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Abstract

We study mechanism design in dynamic quasilinear environments where private information

arrives over time and decisions are made over multiple periods. Our first main result is a necessary

condition for incentive compatibility that takes the form of an envelope formula for the derivative

of an agent’s equilibrium expected payoff with respect to his current type. It combines the

familiar marginal effect of types on payoffs with novel marginal effects of the current type on

future ones that are captured by “impulse response functions.” The formula yields an expression

for dynamic virtual surplus which is instrumental to the design of optimal mechanisms, and to the

study of distortions under such mechanisms. Our second main result gives transfers that satisfy

the envelope formula, and establishes a sense in which they are pinned down by the allocation

rule (“revenue equivalence”). Our third main result is a characterization of PBE-implementable

allocation rules in Markov environments, which yields tractable sufficient conditions that facilitate

novel applications. We illustrate the results by applying them to the design of optimal mechanisms

for the sale of experience goods (“bandit auctions”).
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1 Introduction

We consider the design of incentive compatible mechanisms in a dynamic environment in which

agents receive private information over time and decisions are made in multiple periods over an

arbitrary time horizon. The model allows for serial correlation of the agents’ information and for the

dependence of this information on past allocations. For example, it covers as special cases problems

such as allocation of private or public goods to agents whose valuations evolve stochastically over time,

procedures for selling experience goods to consumers who refine their valuations upon consumption,

and multi-period procurement under learning-by-doing. Because of the arbitrary time horizon, the

model also accommodates problems where the timing of decisions is a choice variable such as when

auctioning off rights for the extraction of a natural resource.

Our main results, Theorems 1–3, provide characterizations of dynamic local and global incentive-

compatibility constraints that extend the Myersonian approach to mechanism design with continuous

types (Myerson, 1981) to dynamic environments. We then apply these results to the design of op-

timal dynamic mechanisms. We focus on quasilinear environments where the agents’ new private

information is unidimensional in each period.1 In order to rule out the possibility of full surplus ex-

traction à la Cremer and McLean (1988), we assume throughout that this information is independent

across agents conditional on the allocations observed by them. In addition to the methodological

contribution, our results provide some novel concepts that facilitate a unified view of the existing

literature and help to explain what drives distortions in optimal dynamic contracts.

The cornerstone of our analysis is a dynamic envelope theorem, Theorem 1, which, under appro-

priate regularity conditions, yields a formula for the derivative of an agent’s expected equilibrium

payoff with respect to his current private information, or type, in any perfect Bayesian incentive

compatible mechanism.2 Similarly to Mirrlees’ (1971) first-order approach for static environments,

this formula characterizes local incentive-compatibility constraints. It captures the usual direct ef-

fect of a change in the current type on the agent’s utility as well as a novel indirect effect due to

the induced change in the distribution of the agent’s future types. The stochastic component of

the latter is summarized by impulse response functions that describe how a change in the agent’s

current type propagates through his type process. Theorem 1 thus identifies the impulse response

as the notion of stochastic dependence relevant for mechanism design. Our definition of the impulse

response functions and the proof of Theorem 1 make use of the fact that any stochastic process can

be constructed from a sequence of independent random variables. This observation was first used in

1By reinterpreting monetary payments as “utility from monetary payments,” all of our results on incentive com-

patibility trivially extend to non-quasilinear environments where the agents’ utility from monetary payments (or, more

generally, from some other instrument available to the designer) is independent of their private information and ad-

ditively separable from their allocation utility. For example, this covers models typically considered in new dynamic

public finance or in the managerial compensation literature.
2This envelope theorem may be useful also in other stochastic dynamic programming problems.
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the context of mechanism design by Eső and Szentes (2007).

The envelope formula of Theorem 1 is independent of transfers, and thus applying it to the initial

period yields a dynamic payoff equivalence result that generalizes the revenue equivalence theorem

of Myerson (1981). On the other hand, given any dynamic allocation rule, the envelope formula can

be used to construct payments, which satisfy local incentive compatibility constraints at all truthful

histories. We show this in Theorem 2, which also provides a sense in which these payments are

unique. In particular, in the single-agent case, the net present value of payments for any realized

sequence of types for the agent is determined by the allocation rule up to a single scalar. This ex-post

payoff equivalence extends to multiple agents under an additional condition (which, for instance, is

satisfied if the evolution of types is independent of allocations) to pin down the expected net present

value of payments conditional on the agent’s own type sequence, where the expectation is over the

other agents’ type sequences.3

We then focus on Markov environments in order to characterize global incentive-compatibility

constraints. We show in Theorem 3 that an allocation rule is implementable in a perfect Bayesian

equilibrium if, and only if, it satisfies integral monotonicity. The Markov restriction implies that

when this is the case, the allocation rule can be implemented, using payments from Theorem 2, in

a strongly truthful equilibrium where the agents report truthfully on and off the equilibrium path.

This allows us to restrict attention to one-shot deviations from truthtelling, and is the reason for

our focus on Markov environments. It is instructive to note, however, that even if an agent’s current

type is unidimensional, his report can affect allocations in multiple periods. Thus the static analog

of our problem is one with unidimensional types but multi-dimensional allocations, which explains

why the integral-monotonicity condition cannot be simplified without losing necessity.4

Theorem 3 facilitates formulating sufficient conditions for implementability that are stronger

than necessary, but easier to verify. A special case is the notion of strong monotonicity typically

considered in the literature, which requires that each agent’s allocation be increasing in his current

and past reports in every period, and which is applicable to models where payoffs satisfy a single-

crossing property and where type transitions are independent of allocations and increasing in past

types in the sense of first-order stochastic dominance. Having identified the underlying integral-

monotonicity condition, we are able to relax both the notion of monotonicity and the requirements

on the environment. Heuristically, this amounts to requiring monotonicity only “on average” across

time (ex-post monotonicity) or, weaker still, across time and future types (average monotonicity). We

use these new conditions to establish the implementability of the optimal allocation rule in settings

where strong monotonicity fails.

3The result is useful in the non-quasilinear models of footnote 1. There it determines the ex post net present value

of the agent’s utility from monetary payments, and facilitates computing the cost-minimizing timing of payments.
4Implementability has been characterized in static models in terms of analogous conditions by Rochet (1987), and

more recently by Carbajal and Ely (2013) and Berger, Müller, and Naeemi (2010).
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The leading application for our results is the design of optimal mechanisms in Markov environ-

ments.5 We adopt the first-order approach familiar from static settings where an allocation rule is

found by solving a relaxed problem that only imposes local incentive-compatibility constraints and

the lowest initial types’ participation constraints, and where a monotonicity condition is used to

verify the implementability of the rule. The envelope formula from Theorem 1 can be used as in

static settings to show that the principal’s problem is then to maximize expected virtual surplus,

which is only a function of the allocation rule. This is a Markov decision problem, and hence it can

be solved using standard methods. We then use integral monotonicity from Theorem 3 to verify that

the solution is implementable, possibly by checking one of the sufficient conditions discussed above.

When this is the case, the optimal payments can be found by using Theorem 2. If for each agent

the lowest initial type is the one worst off under the candidate allocation rule (which is the case,

for example, when utilities are increasing in own types and transitions satisfy first-order stochastic

dominance), then the participation constraints of all initial types are satisfied, and the mechanism

so constructed is an optimal dynamic mechanism.

The impulse response functions play a central role in explaining the direction and dynamics

of distortions in optimal dynamic mechanisms. As in static settings, distortions are introduced to

reduce the agents’ expected information rents, as computed at the time of contracting. However,

because of the serial correlation of types, it is optimal to distort allocations not only in the initial

period, but at every history at which the agent’s type is responsive to his initial type, as measured

by the impulse response function. We illustrate by means of a buyer-seller example that this can lead

to the distortions being non-monotone in the agent’s reports and over time. The optimal allocation

rule in the example is not strongly monotone, and hence the new sufficiency conditions derived from

integral monotonicity are instrumental for uncovering these novel dynamics.

Similarly to static settings, the first-order approach outlined above yields an implementable

allocation rule only under fairly stringent conditions, which are by no means generic. We provide

some sufficient conditions on the primitives that guarantee that the relaxed problem has a solution

that satisfies strong monotonicity, but as is evident from above, such conditions are far from being

necessary. We illustrate the broader applicability of the tools by solving for optimal “bandit auctions”

of experiment goods in a setting where bidders update their values upon consumption. The optimal

allocation there violates strong monotonicity, but satisfies average monotonicity.

We conclude the Introduction by commenting on the related literature. The rest of the paper

is then organized as follows. We describe the dynamic environment in Section 2, and present our

results on incentive compatibility and implementability in Section 3. We then apply these results to

the design of optimal dynamic mechanisms in Section 4, illustrating the general approach by deriving

5In the supplementary material, we discuss how our characterization of incentive compatibility for Markov environ-

ments can be used to derive sufficient conditions for implementability in some classes of non-Markov environments,

and to extend our results on optimal mechanisms to such environments.

4



the optimal bandit auction in Section 5. We conclude in Section 6. All proofs omitted in the main

text are in the Appendix. Additional results can be found in the supplementary material.

1.1 Related Literature

The literature on optimal dynamic mechanism design goes back to the pioneering work of Baron and

Besanko (1984), who used the first-order approach in a two-period single-agent setting to derive an

optimal mechanism for regulating a natural monopoly. They characterized optimal distortions using

an “informativeness measure,” which is a two-period version of our impulse response function. More

recently, Courty and Li (2000) considered a similar model to study optimal advanced ticket sales,

and also provided some sufficient conditions for a dynamic allocation rule to be implementable.

Eső and Szentes (2007) then extended the analysis to multiple agents in their study of optimal

information revelation in auctions.6 They orthogonalized an agent’s future information by generating

the randomness in his second-period type through an independent shock, which corresponds to a two-

period version of our state representation. We build on some of the ideas and results in these papers,

and special cases of some of our results can be found in them. We comment on the connections at

the relevant points in the analysis. In particular, we discuss the role of the state representation in

the Concluding Remarks (Section 6) having first presented our results.

Whereas the aforementioned works considered two-period models, Besanko (1985) and Battaglini

(2005) characterized the optimal infinite-horizon mechanism for an agent whose type follows a Markov

process, with Besanko considering a linear AR(1) process over a continuum of states, and Battaglini

a two-state Markov chain. Their results were qualitatively different: Besanko (1985) found the

allocation in each period to depend only on the agent’s initial and current type, and to be distorted

downward at each finite history with probability 1. In contrast, Battaglini (2005) found that once

the agent’s type turns high, he consumes at the efficient level irrespective of his subsequent types.

Our analysis shows that the relevant property of the type processes that explains these findings, and

the dynamics of distortions more generally, is the impulse response of future types to a change in

the agent’s initial private information.7

Optimal mechanisms in a multi-agent environment with an infinite horizon were first considered

by Board (2007). He extended the analysis of Eső and Szentes (2007) to a setting where the timing of

the allocation is endogenous, so that the principal is selling options. Subsequent to the first version

of our manuscript, Kakade et al (2011) considered a class of allocation problems that generalize

Board’s model as well as our bandit auctions, and showed that the optimal mechanism is a virtual

version of the dynamic pivot mechanism of Bergemann and Välimäki (2010). We comment on the

6See Riordan and Sappington (1987) for an early contribution with many agents.
7Battaglini’s (2005) model with binary types is not formally covered by our analysis. However, we discuss in the

supplementary material how impulse responses can be adapted to discrete type models.
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connection to Kakade et al in Section 5 after presenting our bandit auction.

That the literature on optimal dynamic mechanisms has focused on relatively specific settings

reflects the need to arrive at a tractable optimization problem over implementable allocation rules.

In contrast, when designing efficient (or expected surplus maximizing) mechanisms, the desired

allocation rule is known a priori. Accordingly, dynamic generalizations of the static Vickrey-Clarke-

Groves and expected-externality mechanisms were recently introduced by Bergemann and Välimäki

(2010) and Athey and Segal (2013) for very general, quasilinear private-value environments.8

A growing literature considers both efficient and profit-maximizing dynamic mechanisms in set-

tings where each agent receives only one piece of private information, but where the agents or objects

arrive stochastically over time as in, for example, Gershkov and Moldovanu (2009). The characteri-

zation of incentive compatibility in such models is static, but interesting dynamics emerge from the

optimal timing problem faced by the designer. We refer the reader to the excellent recent survey by

Bergemann and Said (2011).9

Our work is also related to the literature on dynamic insurance and optimal taxation. While the

early literature following Green (1987) and Atkeson and Lucas (1992) assumed i.i.d. types, the more

recent literature has considered persistent private information (e.g., Fernandes and Phelan (2000),

Kocherlakota (2005), Albanesi and Sleet (2006), or Kapicka (2013)). In terms of the methods,

particularly related are Farhi and Werning (2013) and Golosov et al (2011), who used a first-order

approach to characterize optimal dynamic tax codes. There is also a continuous-time literature

on contracting with persistent private information that uses Brownian motion, in which impulse

responses are constant, simplifying the analysis. See Williams (2011) and the references therein.

Our analysis of optimal mechanisms assumes that the principal can commit to the mechanism he

is offering, and hence the dynamics are driven by changes in the agents’ information. In contrast, the

literature on dynamic contracting with adverse selection and limited commitment typically assumes

constant types and generates dynamics through lack of commitment (see, for example, Laffont and

Tirole (1988), or, for more recent work, Skreta (2006) and the references therein).10

Dynamic mechanism design is related to the literature on multidimensional screening, as noted,

e.g., by Rochet and Stole (2003). Nevertheless, there is a sense in which incentive compatibility is

easier to ensure in a dynamic setting than in a static multidimensional setting. This is because in a

dynamic setting an agent is asked to report each dimension of his private information before learning

the subsequent dimensions, and so has fewer deviations available than in the corresponding static

setting in which he observes all the dimensions at once. Because of this, the set of implementable

8Rahman (2010) derived a general characterization of implementable dynamic allocation rules similar to Rochet’s

(1987) cyclical monotonicity. Its applicability to the design of optimal mechanisms is, however, yet to be explored.
9Building on this literature and on the results of the current paper, Garrett (2011) combines private information

about arrival dates with time-varying types.
10See Battaglini (2007) and Strulovici (2011) for analysis of limited commitment with changing types.
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allocation rules is larger in a dynamic setting than in the corresponding static multidimensional

setting. On the other hand, our necessary conditions for incentive compatibility are valid also for

multidimensional screening problems.

2 The Environment

Conventions. For any set B, B−1 denotes a singleton. If B is measurable, ∆(B) is the set of

probability measures over B. Any function defined on a measurable set is assumed measurable.

Tildes distinguish random variables from realizations so that, for example, θ denotes a realization of

θ̃. Any set of real vectors or sequences is endowed with the product order unless noted otherwise.

Decisions. Time is discrete and indexed by t = 0, 1, . . . ,∞. There are n ≥ 1 agents, indexed

by i = 1, . . . , n. In every period t, each agent i observes a signal, or type, θit ∈ Θit = (θit, θ̄it) ⊆ R,

with −∞ ≤ θit ≤ θ̄it ≤ +∞, and then sends a message to a mechanism which leads to an allocation

xit ∈ Xit and a payment pit ∈ R for each agent i. Each Xit is assumed to be a measurable space

(with the sigma-algebra left implicit). The set of feasible allocation sequences is X ⊆
∏∞
t=0

∏n
i=1Xit.

This formulation allows for the possibility that feasible allocations in a given period depend on the

allocations in the previous periods, or that the feasible allocations for agent i depend on the other

agents’ allocations.11 Let Xt ≡
∏n
i=1Xit, X

t
i ≡

∏t
s=0Xis, and Xt ≡

∏t
s=0Xs. The sets Θt, Θt

i, and

Θt are defined analogously. Let Θ∞i ≡
∏∞
t=0 Θit and Θ ≡

∏n
i=1 Θ∞i .

In every period t, each agent i observes his own allocation xit but not the other agents’ allocations

x−i,t.
12 The observability of xit should be thought of as a constraint: a mechanism can reveal more

information to agent i than xit, but cannot conceal xit. Our necessary conditions for incentive com-

patibility do not depend on what additional information is disclosed to the agent by the mechanism.

Hence it is convenient to assume that the agents do not observe anything beyond θit and xit, not

even their own transfers. (If the horizon is finite, this is without loss as transfers could be postponed

until the end.) As for sufficient conditions, we provide conditions under which more information

can be disclosed to the agents without violating incentive compatibility. In particular, we construct

payments that can be disclosed in each period, and identify conditions under which the other agents’

reports and allocations can also be disclosed.

Types. The evolution of agent i’s information is described by a collection of kernels Fi ≡〈
Fit : Θt−1

i ×Xt−1
i → ∆(Θit)

〉∞
t=0

, where Fit
(
θt−1
i , xt−1

i

)
denotes the distribution of the random vari-

11For example, the (intertemporal) allocation of a private good in fixed supply x̄ can be modelled by let-

ting Xit = R+ and putting X = {x ∈ R∞N+ :
∑
it xit ≤ x̄}, while the provision of a public good whose

period-t production is independent of the level of production in any other period can be modelled by letting

X =
{
x ∈ R∞N+ : x1t = x2t = · · · = xNt all t

}
.

