18.05 Lecture 15

March 9, 2005

Review for Exam 1

Practice Test 1:

1. In the set of all green envelopes, only 1 card can be green.

Similarly, in the set of red envelopes, only 1 card can be red.
Sample Space $=10$! ways to put cards into envelopes, treating each separately.
You can't have two of the same color matching, as that would be 4 total.
Degrees of Freedom $=$ which envelope to choose (5×5) and which card to select (5×5)
Then, arrange the red in green envelopes (4!), and the green in red envelopes (4!)

$$
\mathbb{P}=\frac{5^{4}(4!)^{2}}{10!}
$$

2. Bayes formula:

$$
\mathbb{P}(\text { fair } \mid H H H)=\frac{\mathbb{P}(H H H \mid \text { fair }) \mathbb{P}(\text { fair })}{\mathbb{P}(H H H \mid \text { fair }) \mathbb{P}(\text { fair })+\mathbb{P}(H H H \mid \text { unfair }) \mathbb{P}(\text { unfair })}=\frac{0.5^{3} \times 0.5}{0.5^{3} \times 0.5+1 \times 0.5}
$$

3. $f_{1}(x)=2 x I(0<x<1), f_{2}(x)=3 x^{2} I(0<x<1)$
$Y=1,2 \rightarrow \mathbb{P}(Y=1)=0.5, \mathbb{P}(Y=2)=0.5$
$f(x, y)=0.5 \times I(y=1) \times 2 x I(0<x<1)+0.5 \times I(y=2) \times 3 x^{2} I(0<x<1)$
$f(x)=0.5 \times 2 x I(0<x<1)+0.5 \times 3 x^{2} I(0<x<1)=\left(x+1.5 x^{2}\right) I(0<x<1)$

$$
\mathbb{P}\left(Y=1 \left\lvert\, X=\frac{1}{4}\right.\right)=\frac{f_{1}\left(\frac{1}{4}\right) \times \frac{1}{2}}{f_{1}\left(\frac{1}{4}\right) \times \frac{1}{2}+f_{2}\left(\frac{1}{4}\right) \times \frac{1}{2}}=\frac{2 \times 1 / 4 \times 1 / 2}{2 \times 1 / 4 \times 1 / 2+3 \times 1 / 16 \times 1 / 2}
$$

4. $f(z)=2 e^{-2 z} I(Z>0), T=1 / Z$ we know $t>0$ $\mathbb{P}(T \leq t)=\mathbb{P}(1 / Z \leq t)=\mathbb{P}(Z \geq 1 / t)=$

$$
=\int_{1 / t}^{\infty} 2 e^{-2 z} d z, \text { p.d.f. } f(t)=\frac{\partial F(T \leq t)}{\partial t}=-2 e^{-2 / t} \times-\frac{1}{t^{2}}=\frac{2}{t^{2}} e^{-2 / t}, t>0 \text { (0 otherwise) }
$$

$T=r(Z), Z=s(T)=\frac{1}{T} \rightarrow g(t)=\left|s^{\prime}(t)\right| f(1 / t)$ by change of variable.
5. $f(x)=e^{-x} I(x>0)$

Joint p.d.f. $f(x, y)=e^{-x} I(x>0) e^{-y} I(y>0)=e^{-(x+y)} I(x>0, y>0)$

$$
U=\frac{X}{X+Y} ; V=X+Y
$$

Step 1 - Check values for random variables:
$(0<V<\infty),(0<U<1)$
Step 2 - Account for change of variables:
$X=U V ; Y=V-U V=V(1-U)$
Jacobian:

$$
J=\operatorname{det}\left|\begin{array}{ll}
\frac{\partial X}{\partial U} & \frac{\partial X}{\partial V} \\
\frac{\partial Y}{\partial U} & \frac{\partial Y}{\partial V}
\end{array}\right|=\left|\begin{array}{cc}
\mathrm{V} & \mathrm{U} \\
-\mathrm{V} & 1-\mathrm{U}
\end{array}\right|=V(1-U)+U V=V
$$

$g(u, v)=f(u v, v(1-u)) \times|v| I(u v>0, v(1-u)>0)=e^{-v} v I(v>0,0<u<1)$
Problem Set \#5 (practice pset, see solutions for details):
p. $175 \# 4$
$f\left(x_{1}, x_{2}\right)=x_{1}+x_{2} I\left(0<x_{1}<1,0<x_{2}<1\right)$
$Y=X_{1} X_{2}(0<Y<1)$
First look at the c.d.f.: $\mathbb{P}(Y \leq y)=\mathbb{P}\left(X_{1} X_{2} \leq y\right)=\int_{\left\{x_{1} x_{2} \leq y\right\}=\left\{x_{2} \leq y / x_{1}\right\}} f\left(x_{1}, x_{2}\right) d x_{1} d x_{2}$

Due to the complexity of the limits, you can integrate the area in pieces, or you can find the complement, which is easier with only 1 set of limits.

$$
\begin{gathered}
f\left(x_{1}, x_{2}\right)=1-\int_{\left\{x_{1} x_{2}>y\right\}}=1-\int_{y}^{1} \int_{y / x_{1}}^{1}\left(x_{1}+x_{2}\right) d x_{2} d x_{1}=1-(1-y)^{2}=2 y-y^{2} \\
f\left(x_{1}, x_{2}\right)=0 \text { for } y<0 ; 2 y-y^{2} \text { for } 0<y<1 ; 1 \text { for } y>1
\end{gathered}
$$

p.d.f.:

$$
g(y)=\left\{\frac{\partial \mathbb{P}(Y \leq y)}{\partial y}=2(1-y), y \in(0,1) ; 0, \text { otherwise. }\right\}
$$

p. $164 \# 3$
$f(x)=\left\{\frac{x}{2}, 0 \leq x \leq 2 ; 0\right.$ otherwise $\}$
$Y=X(2-X)$, find the p.d.f. of Y .
First, find the limits of Y, notice that it is not a one-to-one function.

Y varies from 0 to 1 as X varies from 0 to 2 .
Look at the c.d.f.:

$$
\begin{aligned}
& \mathbb{P}(Y \leq y)=\mathbb{P}(X(2-X) \leq y)=\mathbb{P}\left(X^{2}-2 X+1 \geq 1-y\right)=\mathbb{P}\left((1-X)^{2} \geq 1-y\right)= \\
& \quad=\mathbb{P}(|1-X| \geq \sqrt{1-y})=\mathbb{P}(1-X \geq \sqrt{1-y} \text { or } 1-X \leq-\sqrt{1-y})=
\end{aligned}
$$

$$
\begin{gathered}
=\mathbb{P}(X \leq 1-\sqrt{1-y} \text { or } X \geq 1+\sqrt{1-y})= \\
=\mathbb{P}(0 \leq X \leq 1-\sqrt{1-y})+\mathbb{P}(1+\sqrt{1-y} \leq X \leq 2)= \\
=\left\{\int_{0}^{1-\sqrt{1-y}} \frac{x}{2} d x+\int_{1+\sqrt{1-y}}^{2} \frac{x}{2} d x=1-\sqrt{1-y}, 0 \leq y \leq 1 ; 0, y<0 ; 1, y>1\right\}
\end{gathered}
$$

Take derivative to get the p.d.f.:

$$
g(y)=\frac{1}{4 \sqrt{1-y}}, 0 \leq y \leq 1 ; 0, \text { otherwise. }
$$

** End of Lecture 15

