18.05 Lecture 19

March 28, 2005

Covariance and Correlation

Consider 2 random variables X, Y
$\sigma_{x}^{2}=\operatorname{Var}(X), \sigma_{y}^{2}=\operatorname{Var}(Y)$
Definition 1:
Covariance of X and Y is defined as:

$$
\operatorname{Cov}(X, Y)=\mathbb{E}(X-\mathbb{E} X)(Y-\mathbb{E} Y)
$$

Positive when both high or low in deviation.
Definition 2:
Correlation of X and Y is defined as:

$$
\rho(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sigma_{x} \sigma_{y}}=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}
$$

The scaling is thus removed from the covariance.
$\operatorname{Cov}(X, Y)=\mathbb{E}(X Y-X \mathbb{E} Y-Y \mathbb{E} X+\mathbb{E} X \mathbb{E} Y)=$
$=\mathbb{E}(X Y)-\mathbb{E} X \mathbb{E} Y-\mathbb{E} Y \mathbb{E} X+\mathbb{E} X \mathbb{E} Y=\mathbb{E}(X Y)-\mathbb{E} X \mathbb{E} Y$

$$
\operatorname{Cov}(X, Y)=\mathbb{E}(X Y)-\mathbb{E} X \mathbb{E} Y
$$

Property 1:
If the variables are independent, $\operatorname{Cov}(X, Y)=0$ (not correlated)
$\operatorname{Cov}(X, Y)=\mathbb{E}(X Y)-\mathbb{E} X \mathbb{E} Y=\mathbb{E} X \mathbb{E} Y-\mathbb{E} X \mathbb{E} Y=0$
Example: X takes values $\{-1,0,1\}$ with equal probabilities $\left\{\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right\}$
$Y=X^{2}$
X and Y are dependent, but they are uncorrelated.
$\operatorname{Cov}(X, Y)=\mathbb{E} X^{3}-\mathbb{E} X \mathbb{E} X^{2}$
but, $\mathbb{E} X=0$, and $\mathbb{E} X^{3}=\mathbb{E} X=0$
Covariance is 0 , but they are still dependent.
Also - Correlation is always between -1 and 1 .

Cauchy-Schwartz Inequality:

$(\mathbb{E} X Y)^{2} \leq \mathbb{E} X^{2} \mathbb{E} Y^{2}$
Also known as the dot-product inequality:
$|(\vec{v}, \vec{u})| \leq \sqrt{|\vec{v}||\vec{u}|}$
To prove for expectations:

$$
\phi(t)=\mathbb{E}(t X+Y)^{2}=t^{2} \mathbb{E} X^{2}+2 t \mathbb{E} X Y+\mathbb{E} Y^{2} \geq 0
$$

Quadratic $\mathrm{f}(\mathrm{t})$, parabola always non-negative if no roots:
$\left.D=(\mathbb{E} X Y)^{2}-\mathbb{E} X^{2} \mathbb{E} Y^{2} \leq 0\right)$ (discriminant)
Equality is possible if $\phi(t)=0$ for some point t .
$\phi(t)=\mathbb{E}(t X+Y)^{2}=0$, if $\mathrm{tX}+\mathrm{Y}=0, \mathrm{Y}=-\mathrm{tX}$, linear dependence.
$(\operatorname{Cov}(X, Y))^{2}=(\mathbb{E}(X-\mathbb{E} X)(Y-\mathbb{E} Y))^{2} \leq \mathbb{E}(X-\mathbb{E} X)^{2} \mathbb{E}(Y-\mathbb{E} Y)^{2}=\sigma_{x}^{2} \sigma_{y}^{2}$
$|\operatorname{Cov}(X, Y)| \leq \sigma_{x} \sigma_{y}$,

$$
|\rho(X, Y)|=\frac{|\operatorname{Cov}(X, Y)|}{\sigma_{x} \sigma_{y}} \leq 1
$$

