18.05 Lecture 16

March 14, 2005

Expectation of a random variable.

X - random variable
roll a die - average value $=3.5$
flip a coin - average value $=0.5$ if heads $=0$ and tails $=1$
Definition: If X is discrete, p.f. $f(x)=$ p.f. of X,
Then, expectation of X is $\mathbb{E} X=\sum x f(x)$
For a die:

	1	2	3	4	5	6
$\mathrm{f}(\mathrm{x})$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$

$\mathbb{E}=1 \times \frac{1}{6}+\ldots+6 \times \frac{1}{6}=3.5$
Another way to think about it:

Consider each p_{i} as a weight on a horizontal bar.
Expectation $=$ center of gravity on the bar.

If X - continuous, $f(x)=$ p.d.f. then $\mathbb{E}(X)=\int x f(x) d x$
Example: X - uniform on $[0,1], \mathbb{E}(X)=\int_{0}^{1}(x \times 1) d x=1 / 2$
Consider $Y=r(x)$, then $\mathbb{E} Y=\sum_{x} r(x) f(x)$ or $\int r(x) f(x) d x$
p.f. $g(y)=\sum_{\{x: y=r(x)\}} f(x)$
$\mathbb{E}(Y)=\sum_{y} y g(y)=\sum_{y} y \sum_{\{x: y=r(x)\}} f(x)=\sum_{y} \sum_{\{x: r(x)=y\}} y f(x)=\sum_{y} \sum_{\{x: r(x)=y\}} r(x) f(x)$
then, can drop y since no reference to y :
$\mathbb{E}(Y)=\sum_{x} r(x) f(x)$
Example: X - uniform on $[0,1]$
$\mathbb{E} X^{2}=\int_{0}^{1} X^{2} \times 1 d x=1 / 3$
X_{1}, \ldots, X_{n} - random variables with joint p.f. or p.d.f. $f\left(x_{1} \ldots x_{n}\right)$
$\mathbb{E}\left(r\left(X_{1}, \ldots, X_{n}\right)\right)=\int r\left(x_{1}, \ldots, x_{n}\right) f\left(x_{1}, \ldots, x_{n}\right) d x_{1} \ldots d x_{n}$

Example: Cauchy distribution

p.d.f.:

$$
f(x)=\frac{1}{\pi\left(1+x^{2}\right)}
$$

Check validity of integration:

$$
\int_{-\infty}^{\infty} \frac{1}{\pi\left(1+x^{2}\right)} d x=\left.\frac{1}{\pi} \tan ^{-1}(x)\right|_{-\infty} ^{\infty}=1
$$

But, the expectation is undefined:

$$
\mathbb{E}|X|=\int_{-\infty}^{\infty}|x| \frac{1}{\pi\left(1+x^{2}\right)} d x=2 \int_{0}^{\infty} \frac{x}{\pi\left(1+x^{2}\right)}=\left.\frac{1}{2 \pi} \ln \left(1+x^{2}\right)\right|_{0} ^{\infty}=\infty
$$

Note: Expectation of X is defined if $\mathbb{E}|X|<\infty$
Properties of Expectation:

1) $\mathbb{E}(a X+b)=a \mathbb{E}(X)+b$

Proof: $\mathbb{E}(a X+b)=\int(a X+b) f(x) d x=a \int x f(x) d x+b \int f(x) d x=a \mathbb{E}(X)+b$
2) $\mathbb{E}\left(X_{1}+X_{2}+\ldots+X_{n}\right)=\mathbb{E} X_{1}+\mathbb{E} X_{2}+\ldots+\mathbb{E} X_{n}$

Proof: $\mathbb{E}\left(X_{1}+X_{2}\right)=\iint\left(x_{1}+x_{2}\right) f\left(x_{1}, x_{2}\right) d x_{1} d x_{2}=$
$=\iint x_{1} f\left(x_{1}, x_{2}\right) d x_{1} d x_{2}+\iint x_{2} f\left(x_{1}, x_{2}\right) d x_{1} d x_{2}=$
$=\int x_{1} \int f\left(x_{1}, x_{2}\right) d x_{2} d x_{1}+\int x_{2} \int f\left(x_{1}, x_{2}\right) d x_{1} d x_{2}=$
$=\int x_{1} f_{1}\left(x_{1}\right) d x_{1}+\int x_{2} f_{2}\left(x_{2}\right) d x_{2}=\mathbb{E} X_{1}+\mathbb{E} X_{2}$
Example: Toss a coin n times, "T" on i: $X_{i}=1$; "H" on i: $X_{i}=0$.
Number of tails $=X_{1}+X_{2}+\ldots+X_{n}$
$\mathbb{E}($ number of tails $)=\mathbb{E}\left(X_{1}+X_{2}+\ldots+X_{n}\right)=\mathbb{E} X_{1}+\mathbb{E} X_{2}+\ldots+\mathbb{E} X_{n}$
$\mathbb{E} X_{i}=1 \times \mathbb{P}\left(X_{i}=1\right)+0 \times \mathbb{P}\left(X_{i}=0\right)=p$, probability of tails
Expectation $=\mathrm{p}+\mathrm{p}+\ldots+\mathrm{p}=\mathrm{np}$
This is natural, because you expect $n p$ of n for p probability.
$\mathrm{Y}=$ Number of tails, $\mathbb{P}(Y=k)=\binom{n}{k} p^{k}(1-p)^{n-k}$
$\mathbb{E}(Y)=\sum_{k=0}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k}=n p$
More difficult to see though definition, better to use sum of expectations method.
Two functions, h and g , such that $h(x) \leq g(x)$, for all $x \in \mathbb{R}$
Then, $\mathbb{E}(h(X)) \leq \mathbb{E}(g(X)) \rightarrow \mathbb{E}(g(X)-h(X)) \geq 0$
$\int(g(x)-h(x)) \times f(x) d x \geq 0$
You know that $f(x) \geq 0$, therefore $g(x)-h(x)$ must also be ≥ 0
If $a \leq X \leq b \rightarrow a \leq \mathbb{E}(X) \leq \mathbb{E}(b) \leq b$
$\mathbb{E}(I(X \in A))=1 \times \mathbb{P}(X \in A)+0 \times \mathbb{P}(X \notin A)$, for A being a set on \mathbb{R}
$Y=I(X \in A)=\{1$, with probability $\mathbb{P}(X \in A) ; 0$, with probability $\mathbb{P}(X \notin A)=1-\mathbb{P}(X \in A)$ $\mathbb{E}(I(X \in A))=\mathbb{P}(X \in A)\}$
In this case, think of the expectation as an indicator as to whether the event happens.

Chebyshev's Inequality

Suppose that $X \geq 0$, consider $t>0$, then:

$$
\mathbb{P}(X \geq t) \leq \frac{1}{t} \mathbb{E}(X)
$$

Proof: $\mathbb{E}(X)=\mathbb{E}(X) I(X<t)+\mathbb{E}(X) I(X \geq t) \geq \mathbb{E}(X) I(X \geq t) \geq \mathbb{E}(t) I(X \geq t)=t \mathbb{P}(X \geq t)$
** End of Lecture 16

