMENT: This is the transmitters environment;

OWN STRING HISTORY [1:Length];
OWN INTEGER TIME:--1;

COMMENT: HISTORY maintains a list of
transmitted bits. TIME is used to
keep track of which flag is relevant;

INTEGER I;
STRING FLAG [l:Lengthl;

PROCEDURE TRNSMT (BIT), VALUE BIT; STRING BIT;
BEGIN

INTEGER I;
AGREE:=TIME > Length;

COMMENT: No insertions till TIME > Length;
FOR I: = 1 TO Length WHILE AGREE DO

AGREE:= HISTORY [I] = FLAGLST [TIME-Length, I];
COMMENT AGREE tell us if we matched
HISTORY with a flag prefix;

IF AGREE THEN
CHANNEL ("0");
COMMENT: A 6099" following a flag prefix
is an insertion. A "1" would be
used for an actual flag;

CHANNEL (BIT);
Comment: Then we send the actual bit;

TIME: = TIME+ 1;
FOR I: 1 TO Length - I DO

HISTORY [I1: HISTORY [I+ I];
HISTORY [Length]:=BIT;

COMMENT: Shift the HISTORY vector;
END;
COMMENT; Notice this routine only increments

TIME when HISTORY is shifted. This keeps the
FLAGLST in sync with HISTORY;

COMMENT: Now for th . body of PROC ENCODE ... ;
IF ARG = "F" THEN

BEGIN COMMENT: We are being asked to send a flag;
FOR : = 1 TO Length DO

FLAG [I1: = FLAGLST[TIME,I];
COMMENT: First save a copy of the flag prefix;

FOR : = 1 TO Length DO
TRNSMT(FLAG [I]);
COMMENT: Then send the prefix with
any neceokry insertions;

CHANNEL ("I1");
COMMENT: Then complete the actual flag
with a "I". No time increment is
necessary as "1I" is not added to
HISTORY;

END;
ELSE TRNSMT(ARG);

COMMENT: If we are not sending a flag,
then we're sending data;

END; COMMENT END of ENCODE;

PROCEDURE CHANNEL(BIT); VALUE, BIT; STRING BIT;
COMMENT The channel just passes info from

the receiver to the transmitter.
RCV(BIT)

PROCEDURE RCV(DATA);VALUE, DATA; STRING DATA;
BEGIN COMMENT; This is the receiver's environment

OWN STRING HISTORY[l:Length];
OWN INTEGER TIME:=1, HSTRLNGTH:=0
OWN BOOLEAN INSERT:=FALSE;

COMMENT: HISTORY and TIME function the
same as in the transmitters environment.
The integer HSTRLNGTH indicates the number
of bits in HISTORY that might be

,actual data bits. The boolean INSERT
indicates that the last bit received
was an insertion.;

INTEGER I;
BOOLEAN AGREE;
IF INSERT= FALSE THEN

COMMENT; If there wasn't just an insertion,
then we must check to see if
HISTORY is a flag prefix.;

BEGIN
AGREE:=TIME > Length;
FOR I= 1 TO Length WHILE AGREE DO

AGREE:-- HISTORY[I]- FLAGLST[TIME-Length, II;
COMMENT:AGREE tells us if we actually

have a match;
IF AGREE THEN

BEGIN COMMENT: Must be a flag or insertion;
IF DATA=0

.-.... ... · THEN INSERT,-TRUE
ELSE BEGIN

HSTRLNGTH: = 0;
WRITE "FLAG RECEIVED";
END;

RETURN;
END;

END;
ELSE INSERT: =FALSE;
COMMENT: Clear the INSERT Flag;
COMMENT: Now in any case we don't have

a flag prefix in HISTORY so we
shift in the new bit

IF HSTRLNGTH=- Length
TIIEN WRITE (HISTORY[1]);
ELSE HSTRLNGT!:- HSTRLNGTH + 1;

FOR i: = 1 TO Length-! DO
HISTORY I]: =HISTORY [I+ 1];

HISTORY [Length 1:-DATA;
TIMET: =TIME+ 1;

END; COMMENT: END OF RCV;
END;

- 12-

Note the receiver function presented in the ALGOL program (RCV) introduces decoding

delay of at least F - 1.

The purpose of the program is to clarify the protocol description, but it should be clear that

a more "intelligent" receive function could be defined to achieve minimal decoding delay, (i.e.,

writing a data bit as soon as it is determined that it is not part of a flag).

As an example we can consider the following channel data sequence that could occur with

this strategy, and the resulting interpretation by an "intelligent" receiver. The flags at each

point are 4 bits long and are designated fk(k=1,2,...,) where k references the location of the

first bit of that flag.

time t - 1 2 3 4 5 6 6' 7 8 8' 9 10 11 ...
Channel data X,- 0 1 0 0 0 1 1 0 ...

fl - 1 0 0 1
f2 - 0 1 0 1

f3 - O 0 0
f4 - 1 1 1 0

f 5s- 0 1 1 1

f 6 - 0 1 0 0
f7 -0 1 1 1

time 1 2 3 4 5 6 6' 7 8 8' 9 10 11 12 13
ft (output) 0 1 o - 00 -011 o..

Explanation o At time t = 1, bit x l = 0 is received. This bit is different from the first bit of

f I = 1001 and so Y I 0 - x, is the output at time t 1.

Similarly x2 = 1 is immediately passed by the receiver (y2 = 1).

At time t = 3, however, X3 = 0 is seen on the channel and the receiver cannot conclude

that x3 is not part of fa3 0000. The receiver must wait for further information (Y3 = -)o

The bit x 4 = 0 might still be part of a flag transmission f3 = 0000 as X3 X4 = 00. Again the

receiver must wait (Y4 =--). With the receipt of x5s 0, the possibility still exists that

X3 4X5 =-- 000 are the first 3 bits offa 3 0000, and so we have y = -.

Finally x6 - 1 is seen on the channel and the following conclusions may be drawn:

1) x6 is an insertion bit and does not represent data;

- 13 -

2) x3 was not part off 3, as f 3 was not sent;

3) x4 was not part off 3 (and could not be part off 4);

4) x 5 was not part off 3 (or f 4) but might be part off 5 = 0111 as x 5 = 0.

As a consequence of these conclusions the output at time t = 6 is Y6 = 00 = x3X4. The time is

not incremented at this point (by convention) as the bit was an insertion.