12This formulation does not explicitly allow for decisions that are not observed by any agent at the time they are

made; however, such decisions can be accomodated by introducing a fictitious agent observing them.
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able θ̃it, given the history of signals θt−1
i ∈ Θt−1

i and allocations xt−1
i ∈ Xt−1

i . The dependence

on past allocations can capture, for example, learning-by-doing or experimentation (see the bandit-

auction application in Section 4). The time-t signals of different agents are drawn independently

of each other. That is, the vector (θ̃1t, . . . , θ̃nt) is distributed according to the product measure∏n
i=1 Fit

(
θt−1
i , xt−1

i

)
. We abuse notation by using Fit(·|θt−1

i , xt−1
i ) to denote the cumulative distri-

bution function (c.d.f.) corresponding to the measure Fit(θ
t−1
i , xt−1

i ).

Note that we build in the assumption of independent types in the sense of Athey and Segal (2013):

in addition to independence of agents’ signals within any period t, we require that the distribution of

agent i’s private signal be determined by things he has observed, that is, by
(
θt−1
i , xt−1

i

)
. Without

these restrictions, payoff equivalence in general fails by an argument analogous to that of Cremer

and McLean (1988). On the other hand, dependence on other agents’ past signals through the

implemented observable decisions xt−1
i is allowed.

Preferences. Each agent i has von Neumann-Morgenstern preferences over lotteries on Θ×X×
R∞, described by a Bernoulli utility function of the quasilinear form Ui (θ, x) +

∑∞
t=0 δ

tpit, where

Ui : Θ × X → R, and δ ∈ (0, 1] is a discount factor common to all agents.13 The special case of

“finite horizon” arises when each Ui (θ, x) depends only on
(
θT , xT

)
for some finite T .

Choice rules. A choice rule consists of an allocation rule χ : Θ → X and a transfer rule

ψ : Θ→ R∞×· · ·×R∞ such that for all t ≥ 0, the allocation χt (θ) and transfers ψt(θ) implemented

in period t depend only on the history θt (and so will be written as χt(θ
t) and ψt(θ

t)). We denote

the set of feasible allocation rules by X . The restriction to deterministic rules is without loss of

generality since randomizations can be generated by introducing a fictitious agent and conditioning

on his reports. (Below we provide conditions for an optimal allocation rule to be deterministic.)

Stochastic processes. Given the kernels F ≡ (Fi)
n
i=1, an allocation rule χ ∈ X uniquely defines

a stochastic process over Θ, which we denote by λ [χ].14 For any period t ≥ 0 and history θt ∈ Θt,

we let λ [χ] |θt denote the analogous process where θ̃
t

is first drawn from a degenerate distribution

at θt, and then the continuation process is generated by applying the kernels and the allocation rule

starting from the history (θt, χt(θt)).

When convenient, we view each agent i’s private information as being generated by his ini-

tial signal θi0 and a sequence of “independent shocks.” That is, we assume that for each agent

i, there exist a collection 〈Ei, Gi, zi〉 where Ei ≡ 〈Eit〉∞t=0 is a collection of measurable spaces,

Gi ≡ 〈Git〉∞t=0 is a collection of probability distributions with Git ∈ ∆(Eit) for t ≥ 0, and zi ≡〈
zit : Θt−1

i ×Xt−1
i × Eit → Θit

〉∞
t=0

is a sequence of functions such that, for all t ≥ 0 and
(
θt−1
i , xt−1

i

)
∈

13As usual, we may alternatively interpret pit as agent i’s utility from his period-t payment (See, e.g., Garrett and

Pavan (2013) and the discussion below). Furthermore, Theorem 1 below extends as stated to environments where i’s

utility is of the form Ui(θ, x) + Pi(pi0, pi1, . . .) for an arbitrary function Pi : R∞ → R. (A model without transfers

corresponds to the special case where Pi ≡ 0, all i).
14Existence and uniqueness follows by the Tulcea extension theorem (see, e.g., Pollard, 2002, Ch.4, Theorem 49).
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Θt−1
i ×Xt−1

i , if ε̃it is distributed according to Git, then zit
(
θt−1
i , xt−1

i , ε̃it
)

is distributed according to

Fit
(
θt−1
i , xt−1

i

)
. Given any allocation rule χ, we can then think of the process λ[χ] being generated as

follows: Let ε̃ be distributed on Π∞t=1Πn
i=1Eit according to the product measure Π∞t=1Πn

i=1Git. Draw

the period-0 signals θ0 according to the initial distribution Πn
i=1Fi0 independently of ε̃, and construct

types for periods t > 0 recursively by θit = zit(θ
t−1
i , χt−1(θt−1), εit). (Note that we can think of each

agent i observing the shock εit in each period t, yet
(
θti, x

t−1
i

)
remains a sufficient statistic for his

payoff-relevant private information in period t.) It is a standard result on stochastic processes that

such a state representation 〈Ei, Gi, zi〉ni=1 exists for any kernels F .15 For example, if agent i’s sig-

nals follow a linear autoregressive process of order 1, then the zi functions take the familiar form

zit(θ
t−1
i , xt−1, εit) = φiθi,t−1 + εit for some φi ∈ R. The general case can be handled as follows:

Example 1 (Canonical representation) Fix the kernels F . For all i = 1, . . . , n, and t ≥ 1, let

Eit = (0, 1), let Git be the uniform distribution on (0, 1), and define the generalized inverse F−1
it by

setting F−1
it (εit|θt−1

i , xt−1
i ) ≡ inf{θit : Fit(θit|θt−1

i , xt−1
i ) ≥ εit} for all εit ∈ (0, 1) and (θt−1

i , xt−1
i ) ∈

Θt−1
i × Xt−1

i . The random variable F−1
it (ε̃it|θt−1

i , xt−1
i ) is then distributed according to the c.d.f.

Fit(·|θt−1
i , xt−1

i ) so that we can put zit(θ
t−1
i , xt−1

i , εti) = F−1
it (εit|θt−1

i , xt−1
i ).16 We refer to the state

representation so defined as the canonical representation of F . �

Nevertheless, the canonical representation is not always the most convenient as many processes

such as the AR(1) above are naturally defined in terms of other representations, and hence we work

with the general definition.

In what follows, we use the fact that, given a state representation 〈Ei, Gi, zi〉ni=1, for any pe-

riod s ≥ 0, each agent i’s continuation process can be expressed directly in terms of the history

θsi and shocks εit, t ≥ 0, by defining the functions Zi,(s) ≡
〈
Zi,(s),t : Θs

i ×X
t−1
i × E ti → Θit

〉∞
t=0

recursively by Zi,(s),t(θ
s
i , x

t−1
i , εti) = zit(Z

t−1
i,(s)(θ

s
i , x

t−2
i , εt−1

i ), xt−1
i , εit), where Zt−1

i,(s)(θ
s
i , x

t−2
i , εt−1

i ) ≡
(Zi,(s),τ (θsi , x

τ−1
i , ετi ))t−1

τ=0 with Zi,(s),t(θ
s
i , x

t−1
i , εti) ≡ θit for all t ≤ s.

2.1 Regularity Conditions

Similarly to static models with continuous types, our analysis requires that each agent’s expected

utility be sufficiently well-behaved function of his private information. In a dynamic model, an

agent’s expected continuation utility depends on his current type both directly through the utility

function as well as through its impact on the distribution of future types. Hence we impose regularity

conditions on both the utility functions and the kernels.

Condition (U-D) Utility Differentiable: For all i = 1, . . . , n, t ≥ 0, x ∈ X, and θ ∈ Θ,

Ui (θi, θ−i, x) is a differentiable function of θti ∈ Θt
i.

15This observation was first used in a mechanism-design context by Eső and Szentes (2007), who studied a two-period

model of information disclosure in auctions.
16This construction is standard; see the second proof of Kolmogorov extension theorem in Billingsley (1995, p.490).
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With a finite horizon T , this condition simply means that Ui
(
θTi , θ

T
−i, x

T
)

is differentiable in θTi .

Next, define the norm ‖·‖ on R∞ by ‖y‖ ≡
∑∞

t=0 δ
t |yt|, and let Θiδ ≡ {θi ∈ Θ∞i : ‖θi‖ <∞}.17

Condition (U-ELC) Utility Equi-Lipschitz Continuous: For all i = 1, . . . , n, the family

{Ui (·, θ−i, x)}θ−i∈Θ−i,x∈X is equi-Lipschitz continuous on Θiδ. That is, there exists Ai ∈ R such

that
∣∣Ui (θ′i, θ−i, x)− Ui (θi, θ−i, x)

∣∣ ≤ Ai ∥∥θ′i − θi∥∥ for all θi, θ
′
i ∈ Θiδ, θ−i ∈ Θ−i, and x ∈ X.

Conditions U-D and U-ELC are roughly analogous to the differentiability and bounded-derivative

conditions imposed in static models (c.f., Milgrom and Segal, 2002). For example, stationary payoffs

Ui(θ, x) =
∑∞

t=0 δ
tui(θt, xt) satisfy U-D and U-ELC if ui is differentiable and equi-Lipschitz in θit

(e.g., linear payoffs ui(θt, xt) = θitxit are fine provided that xit is bounded).

Condition (F-BE) Process Bounded in Expectation: For all i = 1, . . . , n, t ≥ 0, θt ∈ Θt, and

χ ∈ X , Eλ[χ]|θt
[
||θ̃i||

]
<∞.

Condition F-BE implies that, for any allocation rule χ and any period-t type history θt (t ≥ 0),

the sequence of agent i’s future types has a finite norm with λ [χ] |θt–probability 1. This allows us

to effectively restrict attention to the space Θiδ. With a finite horizon, F-BE simply requires that,

for all t ≥ 0, the expectation of each θ̃iτ , with t < τ ≤ T , exists conditional on any θt.

Condition (F-BIR) Process Bounded Impulse Responses: There exist a state representation

〈Ei, Gi, zi〉ni=1 and functions Ci,(s) : Ei → R∞, i = 1, . . . , n, s ≥ 0, with E[||Ci,(s) (ε̃i) ||] ≤ Bi for some

constant Bi independent of s, such that for all i = 1, . . . , n, t ≥ s, θsi ∈ Θs
i , xi ∈ Xi, and εti ∈ E ti ,

Zi,(s),t(θ
s
i , x

t−1
i , εti) is a differentiable function of θis with

∣∣∂Zi,(s),t(θsi , xt−1
i , εti)/∂θis

∣∣ ≤ Ci,(s),t−s (εi).

Condition F-BIR is essentially the process-analog of Conditions U-D and U-ELC. It guarantees

that small changes in the current type have a small effect on future types. We provide a way to

check F-BIR as well as examples of kernels that satisfy it in later sections (see, e.g., Example 3).

Finally, we impose the following bounds on the agents’ utility functions to ensure that the ex-

pected net present value of the transfers we construct exists when the horizon is infinite:

Condition (U-SPR) Utility Spreadable: For all i = 1, . . . , n, there exists a sequence of functions〈
uit : Θt ×Xt → R

〉∞
t=0

and constants Li and (Mit)
∞
t=0, with Li, ||Mi|| <∞, such that for all (θ, x) ∈

Θ×X and t ≥ 0, Ui(θ, x) =
∑∞

t=0 δ
tuit

(
θt, xt

)
and

∣∣uit (θt, xt)∣∣ ≤ Li|θit|+Mit.

The condition is satisfied, for example, if the functions uit are uniformly bounded, or take the

linear form uit(θ
t, xt) = θitxit with Xit bounded (but Θit possibly unbounded).

For ease of reference, we combine the above conditions into a single definition.

17It is possible to rescale θit and work with the standard l1 norm. However, we use the weighted norm to deal without

rescaling with the standard economic applications with time discounting. Note also that for a finite horizon, the norm

‖·‖ is equivalent to the Euclidean norm, and so the choice is irrelevant. For infinite horizon, increasing δ weakens the

conditions imposed on the utility function while strengthening the conditions imposed on the kernels.
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Definition 1 (Regular environment) The environment is regular if it satisfies conditions U-D,

U-ELC, F-BE, F-BIR, and U-SPR.

3 PBE-Implementability

Following Myerson (1986), we restrict attention to direct mechanisms where, in every period t, each

agent i confidentially reports a type from his type space Θit, no information is disclosed to him beyond

his allocation xit, and the agents report truthfully on the equilibrium path. Such a mechanism induces

a dynamic Bayesian game between the agents, and hence we use perfect Bayesian equilibrium (PBE)

as our solution concept.

Formally, a reporting strategy for agent i is a collection σi ≡
〈
σit : Θt

i ×Θt−1
i ×Xt−1

i → Θit

〉∞
t=0

,

where σit(θ
t
i, θ̂

t−1

i , xt−1
i ) ∈ Θit is agent i’s report in period t when his true type history is θti, his

reported type history is θ̂
t−1

i , and his allocation history is xt−1
i . The strategy σi is on-path truthful

if σit((θ
t−1
i , θit), θ

t−1
i , xt−1

i ) = θit for all t ≥ 1, θit ∈ Θit, θ
t−1
i ∈ Θt−1

i , and xt−1
i ∈ Xt−1

i . Note that

there are no restrictions on the behavior that an on-path truthful strategy may prescribe following

lies.

The specification of a PBE also includes a belief system Γ, which describes each agent i’s beliefs

at each of his information sets (θti, θ̂
t−1

i , xt−1
i ) about the unobserved past moves by Nature (θt−1

−i ) and

by the other agents (θ̂
t−1

−i ). (The agent’s beliefs about the contemporaneous types of agents j 6= i

then follow by applying the kernels.) We restrict these beliefs to satisfy two natural conditions:

B(i) For all i = 1, . . . , n, t ≥ 0, and (θti, θ̂
t−1

i , xt−1
i ) ∈ Θt

i × Θt−1
i × Xt−1

i , agent i’s beliefs are

independent of his true type history θti.

B(ii) For all i = 1, . . . , n, t ≥ 0, and (θti, θ̂
t−1

i , xt−1
i ) ∈ Θt

i × Θt−1
i × Xt−1

i , agent i’s beliefs assign

probability 1 to the other agents having reported truthfully, i.e., to the event that θ̂
t−1

−i = θt−1
−i .

Condition B(i) is similar to condition B(i) in Fudenberg and Tirole (1991, p.331). It is motivated

by the fact that, given agent i’s reports θ̂
t−1

i and observed allocations xt−1
i , the distribution of his

true types θti is independent of the other agents’ types or reports. Condition B(ii) in turn says

that agent i always believes that his opponents have been following their equilibrium strategies.18

Note that under these two conditions, we can describe agent i’s beliefs as a collection of probability

distributions Γit : Θt−1
i ×Xt−1

i → ∆
(
Θt−1
−i
)
, t ≥ 0, where Γit(θ̂

t−1

i , xt−1
i ) represents agent i’s beliefs

over the other agents’ past types θt−1
−i (which he believes to be equal to the reports) given that he

reported θ̂
t−1

i and observed the allocations xt−1
i . We then have the following definitions:

18With continuous types, any particular history for agent i has probability 0, and hence B(ii) cannot be derived from

Bayes’ rule but has to be imposed. Note that even when the kernels do not have full support, they are defined at all

histories, and hence the continuation process is always well defined.
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Definition 2 (On-path truthful PBE; PBIC) An on-path truthful PBE of a direct mecha-

nism 〈χ, ψ〉 is a pair (σ,Γ) consisting of an on-path truthful strategy profile σ and a belief system Γ

such that (i) Γ satisfies conditions B(i) and B(ii) and is consistent with Bayes’ rule on all positive-

probability events given σ, and (ii) for all i = 1, . . . , n, σi maximizes agent i’s expected payoff at

each information set given σ−i and Γ.19 The choice rule 〈χ, ψ〉 is Perfect Bayesian Incentive

Compatible (PBIC) if the corresponding direct mechanism has an on-path truthful PBE.

Since the strategy profile σ is on-path truthful, part (i) in the above definition depends only on

the allocation rule χ, and hence we write Γ(χ) for the set of belief systems satisfying part (i). (Each

element of Γ(χ) is a system of regular conditional probability distributions, the existence of which is

well known; see, for example, Dudley, 2002.) Note that the concept of PBIC implies, in particular,

that truthful reporting is optimal at every truthful history.

3.1 First-Order Necessary Conditions

We start by deriving a necessary condition for PBIC by applying an envelope theorem to an agent’s

problem of choosing an optimal reporting strategy at an arbitrary truthful history.

Fix a choice rule 〈χ, ψ〉 and a belief system Γ ∈ Γ(χ). Suppose agent i plays according to an

on-path truthful strategy, and consider a period-t history of the form ((θt−1
i , θit), θ

t−1
i , χt−1

i (θt−1)),

that is, when agent i has reported truthfully in the past, the complete reporting history is θt−1, and

agent i’s current type is θit. Agent i’s expected payoff is then given by

V
〈χ,ψ〉,Γ
it (θt−1, θit) ≡ Eλi[χ,Γ]|θt−1,θit

[
Ui(χ(θ̃), θ̃) +

∞∑
t=0

δtψit(θ̃)

]
,

where λi[χ,Γ]|θt−1, θit is the stochastic process over Θ from the perspective of agent i. Formally,

λi[χ,Γ]|θt−1, θit is the unique probability measure on Θ obtained by first drawing θt−1
−i according

to agent i’s belief Γit
(
θt−1
i , χt−1

i

(
θt−1

))
, drawing θ−i,t according to

∏
j 6=i Fjt(θ

t−1
j , χt−1

j (θt−1
i , θt−1

−i )),

and then using the allocation rule χ and the kernels F to generate the process from period-t onwards.

