18.05 Lecture 10 February 25, 2005

Review of Distribution Types

Discrete distribution for (X, Y): joint p.f. $f(x, y) = \mathbb{P}(X = x, Y = y)$ Continuous: joint p.d.f. $f(x, y) \ge 0$, $\int_{\mathbb{R}^2} f(x, y) dx dy = 1$ Joint c.d.f.: $F(x, y) = \mathbb{P}(X \le x, Y \le y)$ $F(x) = \mathbb{P}(X \le x) = \lim_{y \to \infty} F(x, y)$

In the continuous case: $F(x, y) = \mathbb{P}(X \le x, T \le y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(x, y) dx dy$. Marginal Distributions Given the joint distribution of (X, Y), the individual distributions of X, Y

are marginal distributions.

Discrete (X, Y): marginal probability function $f_1(x) = \mathbb{P}(X = x) = \sum_y \mathbb{P}(X = x, Y = y) = \sum_y f(x, y)$ In the table for the previous lecture, of probabilities for each point (x, y): Add up all values for y in the row x = 1 to determine $\mathbb{P}(X = 1)$

Continuous (X, Y): joint p.d.f. f(x, y); p.d.f. of X: $f_1(x) = \int_{-\infty}^{\infty} f(x, y) dy$ $F(x) = \mathbb{P}(X \le x) = \mathbb{P}(X \le x, Y \le \infty) = \int_{-\infty}^{x} \int_{-\infty}^{\infty} f(x, y) dy dx$

$$\begin{split} f_1(x) &= \frac{\partial F}{\partial x} = \int_{-\infty}^{\infty} f(x,y) dy \\ \text{Why not integrate over line?} \\ \mathbb{P}(\{X = x\}) &= \int_{-\infty}^{\infty} (\int_x^x f(x,y) dx) dy = 0 \\ \mathbb{P}(\text{of continuous random variable at a specific point}) = 0. \end{split}$$

Example: Joint p.d.f. $f(x,y) = \frac{21}{4}x^2y, x^2 \le y \le 1, 0 \le x \le 1; 0$ otherwise

What is the distribution of x? p.d.f. $f_1(x) = \int_{x^2}^1 \frac{21}{4} x^2 y dy = \frac{21}{4} x^2 \times \frac{1}{2} y^2 |_{x^2}^1 = \frac{21}{8} x^2 (1 - x^4), -1 \le x \le 1$

Discrete values for X, Y in tabular form:

		1	2	
	1	0.5	0	0.5
	2	0	0.5	0.5
1		0.5	0.5	

Note: If all entries had 0.25 values, the two variables would have the same marginal dist.

Independent X and Y:

Definition: X, Y independent if $\mathbb{P}(X \in A, Y \in B) = \mathbb{P}(X \in A)\mathbb{P}(Y \in B)$ Joint c.d.f. $F(x, y) = \mathbb{P}(X \leq x, Y \leq y) = \mathbb{P}(X \leq x)\mathbb{P}(Y \leq y) = F_1(x)F_2(y)$ (intersection of events) The joint c.d.f can be factored for independent random variables.

Implication: continuous (X, Y): joint p.d.f. f(x, y), marginal $f_1(x), f_2(y)$ $F(x, y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(x, y) dy dx = F_1(x) F_2(y) = \int_{-\infty}^{x} f_1(x) dx \times \int_{-\infty}^{y} f_2(y) dy$ Take $\frac{\partial^2}{\partial x \partial y}$ of both sides: $f(x, y) = f_1(x) f_2(y)$ Independent if joint density is a product.

Much simpler in the discrete case: Discrete (X, Y): $f(x, y) = \mathbb{P}(X = x, Y = y) = \mathbb{P}(X = x)\mathbb{P}(Y = y) = f_1(x)f_2(y)$ by definition.

Example: Joint p.d.f. $f(x, y) = kx^2y^2, x^2 + y^2 \le 1; 0$ otherwise X and Y are not independent variables. $f(x, y) \ne f_1(x)f_2(y)$ because of the circle condition.

 $\mathbb{P}(\text{square}) = 0 \neq \mathbb{P}(X \in \text{side}) \times \mathbb{P}(Y \in \text{side})$

Example: $f(x, y) = kx^2y^2, 0 \le x \le 1, 0 \le y \le 1; 0$ otherwise Can be written as a product, as they are independent: $f(x, y) = kx^2y^2I(0 \le x \le 1, 0 \le y \le 1) = k_1x^2I(0 \le x \le 1) \times k_2y^2I(0 \le y \le 1)$ Conditions on x and y can be separated.

Note: Indicator Notation $I(x \in A) = 1, x \in A; 0, x \notin A$

For the discrete case, given a table of values, you can tell independence:

	b_1	b_2	 b_m	
a_1	p_{11}	p_{12}	 p_{1m}	p_{1+}
a_2			 	p_{2+}
a_n	p_{n1}		 p_{nm}	p_{n+}
	p_{+1}	p_{+2}	 p_{+n}	

$$\begin{split} p_{ij} &= \mathbb{P}(X = a_i, Y = b_j) = \mathbb{P}(X = a_i) \mathbb{P}(Y = b_j) \\ p_{i+} &= \mathbb{P}(X = a_i) = \sum_{j=1}^m p_{ij} \\ p_{+j} &= \mathbb{P}(Y = b_j) = \sum_{i=1}^n p_{ij} \\ p_{ij} &= p_{i+} \times p_{+j}, \text{ for every i, j - all points in table.} \end{split}$$

** End of Lecture 10