So, the correlation is between -1 and 1 .
Property 2:

$$
-1 \leq \rho(X, Y) \leq 1
$$

When is the correlation equal to $1,-1$?
$|\rho(X, Y)|=1$ only when $Y-\mathbb{E} Y=c(X-\mathbb{E} X)$,
or $Y=a X+b$ for some constants a, b.
(Occurs when your data points are in a straight line.)
If $Y=a X+b$:

$$
\rho(X, Y)=\frac{\mathbb{E}\left(a X^{2}+b X\right)-\mathbb{E} X \mathbb{E}(a X+b)}{\sqrt{\operatorname{Var}(X) \times a^{2} \operatorname{Var}(X)}}=\frac{a \operatorname{Var}(X)}{|a| \operatorname{Var}(X)}=\frac{a}{|a|}=\operatorname{sign}(a)
$$

If a is positive, then the correlation $=1, \mathrm{X}$ and Y are completely positively correlated.
If a is negative, then correlation $=-1, \mathrm{X}$ and Y are completely negatively correlated.

Looking at the distribution of points on $Y=X^{2}$, there is NO linear dependence, correlation $=0$. However, if $Y=X^{2}+c X$, then there is some linear dependence introduced in the skewed graph.

Property 3 :

$$
\begin{gathered}
\operatorname{Var}(X+Y)=\mathbb{E}(X+Y-\mathbb{E} X-\mathbb{E} Y)^{2}=\mathbb{E}((X-\mathbb{E} X)+(Y-\mathbb{E} Y))^{2}= \\
\mathbb{E}(X-\mathbb{E} X)^{2}-2 \mathbb{E}(X-\mathbb{E} X)\left(\mathbb{E}(Y-\mathbb{E} Y)+\mathbb{E}(Y-\mathbb{E} Y)^{2}=\operatorname{Var}(X)+\operatorname{Var}(Y)-2 \operatorname{Cov}(X, Y)\right.
\end{gathered}
$$

Conditional Expectation:
(X, Y) - random pair.
What is the average value of Y given that you know X ?
$\mathrm{f}(\mathrm{x}, \mathrm{y})$ - joint p.d.f. or p.f. then $f(y \mid x)$ - conditional p.d.f. or p.f.
Conditional expectation:

$$
\mathbb{E}(Y \mid X=x)=\int y f(y \mid x) d y \text { or } \sum y f(y \mid x)
$$

$\mathbb{E}(Y \mid X)=h(X)=\int y f(y \mid X) d y$ - function of X, still a random variable.
Property 4:

$$
\mathbb{E}(\mathbb{E}(Y \mid X))=\mathbb{E} Y
$$

Proof:
$\mathbb{E}(\mathbb{E}(Y \mid X))=\mathbb{E}(h(X))=\int f(x) f(x) d x=$
$=\int\left(\int y f(y \mid x) d y\right) f(x) d x=\iint y f(y \mid x) f(x) d y d x=\iint y f(x, y) d y d x=$
$=\int y\left(\int f(x, y) d x\right) d y=\int y f(y) d y=\mathbb{E} Y$
Property 5:

$$
\mathbb{E}(a(X) Y \mid X)=a(X) \mathbb{E}(Y \mid X)
$$

See text for proof.

Summary of Common Distributions:

1) Bernoulli Distribution: $B(p), p \in[0,1]$ - parameter

Possible values of the random variable: $\mathcal{X}=\{0,1\} ; f(x)=p^{x}(1-p)^{1-x}$
$\mathbb{P}(1)=p, \mathbb{P}(0)=1-p$
$\mathbb{E}(X)=p, \operatorname{Var}(X)=p(1-p)$
2) Binomial Distribution: $B(n, p)$, n repetitions of Bernoulli $\mathcal{X}-\{0,1, \ldots, n\} ; f(x)=\binom{n}{x} p^{x}(1-p)^{1-x}$ $\mathbb{E}(X)=n p, \operatorname{Var}(X)=n p(1-p)$
3) Exponential Distribution: $E(\alpha)$, parameter $\alpha>0$
$\mathcal{X}=[0, \infty)$, p.d.f. $f(x)=\left\{\alpha e^{-\alpha x}, x \geq 0 ; 0\right.$, otherwise $\}$

$$
\begin{gathered}
\mathbb{E} X=\frac{1}{\alpha}, \mathbb{E} X^{k}=\frac{k!}{\alpha^{k}} \\
\operatorname{Var}(X)=\frac{2}{\alpha^{2}}-\frac{1}{\alpha^{2}}=\frac{1}{\alpha^{2}}
\end{gathered}
$$

** End of Lecture 19