Note that in period 0, this measure is only a function of the kernels, and hence we write it as λi[χ]|θi0,

and similarly omit the belief system Γ in V
〈χ,ψ〉
i0 (θi0).

The following is a dynamic version of the envelope condition familiar from static models:

Definition 3 (ICFOC) Fix i = 1, . . . , n and s ≥ 0. The choice rule 〈χ, ψ〉 with belief system

Γ ∈ Γ(χ) satisfies ICFOCi,s if, for all θs−1 ∈ Θs−1, V
〈χ,ψ〉,Γ
is (θs−1, θis) is a Lipschitz continuous

function of θis with the derivative given a.e. by

∂V
〈χ,ψ〉,Γ
is (θs−1, θis)

∂θis
= Eλi[χ,Γ]|θs−1,θis

[ ∞∑
t=s

Ii,(s),t(θ̃
t
i, χ

t−1
i (θ̃))

∂Ui(θ̃, χ(θ̃))

∂θit

]
, (1)

19In particular, the expected allocation utility and the expected net present value of transfers from an on-path

truthful strategy are well-defined and finite conditional on any truthful history.
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where20

Ii,(s),t(θ
t
i, x

t−1
i ) ≡ E

[
∂Zi,(s),t(θ

s
i , x

t−1
i , ε̃ti)

∂θis

∣∣∣∣∣Zti,(s)(θsi , xt−1
i , ε̃ti) = θti

]
. (2)

The choice rule 〈χ, ψ〉 satisfies ICFOC if there exists a belief system Γ ∈ Γ(χ) such that 〈χ, ψ〉 with

belief system Γ satisfies ICFOCi,s for all agents i = 1, . . . , n and all periods s ≥ 0.

Theorem 1 Suppose the environment is regular.21 Then every PBIC choice rule satisfies ICFOC.

By Theorem 1, the formula in (1) is a dynamic generalization of the envelope formula familiar

from static mechanism design (Mirrlees, 1971, Myerson, 1981). By inspection, the period-0 formula

implies a weak form of dynamic payoff (and revenue) equivalence: each agent’s period-0 interim

expected payoff is pinned down by the allocation rule χ up to a constant. (We provide a stronger

payoff-equivalence result in the next section.) Special cases of the envelope formula (1) have been

identified by Baron and Besanko (1984), Besanko (1985), Courty and Li (2000), and Eső and Szentes

(2007), among others. However, it should be noted that the contribution of Theorem 1 is not just

in generalizing the formula, but in providing conditions on the utility functions and type processes

that imply that ICFOC is indeed a necessary condition for all PBIC choice rules.

Heuristically, the proof of Theorem 1 in the Appendix proceeds by applying an envelope-theorem

argument to the normal form of an agent’s problem of choosing an optimal continuation strategy at a

given truthful history. The argument is identical across agents and periods, and hence without loss of

generality we focus on establishing ICFOCi,0 for some agent i by considering his period-0 ex-interim

problem of choosing a reporting strategy conditional on his initial signal θi0. Nevertheless, Theorem

1 is not an immediate corollary of Milgrom and Segal’s (2002) envelope theorem for arbitrary choice

sets. Namely, their result requires that the objective function be differentiable in the parameter (with

an appropriately bounded derivative) for any feasible element of the choice set. Here it would require

that, for any initial report θ̂i0 and any plan ρ ≡
〈
ρt :

∏t
τ=1 Θτ → Θt

〉∞
t=1

for reporting future signals,

agent i’s payoff be differentiable in θi0. But this property need not hold in a regular environment.

This is because a change in the initial signal θi0 changes the distribution of the agent’s future signals,

which in turn changes the distribution of his future reports and allocations through the plan ρ and

the choice rule 〈χ, ψ〉. For some combinations of θ̂0, ρ, and 〈χ, ψ〉, this may lead to an expected

payoff that is non-differentiable or even discontinuous in θi0.22

20The Ii,(s),t functions are conditional expectations and thus defined only up to sets of measure 0.
21Condition U-SPR, which requires utility to be spreadable, is not used in the proof of this theorem.
22For a simple example, consider a two-period environment with one agent and a single indivisible good to be allocated

in the second period as in Courty and Li (2000) (i.e., X0 = {0}, X1 = {0, 1}). Suppose the agent’s payoff is of the

form U(θ, x) = θ1x1, and that θ̃0 is distributed uniformly on (0, 1) with θ̃1 = θ̃0 almost surely. (It is straigthforward

to verify that this environment is regular; e.g., put Z1(θ0, ε1) = θ0 for all (θ0, ε1) to verify F-BIR). Consider the PBIC

choice rule 〈χ, ψ〉 where χ is defined by χ0 = 0, χ1(θ0, θ1) = 1 if θ0 = θ1 ≥ 1
2
, and χ1(θ0, θ1) = 0 otherwise, and where

ψ is defined by setting ψ0 = 0 and ψ1(θ0, θ1) = 1
2
χ1(θ0, θ1). Now, fix an initial report θ̂0 >

1
2

and fix the plan ρ that
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To deal with this complication, we transform the problem into one where the distribution of

agent i’s future information is independent of his initial signal θi0 so that changing θi0 leaves future

reports unaltered.23 This is done by using a state representation to generate the signal process and

by asking the agent to report his initial signal θi0 and his future shocks εit, t ≥ 1. This equivalent

formulation provides an additional simplification in that we may assume that agent i reports the

shocks truthfully.24 The rest of the proof then amounts to showing that if the environment is

regular, then the transformed problem is sufficiently well-behaved to apply arguments similar to

those in Milgrom and Segal (2002).

Remark 1 If the notion of incentive compatibility is weakened from PBIC to the requirement that

on-path truthful strategies are a Bayesian-Nash equilibrium of the direct mechanism, then the above

argument can still be applied in period 0 to establish ICFOCi,0 for all i = 1, . . . , n. Thus the weak

payoff equivalence discussed above holds across all Bayesian-Nash incentive compatible mechanisms.�

We finish this subsection with two examples that suggest an interpretation of the functions defined

by (2) and establish a connection to the literature. To simplify notation, we restrict attention to the

case of a single agent and omit the subscript i.

Example 2 (AR(k) process) Consider the case of a single agent, and suppose that the signal θt

evolves according to an autoregressive (AR) process that is independent of the allocations:

θ̃t =
∞∑
j=1

φj θ̃t−j + ε̃t,

where θ̃t = 0 for all t < 0, φj ∈ R for all j ∈ N, and ε̃t is a random variable distributed according to

some c.d.f. Gt with support Et ⊆ R, with all the ε̃t, t ≥ 0, distributed independently of each other

and of θ̃0. Note that we have defined the process in terms of the state representation 〈E , G, z〉, where

zt(θ
t−1, xt−1, εt) =

∑∞
j=1 φjθt−j + εt. The functions (2) are then time-varying scalars

I(s),s = 1 and I(s),t =
∂Z(s),t

∂θs
=

∑
K∈N, l∈NK+1:
s=l0<···<lK=t

K∏
k=1

φlk−lk−1
for t > s. (3)

reports θ1 truthfully in period 1 (i.e., ρ(θ1) = θ1 for all θ1). The resulting expected payoff is θ̂0 − 1
2
> 0 for θ0 = θ̂0,

whereas it is equal to 0 for all θ0 6= θ̂0. That is, the expected payoff is discontinuous in the true initial type at θ0 = θ̂0.
23In an earlier draft we showed that, when the horizon is finite, the complication can alternatively be dealt with

by using backward induction. Roughly, this solves the problem as it forces the agent to use a sequentially rational

continuation strategy given any initial report, and thus rules out problematic elements of his feasible set.
24By PBIC, truthtful reporting remains optimal in the restricted problem where the agent can only choose θ̂0, and

hence the value function that we are trying to characterize is unaffected. (In terms of the kernel representation, this

amounts to restricting each type θi0 to using strategies where given any initial report θ̂i0 ∈ Θi0, the agent is constrained

to report θ̂it = Zit(θ̂i0, x
t−1
i , εti) in period t.) Note that restricting the agent to report truthfully his future θit would

not work as the resulting restricted problem is not sufficiently well-behaved in general; see footnote 22.
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In the special case of an AR(1) process, as in Besanko (1985), we have φj = 0 for all j > 1, and

hence the formula simplifies to I(s),t = (φ1)t−s. Condition F-BIR requires that there exist B ∈ R

such that
∥∥I(s)

∥∥ ≡ ∞∑
t=0

δt
∣∣I(s),t

∣∣ < B for all s ≥ 0, which in the AR(1) case is satisfied if and only if

δ |φ1| < 1. For Condition F-BE, write

θ̃t = Z(0),t(θ0, ε̃
t) = I(0),tθ0 +

∑t
τ=1 I(0),t−τ ε̃τ for all t ≥ 0, so that

Eλ|θ0

[
||θ̃||

]
≤

∥∥I(0)

∥∥ |θ0|+
∑∞

t=1 δ
t∑t

τ=1

∣∣I(0),t−τ
∣∣E [|ε̃τ |] =

∥∥I(0)

∥∥ (|θ0|+ E [‖ε̃‖]) .

Similarly, we have Eλ|θs
[
||θ̃||

]
≤
∑s−1

m=0

∥∥I(m)

∥∥ |θm| +
∥∥I(s)

∥∥ (|θs|+ δ−sE [‖ε̃‖]
)
. Hence, F-BE is

ensured by assuming, in addition to the bound B needed for F-BIR, that E [‖ε̃‖] <∞, which simply

requires that the mean of the shocks grows slower than the discount rate. (E.g., it is trivially satisfied

if εt are i.i.d. with a finite mean.) �

The constants defined by (3) coincide with the impulse responses of a linear AR process. More

generally, the I(s),t functions in (2) can be interpreted as nonlinear impulse responses. To see this,

apply Theorem 1 to a regular single-agent environment with fixed decisions and no payments (i.e.,

with Xt = {x̂t} and ψt (θ) = 0 for all t ≥ 0 and θ ∈ Θ), in which case optimization is irrelevant, and

we simply have V
〈χ,Ψ〉
s (θs) ≡ Eλ|θs [U(θ̃, x̂)]. Then (1) takes the form

dEλ|θs [U(θ̃, x̂)]

dθs
= Eλ|θ

s

[ ∞∑
t=s

I(s),t(θ̃
t
, x̂)

∂U(θ̃, x̂)

∂θt

]
.

Note that the impulse response functions I(s),t are determined entirely by the stochastic process and

satisfy the above equation for any utility function U satisfying Conditions U-D and U-ELC.25

If for all t ≥ 1, the function zt in the state representation of the type process is differentiable in

θt−1, we can use the chain rule to inductively calculate the impulse responses as

∂Z(s),t(θ
s, xt−1, εt)

∂θs
=

∑
K∈N, l∈NK+1:
s=l0<···<lK=t

K∏
k=1

∂zlk(Z lk−1(θs, xlk−2, εlk−1), xlk−1, εlk)

∂θlk−1

. (4)

The derivative ∂zm/∂θl can be interpreted as the “direct impulse response” of the signal in period m

to the signal in period l < m. The “total” impulse response ∂Z(s),t/∂θs is then obtained by adding

up the products of the direct impulse responses over all possible causation chains from period s to

period t. Applying this observation to the canonical representation yields a simple formula for the

impulse responses and a possible way to verify that the kernels satisfy Condition F-BIR:

Example 3 (Canonical impulse responses) Suppose that, for all t ≥ 1 and xt−1 ∈ Xt−1, the

c.d.f. Ft(θt|θt−1, xt−1) is continuously differentiable in (θt, θ
t−1), and let ft(·|θt−1, xt−1) denote the

25We conjecture that this property uniquely defines the impulse response functions with λ|θs-probability 1.
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density of Ft(·|θt−1, xt−1). Then the direct impulse responses in the canonical representation of

Example 1 take the form, for (θm−1, xm−1, εm) ∈ Θm−1 ×Xm−1 × (0, 1), and m ≥ l ≥ 0,

∂zm(θm−1, xm−1, εm)

∂θl
= −∂Fm(θm|θm−1, xm−1)/∂θl

fm(θm|θm−1, xm−1)

∣∣∣∣
θm=F−1

m (εm|θm−1,xm−1)

,

where we have used the implicit function theorem. Plugging this into equation (4) yields a formula

for the impulse responses directly in terms of the kernels. For example, if the agent’s type evolves

according to a Markov process whose kernels are independent of decisions, the formula simplifies to

I(s),t(θ
t) =

t∏
τ=s

(
−∂Fτ (θτ |θτ−1)/∂θτ−1

fτ (θτ |θτ−1)

)
, (5)

because then the only causation chain passes through all periods. Two-period versions of this formula

appear in Baron and Besanko (1984), Courty and Li (2000), and Eső and Szentes (2007).

As for Condition F-BIR, because the canonical impulse responses are directly in terms of the

kernels F , it is straightforward to back out conditions that guarantee the existence of the bounding

functions C(s) : E → R∞, s ≥ 0. For example, in the case of a Markov process, it is grossly sufficient

that there exists a sequence y ∈ Θδ such that for all t ≥ 0, (θt−1, θt) ∈ Θt−1 ×Θt, and xt−1 ∈ Xt−1,

we have
∣∣∣∂Ft(θt|θt−1,xt−1)/∂θt−1

ft(θt|θt−1,xt−1)

∣∣∣ ≤ yt. The general case can be handled similarly. �

Remark 2 Baron and Besanko (1984) suggested interpreting I(0),1(θ0, θ1) = −∂F1(θ1|θ0)/∂θ0

f1(θ1|θ0) as a

measure of “informativeness” of θ0 about θ1. We find the term “impulse response” preferable. First,

for linear processes, it matches the usage in the time-series literature. Second, it is more precise. For

example, in the two-period case, if θ̃1 = θ̃0 + ε̃1 with ε̃1 normally distributed with mean zero, then

the impulse response is identical to 1 regardless of the variance of ε̃1. On the other hand, θ0 is more

informative about θ1 (in the sense of Blackwell) the smaller the variance of ε̃1. �

3.2 Payment Construction and Equivalence

Similarly to static settings, for any allocation rule (and belief system), it is possible to use the

envelope formula to construct transfers that satisfy first-order conditions at all truthful histories:

Fix an allocation rule χ and a belief system Γ ∈ Γ(χ). For all i = 1, . . . , n, s ≥ 0, and θ ∈ Θ, let

Dχ,Γ
is

(
θs−1, θis

)
≡ Eλi[χ,Γ]|θs−1,θis

[ ∞∑
t=s

Ii,(s),t(θ̃
t
i, χ

t−1
i (θ̃))

∂Ui(θ̃, χ(θ̃))

∂θit

]
, (6)

and Qχ,Γis

(
θs−1, θis

)
≡

∫ θis

θ′is

Dχ,Γ
is

(
θs−1, q

)
dq,

where θ′i ∈ Θiδ is some arbitrary fixed type sequence. Define the transfer rule ψ by setting, for all

i = 1, . . . , n, t ≥ 0, and θt ∈ Θt,

ψit
(
θt
)

= δ−tQχ,Γit (θt−1, θit)− δ−tEλi[χ,Γ]|θt−1,θit
[
Qχ,Γi,t+1(θ̃

t
, θ̃i,t+1)

]
− Eλi[χ,Γ]|θt−1,θit

[
uit(θ̃

t
, χt(θ̃

t
))
]
.

(7)
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Recall that by Theorem 1, if 〈χ, ψ〉 is PBIC, then agent i’s expected equilibrium payoff in period s

satisfies ∂V
〈χ,ψ〉,Γ
is (θs−1, θis)/∂θis = Dχ,Γ

is

(
θs−1, θis

)
. Hence the transfer in (7) can be interpreted as

agent i’s information rent (over type θ′i) as perceived in period t, net of the rent he expects from the

next period, and net of the expected flow utility. We show below that these transfers satisfy ICFOC.

In order to address their uniqueness, we introduce the following condition.

Definition 4 (No leakage) The allocation rule χ leaks no information to agent i if for all

t ≥ 0, and θt−1
i , θ̂

t−1

i ∈ Θt−1
i , the distribution Fit(θ

t−1
i , χt−1

i (θ̂
t−1

i , θt−1
−i )) does not depend on θt−1

−i

(and hence can be written as F̂it(θ
t−1
i , θ̂

t−1

i )).

This condition means that observing θit never gives agent i any information about the other

agents’ types. Clearly, all allocation rules satisfy it when agent i’s type evolves autonomously from

allocations, or (trivially) in a single-agent setting. We then have our second main result:26

Theorem 2 Suppose the environment is regular. Then the following statements are true:

(i) Given an allocation rule χ and a belief system Γ ∈ Γ(χ), let ψ be the transfer rule defined by

(7). Then the choice rule 〈χ, ψ〉 satisfies ICFOC, and for all i = 1, . . . , n, s ≥ 0, θs−1 ∈ Θs−1, and

θis ∈ Θis, Eλi[χ,Γ]|θs−1,θis
[
||ψi(θ̃)||

]
<∞.

(ii) Let χ be an allocation rule that leaks no information to agent i, and let ψ and ψ̄ be transfer

rules such that the choice rules 〈χ, ψ〉 and
〈
χ, ψ̄

〉
are PBIC. Then there exists a constant Ki such

that for λ [χ]-almost every θi,

Eλi[χ]|θi

[ ∞∑
t=0

δtψit(θi, θ̃−i)

]
= Eλi[χ]|θi

[ ∞∑
t=0

δtψ̄it(θi, θ̃−i)

]
+Ki.

