18.05 Lecture 14

March 7, 2005

Linear transformations of random vectors: $\vec{Y}=r(\vec{X})$

$$
\left|\begin{array}{c}
y_{1} \\
\cdot \\
\cdot \\
\cdot \\
y_{n}
\end{array}\right|=\mathrm{A}\left|\begin{array}{c}
x_{1} \\
\cdot \\
\cdot \\
\cdot \\
x_{n}
\end{array}\right|
$$

A - n by n matrix, $\vec{X}=A^{-1} \vec{Y}$ if $\operatorname{det} \mathrm{A} \neq 0 \rightarrow A^{-1}=B$
$x_{1}=b_{1} y_{1}+\ldots+b_{1 n} y_{n}$
$\mathrm{J}=\mathrm{Jacobian}=\operatorname{det}\left|\begin{array}{cc}b_{11} \ldots & b_{1 n} \\ \ldots & \ldots \\ b_{n 1} \ldots & b_{n n}\end{array}\right|$ where $b_{i}^{\prime} s$ are partial derivatives of s_{i} with respect to y_{i} $\operatorname{det} \mathrm{B}=\operatorname{det} A^{-1}=\frac{1}{\operatorname{det} A}$ p.d.f. of Y:

$$
g(y)=\frac{1}{|\operatorname{det} A|} f\left(A^{-1} \vec{x}\right)
$$

Example: $\vec{X}=\left(x_{1}, x_{2}\right)$ with p.d.f.:

$$
f\left(x_{1}, x_{2}\right)=\left\{c x_{1} x_{2}, 0 \leq x_{1} \leq 1,0 \leq x_{2} \leq 1 ; 0 \text { otherwise }\right\}
$$

To make integral equal $1, \mathrm{c}=4$.

$$
Y_{1}=X_{1}+2 X_{2}, Y_{2}=2 X_{1}+X_{2} ; A=\left|\begin{array}{cc}
1 & 2 \\
2 & 1
\end{array}\right| \rightarrow \operatorname{det}(A)=-3
$$

Calculate the inverse functions:

$$
X_{1}=-\frac{1}{3}\left(Y_{1}-2 Y_{2}\right), X_{2}=-\frac{1}{3}\left(Y_{2}-2 Y_{1}\right)
$$

New joint function:

$$
\begin{aligned}
& \quad g\left(y_{1}, y_{2}\right)=\left\{\frac{1}{3} \times 4\left(-\frac{1}{3}\left(y_{1}-2 y_{2}\right)\right)\left(-\frac{1}{3}\left(y_{2}-2 y_{1}\right)\right)\right. \\
& \text { for } 0 \leq-\frac{1}{3}\left(y_{1}-2 y_{2}\right) \leq 1 \text { and } 0 \leq-\frac{1}{3}\left(y_{2}-2 y_{1}\right) \leq 1 \\
& 0, \text { otherwise }\}
\end{aligned}
$$

Simplified:

$$
\begin{gathered}
f\left(y_{1}, y_{2}\right)=\left\{\frac{4}{27}\left(y_{1}-2 y_{2}\right)\left(y_{2}-2 y_{1}\right) \text { for }-3 \leq y_{1}-2 y_{2} \leq 0,-3 \leq y_{2}-2 y_{1} \leq 0\right. \\
0, \text { otherwise }\}
\end{gathered}
$$

Linear transformation distorts the graph from a square to a parallelogram.
Note: From Lecture 13, when $\min ()$ and $\max ()$ functions were introduced, such functions describe engines in series (min) and parallel (max).
When in series, the length of time a device will function is equal to the minimum life in all the engines (weakest link).
When in parallel, this is avoided as a device can function as long as one engine functions.
Review of Problems from PSet 4 for the upcoming exam: (see solutions for more details)
Problem 1-f(x)=\{ce $e^{-2 x}$ for $x \geq 0 ; 0$ otherwise $\}$
Find c by integrating over the range and setting equal to 1 :

$$
1=\int_{0}^{\infty} c e^{-2 x} d x=-\left.\frac{1}{2} c e^{-2 x}\right|_{0} ^{\infty}=-\frac{c}{2} \times-1=1 \rightarrow c=2
$$

$\mathbb{P}(1 \leq X \leq 2)=\int_{1}^{2} 2 e^{-2 x} d x=e^{-2}-e^{-4}$
Problem 3-X $\sim U[0,5], Y=0$ if $X \leq 1 ; Y=X$ if $1 \leq X \leq 3 ; Y=5$ if $3<X \leq 5$ Draw the c.d.f. of Y, showing $\mathbb{P}(Y \leq y)$

Graph of Y vs. X, not the c.d.f.
Write in terms of $\mathrm{X} \rightarrow \mathbb{P}(X-$? $)$

Cumulative Distribution Function

Cases:
$y<0 \rightarrow \mathbb{P}(Y \leq y)=\mathbb{P}(\emptyset)=0$
$0 \leq y \leq 1 \rightarrow \mathbb{P}(Y \leq y)=\mathbb{P}(0 \leq X \leq 1)=1 / 5$
$1<y \leq 3 \rightarrow \mathbb{P}(Y \leq y)=\mathbb{P}(X \leq y)=y / 5$
$3<y \leq 5 \rightarrow \mathbb{P}(Y \leq y)=\mathbb{P}(X \leq 3)=3 / 5$
$y>5 \rightarrow \mathbb{P}(Y \leq 5)=\mathbb{P}(X \geq 5)=1$
These values over X from 0 to ∞ give its c.d.f.
Problem $8-0 \leq x \leq 3,0 \leq y \leq 4$
c.d.f. $F(x, y)=\frac{1}{156} x y\left(x^{2}+y\right)$
$\mathbb{P}(1 \leq x \leq 2,1 \leq y \leq 2)=F(2,2)-F(2,1)-F(1,2)+F(1,1)$

Rectangle probability algorithm.
or, you can find the p.d.f. and integrate (more complicated):
c.d.f. of Y : $\mathbb{P}(Y \leq y)=\mathbb{P}(X \leq \infty, Y \leq y)=\mathbb{P}(X \leq 3, Y \leq y)$
(based on the domain of the joint c.d.f.)
$\mathbb{P}(Y \leq y)=\frac{1}{156} 3 y(9+y)$ for $0 \leq y \leq 4$
Must also mention: $y \leq 0, \mathbb{P}(Y \leq y)=0 ; y \geq 4, \mathbb{P}(Y \leq y)=1$
Find the joint p.d.f. of x and y :

$$
f(x, y)=\frac{\partial^{2} F(x, y)}{\partial x \partial y}=\left\{\frac{1}{156}\left(3 x^{2}+2 y\right), 0 \leq x \leq 3,0 \leq y \leq 4 ; 0 \text { otherwise }\right\}
$$

$$
\mathbb{P}(Y \leq X)=\int_{y \leq x} f(x, y) d x d y=\int_{0}^{3} \int_{0}^{x} \frac{1}{156}\left(3 x^{2}+2 y\right) d y d x=\frac{93}{208}
$$

[^0]
[^0]: ** End of Lecture 14

