18.05 Lecture 18

March 18, 2005

Law of Large Numbers.

X_{1}, \ldots, X_{n} - i.i.d. (independent, identically distributed)

$$
\bar{x}=\frac{X_{1}+\ldots+X_{n}}{n} \rightarrow \text { as } n \rightarrow \infty, \mathbb{E} X_{1}
$$

Can be used for functions of random variables as well:
Consider $Y_{i}=r\left(X_{1}\right)$ - i.i.d.

$$
\bar{Y}=\frac{r\left(X_{1}\right)+\ldots+r\left(X_{n}\right)}{n} \rightarrow \text { as } n \rightarrow \infty, \mathbb{E} Y_{1}=\mathbb{E} r\left(X_{1}\right)
$$

Relevance for Statistics: Data points x_{i}, as $n \rightarrow \infty$,
The average converges to the unknown expected value of the distribution which often contains a lot (or all) of information about the distribution.

Example: Conduct a poll for 2 candidates:
$p \in[0,1]$ is what we're looking for
Poll: choose n people randomly: X_{1}, \ldots, X_{n}
$\mathbb{P}\left(X_{i}=1\right)=p$
$\mathbb{P}\left(X_{i}=0\right)=1-p$

$$
\mathbb{E} X_{1}=1(p)+0(1-p)=p \leftarrow \frac{X_{1}+\ldots+X_{n}}{n} \text { as } n \rightarrow \infty
$$

Other characteristics of distribution:
Moments of the distribution: for each integer, $k \geq 1$, kth moment $\mathbb{E} X^{k}$
kth moment is defined only if $\mathbb{E}|X|^{k}<\infty$
Moment generating function: consider a parameter $y \in \mathbb{R}$.
and define $\phi(t)=\mathbb{E} e^{t X}$ where X is a random variable.
$\phi(t)-$ m.g.f. of X

$$
\begin{gathered}
\text { Taylor series of } \phi(t)=\sum_{k=0}^{\infty} \frac{\phi^{k}(0)}{k!} t^{k} \\
\text { Taylor series of } \mathbb{E} e^{t X}=\mathbb{E} \sum_{k=0}^{\infty} \frac{(t X)^{k}}{k!}=\sum_{k=0}^{\infty} \frac{t^{k}}{k!} \mathbb{E} X^{k}
\end{gathered}
$$

$\mathbb{E} X^{k}=\phi^{k}(0)$
Example: Exponential distribution $E(\alpha)$ with p.d.f. $f(x)=\left\{\alpha e^{-\alpha x}, x \geq 0 ; 0, x<0\right\}$
Compute the moments:
$\mathbb{E} X^{k}=\int_{0}^{\infty} x^{k} \alpha e^{-\alpha x} d x$ is a difficult integral.
Use the m.g.f.:

$$
\phi(t)=\mathbb{E} e^{t X}=\int_{0}^{\infty} e^{t x} \alpha e^{-\alpha x} d x=\int_{0}^{\infty} \alpha e^{(t-\alpha) x} d x
$$

(defined if $t<\infty$ to keep the integral finite)

$$
=\left.\frac{\alpha e^{(t-\alpha) x}}{t-\alpha}\right|_{0} ^{\infty}=1-\frac{\alpha}{t-\alpha}=\frac{\alpha}{\alpha-t}=\frac{1}{1-t / \alpha}=\sum_{k=0}^{\infty}\left(\frac{t}{\alpha}\right)^{k}=\sum \frac{t^{k}}{k!} \mathbb{E} X^{k}
$$

Recall the formula for geometric series:

$$
\begin{gathered}
\sum_{k=0}^{\infty} x^{k}=\frac{1}{1-x} \text { when } \mathrm{k}<1 \\
\frac{1}{\alpha^{k}}=\frac{\mathbb{E} x^{k}}{k!} \rightarrow \mathbb{E} x^{k}=\frac{k!}{\alpha^{k}}
\end{gathered}
$$