With the receipt of x 6, = 1 there is still the possibility that x, x 6, = 01 are the first two bits of

f5 = 0111 (notice x6 is effectively deleted). Again as x7 = 1 the possibility remains that

x5x 6, x7 = 011 is the start of f 5. The output are respectively Y6' - - and Y7 =-.

When bit x8 = 0 is observed it is clearly an insertion and the receiver is able to write (with

due consideration of f 6, and f7) Y8 = 011. Again with the example of the random flag strategy

we see that decoding delay is still well defined. The decoding delays associated with the exam-

ple are

Name Value RCV Algorithm Intelligent Algorithm
When Decoded Delay When Decoded Delay

(minimal)

xl 0 4 3 1 0
x2 1 5 3 2 0
X3 0 6 3 6 3
X4 0 7 4 6 2
X5 0 8 4 8 4
x6, 1 9 4 8 2
x7 1 10 4 8 1

2.3 Expected Decoding Delay

Having defined the protocol we will now consider the expected decoding delay of this system

when an "intelligent" receiver is used. The averaging is taken over all possible choices of flags

and all possible data sequences.

There are three causes for decoding delay. The first is that the sequence of channel bits,

around the data bit of interest, may match the prefix of one or more flags for some length of

time. Until there is a discrepancy between the channel sequence and every possible flag

sequence containing that data bit, the decoding of that bit as an actual data bit must be delayed.

The second cause for delay is that if it is necessary to look at k additional data bits (as just

- 14o

mentioned), there may be anywhere from 0 to k insertions between those data bits. Finally

there is the possibility that even though the receiver only has to look at k data bits, it may have

to look at the channel bit that follows to insure that it is an insertion. We now define K to be

the random variable corresponding to the number of data bits that must be examined. We

define L to be the random variable corresponding to the number of insertions among the k

data bits, and we define M to be the number of insertions that follow the last data bit that must

be observed (clearly M is 0 or 1).

We will now proceed to derive the joint distribution of K, L and M. To this end, we will

first compute the marginal distribution

Pr{K =x}

Let the jh data or flag root bit placed on the channel be called aj, and let the sequence Pj

be the potential flag root sequence that would start with aj and continue through aj+F-I. The

event that no additional data bits need be observed, following aj, in order to decode aj as a

data bit is then:

{K < 1} {(aj differs from the first bit of Pj)}

n {aj-laj differs from the first 2 bits of Pj-l)}

n I{ j-(F2)o...a j differ from the first F-- bits of Pj-(F-2)}

Now, since the flags are chosen randomly and independently, the probability of the above event

will take the product form. Finally using the assumption that the flag root selection is based on

a uniform distribution over sequences of length F, we have

1 3 2F--_--IPr(K <1) 1 .). 2.o
2 4 . 2F-

i-l 2J

b
(Note II f(j) A 1 when b <a)

j-a

-15 -

More generally we have

F-1 2j-1
Pr(K < x) = II

i=x 2J

Now we make use of the equation

Pr(K = x) = Pr(K < x+l) - Pr(K < x)

to get the desired marginal distribution

F-I 2j-l
II when x < F- 1

2X j-x+1 2

Pr(K =x) c
o when x > F-1

Having derived the marginal distribution on K (the number of data bits that must be observed

in order to conclude that the current bit is a data bit) we will now derive the conditional distri-

bution

Pr(L =yIK -x)

Recalling now that L is the number of insertions following a data bit but prior to the last data

bit that must be observed, we see the distribution straightforwardly. When K = x there are

exactly x places that an insertion can occur. These insertions are independent of each other

and the event K = x. This can be seen as an insertion after aj+j (i < x) depends only on

fj+i-F+1, but the event that K = x is totally, independent of fj+i-F+1 (as all root compositions

are independent). The probability of any such insertion is then:

Pr(insertion) = 2 -F =A r

So the above conditional distribution is binomial for 0 c L < K and is specifically

Pr(L = y IK = x) = (yX)r y (- r)X-Y

Finally we will find the distribution of M, the number of insertions that follow the kth data bit

(note: the only possibilities are 0 or 1) given that we must observe exactly k additional data bits

to decode the current data bit as such. (Note: M is totally independent of L given K, and the

- 16-

conditioning is just a formality).

Pr(M =1&K=x)
Pr(M -1K =-x&L = y) . P. .(x)

Pr(KXl IMX1 I)Pr(Mxl1)
Pr(Kr-x)

F-I
II (1-2-J) 2 -F

= jX+1 2 x-F
1F-

II (1-2j)2 x j-x+i

We now obtain: (for O<y <Sx F--1)

Prob ({K=x n l{LY} n {M=i1}) (2 X- F)

on t(1-2r)XY

j x 2+l 1)

F-i
2 F tjrY((1r)XY II (I-2 j)

j-x+l

and

Prob ({K x}n{L=ynfM==O}) (1-2 x -F)

f(r1Y (1-2-i)

(2- 2-) y (1--r)x-Y II (1-2 -F-)
j-x+l

Now we calculate the expected decoding delay: (for a given F)

-17-

E(K+L+M) -- E(K+L+MIM=1) · P(M=1) +E(K+L+MIM==O) P(M=O)

F-I F-1
=-F [x+l+rxI In (1-2-J)

2 -F O jjx+

(F-I F-i
+ (1-x-2-F)x(l+r) II (1-2 - j)

X j X+1 J

F--I F- F-F- F-I-
=2- F C (1+X2 - X) nI (1--2-J) + 2 x2 n (1--2- i)

x--O j-X+l xxO j'x+i

It can be shown by induction that

F-I F-1

2 -F C (1+x2X) II (1-2-) = F2- F

xO j-x+i

which has the interpretation of the expected number of insertions that follow a bit (i.e.,

E(L+M)).

The second term in the sum is defined

F-1 F-I
A (F) - x2-X n ((1-2J)

x- 0 j-X+I

and may be interpreted as the expected number of bits that must be examined (i.e., E(K)). By

examination of A (F) it can be seen that the following recursive relationship is satisfied:

A (F+1) = (1-2-F)A (F) + F2-F (A (O) = 0)

If we now define

B(F) A E(K+L+M)

we have

B (F) =F2- F + A (F)

and from the recursion relationship we see

B(F+l) = B(F) + [-- B(F)]2-F + F2-F + 2 -F-'

-18 -

This relation allows us to verify by induction that B(F) S F/2, and thus to conclude that

B (F) is a monotone increasing and convergent sequence.

