18.05 Lecture 10

February 25, 2005

Review of Distribution Types

Discrete distribution for (X, Y): joint p.f. $f(x, y)=\mathbb{P}(X=x, Y=y)$
Continuous: joint p.d.f. $f(x, y) \geq 0, \int_{\mathbb{R}^{2}} f(x, y) d x d y=1$
Joint c.d.f.: $F(x, y)=\mathbb{P}(X \leq x, Y \leq y)$
$F(x)=\mathbb{P}(X \leq x)=\lim _{y \rightarrow \infty} F(x, y)$
In the continuous case: $F(x, y)=\mathbb{P}(X \leq x, T \leq y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f(x, y) d x d y$.

Marginal Distributions

Given the joint distribution of (X, Y), the individual distributions of X, Y are marginal distributions.

Discrete (X, Y): marginal probability function
$f_{1}(x)=\mathbb{P}(X=x)=\sum_{y} \mathbb{P}(X=x, Y=y)=\sum_{y} f(x, y)$
In the table for the previous lecture, of probabilities for each point (x, y):
Add up all values for y in the row $\mathrm{x}=1$ to determine $\mathbb{P}(X=1)$
Continuous (X, Y): joint p.d.f. $\mathrm{f}(\mathrm{x}, \mathrm{y})$; p.d.f. of X: $f_{1}(x)=\int_{-\infty}^{\infty} f(x, y) d y$ $F(x)=\mathbb{P}(X \leq x)=\mathbb{P}(X \leq x, Y \leq \infty)=\int_{-\infty}^{x} \int_{-\infty}^{\infty} f(x, y) d y d x$

$f_{1}(x)=\frac{\partial F}{\partial x}=\int_{-\infty}^{\infty} f(x, y) d y$
Why not integrate over line?
$\mathbb{P}(\{X=x\})=\int_{-\infty}^{\infty}\left(\int_{x}^{x} f(x, y) d x\right) d y=0$
$\mathbb{P}($ of continuous random variable at a specific point $)=0$.
Example: Joint p.d.f.
$f(x, y)=\frac{21}{4} x^{2} y, x^{2} \leq y \leq 1,0 \leq x \leq 1 ; 0$ otherwise

What is the distribution of x ?
p.d.f. $f_{1}(x)=\int_{x^{2}}^{1} \frac{21}{4} x^{2} y d y=\frac{21}{4} x^{2} \times\left.\frac{1}{2} y^{2}\right|_{x^{2}} ^{1}=\frac{21}{8} x^{2}\left(1-x^{4}\right),-1 \leq x \leq 1$

Discrete values for X, Y in tabular form:

	1	2	
1	0.5	0	0.5
2	0	0.5	0.5
	0.5	0.5	

Note: If all entries had 0.25 values, the two variables would have the same marginal dist.

Independent X and Y :

Definition: X , Y independent if $\mathbb{P}(X \in A, Y \in B)=\mathbb{P}(X \in A) \mathbb{P}(Y \in B)$
Joint c.d.f. $F(x, y)=\mathbb{P}(X \leq x, Y \leq y)=\mathbb{P}(X \leq x) \mathbb{P}(Y \leq y)=F_{1}(x) F_{2}(y)$ (intersection of events) The joint c.d.f can be factored for independent random variables.

Implication: continuous (X, Y): joint p.d.f. $\mathrm{f}(\mathrm{x}, \mathrm{y})$, marginal $f_{1}(x), f_{2}(y)$
$F(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f(x, y) d y d x=F_{1}(x) F_{2}(y)=\int_{-\infty}^{x} f_{1}(x) d x \times \int_{-\infty}^{y} f_{2}(y) d y$
Take $\frac{\partial^{2}}{\partial x \partial y}$ of both sides: $f(x, y)=f_{1}(x) f_{2}(y)$
Independent if joint density is a product.

Much simpler in the discrete case:
Discrete $(\mathrm{X}, \mathrm{Y}): f(x, y)=\mathbb{P}(X=x, Y=y)=\mathbb{P}(X=x) \mathbb{P}(Y=y)=f_{1}(x) f_{2}(y)$ by definition.
Example: Joint p.d.f.
$f(x, y)=k x^{2} y^{2}, x^{2}+y^{2} \leq 1 ; 0$ otherwise
X and Y are not independent variables.
$f(x, y) \neq f_{1}(x) f_{2}(y)$ because of the circle condition.

$$
\mathbb{P}(\text { square })=0 \neq \mathbb{P}(X \in \text { side }) \times \mathbb{P}(Y \in \text { side })
$$

Example: $f(x, y)=k x^{2} y^{2}, 0 \leq x \leq 1,0 \leq y \leq 1 ; 0$ otherwise
Can be written as a product, as they are independent:
$f(x, y)=k x^{2} y^{2} I(0 \leq x \leq 1,0 \leq y \leq 1)=k_{1} x^{2} I(0 \leq x \leq 1) \times k_{2} y^{2} I(0 \leq y \leq 1)$
Conditions on x and y can be separated.
Note: Indicator Notation
$I(x \in A)=1, x \in A ; 0, x \notin A$
For the discrete case, given a table of values, you can tell independence:

	b_{1}	b_{2}	\ldots	b_{m}	
a_{1}	p_{11}	p_{12}	\ldots	$p_{1 m}$	p_{1+}
a_{2}	\ldots	\ldots	\ldots	\ldots	p_{2+}
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
a_{n}	$p_{n 1}$	\ldots	\ldots	$p_{n m}$	p_{n+}
	p_{+1}	p_{+2}	\ldots	p_{+n}	

$$
\begin{aligned}
& p_{i j}=\mathbb{P}\left(X=a_{i}, Y=b_{j}\right)=\mathbb{P}\left(X=a_{i}\right) \mathbb{P}\left(Y=b_{j}\right) \\
& p_{i+}=\mathbb{P}\left(X=a_{i}\right)=\sum_{j=1}^{m} p_{i j} \\
& p_{+j}=\mathbb{P}\left(Y=b_{j}\right)=\sum_{i=1}^{n} p_{i j} \\
& p_{i j}=p_{i+} \times p_{+j}, \text { for every } \mathrm{i}, \mathrm{j} \text { - all points in table. }
\end{aligned}
$$

** End of Lecture 10