The moment generating function completely describes the distribution.
$\mathbb{E} x^{k}=\int x^{k} f(x) d x$
If $f(x)$ unknown, get a system of equations for $f \rightarrow$ unique distribution for a set of moments.
M.g.f. uniquely determines the distribution.
X_{1}, X_{2} from $\mathbb{E}(\alpha), Y=X_{1}+X_{2}$.
To find distribution of sum, we could use the convolution formula, but, it is easier to find the m.g.f. of sum Y :

$$
\mathbb{E} e^{t Y}=\mathbb{E} e^{t\left(X_{1}+X_{2}\right)}=\mathbb{E} e^{t X_{1}} e^{t X_{2}}=\mathbb{E} e^{t X_{1}} \mathbb{E} e^{t X_{2}}
$$

Moment generating function of each:

$$
\frac{\alpha}{\alpha-t}
$$

For the sum:

$$
\left(\frac{\alpha}{\alpha-t}\right)^{2}
$$

Consider the exponential distribution:

$$
E(\alpha) \sim X_{1}, \mathbb{E} X=\frac{1}{\alpha}, f(x)=\left\{\alpha e^{-\alpha x}, x \geq 0 ; 0, x<0\right\}
$$

This distribution describes the life span of quality products.
$\alpha=\frac{1}{\mathbb{E} X}$, if α small, life span is large.

Median:

$m \in \mathbb{R}$ such that:

$$
\mathbb{P}(X \geq m) \geq \frac{1}{2}, \mathbb{P}(X \leq m) \geq \frac{1}{2}
$$

(There are times in discrete distributions when the probability cannot ever equal exactly 0.5) When you exclude the point itself: $\mathbb{P}(X>m) \leq \frac{1}{2}$
$\mathbb{P}(X \leq m)+\mathbb{P}(X>m)=1$
The median is not always uniquely defined. Can be an interval where no point masses occur.

For a continuous distribution, you can define $\mathbb{P}>$ or $<m$ as equal to $\frac{1}{2}$.
But, there are still cases in which the median is not unique!

For a continuous distribution:

$$
\mathbb{P}(X \leq m)=\mathbb{P}(X \geq m)=\frac{1}{2}
$$

The average measures center of gravity, and is skewed easily by outliers.

The average will be pulled towards the tail of a p.d.f. relative to the median.
Mean: find $a \in \mathbb{R}$ such that $\mathbb{E}(X-a)^{2}$ is minimized over a.

$$
\frac{\partial}{\partial a} \mathbb{E}(X-a)^{2}=-\mathbb{E} 2(X-a)=0, \mathbb{E} X-a=0 \rightarrow a=\mathbb{E} X
$$

expectation - squared deviation is minimized.

Median: find $a \in \mathbb{R}$ such that $\mathbb{E}|X-a|$ is minimized.
$\mathbb{E}|X-a| \geq \mathbb{E}|X-m|$, where m - median
$\mathbb{E}(|X-a|-|X-m|) \geq 0$
$\int(|x-a|-|x-m|) f(x) d x$

Need to look at each part:

1) $a-x-(m-x)=a-m, x \leq m$
2) $x-a-(x-m)=m-a, x \geq m$
3) $a-x-(x+m)=a+m-2 x, m \leq x \leq a$

The integral can now be simplified:

$$
\begin{aligned}
& \int(|x-a|-|x-m|) f(x) d x \geq \int_{-\infty}^{m}(a-m) f(x) d x+\int_{m}^{\infty}(m-a) f(x) d x= \\
= & (a-m)\left(\int_{-\infty}^{m} f(x) d x-\int_{m}^{\infty} f(x) d x\right)=(a-m)(\mathbb{P}(X \leq m)-\mathbb{P}(X>m)) \geq 0
\end{aligned}
$$

As both $(a-m)$ and the difference in probabilities are positive.
The absolute deviation is minimized by the median.
** End of Lecture 18