Remark 3 The flow payments ψit
(
θt
)

defined by (7) are measurable with respect to
(
θti, χ

t
i

(
θt
))

.

Thus, they do not reveal to agent i any information beyond that contained in the allocations xi.

Hence they can be disclosed to the agent without affecting his beliefs or incentives. �

As noted after Theorem 1, ICFOCi,0 immediately pins down, up to a constant, the expected

net present value of payments Eλi[χ]|θi0
[∑∞

t=0 δ
tψit(θ̃)

]
for each initial type θi0 of each agent i in

any PBIC mechanism implementing the allocation rule χ. This extends the celebrated revenue

equivalence theorem of Myerson (1981) to dynamic environments. Part (ii) of Theorem 2 strengthens

the result further to a form of ex-post equivalence. The result is particularly sharp when there is just

one agent. Then the no-leakage condition is vacuously satisfied, and the net present value of transfers

that implement a given allocation rule χ is pinned down up to a single constant with probability 1 (that

26The notation λi [χ] |θi in the proposition denotes the unique measure over the other agents’ types Θ−i that is

obtained from the kernels F and the allocation χ by fixing agent i’s reports at θ̂i = θi.
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is, if 〈χ, ψ〉 and
〈
χ, ψ̄

〉
are PBIC, then there exists K ∈ R such that

∑∞
t=0 δ

tψt(θ) =
∑∞

t=0 δ
tψ̄t(θ)+K

for λ [χ]-almost every θ).

The ex-post equivalence of payments is useful for solving mechanism design problems in which

the principal cares not just about the expected net present value of payments, but also about how

the payments vary with the state θ or over time. For example, this includes settings where ψt (θ) is

interpreted as the “utility payment” to the agent in period t, whose monetary cost to the principal

is γ (ψt (θ)) for some function γ, as in models with a risk-averse agent. In such models, knowing

the net present value of the “utility payments” required to implement a given allocation rule allows

computing the cost-minimizing distribution of monetary payments over time (see, for example, Farhi

and Werning (2013), or Garrett and Pavan (2013)).

3.3 A Characterization for Markov Environments

In order to provide necessary and sufficient conditions for PBE-implementability, we focus on Markov

environments, defined formally as follows:

Definition 5 (Markov environment) The environment is Markov if, for all i = 1, . . . , n, the

following conditions hold:

(i) Agent i’s utility function Ui takes the form Ui(θ, x) =
∑∞

t=0 δ
tuit

(
θt, x

t
)
.

(ii) For all t ≥ 1 and xt−1
i ∈ Xt−1

i , the distribution Fit
(
θt−1
i , xt−1

i

)
depends on θt−1

i only through

θi,t−1 (and is hence denoted by Fit
(
θit−1, x

t−1
i

)
), and there exist constants φi and (Eit)

∞
t=0, with

δφi < 1 and ‖Ei‖ <∞, such that for all
(
θit, x

t
i

)
∈ Θit×Xt

i , E
Fi,t+1(θit,xti)

[
|θ̃t+1|

]
≤ φi |θit|+Ei,t+1.

This definition implies that each agent i’s type process is a Markov decision process, and that

his vNM preferences over future lotteries depend on his type history θti only through θit (but can

depend on past decisions xt−1). The strengthening of Condition F-BE embedded in part (ii) of the

definition allows us to establish an appropriate version of the one-stage-deviation principle for the

model. Note that every Markov process satisfies the bounds if the sets Θit are bounded.

The key simplification afforded by the Markov assumption is that in a Markov environment, an

agent’s reporting incentives in any period t depend only on his current true type and his past reports,

but not on his past true types. In particular, if it is optimal for the agent to report truthfully when

past reports have been truthful (as in an on-path truthful PBE), then it is also optimal for him to

report truthfully even if he has lied in the past. This implies that we can restrict attention to PBE

in strongly truthful strategies, that is, in strategies that report truthfully at all histories.

We say that the allocation rule χ ∈ X is PBE-implementable if there exists a transfer rule ψ

such that the direct mechanism 〈χ, ψ〉 has an on-path truthful PBE (i.e., it is PBIC). Respectively,

we say that χ is strongly PBE-implementable if there exists a transfer rule ψ such that the direct

mechanism 〈χ, ψ〉 has a strongly truthful PBE. Given an allocation rule χ, for all i = 1, . . . , n, t ≥ 0,
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and θ̂it ∈ Θit, we let χ◦θ̂it denote the allocation rule obtained from χ by replacing θit with θ̂it (that is,

(χ◦ θ̂it)(θ) = χ(θ̂it, θi,−t, θ−i) for all θ ∈ Θ). Finally, we recall the definition of the D functions in (6),

and recall from Theorem 1 that Dχ,Γ
it (θt−1, θit) equals the derivative of agent i’s expected equilibrium

payoff with respect to his current type at any truthful period-t history (θti, θ
t−1
i , χt−1

i (θt−1)) in a PBIC

choice rule with allocation rule χ and belief system Γ. We then have our third main result:

Theorem 3 Suppose the environment is regular and Markov. An allocation rule χ ∈ X is PBE-

implementable if and only if, there exists a belief system Γ ∈ Γ(χ) such that for all i = 1, . . . , n,

t ≥ 0, θit, θ̂it ∈ Θit, and θt−1 ∈ Θt−1, the following integral monotonicity condition holds:∫ θit

θ̂it

[
Dχ,Γ
it (θt−1, r)−Dχ◦θ̂it,Γ

it (θt−1, r)
]
dr ≥ 0. (8)

When this is the case, χ is strongly PBE-implementable with payments given by (7).

The static version of Theorem 3 has appeared in the literature on implementability (see Rochet

(1987) or Carbajal and Ely (2013) and the references therein). The basic idea in our proof of the

dynamic version is to show that, in every period t, each agent i’s problem of reporting a current type

is sufficiently well-behaved to allow applying the following simple lemma:

Lemma 1 Consider a function Φ : (θ, θ)2 → R. Suppose that (a) for all θ̂ ∈ (θ, θ), Φ(θ, θ̂) is a

Lipschitz continuous function of θ, and (b) Φ̄(θ) ≡ Φ(θ, θ) is a Lipschitz continuous function of θ.

Then Φ̄(θ) ≥ Φ(θ, θ̂) for all (θ, θ̂) ∈ (θ, θ)2 if and only if, for all (θ, θ̂) ∈ (θ, θ)2,∫ θ

θ̂

[
Φ̄′ (q)− ∂Φ(q, θ̂)

∂θ

]
dq ≥ 0. (9)

Proof. For all θ, θ̂ ∈ (θ, θ), let g(θ, θ̂) ≡ Φ̄(θ) − Φ(θ, θ̂). For any fixed θ̂ ∈ (θ, θ), g(θ, θ̂) is

Lipschitz continuous in θ by (a) and (b). Hence, it is absolutely continuous, and

g(θ, θ̂) =

∫ θ

θ̂

∂g(q, θ̂)

∂θ
dq =

∫ θ

θ̂

[
Φ̄′ (q)− ∂Φ(q, θ̂)

∂θ

]
dq.

Therefore, for all θ ∈ (θ, θ), Φ(θ, θ̂) is maximized by setting θ̂ = θ if and only if (9) holds.

In the special case of a static model, the necessity of the integral monotonicity condition (8)

readily follows from Theorem 1 and Lemma 1: There, for any fixed message θ̂i, agent i’s expected

payoff can simply be assumed (equi-)Lipschitz continuous and differentiable in the true type θi. By

Theorem 1, this implies Lipschitz continuity of his equilibrium payoff in θi so that necessity of integral

monotonicity follows by Lemma 1.

In contrast, in the dynamic model, fixing agent i’s period-t message θ̂it, the Lipschitz continuity

of his expected payoff in the current type θit (or the formula for its derivative) cannot be assumed

but must be derived from the agent’s future optimizing behavior (see the counterexample in footnote
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22). In particular, we show that in a Markov environment, the fact that the choice rule 〈χ, ψ〉
implementing χ satisfies ICFOC (by Theorem 1) implies that the agent’s expected payoff under a

one-step deviation from truthtelling satisfies a condition analogous to ICFOC with respect to the

modified choice rule
〈
χ ◦ θ̂it, ψ ◦ θ̂it

〉
induced by the lie. This step is non-trivial and uses the fact

that, in a Markov environment, truthtelling is an optimal continuation strategy following the lie.

Since the agent’s expected equilibrium payoff at any truthful history is Lipschitz continuous in the

current type by Theorem 1, the necessity of integral monotonicity then follows by Lemma 1.

The other key difference pertains to the sufficiency part of the result: In a static environment, the

payments constructed using the envelope formula ICFOC guarantee that the agent’s payoff under

truthtelling is Lipschitz continuous and satisfies ICFOC by construction. Incentive compatibility

then follows from integral monotonicity by Lemma 1. In contrast, in the dynamic model, the pay-

ments defined by (7) guarantee only that ICFOC is satisfied at truthful histories (by Theorem 2(i)).

However, in a Markov environment it is irrelevant for the agent’s continuation payoff whether he has

been truthful in the past or not, and hence ICFOC extends to all histories. Thus, by Lemma 1, inte-

gral monotonicity implies that one-stage deviations from truthtelling are unprofitable. Establishing

a one-stage-deviation principle for the environment then concludes the proof.27

Remark 4 Theorem 3 can be extended to characterize strong PBE-implementability in non-Markov

environments. However, for such environments, the restriction to strongly truthful PBE is in general

with loss. In the supplementary material, we show that this approach nevertheless allows us to verify

the implementability of the optimal allocation rule in some specific non-Markov environments. �

3.3.1 Verifying Integral Monotonicity

The integral monotonicity condition (8) is in general not an easy object to work with. This is true even

in static models, except for the special class of environments where both the type and the allocation

are unidimensional and the agent’s payoff is supermodular, in which case integral monotonicity is

equivalent to the monotonicity of the allocation rule. Our dynamic problem essentially never falls

into this class: Even if the agent’s current type is unidimensional, his report will in general affect the

allocation both in the current period as well as in all future periods, which renders the allocation

space multidimensional. For this reason, we provide monotonicity conditions which are stronger

than integral monotonicity but easier to verify.28 Some of these sufficient conditions apply only to

environments satisfying additional restrictions:

27The usual version of the one-stage-deviation principle (for example, Fudenberg and Tirole, 1991, p.110) is not

applicable since payoffs are a priori not continuous at infinity because flow payments need not be bounded.
28For similar sufficient conditions for static models with a unidimensional type and multidimensional allocation space,

see, for example, Matthews and Moore (1987), whose condition is analogous to our strong monotonicity, and Garcia

(2005), whose condition is analogous to our ex-post monotonicity.
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Condition (F-AUT) Process Autonomous: For all i = 1, . . . , n, t ≥ 1, and θt−1
i ∈ Θt−1

i , the

distribution Fit
(
θt−1
i , xt−1

i

)
does not depend on xt−1

i .

Condition (F-FOSD) Process First-Order Stochastic Dominance: For all i = 1, . . . , n, t ≥
1, θit ∈ Θit, and xt−1

i ∈ Xt−1
i , Fit

(
θit|θt−1

i , xt−1
i

)
is nonincreasing in θt−1

i .

Corollary 1 (Monotonicities) Suppose the environment is regular and Markov. Then the integral

monotonicity condition (8) of Theorem 3 is implied by any of the following conditions (listed in

decreasing order of generality):

(i) Single-crossing: For all i = 1, . . . , n, t ≥ 0, θt−1 ∈ Θt−1, θ̂it ∈ Θit, and a.e. θit ∈ Θit,[
Dχ,Γ
it (θt−1, θit)−Dχ◦θ̂it,Γ

it (θt−1, θit)
]
·
(
θit − θ̂it

)
≥ 0.

(ii) Average monotonicity: For all i = 1, . . . , n, t ≥ 0, and (θt−1, θit) ∈ Θt−1×Θit, D
χ◦θ̂it,Γ
it (θt−1, θit)

is nondecreasing in θ̂it.

(iii) Ex-post monotonicity: Condition F-AUT holds, and for all i = 1, . . . , n, t ≥ 0, and θ ∈ Θ,

∞∑
τ=t

Ii,(t),τ (θτi )
∂Ui

(
θ, χ(θ̂it, θi,−t, θ−i)

)
∂θiτ

(10)

is nondecreasing in θ̂it.

(iv) Strong monotonicity: Conditions F-AUT and F-FOSD hold, and for all i = 1, . . . , n, t ≥ 0,

and θ−i ∈ Θ−i, Xit ⊆ Rm, Ui (θ, x) has increasing differences in (θi, xi) and is independent of

x−i, and χi (θ) is nondecreasing in θi.

To see the relationship between the conditions, observe that the most stringent of the four,

strong monotonicity, amounts to the requirement that each individual term in the sum in (10)

be nondecreasing in θ̂it (note that, under F-FOSD, Ii,(t),τ ≥ 0). Ex-post monotonicity weakens

this by requiring only that the sum be nondecreasing, which permits us to dispense with F-FOSD

as well as with the assumption that Ui has increasing differences. By recalling the definition of

the D functions in (6), we see that average monotonicity in turn weakens ex-post monotonicity

by averaging over states, which also permits us to dispense with F-AUT. Finally, single-crossing

relaxes average monotonicity by requiring that the expectation of the sum in (10) changes sign only

once at θ̂it = θit, as opposed to being monotone in θ̂it. But single-crossing clearly implies integral

monotonicity, proving the corollary. The following example illustrates:
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Example 4 Consider a regular Markov environment with one agent whose allocation utility takes

the form U(θ, x) =
∑∞

t=0 δ
tθtxt, where for all t ≥ 0, the period-t consumption xt is an element of

some unidimensional set Xt ⊆ R. Suppose that conditions F-AUT and F-FOSD hold. By (6),

Dχ◦θ̂t
t

(
θt−1, θt

)
= Eλ|θ

t−1,θt

[ ∞∑
τ=t

δτI(t),τ (θ̃
τ
)χτ (θ̂t, θ̃−t)

]
.

Thus, average monotonicity requires that increasing the current message θ̂t increases the agent’s

average discounted consumption, where period-τ consumption is discounted using the discount factor

δ as well as the impulse response I(t),τ (θ̃
τ
) of period-τ signal to period-t signal. Ex-post monotonicity

requires that the discounted consumption
∑∞

t=τ δ
τI(t),τ (θτ )χt(θ̂t, θ−t) be increasing in θ̂t along every

path θ. And strong monotonicity requires that increasing θ̂t increases consumption χτ (θ̂t, θ−t) in

every period τ ≥ t irrespective of the agent’s signals in the other periods. �

Courty and Li (2000) studied a two-period version of Example 4 with allocation x1 ∈ X1 = [0, 1]

only in the second period (i.e., Xt = {0} for all t 6= 1), and provided sufficient conditions for

implementability in two cases. The first (their Lemma 3.3) assumes F-FOSD and corresponds to

our strong monotonicity. This case was extended to many agents by Eső and Szentes (2007).29 The

second case assumes that varying the initial signal θ0 induces a mean-preserving spread by rotating

F1(·|θ0) about a single point z. Courty and Li showed (as their Lemma 3.4) that it is then possible

to implement any χ1 that is non-increasing in θ0, non-decreasing in θ1, and satisfies “no under

production:” χ1(θ0, θ1) = 1 for all θ1 ≥ z.30 This case is covered by our ex-post monotonicity, which

in period 0 requires that I(0),1 (θ0, θ1)χ1(θ̂0, θ1) be non-decreasing in θ̂0. To see this, note that by

the canonical impulse response formula (5), we have I(0),1 (θ0, θ1) ≤ 0 (resp., ≥ 0) if θ1 ≤ z (resp.,

≥ z). Thus I(0),1 (θ0, θ1)χ1(θ̂0, θ1) is weakly increasing in θ̂0 if θ1 ≤ z, because χ1 is non-increasing

in θ0, whereas it is constant in θ̂0 if θ1 ≥ z, because χ1 satisfies no under production.

The main application of Corollary 1 is in the design of optimal dynamic mechanisms, which we

turn to in the next section. There, a candidate allocation rule is obtained by solving a suitable relaxed

problem, and then Corollary 1 is used to verify that the allocation rule is indeed implementable. The

results in the literature are typically based on strong monotonicity (for example, Battaglini, 2005,

or Eső and Szentes, 2007) with the exception of the mean-preserving-spread case of Courty and Li

(2000) discussed above. However, there are interesting applications where the optimal allocation

rule fails to be strongly monotone, or where the kernels naturally depend on past decisions or fail

first-order stochastic dominance. For instance, the optimal allocation rule in Example 5 below fails

29Eső and Szentes derived the result in terms of a state representation. Translated to the primitive types θi0 and θi1

(or vi and Vi in their notation), their Corollary 1 shows that the allocation rule they are interested in implementing is

strongly monotone. Note that Eső and Szentes’s display (22) is a special case of our integral monotonicity condition,

but stated in terms of a state representation. However, they used it only in conjuction with strong monotonicity.
30Courty and Li also considered the analogous case of “no over production,” to which similar comments apply.
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strong monotonicity but satisfies ex-post monotonicity, whereas the optimal allocation rule in the

bandit auctions of Section 5 fails ex-post monotonicity but satisfies average monotonicity.

