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Covariance and Correlation 
Consider 2 random variables X, Y 

2= Var(X), θy 
2θx = Var(Y ) 

Definition 1:

Covariance of X and Y is defined as:


Cov(X,Y ) = E(X − EX)(Y − EY ) 

Positive when both high or low in deviation.

Definition 2:

Correlation of X and Y is defined as:


Cov(X,Y ) Cov(X,Y )
π(X,Y ) = = 

θxθy 



Var(X)Var(Y ) 

The scaling is thus removed from the covariance. 

Cov(X,Y ) = E(XY − XEY − Y EX + EXEY ) = 
= E(XY ) − EXEY − EY EX + EXEY = E(XY ) − EXEY 

Cov(X,Y ) = E(XY ) − EXEY 

Property 1:

If the variables are independent, Cov(X,Y ) = 0 (not correlated)

Cov(X,Y ) = E(XY ) − EXEY = EXEY − EXEY = 0


1 1Example: X takes values {−1, 0, 1} with equal probabilities { 3 , 3 , 
1 
3 }

Y = X2 

X and Y are dependent, but they are uncorrelated. 
Cov(X,Y ) = EX3 − EXEX2 

but, EX = 0, and EX3 = EX = 0 
Covariance is 0, but they are still dependent. 
Also - Correlation is always between -1 and 1. 

Cauchy-Schwartz Inequality: 
(EXY )2 

EX2
EY 2 ←

Also known as the dot-product inequality: 
v ,− | v ||− |u ) ↔ ↔|(−↔ ↔ | ← 


 − u 
To prove for expectations: 

2δ(t) = E(tX + Y )2 = t EX2 + 2tEXY + EY 2 ∼ 0 

Quadratic f(t), parabola always non-negative if no roots:

D = (EXY )2 − EX2

EY 2 ← 0) (discriminant)

Equality is possible if δ(t) = 0 for some point t.

δ(t) = E(tX + Y )2 = 0, if tX + Y = 0, Y = -tX, linear dependence.

(Cov(X,Y ))2 = (E(X − EX)(Y − EY ))2 ← E(X − EX)2E(Y − EY )2 

Cov(X,Y ) θxθy ,| | ← 
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2θy 
2θ= x



Cov(X, Y )|π(X, Y ) = 
|

1| 
θxθy 

| ← 

So, the correlation is between -1 and 1. 

Property 2: 

← π(X, Y ) ← 1−1 

When is the correlation equal to 1, -1? 
π(X, Y ) = 1 only when Y − EY = c(X − EX),| |
or Y = aX + b for some constants a, b.

(Occurs when your data points are in a straight line.)

If Y = aX + b :


E(aX2 + bX) − EXE(aX + b) aVar(X) a 
π(X, Y ) = = = = sign(a)


Var(X) × a2Var(X) a Var(X) a| | | | 
If a is positive, then the correlation = 1, X and Y are completely positively correlated. 
If a is negative, then correlation = -1, X and Y are completely negatively correlated. 

Looking at the distribution of points on Y = X2, there is NO linear dependence, correlation = 0. 
However, if Y = X2 + cX , then there is some linear dependence introduced in the skewed graph. 

Property 3: 

Var(X + Y ) = E(X + Y − EX − EY )2 = E((X − EX) + (Y − EY ))2 = 

E(X − EX)2 − 2E(X − EX)(E(Y − EY ) + E(Y − EY )2 = Var(X) + Var(Y ) − 2Cov(X, Y ) 

Conditional Expectation:

(X, Y) - random pair.

What is the average value of Y given that you know X?

f(x, y) - joint p.d.f. or p.f. then f(y x) - conditional p.d.f. or p.f.
|
Conditional expectation: 

E(Y X = x) = 
� 
yf(y|x)dy or 

� 
yf(y x)| |

E(Y |X) = h(X) = 
� 
yf(y X)dy - function of X, still a random variable. |

Property 4: 

E(E(Y X)) = EY|
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Proof:

E(E(Y X)) = E(h(X)) = 

�
f (x)f (x)dx =


= 
�

(
� |
yf (y|x)dy)f (x)dx = 

� �
yf (y x)f (x)dydx = 

� �
yf (x, y)dydx =


= 
�
y(

�
f (x, y)dx)dy = 

�
yf (y)dy =

|
EY


Property 5: 

E(a(X)Y X) = a(X)E(Y X)| |
See text for proof. 

Summary of Common Distributions: 

1) Bernoulli Distribution: B(p), p ⊂ [0, 1] - parameter 
Possible values of the random variable: X = {0, 1}; f (x) = px(1 − p)1−x 

P(1) = p, P(0) = 1 − p 
E(X) = p, Var(X) = p(1 − p) 

2) Binomial Distribution: B(n, p), n repetitions of Bernoulli 
n X − {0, 1, ..., n}; f (x) = 

� �
px(1 − p)1−x 

x 
E(X) = np, Var(X) = np(1 − p) 

3) Exponential Distribution: E(∂), parameter ∂ > 0 
X = [0, →), p.d.f. f (x) = {∂e−∂x, x ∼ 0; 0, otherwise } 

1 
EX = , EXk = 

k! 
∂ ∂k 

2 1 1 
Var(X) = = 

∂2 
− 
∂2 ∂2 

** End of Lecture 19 
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