Following are some numerical results:

F A(F) E(decoding delay) -- B(F)

00 0
1 0 .5
2 .5 1
3 .8750 1.25
4 1.1406 1.3906
5 1.3193 1.4756
6 1.4344 1.5281
7 1.5057 1.5604
8 1.5486 1.5799
9 1.5738 1.5914

10 1.5883 1.5981
11 1.5665 1.6019
12 1.6011 1.6041

Xa 1.6067 1.6067

- 19 -

CHAPTER III

3.0 Single Flag Encoding Scheme 121

Having discussed the nature of flags we are now in a position to describe and analyze one

class of transmission schemes that solves the idle encoding problem. In this scheme the

transmitter maintains a queue of data bits to be transmitted and sends them off one at a time

whenever possible. If at some time the queue becomes completely empty and it comes time for

a bit to be sent, the transmitter then sends some prespecified F+1 bit flag. The receiver is of

course constantly checking for flags and does not confuse such sequences with data. Note that

while a flag is being transmitted the bits which are produced by the source will queue up and

transmission of data will very likely proceed once the flag has been totally sent.

3.1 Analysis of Single Flag Encoding Schemes

The analysis of this scheme will be performed in two different ways. The first is only an

approximate method which requires some intuition about the behavior of random walks. The

second way utilizes the theory of queues and is the same method as is used in the later text to

analyze the non-deterministic buffer maintenance scheme (although the single flag scheme is a

much simpler application).

A typical graph of queue size vs. time for the single flag strategy is given in Fig. 2. The key

point to all the analysis that follows is that the start of a new flag represents a renewal point of

the random process defined by the queue size. Every time a flag is sent the queue is com-

pletely empty. In both methods of analysis the behavior of the process will only be looked at

between consecutive renewal points but the expected average delay will be correct for the pro-

cess as a whole.

The probabilistic drift shown in Fig. 2 between the flags (of length F) is caused by two fac-

tors. The first factor is a downward drift (the queue decreases by one) and corresponds to the

source producing an idle and the transmitter sending the next bit from the queue. The second

factor is an upward drift and corresponds to the source producing a bit and the transmitter not

- 20 -

being permitted to send the next queued bit as it must make a bit insertion

Clearly if we are to have finite expected mean delay in this system, the mean queue size at

the transmitter must be finite. It is necessary then that the probability of downward drift

exceed the probability of upward drift.

Specifically:

Prob (insertion & no idle) < Prob (no insertion & idle) (1)

Since the probability of-an idle being generated by the memoryless source is independent of the

sequence of bits produced by the source, (1) simplifies to:

Prob (insertion) < Prob (idle) q (2)

Method I

In order to simplify the analysis it is desirable to make the probability of an insertion indepen-

dent of the probability of an insertion at any other point in time. Notice for example that if the

only flag used is an F+1 bit flag of the form 1000 ... 001, then two consecutive insertions could

never occur and so the insertion probabilities are clearly dependent. In order to achieve this

independence we will choose, at each point in time, the form of the next F+1 bit flag. The

choice is made at random from a uniform distribution of all possible F bit binary words. (Note:

the receiver is synchronized with the transmitter in the selection of these flags). We are not

advocating the use of randomized strategies, but they do lend themselves to easy modeling.

The probability of an insertion at any point in time is then

r, ob (insertion) = 2j (3)

Combining (2) and (3) we get the stability constraint on our choice of F:

2 -< q (3)

or equivalently

- 21 -

log2 1 F (5)
q

Note that although it is necessary (in order to simplify the analysis) to randomize the selection

of flags, the implication that a deterministic scheme can match the performance of the system is

not lost. There must exist infinitely many deterministic sequence of flags that match the ran-

domized performance. It is not clear, however, that a single fixed flag scheme can match the

randomized performance.

Clearly now the expected delay per bit is at most the sum of the expected receiver decoding

delay (known (Section 2.3) to be less than 1.7 bits) and the expected queueing delay. Looking

at Fig. 2 we can conclude, if indeed the graph is representative of the process, that the average

queueing delay is about F/2 (and certainly order of F). The figure would be accurate if the

downward drift probability was much greater than the upward drift probability. This would

make it very unlikely for the queue to increase up past F. In order to assure this "much

greater than" requirement we make use of the fact that the insertion probability decreases

exponentially as F increases (see (3)). Instead of barely satisfying the stability criterion given

in (5) we set F at:

F log2 -+m (6)

where m is some well chosen number greater than 1. That is, if we fix m at say 20, then the

average queuing delay will certainly be F/2 as the upward drift probability is 10-6 times the

downward drift probability. Probably though we could use a smaller m and not increase F so

much, thereby achieving smaller delay.

In any event, when m is fixed appropriately, the queueing delay is F/2 with F set as in (6).

It follows that the queuing delay grows as the order of logl/q as q approaches zero. This being

the case, the expected total bit delay then grows as log l/q as q goes to zero.

22 -

Method II

As a second and more rigorous method we will here go about analyzing the expected queu-

ing delay per bit far more exactly. We will find the expected total queuing delay between

renewal points (empty queue) and then divide that by the expected total number of bits pro-

cessed between renewal points. As in the first method we then add the receiver decoding delay

to give the expected total delay per bit.

The "total queuing delay between renewal points" is defined to be the sum of the individual

queueing delays encountered by each of the bits processed between renewal points. This total

may be calculated easily by using the fact that when there are k bits in a queue, then each bit

accumulates another unit of delay, and the total grows by k. Hence the total queuing delay is

simply the sum of the queue lengths achieved during a given period.

In order to calculate the expected total queuing delay and the expected total number of bits

processed we must examine the markov chain given in Fig. 1. The states of the markov chain

correspond to possible queue sizes. Transitions with probability s correspond to a bit of data

being transmitted over the channel and an idle being produced by the markov source. Transi-

tions with probability r represent an inserted bit being sent over the channel while a bit was

produced by the markov source and added to the queue. The state denoted RENEW represents

reaching of the next renewal point.