Remark 5 Suppose the environment is regular and Markov. Then for any allocation rule χ that sat-

isfies ex-post monotonicity, there exists a transfer rule ψ such that the complete information version

of the model (where agents observe each others’ types) has a subgame perfect Nash equilibrium in

strongly truthful strategies. In other words, ex-post monotone allocation rules can be implemented in

a periodic ex-post equilibrium in the sense of Athey and Segal (2013) and Bergemann and Välimäki

(2010). This implies that any such rule can be implemented in a strongly truthful PBE of a direct

mechanism where all reports, allocations, and payments are public. The transfers that guarantee

this can be constructed as in (7) with the measures λi [Γ] |θt−1, θit replaced by the measure λ|θt. �

4 Optimal Mechanisms

We now show how Theorems 1–3 can be used in the design of optimal dynamic mechanisms in Markov

environments.31 To this end, we introduce a principal (labeled as “agent 0”) whose payoff takes the

quasilinear form U0(θ, x)−
∑n

i=1

∑∞
t=0 δ

tpit for some function U0 : Θ×X → R. The principal seeks

to design a PBIC mechanism to maximize his expected payoff. As is standard in the literature, we

assume that the principal makes a take-it-or-leave-it offer to the agents in period zero, after each

agent i has observed his initial type θi0. Each agent can either accept the mechanism, or reject it

to obtain his reservation payoff, which we normalize to 0 for all agents and types.32 The principal’s

mechanism design problem is thus to maximize his ex-ante expected payoff

Eλ[χ]

[
U0(θ̃, χ(θ̃))−

n∑
i=1

∞∑
t=0

δtψit(θ̃)

]
= Eλ[χ]

[
n∑
i=0

Ui(θ̃, χ(θ̃))−
n∑
i=1

V
〈χ,ψ〉
i0

(
θ̃i0

)]

by choosing a feasible choice rule 〈χ, ψ〉 that is PBIC and satisfies

V
〈χ,ψ〉
i0 (θi0) ≥ 0 for all i = 1, . . . , n and θi0 ∈ Θi0. (11)

Any solution to this problem is referred to as an optimal mechanism.

31For other possible applications, see, for example, Skrzypacz and Toikka (2013) who consider the feasibility of

efficient dynamic contracting in repeated trade and in other dynamic collective choice problems.
32If an agent can accept the mechanism, but can then quit at a later stage, participation constraints have to be

introduced in all periods t ≥ 0. However, in our quasilinear environment with unlimited transfers, the principal can

ask the agent to post a sufficiently large bond upon acceptance, to be repaid later, so as to make it unprofitable to

quit and forfeit the bond at any time during the mechanism. (With an infinite horizon, annuities can be used in place

of bonds.) For this reason, we ignore participation constraints in periods t > 0. Note that in non-quasilinear settings

where agents have a consumption-smoothing motive, bonding is costly, and hence participation constraints may bind

in many periods (see, for example, Hendel and Lizzeri, 2003).
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We restrict attention to regular environments throughout this section, and assume that the initial

distribution Fi0 of each agent i is absolutely continuous with density fi0(θi0) > 0 for almost every

θi0 ∈ Θi0, and, for simplicity, that the set of initial types Θi0 is bounded from below (i.e., θi0 > −∞).

Hence we can use ICFOCi,0 (by Theorem 1) as in static settings to rewrite the principal’s payoff as

Eλ[χ]

[
n∑
i=0

Ui(θ̃, χ(θ̃))−
n∑
i=1

1

ηi0(θ̃i0)

∞∑
t=0

Ii,(0),t(θ̃
t
i, χ

t−1
i (θ̃))

∂Ui(θ̃, χ(θ̃))

∂θit

]
−

n∑
i=1

V
〈χ,ψ〉
i0 (θi0),

where ηi0(θi0) ≡ fi0(θi1)/(1−Fi0(θi1)) is the hazard rate of agent i’s period-0 type.33 The first term

above is the expected (dynamic) virtual surplus, which is only a function of the allocation rule χ.

The principal’s problem is in general analytically intractable. Hence we adopt the “first-order

approach” typically followed in the literature. In particular, we consider a relaxed problem where

PBIC is relaxed to the requirement that 〈χ, ψ〉 satisfy ICFOCi,0 for all i, and where a participation

constraint is imposed only on each agent’s lowest initial type, that is, (11) is replaced with

V
〈χ,ψ〉
i0 (θi0) ≥ 0 for all i = 1, . . . , n. (12)

Since subtracting a constant from agent i’s period-0 transfer leaves ICFOCi,0 unaffected but increases

the principal’s payoff, the constraints (12) must bind at a solution. It follows that an allocation rule

χ∗ is part of a solution to our relaxed problem if, and only if, χ∗ maximizes

Eλ[χ]

[
n∑
i=0

Ui(θ̃, χ(θ̃))−
n∑
i=1

1

ηi0(θ̃i0)

∞∑
t=0

Ii,(0),t(θ̃
t
i, χ

t−1
i (θ̃))

∂Ui(θ̃, χ(θ̃))

∂θit

]
. (13)

This problem is in general a dynamic programming problem, and, in contrast to static settings,

it cannot be solved pointwise in general. Note that as the definition of the relaxed problem uses

ICFOCi,0, Theorem 1 plays a key role in identifying the candidate allocation rule χ∗.

If the environment is Markov, then Theorem 3 can be used to verify whether the candidate

allocation rule χ∗ is PBE-implementable (possibly by checking one of the conditions in Corollary 1).

In case the answer is affirmative, Theorem 2 provides a formula for constructing a transfer rule ψ

such that 〈χ∗, ψ〉 is PBIC. We can then subtract the constant V
〈χ∗,ψ〉
i0 (θi0) from each agent i’s initial

transfer to get a PBIC choice rule 〈χ∗, ψ∗〉 such that V
〈χ∗,ψ∗〉
i0 (θi0) = 0 for all i = 1, . . . , n. Thus

it remains to verify that all the other participation constraints in (11) are satisfied. As part of the

next result, we show that F-FOSD is a sufficient condition for this provided that each agent’s utility

is increasing in his own type sequence (endowed with the pointwise order).

33Recall that the proof of Theorem 1 uses only deviations in which, in terms of a state representation, each agent i

reports truthfully future shocks εit, t > 0. Hence, as noted by Eső and Szentes (2007, 2013), this expression gives the

principal’s payoff also in a hypothetical environment where the shocks are observable to the principal. (This observation

underlies the “irrelevance result” of Eső and Szentes, 2013.) However, the set of PBIC choice rules is strictly larger

when the shocks are observable, so the principal’s problems in the two settings are not equivalent in general.
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Corollary 2 (Optimal mechanisms) Suppose the environment is regular and Markov. Suppose

in addition that Condition F-FOSD holds and, for all i = 1, . . . , n and (θ, x) ∈ Θ × X, Ui (θ, x) is

nondecreasing in θi. Let χ∗ be an allocation rule that maximizes the expected virtual surplus (13),

and suppose that, with some belief system Γ ∈ Γ(χ∗), it satisfies the integral monotonicity condition

(8) in all periods. Then the following statements hold:

(i) There exists a transfer rule ψ∗ such that (a) the direct mechanism 〈χ, ψ∗〉 has a strongly

truthful PBE with belief system Γ and where, for all i = 1, . . . , n, the flow payments ψ∗it, t ≥ 0,

can be disclosed to agent i; (b) the period-0 participation constraints (11) are satisfied; and (c) the

period-0 participation constraints of the lowest initial types (12) hold with equality.

(ii) The above choice rule 〈χ∗, ψ∗〉 maximizes the principal’s expected payoff across all PBIC

choice rules that satisfy participation constraints (11).

(iii) If 〈χ, ψ〉 is optimal for the principal among all PBIC choice rules that satisfy participation

constraints (11), then χ maximizes the expected virtual surplus (13).

(iv) The principal’s expected payoff cannot be increased by using randomized mechanisms.

Remark 6 The statements (ii)-(iv) remain true if PBIC is weakened to the requirement that there

exists a Bayesian-Nash equilibrium in on-path truthful strategies. This is because the derivation of

the expected virtual surplus (13) uses only ICFOCi,0, which by Remark 1 holds under this weaker

notion of incentive compatibility. �

Proof. Parts (i)(a) and (i)(c) follow by the arguments preceding the corollary. For (i)(b),

note that under F-FOSD, impulse responses are non-negative almost everywhere, and hence each

V
〈χ∗,ψ∗〉
i0 (θi0) is nondecreasing in θi0 by the envelope formula (1) given that Ui is nondecreasing in θi.

Parts (ii) and (iii) follow by the arguments preceding the corollary.

Finally, for part (iv) note that a randomized mechanism is equivalent to a mechanism that

conditions on the random types of a fictitious agent. Since the expected virtual surplus in this

augmented setting is independent of the signals of the fictitious agent and still takes the form (13),

it is still maximized by the non-randomized allocation rule χ∗. Thus, applying parts (i) and (ii) to

the augmented setting implies that the deterministic choice rule 〈χ∗, ψ∗〉 maximizes the principal’s

expected payoff. (A similar point was made by Strausz (2006) for static mechanisms.)

Note that F-FOSD and the assumption that the agents’ utilities be nondecreasing in own type

are only used to establish that each agent i’s equilibrium payoff V
〈χ∗,ψ∗〉
i0 (θi0) is minimized at θi0. If

this conclusion can be arrived at by some other means (for example, by using (1) to solve for the

function V
〈χ∗,ψ∗〉
i0 ), these assumptions can be dispensed with.

Corollary 2 provides a guess-and-verify approach analogous to that typically followed in static

settings. We illustrate its usefulness below by using it to discuss optimal distortions in dynamic

contracts, and to find optimal “bandit auctions.” Similarly to static settings, however, the conditions
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under which the relaxed problem has an implementable solution are by no means generic. As pointed

out by Battaglini and Lamba (2012), a particularly problematic case obtains when the type of an

agent remains constant with high probability, but nevertheless has a small probability of being

renewed. In terms of our analysis, the problem is that then the impulse response becomes highly

non-monotone in the current type, which in turn may result in the allocation being so non-monotone

in the current type that integral monotonicity is violated.34

It is, of course, possible to reverse-engineer conditions that guarantee that the relaxed problem

has an implementable solution, but given the complexity of the problem, such conditions tend to be

grossly sufficient. Nevertheless, for completeness we provide sufficient conditions for an allocation

rule that maximizes expected virtual surplus to satisfy strong monotonicity of Corollary 1.

Condition (U-COMP) Utility Complementarity: X is a lattice,35 and for all i = 0, . . . , n,

t ≥ 0 and θ ∈ Θ, Ui (θ, x) is supermodular in x, and −∂Ui (θ, x) /∂θit is supermodular in x.

This condition holds weakly in the special case where Xt is a subset of R in every period t,

and the payoffs Ui (θ, x) are additively separable in xt. More generally, U-COMP allows for strict

complementarity across time, e.g., as in habit-formation models where higher consumption today

increases the marginal utility of consumption tomorrow. On the other hand, U-COMP is not satisfied

when allocating private goods in limited supply as in auctions.

Condition (U-DSEP) Utility Decision-Separable: X =
∏∞
t=0Xt and, for all i = 0, . . . , n, and

(θ, x) ∈ Θ×X, Ui (θ, x) =
∑∞

t=0 δ
tuit

(
θt, xt

)
.

Proposition 1 (Primitive conditions for strong monotonicity) Suppose the environment is

regular and Markov, Conditions F-AUT and F-FOSD hold, and for all i = 0, . . . , n, and t ≥ 0,

Xit is a subset of an Euclidean space. Suppose that either of the following conditions is satisfied:

(i) Condition U-COMP holds, and for all i = 1, . . . , n, agent i’s virtual utility

Ui(θ, x)− 1

ηi0(θi0)

∞∑
t=0

δtIi,(0),t(θ
t
i)
∂ui

(
θt, x

t
)

∂θit

has increasing differences in (θ, x), and the same is true of the principal’s utility U0(θ, x).

(ii) Condition U-DSEP holds, and for all i = 1, . . . , n, and t ≥ 0, Xit ⊆ R and there exists a

34For a concrete example, consider a single-agent environment with θ̃0 distributed uniformly on [0, 1]. Suppose that

θ̃1 = θ̃0 with probability q, and that with the complementary probability θ̃1 is drawn uniformly from [0, 1] independently

of θ̃0. The period-0 impulse response is then I(0),1(θ0, θ1) = 1{θ0=θ1}. By inspection of the expected virtual surplus

(13), the period-1 allocation is thus distorted only if θ1 = θ0.
35The assumption that X is a lattice is not innocuous when n > 1: For example, it holds when each xt describes the

provision of a one-dimensional public good, but it need not hold if xt describes the allocation of a private good.
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nondecreasing function ϕit : Θt
i → Rm, with m ≤ t, such that agent i’s virtual flow utility

uit (θt, xt)−
1

ηi0(θi0)
Ii,(0),t(θ

t
i)
∂uit (θt, xt)

∂θit

depends only on ϕit
(
θti
)

and xit, and has strictly increasing differences in (ϕit
(
θti
)
, xit), while the

principal’s flow utility depends only on xt.

Then, if the problem of maximizing expected virtual surplus (13) has a solution, it has a solution

χ such that, for all i = 1, . . . , n and θ−i ∈ Θ−i, χi (θi, θ−i) is nondecreasing in θi.

When F-AUT and U-DSEP hold (i.e., types evolve independently of decisions and payoffs are

separable in decisions), expected virtual surplus (13) can be maximized pointwise, which explains why

condition (ii) of Proposition 1 only involves flow payoffs. Special cases of this result appear in Courty

and Li (2000), who provided sufficient conditions for strong monotonicity by means of parametric

examples, and in Eső and Szentes (2007), whose Assumptions 1 and 2 imply that Ii,(0),1(θi0, θi1) is

nonincreasing in both θi0 and θi1, which together with their payoff functions imply condition (ii)

(with ϕit = id). For a novel setting that satisfies condition (ii), see Example 6 below.

By inspection of Proposition 1, guaranteeing strong monotonicity requires single-crossing and

third-derivative assumptions familiar from static models. The new assumptions that go beyond

them concern the impulse response functions. This is best illustrated by considering even stronger

sufficient conditions, which can be stated separately on utilities and processes. For concreteness,

suppose that U-DSEP holds and Xt is one-dimensional (so that either case in the proposition can be

applied). Then, in the initial period t = 0, it suffices to impose the static conditions: for each agent i,

the allocation utility ui0(θ0, x0) and the partial −∂ui0 (θ0, x0) /∂θi0 have increasing differences (ID)

in allocation and types (the latter being a third-derivative condition on the utility function), and the

hazard rate ηi0(θi0) is nondecreasing. In periods t ≥ 1, in addition to imposing the static conditions to

current utility flows, it suffices to assume that the impulse response Iiτ (θτi ) be nondecreasing in types.

This implies that the term capturing the agent’s information rent, − 1
ηi0(θi0)Iit(θ

t
i)∂uit

(
θt, xt

)
/∂θit

has ID in allocation and types. Heuristically, nondecreasing impulse responses lead to distortions

being decreasing in types, which helps to ensure monotonicity of the allocation.

Remark 7 We discuss in the supplementary material how Corollary 2 and Proposition 1 can be

adapted to finding optimal mechanisms in some non-Markov environments. Note that the derivation

of the expected virtual surplus (13) above makes no reference to Markov environments, and hence

the difference is in verifying that the allocation rule maximizing it is indeed implementable. �

4.1 Distortions

A first-best allocation rule maximizes the expected surplus Eλ[χ]
[∑n

i=0 Ui(θ̃, χ(θ̃))
]

in our quasilinear

environment. Similarly to static setting, a profit maximizing principal introduces distortions to the
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allocations to reduce the agents’ expected information rents. When the participation constraints of

the lowest initial types in (12) bind, the expected rent of agent i is given by

Eλ[χ]

 ∞∑
t=0

1

ηi0(θ̃i0)
Ii,(0),t(θ̃

t
i, χ

t−1
i (θ̃))

∂Ui

(
θ̃, χ(θ̃)

)
∂θit

 .
Thus the period-0 impulse response functions are an important determinant of the rent, and, by im-

plication, of the distortions in optimal dynamic mechanisms. Given the various forms these functions

may take, little can be said about the nature of these distortions in general. Indeed, we illustrate by

means of a simple class of single-agent environments that the distortion in period t may be a non-

monotone function of the agent’s types, or, for a fixed type sequence, a non-monotone function of the

time period t. Example 5 also illustrates the use of ex-post monotonicity to verify implementability.

Example 5 (Nonlinear AR process) Consider a buyer-seller relationship, which lasts for T + 1

periods, with T ≤ ∞. The buyer’s payoff takes the form U1 (θ, x) =
∑T

t=0 δ
t (a+ θt)xt, with a ∈ R++

and Xt = [0, x̄] for some x̄ >> 0. The seller’s payoff is given by U0 (θ, x) = −
∑T

t=0 δ
t x

2
t

2 . The buyer’s

type evolves according to the nonlinear AR process θt = φ (θt−1) + εt, where φ is an increasing

differentiable function, with φ (0) = 0, φ (1) < 1, and φ′ ≤ b for some 1 ≤ b < 1
δ , and where the

shocks εt are independent over time, with support [0, 1− φ (1)]. By putting zt(θt−1, εt) = φ (θt−1)+εt

and using formula (4), we find the period-0 impulse responses I(0),t(θ
t) =

t−1∏
τ=0

φ′ (θτ ).

