18.05. Test 2.

(1) Let X be the players fortune after one play. Then
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and the expected value is

Repeating this n times we get the expected values after n plays (5/4)™c.

(2) Let X;,i =1,...,n = 1000 be the indicators of getting heads. Then
S, = X; + ...+ X, is the total number of heads. We want to find k& such
that P(440 < S,, < k) ~ 0.5. Since = EX; = 0.5 and 0 = Var(X;) = 0.25
by central limit theorem,
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is approximately standard normal, i.e.
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— ®(-3.79) = 0.5.
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From the table we find that ®(—3.79) = 0.0001 and therefore

)

~ P(

Using the table once again we get k\;%ooo ~ 0 and k£ =~ 500.
(3) The likelihood function is
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and the log-likelihood is

log p(6) = nlogf +nb — (6 + l)logHXi.



We want to find the maximum of log-likelihood so taking the derivative we
get

%-Fn—logHXi =0
and solving for ¢, the MLE is
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(4) The prior distribution is
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and the joint p.d.f. of Xq,..., X, is
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Therefore, the posterior is proportional to (as usual, we keep track only of
the terms that depend on 6)

f(Xy, ..., X,0) =
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This shows that the posterior is again a gamma distribution with parameters

MNa+n,—n+ logHXZ-).
Bayes estimate is the expectation of the posterior which in this case is
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(5) The confidence interval for y is given by
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where ¢ that corresponds to 90% confidence is found from the condition

tlo_l(c) — th—l(_C) =0.9



or tg(c) = 0.95 and ¢ = 1.833.
The confidence interval for o2 is
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where ¢y, ¢y satisfy
Xio_1(c1) = 0.05 and x3,_,(ca) = 0.95,

and ¢; = 3.325, ¢ = 16.92.