Let T(n) be the expected total time till trapping when started in state r. We then have the

following equations

sT(k-) 1 + rT(k+l) + (l1-r--s)T(k) (7)

T(O) = . (8)

Solving for T(k) subject to the initial condition of (8) we get T(k) is linear in k and in fact

T(k) (--)k (9)

Similarly let D (n) be the expected total delay till trapping in RENEW when started in state

- 23 -

n. We now have equations

D(k) = k + sD(k-1) + rD(k-+1) + (1-r-s)D(k) (10)

D(0) --O (11)

Solving the difference equation subject to (11) we get

D(k) = 1 k 2 + s+r k (12)
2(s-r) 2(s-r)2

It should be clear that a simple deterministic approximation to the activity of the queue during

the flag transmission (with q small) is quite accurate. (More rigor will be introduced when the

buffer maintenance scheme is analyzed). With such a deterministic assumption we have that

the queue size after flag transmission is exactly the flag length, and the total delay during this

period is exactly

F(F+1) = Total Delay During Flag (13)
2

Now we just add up the total delay and divide by the total number of bits and get

F(F+1) + D(F)

Exp Bit Queuing Delay (F+T(F)) (14)
p (F-T (F))

which may be simplified using (9) and (12) to

F+1 + I1F+ s+r
2 2(s--r) 2(s-r) 2

Exp Bit Queuing Delay = (15)

p(l + I-)
S -r

From the markov chain and its interpretation we have

s = Prob (idle & no insertion) - q (1- -- (16)

r = Prob (data bit & insertion) = (1-q) -2 (17)

and so

-o 24 -

-r q (18)

s+r = q + 12q (19)

As we did in the initial analysis (6) if we let

F - log2 - + m (20)
q

where m is of the order of 5 or 10 (the exact optimal choice isn't worth worrying about) then

q >> (21)

Combining this with (18) and (19)

s-r t- q (22)

s+r ~ q (23)

and so from (21) we see asymptotic behavior of delay as q approaches 0 of

1 10log2 -- (24)- q

- 25 -

CHAPTER IV

4.0 Buffer Maintenance Encoding Schemes

The single flag encoding scheme that we looked at is clearly inefficient but it is not clear

quantitatively how much of an improvement can be achieved. The root of the problem is that

although we use a flag very rarely, it is quite large. The penalty for its transmission is "paid"

(i.e., the queue size increases) at one point in time. The aim of the buffer maintenance stra-

tegies to be discussed in this chapter is to have small "flags" which are sent more frequently.

The penalty is then paid over a period of time and the resulting delay is smaller.

A second interpretation of the previous phenomena is offered by information theory [3].

The presence (absence) of a flag indicates to the receiver that the queue is (not) empty. This

event has a small (large) probability, and therefore large (small) self information which results

in encoding by a long (short) codeword. The resulting codeword length variance is large and

causes unfavorable consequences for delay. Our aim to overcome this problem is to use short

"flags" to indicate an event whose probability (as seen by the receiver) is not extreme. In

order for such probabilities not to be extreme (as viewed by the receiver) the receiver must

"track" the state of the queue more closely and so more frequent protocol transmissions are

necessary.

4.1 Deterministic Buffer Maintenance Scheme

In this encoding scheme there are basically two types of "flags". We have a flag (denoted

F) and a class of refill strings (denoted S). The function of F is the same as the flag in the

single flag encoding scheme. That is, when the transmitter queue is completely empty, F is

sent. A refill string is sent at intervals of I bits (1 is an integer parameter of the scheme that

must be optimized). The class of refill strings is exactly 0* 1, i.e., 1 or 01 or 001 or ... or on 1

or By intervals of I we mean that if the final bit of a refill string was sent at time t, then

the bit transmitted at time t + I + 1 is the first bit of another S. Notice that the placement of

an S in the transmitted data stream has priority over data bits, F, and bit insertions (i.e., bits

- 26

added to the data stream to prevent mistaking data for an F). The function of a refill string is

to increase the number of bits queued in the transmitter to at least N (N is some fixed number

found to be optimal for this scheme). This is achieved by simply sending O's (assuming it is

time to refill) until the queue contains N bits and then sending a 1, which terminates the refill

string.

A clearer view of what this scheme is intended to do can be gotten from Fig. 3. The graph

is of queue size vs. time. It begins with the queue empty. The transmitter proceeds to send a

flag (F) and completes tne transmission at Pt. 1. The transmitter then starts transmitting

queued up bits over the channel. The downward drift of the queue is caused by the arrival of

idles at the transmitter. Every I bits during this downward drift (between Pt 1 and Pt 2) an S

is sent. Due to the fact that the queue size is greater than N, the S is simply 1, and the effect

on the drift is not noticeable. At Pt 3 however, the queue size is well below N and the S sent

has a noticeable effect (the queue size is brought back up to N). These cycles of:

1) Starting with queue size of -N

2) Probabilistically drifting downward during I bits of transmission (of data and inserted

bits)

3) Sending an S to raise the qleue size back up to N (assuming we're below N)

are repeated for some time. Eventuaily Pt 4 is reached and a large number of idles (i.e., much

more than expected) causes the queue to become completely empty. At this point an F is sent

and a graph similar to the one shown follows.

There is some difficulty in performing an exact analysis of this scheme. The points at which

the F is sent represent renewal points of the process. In order to analyze this scheme it then

suffices to analyze the behavior of the scheme between renewal points. Analysis here is not

simple because the process is not stationary (an S every I bits). The system does cycle but

there is no true renewal point. If during the period of time between consecutive S's, the queue

size always decreased, then there would always be N bits in the buffer when the last bit of an S

is sent, and that point would be a renewal point. Unfortunately the queue size can also rise

- 27 -

occasionally during such an interval.

4.2 Randomized Buffer Maintenance Scheme

In order to get an exact analysis of the delay of a buffer maintenance system, we will now

look at a similar scheme where the transition probabilities in the queue size are no longer time

dependent between long flags. In this system instead of having I fixed at some 10, we allow

intervals between refill strings to be a sequence of independent random variables {I), geometri-

cally distributed with mean 0lo. The transmitter and receiver both know {l}. The reason for the

choice of this distribution is the ease with which a markov model can produce it.

The choice of flag roots will also be made random to facilitate analysis. As was shown ear-

lier (Section 2.3) the average decoding delay is quite small (less than 1.61). Note also that as

with random flags, infinitely many deterministic sequences of intervals must be able to match

the expected performance of the random system. The expectation of performance is taken over

all possible {l}, all possible flag roots, and all possible source sequences.

One final issue to clarify is the priority of placement of a refill sequence versus a long flag.