Since the type process is autonomous and decisions are separable across time (i.e., F-AUT and

U-DSEP hold), the first-best allocation rule simply sets xt = a + θt for all t ≥ 0 and θt ∈ Θt.

Furthermore, we can maximize expected virtual surplus (13) pointwise to find the allocation rule

χt
(
θt
)

= max

{
0, a+ θt −

1

η0 (θ0)

t−1∏
τ=0

φ′ (θτ )

}
for all t ≥ 0 and θt ∈ Θt.

We show in the supplementary material that if the hazard rate η0 is nondecreasing, then χ is ex-post

monotone, and thus it is an optimal allocation rule by Corollaries 1 and 2. Note that χ exhibits

downward distortions since φ′ > 0. Increasing the period-τ type θτ for 1 ≤ τ < t, reduces distortions

in period t if φ is concave, but increases distortions if φ is convex. (Note that in the latter case, χ

is not strongly monotone, yet it is PBE-implementable.) When φ is neither concave nor convex, the

effect is non-monotone. Similarly, if φ′ (θt−1) < 1, then the distortion in period t is smaller than that

in period t− 1, whereas if φ′(θt−1) > 1, then the period-t distortion exceeds that in period t− 1.

Finally, note that the period-t allocation χt(θ
t) is in general a non-trivial function of the buyer’s

types in all periods 0, . . . , t. This is in contrast to the special case of a linear function φ(θt) = γθt,

γ > 0, considered by Besanko (1985), where the impulse response is the time-varying scalar It = γt

as in Example 2, and where χt(θ
t) depends only on the initial type θ0 and the current type θt. �

28



The distortions in Example 5 are independent of the agent’s current report. However, it is easy

to construct examples where distortions are non-monotone also with respect to the current report:

Example 6 Consider the environment of Example 5, but assume now that T = 1 and that the

buyer’s type evolves as follows: The initial type θ̃0 is distributed uniformly on Θ0 = [0, 1], whereas

θ̃1 is distributed on Θ1 = [0, 1] according to the c.d.f. F1(θ1|θ0) = θ1 − 2(θ0 − 1
2)θ1(1 − θ1) with

linear density f1(θ1|θ0) = 1− 2(θ0− 1
2)(1− 2θ1) strictly positive on Θ1 for all θ0. For θ0 = 1/2, θ̃1 is

distributed uniform on [0, 1]. For θ0 < (>)1/2 the density slopes downwards (upwards). Note that

F satisfies F-FOSD. The canonical impulse response formula (5) from Example 3 gives

I(0),1(θ0, θ1) =
2θ1(1− θ1)

1− 2(θ0 − 1
2)(1− 2θ1)

.

The allocation rule that solves the relaxed program is then given by

χ0(θ0) = max {0, a+ θ0 − (1− θ0)} , χ1(θ1) = max

{
0, a+ θ1 − (1− θ0)

2θ1(1− θ1)

1− 2(θ0 − 1
2)(1− 2θ1)

}
.

Because χ is strongly monotone, it is clearly implementable. By inspection, the second-period

allocation is efficient at the extremes, i.e., for θ1 ∈ {0, 1}, whereas all interior types are distorted

downwards. Note that the no-distortions-at-the-bottom result is non-trivial, since even the lowest

type here consumes a positive amount, so there would be room to distort downwards. �

In the supplementary material, we use monotone comparative statics to give sufficient conditions

for the allocation rule maximizing expected virtual surplus (13) to exhibit downward distortions as

in the above examples. However, upward distortions can naturally arise in applications. This was

first shown by Courty and Li (2000), who provided a two-period example where the distribution

of the agent’s second-period type is ordered by his initial signal in the sense of a mean-preserving

spread.

In consumption problems such as Example 5 and the one studied by Courty and Li (2000),

distortions can be understood purely in terms of the canonical impulse response (see Example 1)

It(θ
t) =

t∏
τ=1

(
−∂Fτ (θτ |θτ−1)/∂θτ−1

fτ (θτ |θτ−1)

)
.

If the kernels satisfy F-FOSD, then It(θ
t) is positive leading to downward distortions as in Example 5.

If F-FOSD fails, then It(θ
t) is negative at some θt yielding upward distortions at that history as

in Courty and Li (2000). Dynamics can be seen similarly: As in Example 5, an increase in the

impulse response increases distortions compared to the previous period, whereas a decrease leads to

consumption being more efficient. In particular, if It(θ
t) → 0, then consumption converges to the

first best over time.

29



5 Bandit Auctions

To illustrate our results, we consider the problem of a profit-maximizing seller who must design a

sequence of auctions to sell off, in each period t ≥ 0, an indivisible, non-storable good to a set of

n ≥ 1 bidders who update their valuations upon consumption, i.e., upon winning the auction. This

setting captures novel applications such as repeated sponsored search auctions where the advertisers

privately learn about the profitability of clicks on their ads, or repeated procurement with learning-

by-doing. It provides a natural environment where the kernels depend on past allocations.

Let Xit = {0, 1} for all i = 0, . . . , n and t ≥ 0, and define the set of feasible allocation sequences

by X = {x ∈
∏∞
t=0

∏n
i=0Xit :

∑n
i=0 xit = 1 for all t ≥ 0}. The seller’s payoff function is then given

by U0(θ, x) = −
∑∞

t=0 δ
t∑N

i=1 xitcit, where cit ∈ R is the cost of allocating the object to bidder i

(with c0t normalized to 0). Each bidder i’ payoff function takes the form Ui(θ, x) =
∑∞

t=0 δ
tθitxit.

The type process of bidder i = 1, . . . , n is constructed as follows. Let Ri = (Ri(·|k))k∈N be a

sequence of absolutely continuous, strictly increasing c.d.f.’s with mean bounded in absolute value

uniformly in k. The first-period valuation θi0 is drawn from Θi0, with θi0 > −∞, according to an

absolutely continuous, strictly increasing c.d.f. Fi0. For all t > 0, θti ∈ Θt
i, and xt−1

i ∈ Xt−1
i , if

xi,t−1 = 1, then

Fit(θit|θi,t−1, x
t−1
i ) = Ri(θit − θi,t−1|

t−1∑
τ=0

xiτ );

if, instead, xi,t−1 = 0, then

Fit(θit|θi,t−1, x
t−1
i ) =

{
0 if θit < θi,t−1,

1 if θit ≥ θi,t−1.

This formulation embodies the following key assumptions: (1) Bidders’ valuations change only upon

winning the auction (i.e., if xit = 0, then θi,t+1 = θit almost surely); (2) The valuation processes are

time-homogenous (i.e., if bidder i wins the object in period t, then the distribution of his period-t+1

valuation depends only on his period-t valuation and the total number of times he won in the past).36

We start by verifying that the bandit auction environment defined above is regular and Markov.

Each bidder i’s payoff function Ui clearly satisfies Conditions U-D, U-ELC, and U-SPR since each

36This kind of structure arises, for example, in a Bayesian learning model with Gaussian signals. That is, suppose

each bidder i has a constant but unknown true valuation vi for the object and starts with a prior belief vi ∼ N(θi0, τ i)

where precision τ i is common knowledge. Bidder i’s initial type θi0 is the mean of the prior distribution, which can

have any distribution Fi0 bounded from below. Each time upon winning the auction, bidder i receives a conditionally

i.i.d. private signal si ∼ N(vi, σi) and updates his expectation of vi using standard projection formulae. Take θit to be

bidder i’s posterior expectation in period t. Then Ri(·|k) is the c.d.f. for the change in the posterior expectation due

to the k-th signal, which is indeed independent of the current value of θit. (Standard calculations show that Ri(·|k) is

in fact a Normal distribution with mean zero and variance decreasing in k.) Alternative specifications for Ri can be

used to model learning-by-doing, habit formation, etc.
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Xit is bounded. As for bidder i’s type process, it satisfies the bounds in part (ii) of the Markov

definition (and thus F-BE) by the uniform bound on the means of (Ri(·|k))k∈N. In order to verify

F-BIR, we use the canonical representation of the process. That is, for all t > 0, εit ∈ (0, 1), and

(θi,t−1, x
t−1
i ) ∈ Θi,t−1 ×Xt−1

i , let

zit(θ
t−1
i , xt−1

i , εit) = F−1
it (εit|θi,t−1, x

t−1
i ) = θi,t−1 + 1{xi,t−1=1}R

−1
i (εit|

t−1∑
τ=0

xiτ ).

The Z functions then take the form

Zi,(s),t(θ
s
i , x

t−1
i , εti) = θis +

t∑
m=s+1

1{xi,m−1=1}R
−1
i (εim|

m−1∑
τ=0

xiτ ), (14)

and hence
∂Zi,(s),t
∂θis

= 1. Therefore, F-BIR holds, and the impulse responses satisfy Ii,(s),t(θ
t
i, x

t−1
i ) = 1

for all i = 1, . . . , n, t ≥ s ≥ 0, θti ∈ Θt
i, and xt−1

i ∈ Xt−1
i .

Since the impulse responses Ii,(0),t are identical to 1 for all agents i and all periods t, the enve-

lope formula (1) takes the form dV
〈χ,ψ〉
i0 (θi0) /dθi0 = Eλi[χ]|θi0

[∑∞
t=0 δ

tχit(θ̃)
]
, and the problem of

maximizing expected virtual surplus (13) becomes

sup
χ∈X

Eλ[χ]

[ ∞∑
t=0

δt
n∑
i=1

(
θ̃it − cit −

1

ηi0(θ̃i0)

)
χit(θ̃

t
)

]
.

This is a standard multi-armed bandit problem: The safe arm corresponds to the seller and yields

a sure payoff equal to 0; the risky arm i = 1, . . . , n corresponds to bidder i and yields a flow payoff

θit − cit − [ηi0(θi0)]−1. The solution takes the form of an index policy. That is, define the virtual

index of bidder i = 1, . . . , n in period t ≥ 0 given history (θti, x
t−1
i ) ∈ Θt

i ×X
t−1
i as

γit(θ
t
i, x

t−1
i ) ≡ max

T
Eλ[χ̄i]|θit,x

t−1
i

∑T
τ=t δ

τ
(
θ̃iτ − cit − 1

ηi0(θi0)

)
∑T

τ=t δ
τ

 , (15)

where T is a stopping time, and χ̄i is the allocation rule that assigns the object to bidder i in all

periods. (Note that the virtual index depends on xt−1
i only through

∑t−1
τ=0 xiτ .) The index of the

seller is identically equal to zero and for convenience we write it as γ0t(θ
t
0, x

t−1
0 ) ≡ 0. The following

virtual index policy then maximizes the expected virtual surplus:37 For all i = 1, . . . , n, t ≥ 0,

θt ∈ Θt, and xt−1 ∈ Xt−1, let J(θt, xt−1) ≡ arg maxj∈{0,...,n} γjt(θ
t
j , x

t−1
j ), and let

χit(θ
t) =

{
1 if i = min J(θt, xt−1),

0 otherwise.
(16)

Proposition 2 (Optimal bandit auctions) Suppose that for all i = 1, . . . , n, the hazard rate

ηi0(θi0) is nondecreasing in θi0. Let 〈χ, ψ〉 be the choice rule where χ is the virtual index policy

37The optimality of index policies is well known (e.g., Whittle, 1982 or Bergemann and Välimäki, 2008).
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defined by (16) and where ψ is the transfer rule defined by (7). Then 〈χ, ψ〉 is an optimal mechanism

in the bandit auction environment.

The environment is regular and Markov, F-FOSD holds, and each Ui is nondecreasing in θi. Hence

the result follows from Corollary 2 once we show that the virtual index policy χ satisfies integral

monotonicity. We do this in the appendix by showing that χ satisfies average monotonicity defined

in Corollary 1, which here requires that, for all i = 1, . . . , n, s ≥ 0, and (θs−1, θis) ∈ Θs−1 × Θis,

bidder i’s expected discounted consumption

Eλi[χ◦θ̂is,Γ]|θs−1,θis

[ ∞∑
t=s

δt(χ ◦ θ̂is)it(θ̃)

]

is non-decreasing in his current bid θ̂is. Heuristically, this follows because a higher bid in period s

increases the virtual index of arm i, which results in bidder i consuming sooner in the sense that,

for any k ∈ N, the expected waiting time until he wins the auction for the kth time after period s is

then weakly shorter. Note that because of learning, averaging is important: Even if increasing the

current bid always makes bidder i to be more likely to win the auction today, for bad realizations of

the resulting new valuation it leads to a lower chance of winning the auction in the future. However,

by F-FOSD, higher current types are also more likely to win in the future on average.

It is instructive to compare the virtual index policy from the optimal bandit auction to the first-

best index policy that maximizes social surplus. The first-best policy is implementable by using the

team mechanism of Athey and Segal (2013), or the dynamic pivot mechanism of Bergemann and

Välimäki (2010) who consider a similar bandit setting as an application. In the first-best policy,

bidder i’s index at period-t history (θti, x
t−1
i ) is given by

git(θ
t
i, x

t−1
i ) ≡ max

T
Eλ[χ̄i]|θit,x

t−1
i

[∑T
τ=t δ

τ (θ̃iτ − cit)∑T
τ=t δ

τ

]
.

By inspection of (15) we see that the virtual index γit(θ
t
i, x

t−1
i ) differs from the first-best index

git(θ
t
i, x

t−1
i ) only for the presence of the term 1

ηi0(θi0) , which can be interpreted as bidder i’s “hand-

icap.” In particular, note that the handicaps are determined by the bidders’ first-period (reported)

types. Thus the optimal mechanism can be implemented by using the bidders’ initial reports to

determine their handicaps along with the period-0 allocation and transfers, and by then running a

handicapped efficient mechanism in periods t > 0, where the indices are computed as if the seller’s

cost of assigning the good to bidder i was cit − 1
ηi0(θ̂i0)

.38 This implies that even ex ante symmetric

bidders will in general be treated asymmetrically in the future, and hence the distortions in future

periods reflect findings in optimal static auctions with asymmetric bidders. (For example, the first-

38Board (2007) and Eső and Szentes (2007) find similar optimal mechanisms in settings where the type processes are

autonomous and there is only one good to be allocated.

32



best and virtual indices will sometimes disagree on the ranking of any given bidders i and j, and

hence i may win the object in some period t even if the first-best policy would award it to j.)

We conclude that the optimal mechanism for selling experience goods is essentially a dynamic

auction with memory that grants preferential treatment based on the bidders’ initial types. These

features are markedly different from running a sequence of second-price auctions with a reserve

price, and suggest potential advantages of building long-term contractual relationships in repeated

procurement and sponsored search.

Remark 8 Subsequent to the first version of our manuscript, Kakade et al (2011) considered a

class of allocation problems that generalize our bandit auction environment, and showed that the

optimal mechanism is a virtual version of the dynamic pivot mechanism of Bergemann and Välimäki

(2010), the handicap mechanism being a special case. Postulating the model in terms of a state rep-

resentation, they derived the allocation rule using our first-order approach, and established incentive

compatibility in period 0 by verifying a condition analogous to our average monotonicity.

Kakade et al’s proof of incentive compatibility for periods t > 0 differs from ours, and relies

on the above observation about the optimal mechanism from period 1 onwards being an efficient

mechanism for a fictitious environment where the seller’s cost of assigning the object to bidder i is

cit− 1
ηi0(θ̂i0)

, where θ̂i0 is i’s initial report. In particular, using an efficient mechanism for this fictitious

environment that asks the bidders to re-report their initial types in period 1 gives the existence of

a truthful continuation equilibrium from period 1 onwards. This approach requires, however, that

every agent i’s payoff and state representation be separable in the sense that there exist functions

αi, γit, and βit, t ≥ 0, such that (i) uit(Z
t
i,(0)(θi0, εi), x

t) = αi(θi0)γit(x
t) + βit(ε

t
i, x

t) for all t, or

that (ii) uit(Z
t
i,(0)(θi0, εi), x

t) = αi(θi0)βit(ε
t
i, x

t) for all t. While our bandit auction environment

satisfies condition (i) by inspection of (14), neither condition is satisfied in non-linear environments

such as our Example 5, for which our approach of verifying integral monotonicity in every period is

applicable. On the other hand, Kakade et al can accommodate non-Markov environments that are

separable in the above sense. Thus the approaches are best viewed as complementary. �

6 Concluding Remarks

We extend the standard Myersonian approach to mechanism design to dynamic quasilinear environ-

ments. Our main results characterize local incentive compatibility constraints, provide a method of

constructing transfers to satisfy them, address the uniqueness of these transfers, and give necessary

and sufficient conditions for the implementability of allocation rules in Markov environments. These

results lend themselves to the design of optimal dynamic mechanisms along the familiar lines of

finding an allocation rule by maximizing expected (dynamic) virtual surplus, and then verifying that

the allocation rule is implementable by checking appropriate monotonicity conditions.
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The analysis permits a unified view of the existing literature by identifying general principles and

highlighting what drives similarities and differences in the special cases considered. The generality of

our model offers flexibility that facilitates novel applications, such as the design of sales mechanisms

for the provision of new experience goods, or “bandit auctions.”