The rule is that refill sequences have priority. They are initially identified by their temporal

locations in the data stream (and are self delimiting in their lengths), thus they can be

effectively deleted from the channel history as far as detection of long flags (and long flag inser-

tions) are concerned.

Having established the nature of the strategy, we can see that its behavior is cyclically bro-

ken into two parts. The first part commences when the transmitter queue is completely empty

and the source produces an idle. This state (to be referred to as the trap state) forces the

transmitter to send a flag. Some time later the flag will be completed, the queue will have

some random number of bits awaiting transmission and the body of our strategy will begin to

function. This marks the beginning of the second part of the scheme. This part will eventually

terminate in the trap state and the system will repeat the cycle.

The key point to the analysis that follows is that the trap state is a renewal point of the sto-

chastic system. For this reason it suffices to analyze the performance of the system between

- 28 -

trap states in order to evaluate the long term performance of the system.

The mean time that an information bit spends in the buffer is given by the formula:

~M~^ean bit quepueing delay = Mean Total Delay between Renewals
Mean Total Number of Bits between Renewals

4.3 The Model

The source model is given in Section 1.0.

The probability of starting a refill string at any point in time is defined as S =- l ' . We also

define (for convenience)

A
S'= 1 -S

The probability that an insertion will be necessary is defined as T'- 2-F . Again for con-

venience

T= -- T'

Note that this is the probability conditioned on the fact that a refill string is not about to begin

(refill has priority), and also conditioned on the fact that the last character sent was not an

insertion (two consecutive insertions can not occur).

The size of the queue that a refill Ftring will establish is defined to be N.

Having defined these values we see that the state and transitions of the system may be

represented by the infinite markov chain shown in Fig. 4. The number associated with each

state indicates the number of bits in the transmitter's queue at that time. The state at the far

left marked "-1" denotes the trap states. The set of states C(k) (k E 0, 1, ... N-1) are the

ordinary states of the system. From these states it is possible to transmit a bit (and move to

C(k) or C(k-l)), or transmit an insertion (and move to B(k) or B(k+l)), or to begin a

refill string (and move to F(k) or F(k+l)). The set of states F(k) (k E 0, 1, ... N)

correspond to the transmission of a refill string. This set of states can only be left when k = N

(i.e., the refill is complete). The presence in one of the states B(k) (k E 0, 1, ... N--1) indi-

cate that the last transmission was an insertion (and hence the next may not be). The top set

~~--'~ ~~~~~ "~' ' ~~~`~~~ ^~ ~~;"~~"~~"""""~~~'"~ ~~''~^"~""' '~~~'~------- -----

- 29 -

of states A (k) (k E 0, 1, ... N) are also refilling states except they carry the information that

the last non-refill character was an insertion or the end of a flag.

The previous discussion has distinguished between the various states when the queue size is

less than N. For larger queue sizes there need be no separate state for a refill string, as the

refill string is but one bit. For k E N, N+l, the states G(k) and H(k) are distinguished

only by the fact that presence in G(k) implies the last non-refill bit (perhaps the last bit) was

an insertion or the end of a flag.

As an example of a transition and the reason for the probability being assigned to it consider

C(0) to B(1) which can be seen to have probability S'T'p. First we see "S"' indicates a refill

is not to be initiated and hence the question of an insertion arises. The "T"' indicates that an

insertion is sent over the channel (therefore we move to some B(-) state). Finally the "p"

indicates that a bit arrived just prior to the transition and so the queue will increase in size (we

didn't transmit anything from the queue).

As a subtle side note, it can be pointed out that the distinction between states A (-) and

F(-), B(.) and C('), and G (-) and H(-) is necessitated by the protocol rule that bit insertions

are deleted from the effective past history of the channel (hence two insertions cannot occur

consecutively). If this rule is not observed, at some point in time during an actual flag

transmission, a single channel bit might be required to be both an insertion (to disclaim the

existence of an earlier potential flag) and also be the next bit of the actual flag! The only solu-

tion to such a dilemma would be to forget about the flag that was being sent, send the conclud-

ing bit of the earlier flag (i.e. claim the earlier flag was being sent all along!), and push what-

ever data we have just redefined as the start of a flag, back onto the queue for transmission.

Hence the net effect would be to induce an uncertainty in the delay of order of the size of the

flag. Such uncertainty has no effect on the analysis of the single flag encoding scheme, but

would be intolerable for the buffer maintenance scheme.

The other part of the system that must be modeled is the behavior of the system after trap-

ping and while the flag is being sent. This analysis (given in 4.8) is nearly identical to what

- 30-

could have been given for the operation of the single flag encoding scheme. The analysis is

shown here, however, in order to add rigor and assure the accuracy of the result.

4.4 Expected Time to Trap

Given the markov chain description of the body of this system (Fig. 4), we can easily

characterize the expected time to trap when starting in a given state. In words, the motivation

for all the equations that follow is that the expected time to trap from any state is one more

than the weighted average of the expected times to trap from the states that can next be

reached by some transition.

First we define the boundary condition

C(-1) =0 (1)

as this is the trap state.

Then we consider the equations for A, B, C and F, valid for k < N

A (k) = 1 + qA (k) + pA (k+l) (2)

B(k) = 1 +SqA(k) +SpA(k+l) +S'qC(k-1) +S'pC(k) (3)

C(k) = 1 + S'TqC(k-1) + S'TpC(k) + S'T'qB (k) + S'T'pB (k+l) (4)

+ SqF(k) + SpF(,.c+l)

F(k) = 1 + qF(k) +pF(k+l) (5)

Next we give the boundary conditions that offer the transition from A, B, C and F to G and

H.

A4(N) = 1 + qG(N) +pG(N+l) (6)

F(N) = 1 + qH(N) + pH(N+I) (7)

C(N-1) = 1 +S'TqC(N-2) +S'TpC(N-1) + ST'qB(N-1) + S'T'pG(N) (8)

+ SqF(N-1-) + SpF(N)

-31 -

H(N) = I + S'TqC(N--1) + (S'Tp + Sq)H(N) + SpH(N+1) (9)

+ S'T'qG (N) + S'T'pG (N+1)

Finally now we state the equations of G and H

G(k) = 1 + SqG(k) + SpG(k+l) + S'qH(k-1) + S'pH(k) (10)

H(k) = 1 +S'TqH(k--1) + (S'Tp+Sq)H(k) + SpH(k+l) (11)

+ S'T'qG (k) + S'T'pG (K+1)

A comparison of (9) and (11) reveals that a more simple statement equivalent to (9) is that

C(N-1) = H(N-1) (12)

where H(N-1) is simply the extension of the solution to the difference equation. With a bit

more analysis it can also be seen that (8) is equivalent to

H(N) = C(N) (13)

with the obvious extension of C.