Our limited use of a state representation, also known as the independent-shocks (IS) approach,

deserves some comments given its prominent role, for example, in the works of Eső and Szentes (2007,

2013), or Kakade et al (2011). Representing the type processes by means of independent shocks is

always without loss of generality, and, as explained after Theorem 1, it provides a convenient way to

establish primitive conditions under which the envelope formula is a necessary condition for incentive

compatibility. However, the IS approach is not particularly useful for establishing (necessary and)

sufficient conditions for implementability in Markov environments, because the transformation to

independent shocks doesn’t in general preserve the Markovness of the environment. Hence, after the

transformation, it is not sufficient to consider one-stage deviations from strongly truthful strategies

(see the supplementary appendix for a counterexample). Accordingly, our analysis of implementabil-

ity in Markov environments in Section 3.3 makes no reference to the IS approach.

Eső and Szentes (2007, 2013) have emphasized the fact that whenever the relaxed problem (or

first-order) approach is valid, the cost to the principal of implementing a given allocation rule is the

same as in a hypothetical environment where she can observe the agents’ future independent shocks

(this is an immediate implication of the proof of Theorem 1, see footnote 33). Thus, in this sense, the

agents do not receive rents on their orthogonal future information, suggesting an appealing intuition

for profits and information rents based on the IS approach. It is worth noting, however, that this

result holds—and the intuition is correct—only when the first-order approach is valid.39

The most important direction for future work pertains to the generality of our results on optimal

dynamic mechanisms. In particular, our results were restricted to settings where the first-order

approach yields an implementable allocation rule. To what extend this affects qualitative findings

about the properties of optimal mechanisms is an open question. For some progress in this direction,

see Garrett and Pavan (2013), who work directly with the integral monotonicity condition to show

that, in the context of managerial compensation, the key properties of optimal contracts extend to

environments where the first-order approach is invalid.

A Proofs

Proof of Theorem 1. We start by establishing ICFOCi,0 for all i = 1, . . . , n. Let the type

processes be generated by the state representation 〈Ei, Gi, zi〉ni=1 and consider a fictitious environ-

ment in which, in each period t ≥ 1, each agent i = 1, . . . , n observes the shock εit and computes

39For example, the irrelevance result of Eső and Szentes (2013) does not hold if the solution to our relaxed problem

is not implementable.
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θit = Zi,(0),t

(
θi0, x

t−1
i , εti

)
. Consider a direct revelation mechanism in the fictitious environment

in which each agent i reports θi0 in period 0 and εit in each period t ≥ 1, and which imple-

ments the decision rule χ̂t
(
θ0, ε

t
)

= χt

(
Zt(0)

(
θ0, χ̂

t−1
(
θ0, ε

t−1
)
, εt
))

and payment rule ψ̂t
(
θ0, ε

t
)

=

ψt

(
Zt(0)

(
θ0, χ̂

t−1
(
θ0, ε

t−1
)
, εt
))

in each period t (defined recursively on t with Z(0),t ≡
(
Zi,(0),t

)n
i=1

,

Zt(0) = (Z(0),s)
t
s=0, and Z(0) = (Z(0),s)

∞
s=0).

Suppose that all agents other than i report truthfully in all periods. Agent i’s payoff when the

other agents’ initial signals are θ−i,0, agent i’s true period-0 signal is θi0, his period-0 report is θ̂i0,

and all future shocks ε are reported truthfully is given by

Ûi(θ̂i0, θi0, θ−i,0, ε) ≡ Ui(Z(θi0, θ−i,0, χ̂(θ̂i0, θ−i,0, ε), ε), χ̂(θ̂i0, θ−i,0, ε)) +

∞∑
t=0

δtψ̂it(θ̂i0, θ−i,0, ε
t).

Since 〈χ, ψ〉 is PBIC in the original environment, truthful reporting by each agent at all truthful

histories is a PBE of the mechanism
〈
χ̂, ψ̂

〉
in the fictitious environment. This implies that agent

i cannot improve his expected payoff by misreporting his period-0 type and then reporting the

subsequent shocks truthfully. That is, for any θi0 ∈ Θi0,

V
〈χ,Ψ〉
i (θi0) = sup

θ̂i0∈Θi0

W (θ̂i0, θi0) = W (θi0, θi0), where W (θ̂i0, θi0) ≡ E
[
Ûi(θ̂i0, θi0, θ̃−i,0, ε̃)

]
.

The following lemma shows that the objective function W in the above maximization problem is

well-behaved in the parameter θi0:

Lemma A.1 Suppose that the environment is regular. Then, for all i = 1, . . . , n and θ̂i0 ∈ Θi0,

Wi(θ̂i0, ·) is equi-Lipschitz continuous and differentiable, with the derivative at θi0 = θ̂i0 given by

∂Wi(θ̂i0, θ̂i0)

∂θi0
= E


∑∞

t=0

∂Ui

(
Z(0)

(
θ̂i0, θ̃−i,0, χ̂

(
θ̂i0, θ̃−i,0, ε̃

)
, ε̃
)
, χ̂
(
θ̂i0, θ̃−i,0, ε̃

))
∂θit

·
∂Zi,(0),t

(
θ̂i0, χ̂

t−1
i

(
θ̂i0, θ̃−i,0, ε̃

t−1
)
, ε̃ti

)
∂θi0

 .

Proof of Lemma A.1. Let us focus on those ε for which ∂Zi,(0),t(θi0, χ̂
t−1
i (θ̂i0, θ−i,0, ε

t−1
i ), εti)/∂θi0 <

Cit(εi) for all i, t, θ0, with
∥∥Ci,(0) (εi)

∥∥ <∞, and
∥∥Zi,(0) (θi0, χ̂i (θi0, θ−i,0, ε) , εi)

∥∥ <∞, which under

Conditions F-BE and F-BIR occurs with probability 1, and temporarily drop arguments ε, θ−i,0, θ̂i0,

x = χ̂(θ̂i0, θ−i,0, ε), and subscripts i, (0) to simplify notation.

The classical chain rule (using Conditions U-D and F-BIR) yields that, for any given T ,

∆T (θ0, h) ≡ 1

h
U
(
ZT (θ0 + h) , Z>T (θ0)

)
− 1

h
U (Z (θ0))−

T∑
t=0

∂U (Z (θ0))

∂θt
Z ′t (θ0)→ 0 as h→ 0. (17)

Note that
1

h
U
(
ZT (θ0 + h) , Z>T (θ0)

)
→ 1

h
U (Z (θ0 + h)) as T →∞
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uniformly in h since, using U-ELC, the difference is uniformly bounded by

A
1

h

∞∑
t=T+1

δt |Zt (θ0 + h)− Zt (θ0)| ≤ A
∞∑

t=T+1

δtCt,

and the right-hand side converges to zero as T →∞ since ‖C‖ <∞.

Also, the series in (17) converges uniformly in h by the Weierstrass M-test, since, using Conditions

U-ELC and F-BIR,

T∑
t=0

∣∣∣∣∂U (Z (θ0))

∂θt

∣∣∣∣ ∣∣Z ′t (θ0)
∣∣ ≤ T∑

t=0

AδtCt → A ‖C‖ as T →∞

Hence, we have

∆T (θ0, h)→ 1

h

[
Û (θ0 + h)− Û (θ0)

]
−
∞∑
t=0

∂U (Z (θ0))

∂θt
Z ′t (θ0) as T →∞

uniformly in h. By uniform convergence we interchange the order of limits and use (17) to get

lim
h→0

[
1

h

[
Û (θ0 + h)− Û (θ0)

]
−
∞∑
t=0

∂U (Z (θ0))

∂θt
Z ′t (θ0)

]
= lim

h→0
lim
T→∞

∆T (θ0, h)

= lim
T→∞

lim
h→0

∆T (θ0, h) = 0.

This yields (putting back all the missing arguments)

∂Ûi(θ̂i0, θ0, ε)

∂θi0
=
∞∑
t=0

∂Ui

(
Z(0)

(
θ0, ε, χ̂(θ̂i0, θ−i,0, ε)

)
, χ̂
(
θ̂i0, θ−i,0, ε

))
∂θit

∂Zi,(0),t

(
θi0, ε

t
i, χ̂

t−1
i

(
θ̂i0, θ−i,0, ε

t−1
))

∂θi0
.

Next, note that, being a composition of Lipschitz continuous functions, Ûi(θ̂i0, ·, θ−i,0, ε) is equi-

Lipschitz continuous in θi0 with constant A
∥∥C(0),i (ε)

∥∥. Since, by F-BIR, E
[∥∥Ci,(0) (ε̃)

∥∥] < ∞, by

the Dominated Convergence Theorem we can write

∂Wi

(
θ̂i0, θi0

)
∂θi0

= lim
h→0

E

 Ûi
(
θ̂i0, θi0 + h, θ̃−i,0, ε̃

)
− Ûi

(
θ̂i0, θi0, θ̃−i,0, ε̃

)
h


= E lim

h→0

 Ûi
(
θ̂i0, θi0 + h, θ̃−i,0, ε̃

)
− Ûi

(
θ̂i0, θi0, θ̃−i,0, ε̃

)
h

 = E

∂Ûi
(
θ̂i0, θi0, θ̃−i,0, ε̃

)
∂θi0

 .
Hence, for any θ̂i0, Wi

(
θ̂i0, ·

)
is differentiable and equi-Lipschitz in θi0 with Lipschitz constant

AE
[∥∥Ci,(0) (ε̃)

∥∥], and with derivative at θi0 = θ̂i0 given by the formula in the lemma.

The equi-Lipschitz continuity of Wi(θ̂i0, ·) established in Lemma A.1 implies that the value func-

tion sup
θ̂i0∈Θi0

W (θ̂i0, θi0), which coincides with the equilibrium payoff V
〈χ,Ψ〉
i (θi0), is Lipschitz contin-
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uous.40 Furthermore, by Theorem 1 of Milgrom and Segal (2002), at any differentiability point of

V
〈χ,Ψ〉
i (θi0), we have

dV
〈χ,Ψ〉
i (θi0)
dθi0

= ∂Wi(θi0,θi0)
∂θi0

. Using Lemma A.1, the Law of Iterated Expectations,

and the definition of Ii,(0),t in (2) then yields ICFOCi,0. ICFOCi,s for s > 0 then follows by the same

argument, since agent i’s problem at a truthful period-s history is identical to the period-0 problem

except for the indexing by the history.

Proof of Theorem 2. For part (i), we show first that the flow transfers in (7) are well-

defined by showing that the discounted sum (over t) of each of the three terms in ψit has a finite

expected net present value (NPV) under the measure λi[χ,Γ]|θs−1, θis for all i = 1, . . . , n, s ≥ 0, and(
θs−1, θis

)
∈ Θs−1 × Θis (which implies that the series

∑∞
t=0 δ

tψit
(
θt
)

converges with probability 1

under λi[χ,Γ]|θs−1, θis). For the first term, using U-ELC and F-BIR, we have

∣∣∣Dχ,Γ
it

(
θt−1, θit

)∣∣∣ ≤ Eλi[χ,Γ]|θt−1,θit

[ ∞∑
τ=t

∣∣∣Ii,(t),τ (θ̃i, χi(θ̃))
∣∣∣Aiδτ] ≤ δtAiBi, (19)

where Ai > 0 is the constant of equi-Lipschitz continuity of Ui, and where Bi > 0 is the bound on

the impulse responses in Condition F-BIR. This means that∣∣∣δ−tQχ,Γit

(
θt−1, θit

)∣∣∣ ≤ AiBi ∣∣θit − θ′it∣∣ ≤ AiBi (|θit|+ ∣∣θ′it∣∣) . (20)

Hence, the expected NPV of the first term is finite by Condition F-BE and ||θ′i|| <∞. For the second

term, using (20) for t + 1 and the Law of Iterated Expectations, the expected NPV of its absolute

value is bounded by

AiBi

(
t−1∑
τ=0

δτ+1Eλi[χ,Γ]|θτ−1,θiτ [θ̃iτ+1] + Eλi[χ,Γ]|θs−1,θis
[
||θ̃i||

]
+ ||θ′i||

)
,

which is finite by Condition F-BE and ||θ′i|| < ∞. Finally, the expected NPV of the third term is

finite by Conditions U-SPR and F-BE.

We then show that ICFOCi,s holds for all i and s. Rewrite the time-s equilibrium expected payoff

given history (θs−1, θis) using Fubini’s Theorem and the Law of Iterated Expectations as follows:

V
〈χ,Ψ〉,Γ
is (θs−1, θis) = lim

T→∞

T∑
t=0

δtEλi[χ,Γ]|θs−1,θis
[
uit(θ̃

t
, χt(θ̃

t
)) + ψit(θ̃

t
)
]

=
s−1∑
t=0

δt
(
EΓi(θs−1

i ,χs−1
i (θs−1))

[
uit(θ

t
i, θ̃

t
−i, χ

t(θti, θ̃
t
−i))

]
+ ψit(θ

t)
)

+Qχ,Γis (θs−1, θis)− lim
T→∞

Eλi[χ,Γ]|θs−1,θis
[
Qχ,Γi,T+1(θ̃

T
, θ̃i,T+1)

]
.

40Since for each θi0, θ
′
i0,
∣∣∣V 〈χ,Ψ〉i (θ′i0)− V 〈χ,Ψ〉i (θi0)

∣∣∣ ≤ supθ̂i0∈Θi0

∣∣∣Wi

(
θ̂i0, θ

′
i0

)
−Wi

(
θ̂i0, θi0

)∣∣∣ ≤ M |θ′i0 − θi0|,
where M > 0 is the constant of equi-Lipschitz continuity of W. This argument is similar to the first part of Milgrom

and Segal’s (2002) Theorem 2.
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(The expectations of the other terms for t ≥ s cancel out by the Law of Iterated Expectations). The

second line is independent of θis, and the limit on the last line equals zero by (20), Condition F-BE,

and ||θ′i|| < ∞. By (6) and (19), the remaining term Qχ,Γis

(
θs−1, θis

)
is Lipschitz continuous in θis,

and its derivative equals Dχ,Γ
is

(
θs−1, θis

)
a.e., which is the right-hand side of (1).

For part (ii), we start by considering a single-agent environment and then extend the result to

multiple agents under the no-leakage condition.

Consider the single-agent case, where beliefs are vacuous, and omit the agent index to simplify

notation. For any PBIC choice rules 〈χ, ψ〉 and
〈
χ, ψ̄

〉
with the same allocation rule χ, for all s ≥ 0

and θs ∈ Θs, ICFOCs and the Law of Iterated Expectations imply

V 〈χ,ψ〉s (θs)− V 〈χ,ψ〉s−1

(
θs−1

)
= V 〈χ,ψ〉s (θs)− EFs(θ

s−1,χs−1(θs−1))
[
V 〈χ,ψ〉s (θs−1, θ̃s)

]
= EFs(θ

s−1,χs−1(θs−1))
[∫ θs

θ̃s

Dχ
s (θs−1, q)dq

]
= V

〈χ,ψ̄〉
s (θs)− V 〈χ,ψ̄〉s−1 (θs−1).

Substituting the definitions of expected payoffs and rearranging terms yields

Eλ[χ]|θs
[ ∞∑
t=0

δtψt(θ̃)

]
− Eλ[χ]|θs

[ ∞∑
t=0

δtψ̄t(θ̃)

]
= Eλ[χ]|θs−1

[ ∞∑
t=0

δtψt(θ̃)

]
− Eλ[χ]|θs−1

[ ∞∑
t=0

δtψ̄t(θ̃)

]
.

By induction, we then have, for all T ≥ 1 and θT ∈ ΘT ,

Eλ[χ]|θT
[ ∞∑
t=0

δtψt(θ̃)

]
−Eλ[χ]|θT

[ ∞∑
t=0

δtψ̄t(θ̃)

]
= Eλ[χ]

[ ∞∑
t=0

δtψt(θ̃)

]
−Eλ[χ]

[ ∞∑
t=0

δtψ̄t(θ̃)

]
≡ K. (21)

Since payoff from truthtelling in a PBIC mechanism is well-defined, we have the following lemma.

Lemma A.2 Suppose ψ is the transfer rule in a PBIC mechanism. Then for λ[χ]–almost all θ,

Eλ[χ]|θT
[∑∞

t=0 δ
tψt(θ̃)

]
→
∑∞

t=0 δ
tψt(θ) as T →∞.

Proof of Lemma A.2. By the Law of Iterated Expectations,

Eλ[χ]

θ̃

[∣∣∣∣∣Eλ[χ]|θ̃T˜̃
θ

[ ∞∑
t=0

δtψt(
˜̃
θ)

]
−
∞∑
t=0

δtψt(θ̃)

∣∣∣∣∣
]

= Eλ[χ]

θ̃

[∣∣∣∣∣Eλ[χ]|θ̃T˜̃
θ

[
∞∑

t=T+1

δtψt(
˜̃
θ
t

)

]
−

∞∑
t=T+1

δtψt(θ̃
t
)

∣∣∣∣∣
]

≤ 2Eλ[χ]

θ̃

[
∞∑

t=T+1

δt
∣∣∣ψt(θ̃t)∣∣∣

]
.

By PBIC, Eλ[χ][||ψ(θ̃)||] <∞, and hence the term on the second line goes to zero as T →∞.