The solutions to (10) and (11) are readily seen to be linear in k. A simple substitution

allows us to find the following result.

H(k) .(k--N+1)(!+T') + H(N-1) (14)
S'-p (T'+1)

G(k) - (k--N)(+T')+1 + H(N-1) (15)
S'--p (T'+ 1)

The boundary conditions (6) and (7) and the previous result give us

1+S'
,4 (N) -- + H(N--1) (16)

A(N) +T'+S'
F(N) =S-(T+ + H(N--1) (17)

S--p(T'+)

The solution to (2) and (3) are again seen to be linear in k, more precisely

- 32-

A (k) N - + A (N) (18)

F(k) N-k + F(N) (19)
P

with A(N) and F(N) given in (16) and (17)

The equations for B(k) and C(k) are harder to solve. Substituting the expression (3) for

B (k) in the expression for C (k) (4) yields the following relation

C(k) 1 + S'T' + C(k--l)(S'Tq + S'T'S'q2) (20)

+ C(k)(S'Tp + S'T'S'2pq)

+ C(K+1)(S'T'S'p2)

+S(qF(k) + pF(k+l))

+ S'T'S(q 2A (K) + 2pqA (K+) +p 2A(K+2))

Note that the sum of the coefficients of the C's, F's and A 's on the right hand side is equal to

1, as it should be.

Looking at (20) we see C is the solution to a second order system driven by linear and con-

stant terms (A and F). We therefore know that C has the form

C(k) - #(k+1) + y/(rk+l --1) + /(rk+l -1) (21)

which already satisfies (1). Moreover r l and r2 are roots of

oa(r) a ur2 + vr + w 50 (22)

with u Ž S'T'S'p2

v -- 1 + S'Tp + S'T'S'2pq

w a S'T,'Sp 2

Note that a(0) > 0, a(1) < 0 and u > 0. This implies rl and r2 are real and positive and lie

- 33 -

on opposite sides of 1. These facts will be recalled later.

A simple substitution of (21) into (20) reveals

(23)
P

Now by eliminating A and F from (20) by using (14) through (17) we see

0 1 + S'T' + 1 (S'Tq + S'T'Sq2 - S'T'S'p2) (24)
P

+ ST' --S'T'S + q (S+S'T'S)
S'--p(T'+I) p

+ S(1+S'T') [rN + brN + (T+) ' 2 S'-p (T'+l)

Note that we have also made use of (12) to eliminate H(N-1), and (21) to eliminate

C(N-1). Simplifying we obtain

Yr +-r- S"-p(T') -S ST + -T') (25)

A x

In order to obtain a second relation that will completely determine 'y and 6, we must use the

last boundary condition (13) with (12) in (14), and use the definition of C(N-1) based on

(20). The resulting equation is

y(rN+l1 -rN) + O(r + ' -r N) = S (26)
2 (S'-p(l+T'))

We can then writey

We can then write

- 34 -

1 Y-X(r2-1)] 1 (27)

1 [Y-X(ri-l)]
6=- FN rl-r2

Now back substituting into (21) we see

C(N-1) -= L - (-y + 5) + X (28)
P

which by way of (12) and (15) gives us

G(k)= (k-N)(!+T') + 1 N ('+b) +X (29)
S'--p(T'+l) p

4.5 Small q Analysis - Expected Time to Trap

As this thesis was motivated by the peculiar behavior of the system (Chapter I) as q

approaches zero, we will examine the behavior of our scheme for small q, as we adjust the

parameters S, T and N accordingly.

Examining the denominator of the expressions for G and H, one sees that to maintain a

stable system, S and T' must approach zero at least as fast as q. Thus we let

S =sq (1)

T'= -tq, with s +t <1 (2)

H and G can then be written

H(k) = (k-N+)(l+O()) + H(N-1) (3)
q (1-s-t)

G(k) = k-N+l (1+O(q))+H(N--) (4)
q(l--s -t)

Our next task is to compute H(N-1). We will compute successively X, Y, rI, r2, y, and

- 35-

X=-1 _S t +1 (1+0(q))- (5)

Y -1+0(g) (6)Y= (6)
q (l--s-t)

next u, v and w defined in (4.4.22) can be rewritten so that the roots rl and r 2 of the equation

ur2 + vr + w = 0 are

(l+s+t)-- '/(l+s+t)2 -4t + O(q) < 1 (7)
2t

1 - (1+s't) + V'(l+s-t)-4t + O(q) >1 (8)
rl 2

r2 (l+s+t) + \l -24t + O(q) >1 (9)
2t

1i (l+s+t)-- '/(+s+t) 2-4t + O(q) < 1 (10)
r2 2

rl-r2= (l+s-t) 2-4t O() (11)

Using (4.4.28) we see that

-1 122 [+

_ N 1 1-s-t s -- r 2 _-t S
C(N-1) qr r r2 (12)

p qr2 rl - r2

-1 1 +rl 2|+

1 - + s] (1 + O(q))

If we assume that N is also going to be large (as will be forced later) then the above is dom-

inated by the r i-N term and

o36 -

-1 1 r[2 1]
kS1 -s -- t + 1 -s-t s

C(N--1) -- (1'3)

(+ O(q)) (1 (+ O(r))

Which leads to the final (and usable) result

k I-S--I -- I _ · -
G(k) = q(14)

q (1-s-t""6r) qrN-r, - r2

(1+0(q)) (l+O(ri))

4.6 Expected Total Delay Till Trapping

The average total delay till trapping is just the expected value of the sum of the delays

encountered by all bits processed during a renewal period. The way this sum is calculated is by

keeping effectively a running total of the total delay, and noting that the sum. may be updated

by simply adding the current queue size to the running sum. (If there are k bits in the queue,

then one unit of time later each bit will accrue one additional bit delay, or a net increase of k

bit delays). The difference equations which must then be solved to calculate this expectation

during the activity of the body of the scheme are nearly identical to those given in Section 4.4.

The only change is that each equation is driven by a linear term k, instead of the constant term

1.

For completeness we will list these equations. First the low end boundary condition that

says no additional delay is accrued after trapping.

Note that all function names in this section will be underlined to distinguish them from Section(1)

Note that all function names in this section will be underlined to distinguish them from Section

- 37 -

4.4, but still relate them to Figure 4.

The equations relating A, B, C and E are read directly from Figure 4.

A(k) = k + q A(k) +pA(k+l) (2)

A(k) = k + Sq4 (k) + SpA(k+l) + S'q C(k--1) + S'p C(k) (3)

.C(k) = k + S'Tq GC(k-1) + S'Tp C(k) + S'T'q B(k) + S'T'p B(k+l) (4)

+ Sq E(k) +Sp E(k+l)

F(k) = k+q E(k) =p E(k+l) (5)

Next we list the transition equations that relate the boundary of A, B, C and E to that of fG

and H

A(N) =N +q 1(N) +p G(N+1) (6)

E(N) =N +q H[(N) +p ff(N+1) (7)

C(N-1) = N-1 + S'Tq GC(N-2) + S'Tp -C(N-1) + S'T'q B(N-1) (8)

+ S'T'p G(N) + Sq E(N-1) + Sp E(N)

H (N) = N + S'Tq C (N-1) + (S'Tp+Sq) H (N) + SpH (N+1) (9)

+ S'T'q G (N) + S'T'p G (N+1)

Finally the equations for (G and H

G(k) =k +Sq CG(k) +Sp GL(k+l) + S'p F (k-1) + S'p 1-(k) (10)

H(k) = k + S'Tq H(k-1) + (S'Tp + Sq) H(k) + Sp H(k+l) (11)

+S'T'q £G(k) +S'T'p G2(k+l)

The solutions to (10) and (11) are clearly going to be quadratic. Some manipulations yield the

result

-38 -

H(k) = (k 2 -(N-I) 2)(1+T') + k- - [(1+T')(Sp+S'q) +prr'] (12)A 2A 2A2

k + _2_.[+S, + [pT,] (13)

where A - S' -p(T'+1)

Similarly it can be seen that the solutions to (1) and (4) are of the form

N 2-k 2 k-N
d(k) 2 + -+A(N) (14)

2p 2p

N2--k2 k--N
E(k) = - + E(N) (15)

2p 2p

Furthermore, using the boundary conditions (6) and (7) we see that

4(N) =,f(N-1) + a (16)

E(N) = H(N-1) +f (17)

Where

-S+1 p(+T') +p (+ T')(Sp+S'q)T S'q + STA (l
2A 2A2 S'A2

and

f = (S±+g(1+T') g(1+T') ___9

f- (N I A (+ (2A2l[(+T)(Sp+S'q)+pTP] (19)

As in Section 4.4; we can solve for C(k) in (4) by substituting the expression (3) and elim-

inating the presence of B (k). The resulting difference equation is then:

0 = k(S'-2S'T¶) -S'T'pS + SF(k) + S'T'SA (k) (20)

+ u C(k+l) + v C(k) + wC(k-1)

where u, v and w are as in (4.4.22). We then have a second order linear difference equation,

driven by a quadratic function. Consequently the solution must be of the form:

C(k) = ao(k 2-1) + fl(k+1) + Y(rk+l'-1) + 6(rk+I -1) (21)

-39 -

where rl, r 2 are roots of

ur2 + vr + w = 0

Notice that we have already satisfied (1) by virtue of the form expressed in (21). Also notice

that r1 and r 2 are identical to those in the previous section.

Setting to zero the coefficients of the quadratic and linear terms in (20) quickly yields

a=-- 1 (22)
2p

-2pS (1 +S'T') [1 + S -S'T'(S + 2p) (23)

A comparison of (9) and (11) gives us the boundary condition equivalent to (9) of

C(N-1) -= --/(N-1) (24)

It can also be seen that (8) is equivalent to

C(N) = H(N) (25)

where a (N) is the extension of C using (2), (3), (4) and (5) (Note: several quantities

evaluated in this extension have no significance to the model. For example E(N+1), D(N+1)

etc). Using (24) and (25) we can arrive at the equation:

'(r+l - rj) + 6(r2+ -r2N) S'(2N-1) _ + (1+T')(Sp+S'q) + pTT' y (26)2 p & 2A 2

Notice that in the above equation that -y and 6 are the only unknowns.

A second equation may be derived by setting the constant term in (20) to zero and making

use of (14), (15), (16), (17) and (24). This leads eventually to

- 40

yrr + ar =- N(+ 1) - 1 [S'T'S[p (27)2p S(I+S'T')

+Sf +S'T'Sa + 2L (S'p(T+2S'T'q)--I

+ S[2S'T'p +STp- I]

By solving (26) and (27) simultaneously for y, and 6 we complete the determination of C(k)

using (21). Thus we have defined C(N-1) and, by virtue of (24), also defined d(N--1).

This then completes the determination of the quantities ff(k) and G(k) (using (12) and (13))

which are the key points of the expected delay analysis.

Specifically

I [Y-X(r2 -1)
~r = r--r- (28)

in Irl -- 12

E 12- r2

ff(N-1) = -(y+) -- L (N 2-2N) + ON +X (30)

4.7 Small q Analysis - Expected Total Delay Till Trapping

Continuing with the earlier small q analysis we take

S =sq (1)

T'=tq with s +t < I (2)

and see that

- 41 -

A = q(1-s-t) (1 + O(q)) (3)

H(k) = k2-(N-1) 2 (k-(N--l)) (l+s+t))]+0(q))
2q (l -s -t) 2q(1--s--t) 2

+ H(N-1) (4)

(k) = [(k-1) + q) + (1--s-- t)2 (1 + O(q)) (5)

Looking now to (4.6.18) and (4.6.19) we see that

a2q(1isS-- t) 2 (1 + 0(q)) 6f -q (1-s-t) q()-s-t)

f = 1] + ls+t 2] (1 + O(q)) (7)
q(l-s-t) q (1-s-t)

Moving on to (4.6.22) and (4.6.23) we have

a = - (+ O(q)) (8)
2

= 1 -(1 +O(q)) (9)
sq

From (4.6.26) we see that

2N-1 1 + +s+t(q)) (10)
Y 2q(1-s--t)2 (1 + O(q)) (10)

and from (4.6.27)

X INls -t)sq q(1-s-t)2 qs2

Now if we assume N is to be large, then it is clear that (4.6.30) is dominated by - (Note: it was

assumed that rl < r 2, and it was shown in Section 4.4 that 0<rl<l<r2). We would then have

- 42

H(N-1) =-* (1 + O((r)IN)) (12)

/'lN7 (Y +m X(l1r2) [+

but

Y+X(I-r2) N(1 +(L (1-r2)) r 1 J l+O(q)] l+O(L) (13)
-N(I S 0 q(1-s-t)

and finally

(k) = k2-2k + (2s-t) (14)
l2q(1-s-t) q (1-s-t)

+ NV s+(t--l)(--r2)) + ()]
qrN s(r2-rl)(l-s-t) (N

4.8 Flag Transmission

In this section we evaluate the probability distribution of the time r it takes to transmit a

flag, together with the expected time and expected delay until the next flag will be transmitted.