By Lemma A.2, we can take the limit T →∞ in (21) to get

∞∑
t=0

δtψt(θ)−
∞∑
t=0

δtψ̄t(θ) = K for λ[χ]–almost all θ.
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In order to extend the result to multiple agents under the no-leakage condition, observe that if

〈χ, ψ〉 and
〈
χ, ψ̄

〉
are PBIC, then they remain PBIC also in the “blind” setting where agent i does

not observe his allocation xi. (Hiding the allocation xi from agent i simply amounts to pooling some

of his incentive constraints.) Furthermore, if the allocation rule χ leaks no information to agent i

so that observing the true type θi does not reveal any information about θ−i, then we can interpret

the “blind” setting as a single-agent setting in which agent i’s allocation in period t is simply his

report θ̂it, and his utility is Ûi(θi, θ̂i) = Eλi[χ]|θ̂i
[
Ui(θi, θ̃−i, χ(θ̂i, θ̃−i))

]
, where λi [χ] |θ̂i denotes the

probability measure over the other agents’ types when agent i’s reports are fixed at θ̂i. (Intuitively,

the other agents’ types can be viewed as being realized only after agent i has finished reporting, and

Ûi is the expectation taken over such realizations.) Applying to this setting the result established

above for the single-agent case, we see that agent i’s expected payment Eλi[χ]|θi
[∑∞

t=0 δ
tψit(θi, θ̃−i)

]
is pinned down, up to a constant, by the allocation rule χ with probability 1.

Proof of Theorem 3. Given a choice rule 〈χ, ψ〉 and belief system Γ ∈ Γ(χ), for all i = 1, . . . , n,

t ≥ 0, and (θti, (θ
t−1
i , θ̂it), θ

t−1
−i ) ∈ Θt

i ×Θt
i ×Θt−1

−i , let

Φi(θit, θ̂it) ≡ V
〈χ◦θ̂it,ψ◦θ̂it〉,Γ
it (θt−1, θit).

That is, Φi(θit, θ̂it) denotes agent i’s expected payoff from reporting θ̂it at the period-t history

(θti, θ
t−1
i , χt−1

i (θt−1
i , θt−1

−i )), and then reverting to truthful reporting period t+1 onwards. Because the

environment is Markov, Φi(θit, θ̂it) depends on agent i’s past reports, but not on his past true types,

and hence it gives agent i’s payoff from reporting θ̂it at the history ((θ̄
t−1
i , θit), θ

t−1
i , χt−1

i (θt−1
i , θt−1

−i ))

for any past true types θ̄
t−1
i ∈ Θt−1

i . We then let Φ̄i(θit) ≡ Φi(θit, θit) for all θit ∈ Θit denote the

payoff from reporting truthfully in all periods s ≥ t.
Necessity: Fix i = 1, . . . , n and t ≥ 0. Suppose that the allocation rule χ ∈ X with belief system

Γ ∈ Γ(χ) can be implemented in an on-path truthful PBE. Then there exists a transfer rule ψ such

that the choice rule 〈χ, ψ〉 with belief system Γ is PBIC, and thus satisfies ICFOCi,t by Theorem 1.

This implies that Φ̄i(·) satisfies condition (b) in Lemma 1 with Φ̄′i(θit) = Dχ,Γ
it (θt−1, θit) for a.e. θit.

Thus it remains to establish condition (a).

Lemma A.3 Suppose the environment is regular and Markov. Fix i = 1, . . . , n and t ≥ 0. If the

choice rule 〈χ, ψ〉 with belief system Γ ∈ Γ(χ) satisfies ICFOCi,t+1, then for all θ̂it ∈ Θit, the choice

rule
〈
χ ◦ θ̂it, ψ ◦ θ̂it

〉
with belief system Γ satisfies ICFOCi,t.

Proof of Lemma A.3. Note first that because the environment is Markov and 〈χ, ψ〉 with belief

system Γ ∈ Γ(χ) satisfies ICFOCi,t+1, the choice rule
〈
χ̂, ψ̂

〉
≡
〈
χ ◦ θ̂it, ψ ◦ θ̂it

〉
with belief system Γ

clearly satisfies ICFOCi,t+1 because agent i’s payoff does not depend on whether the previous period

report θ̂it has been truthful or not. In order to show that it also satisfies ICFOCi,t, we can use a

state representation and the Law of Iterated Expectations to write agent i ’s expected payoff from
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truthtelling under choice rule
〈
χ̂, ψ̂

〉
, for all (θt−1, θit), as

V
〈χ̂,Ψ̂〉,Γ
it

(
θt−1, θit

)
= E

θ̃
t
−i
Eε̃t+1

i

[
V
〈χ̂,Ψ̂〉,Γ
i,t+1

(
(θti, θ̃

t
−i), Zi,(t),t+1

(
θit, χ̂

t
i

(
θti, θ̃

t
−i

)
, ε̃t+1
i

))]
,

where θ̃
t
−i is generated by drawing θt−1

−i according to agent i’s belief Γi
(
θt−1
i , χt−1

i

(
θt−1

))
and then

drawing θ̃−i,t from
∏
j 6=i Fjt(θ

t−1
j , χt−1

j (θt−1)). To differentiate this identity with respect to the true

period-t type θit, note first that by the chain rule, we have

d

dθit

[
V
〈χ̂,Ψ̂〉,Γ
i,t+1

(
θt, Zi,(t),t+1

(
θit, χ̂

t
i

(
θti, θ

t
−i
)
, εi,t+1

))]
= Eλi[χ̂,Γ]|θt,θi,t+1

[
∂Ui(θ̃, χ̂(θ̃))

∂θit

]

+Dχ̂,Γ
i,t+1(θt, θi,t+1)

∂Zi,(t),t+1

(
θit, χ

t
i

(
θti, θ

t
−i
)
, εi,t+1

)
∂θit

.

To see this, note that the first term follows because the environment is Markov and
〈
χ̂, ψ̂

〉
does not

depend on θit so that

∂V
〈χ̂,Ψ̂〉,Γ
i,t+1

(
θt, θi,t+1

)
∂θit

= Eλi[χ̂,Γ]|θt,θi,t+1

[
∂Ui(θ̃, χ̂(θ̃))

∂θit

]
.

The second term follows because, by ICFOCi,t+1, ∂V
〈χ̂,Ψ̂〉,Γ
i,t+1

(
θt, θi,t+1

)
/∂θi,t+1 = Dχ̂,Γ

i,t+1(θt, θi,t+1).

Furthermore, by U-ELC, ICFOCi,t+1, and F-BIR all the derivatives above are bounded. Thus, by

the Dominated Convergence Theorem, we can pass the derivative through the expectation to get

dV
〈χ̂,Ψ̂〉,Γ
it

(
θt−1, θit

)
dθit

= Eλi[χ̂,Γ]|θt−1,θit

[
∂Ui(θ̃, χ̂(θ̃))

∂θit
+ Ii,(t),t+1

(
θ̃
t+1
i , χ̂ti

(
θti, θ

t
−i
)) ∞∑

τ=t+1

Ii,(t+1),τ

(
θ̃
τ
i , χ̂

τ−1
i (θ̃)

) ∂Ui(θ̃, χ̂(θ̃))

∂θiτ

]

= Eλi[χ̂,Γ]|θt−1,θit

[ ∞∑
τ=t

Ii,(t),τ

(
θ̃
τ
i , χ̂

τ−1
i (θ̃)

) ∂Ui(θ̃, χ̂(θ̃))

∂θiτ

]
,

where we have first used (2) to express the expectation in terms of impulse responses, and then the

fact that Markovness implies Ii,(t),t+1

(
θt+1
i , xti

)
Ii,(t+1),τ

(
θτi , x

τ−1
i

)
= Ii,(t),τ

(
θτi , x

τ−1
i

)
. Therefore,

the choice rule
〈
χ̂, ψ̂

〉
with belief system Γ satisfies ICFOCi,t.

Since 〈χ, ψ〉 with belief system Γ satisfies ICFOC by Theorem 1, Lemma A.3 implies that for

all θ̂it ∈ Θit,
〈
χ ◦ θ̂it, ψ ◦ θ̂it

〉
with belief system Γ satisfies ICFOCi,t. Therefore, for any fixed θ̂it,

Φi(θit, θ̂it) is Lipschitz continuous in θit with derivative given by Dχ◦θ̂it,Γ
it (θt−1, θit) for a.e. θit. Hence,

also condition (a) of Lemma 1 is satisfied. Since i and t were arbitrary, we conclude that the integral

monotonicity condition (8) is a necessary condition for on-path truthful PBE implementability.

Sufficiency: Suppose the allocation rule χ ∈ X with belief system Γ ∈ Γ(χ) satisfies integral

monotonicity. Define the transfer rule ψ by (7). By Theorem 2, the choice rule 〈χ, ψ〉 with belief
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system Γ satisfies ICFOC. Thus the above arguments show that, for all i = 1, . . . , n, t ≥ 0, and any

period-t history of agent i, the functions {Φi(·, θ̂it)}θ̂it∈Θit
and Φ̄i(·) satisfy conditions (a) and (b)

of Lemma A.3. This implies that a one-step deviation from the strong truthtelling strategy is not

profitable for agent i at any history in any period. The following version of the one-stage deviation

principle then rules out multi-step deviations:

Lemma A.4 Suppose the environment is regular and Markov. Fix an allocation rule χ ∈ X with

belief system Γ ∈ Γ(χ), and define the transfer rule ψ by (7). If a one-stage deviation from strong

truthtelling is not profitable at any information set, then arbitrary deviations from strong truthtelling

are not profitable at any information set.

The proof of this lemma consists of showing that despite payoffs being not a priori continuous

at infinity, the bounds implied by U-SPR and part (ii) of the definition of Markov environments

guarantee that under the transfers defined by (7), continuation utility is well-behaved. We relegate

the argument to the supplementary material.

We conclude that integral monotonicity is a sufficient condition for the allocation rule χ ∈ X
with belief system Γ ∈ Γ(χ) to be implementable in a strongly truthful PBE.

Proof of Proposition 1. Case (i): We construct a nondecreasing solution χs (θ) sequentially

for s = 0, 1, . . .. Suppose we have a solution χ in which χs−1 (θ) is nondecreasing. Consider the

problem of choosing the optimal continuation allocation rule in period s given type history θs and

allocation history χs−1
(
θs−1

)
. Using the state representation 〈Ei, Gi, zi〉ni=1 from period s onward,

we can write the continuation rule for t ≥ s as a collection of functions χ̂t (ε) of the shocks ε.

First, note that, because X is a sublattice,
∏
t≥s

Xt is a lattice. This means that the set of feasible

shock-contingent plans χ̂ is also a lattice under pointwise meet and join operations (i.e., for each ε).

Next, note that, under the assumptions in the proposition, each agent i’s virtual utility

Ui
(
Zs (θs, ε) , χs−1

(
θs−1

)
, x≥s

)
− 1

ηi0(θi0)

∞∑
t=0

∂Ui
(
Zs (θs, ε) , χs−1

(
θs−1

)
, x≥s

)
∂θit

Ii,(0),t(Z
t
i,(s) (θs, ε))

is supermodular in x≥s and has increasing differences in
(
θs, x≥s

)
(note that Zs (θs, ε) is nonde-

creasing in θs by F-FOSD, and χs−1
(
θs−1

)
is nondecreasing in θs−1 by construction). Therefore,

summing over i and taking expectation over ε, we obtain that the expected virtual surplus starting

with history θs is supermodular in the continuation plan χ̂ and has increasing differences in (θs, χ̂).

Topkis’s Theorem then implies that the set of optimal continuation plans is nondecreasing in θs in

the strong set order. In particular, focus on the first component χs ∈ Xs of such plans. By Theorem

2 of Kukushkin (2009), there exists a nondecreasing selection of optimal values, χ̂s (θs). Therefore,

the relaxed program has a solution in which χs (θs) =
(
χs−1

(
θs−1

)
, χ̂s (θs)

)
is nondecreasing in θs.

Case (ii): In this case, the solution to the relaxed problem is a collection of independent rules χt,
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t ≥ 0, with each χt satisfying, for λ-almost every θt,

χt
(
θt
)
∈ arg max

xt∈Xt

[
n∑
i=0

uit (θt, xt)−
n∑
i=1

1

ηi0(θi0)
Ii,(0),t(θ

t
i)
∂uit (θt, xt)

∂θit

]
. (22)

For any t, we can put χt
(
θt
)

= χ̄t
(
ϕ1t

(
θt1
)
, . . . , ϕnt

(
θtn
))

for some χ̄t : Rn×m → Xt. Now fix i ≥ 1,

and for xit ∈ Xit, let Xt (xit) ≡ {x′t ∈ Xt : x′it = xit}. Then (22) implies

χ̄it (ϕt) ∈ arg max
xit∈Xit

[
ūit (ϕit, xit) + git

(
ϕ−i,t, xit

)]
where ūit (ϕit, xit) is the virtual utility of agent i, and

git
(
ϕ−i,t, xit

)
≡ max

x′t∈Xt(xit)

u0t

(
x′t
)

+
∑
j 6=i

ūjt(ϕjt, x
′
jt)


Since ūit (ϕit, xit) + git

(
ϕ−i,t, xit

)
has strictly increasing differences in (ϕit, xit), by the Monotone

Selection Theorem of Milgrom and Shannon (1994), χ̄it
(
ϕit, ϕ−i,t

)
must be nondecreasing in ϕit,

and so χit
(
θti, θ

t
−i
)

is nondecreasing in θti.

Proof of Proposition 2. Fix a belief system Γ ∈ Γ(χ). We show that the virtual index policy

given by (16) satisfies average monotonicity: For all i = 1, . . . , n, s ≥ 0, and (θs−1, θis) ∈ Θs−1×Θis,

Eλi[χ◦θ̂s,Γ]|θs−1,θis

[ ∞∑
t=s

δt(χ ◦ θ̂is)it(θ̃)

]

is nondecreasing in θ̂is. We show this for s = 0. The argument for s > 0 is analogous but simpler

since θis does not affect the term η−1
i0 (θi0) in the definition of the virtual index (15) when s > 0.

We can think of the processes being generated as follows: First, draw a sequence of innovations

ωi = (ωik)
∞
k=1 according to

∏∞
k=1Ri(·|k) for each i, independently across i = 1, . . . , n, and draw initial

types θi0 according to Fi0 independently of the innovations ωi and across i. Letting Kt ≡
∑t

τ=1 xτ ,

bidder i’s type in period t can then be described as

θit = θi0 +

Kt∑
k=1

ωik.

Clearly this representation generates the same conditional distributions (and hence the same process)

as the kernels defined in the main text.41

41The difference is that in this representation, the innovation to bidder i’s value if he wins the auction for the kth

time in period t is given by the kth element of the sequence ωi, whereas in the representation in the main text it is

given by (a function of) the tth element of the sequence εi. In terms of the latter, a higher current message increases

discounted consumption only on average, whereas in the former it increases discounted consumption for each realization

of ωi, since the bidder always experiences the same innnovation sequence irrespective of the timing of consumption.
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Next, fix an arbitrary bidder i = 1, . . . , n and a state (θ0, ω) ∈ Θ0 × (Rn)∞, and take a pair

θ′i0, θ
′′
i0 ∈ Θ0 with θ

′′
i0 > θ′i0. We show by induction on k that, for any k ∈ N, the kth time that i

wins the object if he initially reports θ′′i0 (and reports truthfully in each period t > 0) comes weakly

earlier than if he reports θ′i0. As the realization (θ0, ω) ∈ Θ0 × (Rn)∞ is arbitrary, this implies that

the expected time to the k-th win is decreasing in the initial report, which in turn implies that the

virtual policy χ satisfies average monotonicity.

As a preliminary observation, note that the period-t virtual index of bidder i is increasing in the

(reported) period-0 type θi0 since the handicap η−1
i0 (θi0) is decreasing in θi0, and (in case t = 0)

Eλ[χ̄i]|θi0 [θiτ ] is increasing in θi0 for all τ ≥ 0.

Base case: Suppose, towards a contradiction, that the first win given initial report θ′i0 comes in

period t′ whereas it comes in period t′′ > t′ given report θ
′′
i0 > θ′i0. As the realization (θ0, ω) is fixed,

the virtual indices of bidders−i in period t′ are the same in both cases. But γit′((θ
′′
i0, θi0, . . . , θi0), 0) >

γit′((θ
′
i0, θi0, . . . , θi0), 0), implying that i must win in period t′ also with initial report θ′′i0, which

contradicts t′′ > t′.

Induction step: Suppose the claim is true for some k ≥ 1. Suppose towards contradiction that the

(k + 1)th win given report θ′i0 comes in period t′ whereas it comes in period t′′ > t′ given θ
′′
i0 > θ′i0.

Then observe that (i) In both cases, i wins the auction k − 1 times prior to period t′. Furthermore,

since the realization (θ0, ω) is fixed, this implies that (ii) bidder i’s current type θit is the same in

both cases, and (iii) the number of times each bidder j 6= i wins the object prior to period t′ is the

same in both cases, and hence the virtual indices of bidders −i in period t′ are the same in both

cases. By (i) and (ii) i’s virtual index in period t′ is identical in both cases except for the initial

report. That bidder i’s period-t′ index is increasing in the initial report, along with (iii) implies that

i must then win in period t′ also with initial report θ′′i0, contradicting t′′ > t′. Hence the claim is

true for k + 1.
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