We assume that if, while a flag is being sent, it comes time to send a refill string, then the shor-

test possible S is sent (i.e., one bit long).

Together with each bit of a flag root, we may have an insertion with probability T'. After

each flag root bit or insertion we may have a geometric run of refill bits, with mean ,St. The Z

transform of the probability distribution of the time it takes to transmit a flag is then given by

T(z) (-+T + i-S-S (1)

We then have the meatn

E(r)=- lI F + 1 F (1 + T') (2)

as well as

- 43 -

02 T IS
E(Tr(r-1)) = -- 2 L =F(F+l)(1+2 -t (1 + T')) (3)

+ 2F(1 + T') SH

+F(F- -l)'(1 + T')]

If we let m denote the number of information bits stored in the buffer when the flag is com-

pletely transmitted, we have that it has a probability distribution with Z transform

T(q + pz) (4)

Combining these results with the result given in the previous two sections we have that the

mean time between flags is

E(r) + E(G(m)) (5)

and the mean total delay is

ES r(-l) +E(G(m)) (6)

4.9 Expected Queueing Delay

Finally now we can evaluate the performance of this scheme as a function of N, lo, F and

q. Then for a given q, we could optimize the choice of N, lo, and F. Note that as a conse-

quence of this, for any q, the performance of the optimal buffer maintenance scheme will

always meet or exceed the performance of the fixed single flag strategy. This can be seen easily

by taking N = -1 and 10 very large and reducing the buffer maintenance scheme to a single flag

strategy.

Specifically the performance of the system is given as the ratio of (4.8.5) to (4.8.6) (see

equation at the end of Section 4.2). Note that G and G2 are given in (4.4.29) and (4.6.10).

The distribution of m may be gotten by taking the inverse Z transform of (4.8.4). The

remaining expectations are evaluated explicitly in (4.8.2) and (4.8.3).

- 44 -

4.10 Expected Queueing Delay-Small q Analysis

For fixed F, the variance of r decreases linearly with q. Therefore the mean time until the

next flag is just

(F + I + G(F + 1))(1 + O(q)) (1)

and the mean delay is

F(F+I + (F +)J(1 + 0(q)) (2)

Making use of the equation given at the end of Section 4.2 we take the quotient of (1) and (2)

to get the expected queueing delay

F(F+1f) + i (F+1) 1
2 O + O(q)) (3)

F + I +G(F+1) (l+O(q))

Now since

T.' 2- F (4)

and

tq = T' (5)

we have that

F 9= log 2 -+ log2 (6)
q t

We wish to choose N such that

The motivation for (7) lies in making the numerator of (3) such that 6; dominates by a factor

of N. The natural choice is then

- 45 -

N = log g2 1 (8)
1

1 + log2 (log 2-)

1log2 --
rl

Expanding (4.5.14) and (4.7.14) we then have

[log2 + 1
G (F + ql)- L q(-s-) (9)

lq (1 -s -t1

2
1 | 1-s-t s I -- s --t s

q ri - r2

(1 + o,(q)) 1 + O(r,)

and

og 2 1 -2 log2 log2

G(F + 1) + q (10)
2q(1-s-t) q(1-s-t) (10)

I s+(t-1)(1-r2)

q s (r 2 -r)(1-s-t) (1 + 0(q))

1+ 0()

Substituting (9) and (10) back into (3) we get the delay grows as

N s + (1-t)(r2-1)

-- l+t+r2 (1+s-t)

-46 -

We will show now that the coefficients of N is quite small, without worrying about getting its

smallest value. Let us just assume we take t to be small, say 10- 3. Take s to be close to 1 but

still satisfying (4.5.2). Looking now at equation (4.5.8) we see that

'=! l_ - 2 m(12)
r 1+s

Using this in (8) then gives

N 2 1og 2(log 2 -) (13)

Looking back at (4.5.9) we see that t being small implies that r2 is quite large (at least in com-

parison with the other terms in (11)). Therefore we have the delay in (11) is simply

N s+(1-t)(r2-1) N (14)
-- i+t +r2 (1+s+t) l +s 2

Hence the final result (combining (13) and (14)) is that the average delay of this scheme

asymptotically grows no faster than

log 2(log 2 -) (15)

as q - 0.

- 47 -

Acknowledgement

I would like to thank Bob Boorstyn for originating the problem addressed by this thesis, and

discussing at length several aspects of the problem. I appreciate the discussions I've had with

many members of the Mathematics Center of Bell Laboratories. I am grateful for an extremely

swift initial entry of the text of this paper by the word processing center at Bell Laboratories,

Murray Hill. Finally I would like to thank David Roskind Jr. for his extensive and repeated

proof reading of this paper.

J. A. Roskind*

MH- 11217-JAR/PAH-df P. A. Humblet**

Att.
Figures 1-4
References 1-3

o 48

1- r-s 1 -r-s i-r-s 1 -r-S

r r r

FIGURE I

OUEUE
SIZE

F

F F F C r F TIME

FIGURE 2

QUEUE Pt 1

F* s S s Ss ** j. S F TIME

FIGURE 3

-49 -

c · +iST r~~~~~
Ch ~ ~y

cr 0.

a _
doa

- 50 -

REFERENCES

[1] P. T. Nielsen, 'A Note on Bifix-free Sequences,' IEEE Transactions on Information
Theory, vol. ITo19 (Sept. 1973), pp. 704-706.

[2] Ro R. Boorstyn and J. F. Hayes, 'Delay and Overhead in the Encoding of Bursty
Sources,' Proceedings of the International Conference on Communications (June, 1980).

[3] R. G. Gallager, Information Theory and Reliable Communication, (New York: John Wiley
and Sons, 1968).

