18.05 Lecture 21

April 1, 2005

Normal Distribution

Standard Normal Distribution, $\mathrm{N}(0,1)$ p.d.f.:

$$
f(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}
$$

m.g.f.:

$$
\phi(t)=\mathbb{E}\left(e^{t X}\right)=e^{t^{2} / 2}
$$

Proof - Simplify integral by completing the square:

$$
\begin{gathered}
\phi(t)=\int e^{t x} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x=\frac{1}{\sqrt{2 \pi}} \int e^{t x-x^{2} / 2} d x= \\
\frac{1}{\sqrt{2 \pi}} \int e^{t^{2} / 2-t^{2} / 2+t x-x^{2} / 2} d x=\frac{1}{\sqrt{2 \pi}} e^{t^{2} / 2} \int e^{-\frac{1}{2}(t-x)^{2}} d x
\end{gathered}
$$

Then, perform the change of variables $y=x-t$:

$$
=\frac{1}{\sqrt{2 \pi}} e^{t^{2} / 2} \int_{-\infty}^{\infty} e^{-\frac{1}{2} y^{2}} d y=e^{t^{2} / 2} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2} y^{2}} d y=e^{t^{2} / 2} \int f(x) d x=e^{t^{2} / 2}
$$

Use the m.g.f. to find expectation of X and X^{2} and therefore $\operatorname{Var}(X)$:

$$
\mathbb{E}(X)=\phi^{\prime}(0)=\left.t e^{t^{2} / 2}\right|_{t=0}=0 ; \mathbb{E}\left(X^{2}\right)=\phi^{\prime \prime}(0)=e^{t^{2} / 2} t^{2}+\left.e^{t^{2} / 2}\right|_{t=0}=1 ; \operatorname{Var}(X)=1
$$

Consider $X \sim N(0,1), Y=\sigma X+\mu$, find the distribution of Y :

$$
\mathbb{P}(Y \leq y)=\mathbb{P}(\sigma X+\mu \leq y)=\mathbb{P}\left(X \leq \frac{y-\mu}{\sigma}\right)=\int_{-\infty}^{\frac{y-\mu}{\sigma}} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x
$$

p.d.f. of Y:

$$
f(y)=\frac{\partial \mathbb{P}(Y \leq y)}{\partial y}=\frac{1}{\sqrt{2 \pi}} e^{-\frac{(y-\mu)^{2}}{2 \sigma^{2}}} \frac{1}{\sigma}=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(y-\mu)^{2}}{2 \sigma^{2}}} \rightarrow N(\mu, \sigma)
$$

$\mathbb{E} Y=\mathbb{E}(\sigma X+\mu)=\sigma(0)+\mu(1)=\mu$
$\mathbb{E}(Y-\mu)^{2}=\mathbb{E}(\sigma X+\mu-\mu)^{2}=\sigma^{2} \mathbb{E}\left(X^{2}\right)=\sigma^{2}$ - variance of $N(\mu, \sigma)$
$\sigma=\sqrt{\operatorname{Var}(X)}$ - standard deviation

To describe an altered standard normal distribution $\mathrm{N}(0,1)$ to a normal distribution $N(\mu, \sigma)$, The peak is located at the new mean μ, and the point of inflection occurs σ away from μ

Moment Generating Function of $N(\mu, \sigma)$;
$Y=\sigma X+\mu$

$$
\phi(t)=\mathbb{E} e^{t Y}=\mathbb{E} e^{t(\sigma X+\mu)}=\mathbb{E} e^{(t \sigma) X} e^{t \mu}=e^{t \mu} \mathbb{E} e^{(t \sigma) X}=e^{t \mu} e^{(t \sigma)^{2} / 2}=e^{t \mu+t^{2}(\sigma)^{2} / 2}
$$

Note: $X_{1} \sim N\left(\mu_{1}, \sigma_{1}\right), \ldots, X_{n} \sim N\left(\mu_{n}, \sigma_{n}\right)$ - independent.
$Y=X_{1}+\ldots+X_{n}$, distribution of Y :
Use moment generating function:

$$
\begin{aligned}
\mathbb{E} e^{t Y}=\mathbb{E} e^{t\left(X_{1}+\ldots+X_{n}\right)} & =\mathbb{E} e^{t X_{1}} \ldots e^{t X_{n}}=\mathbb{E} e^{t X_{1}} \ldots \mathbb{E} e^{t X_{n}}=e^{\mu_{1} t+\sigma_{1}^{2} t^{2} / 2} \times \ldots \times e^{\mu_{n} t+\sigma_{n}^{2} t^{2} / 2} \\
& =e^{\sum \mu_{i} t+\sum \sigma_{i}^{2} t^{2} / 2} \sim N\left(\sum \mu_{i}, \sqrt{\sum \sigma_{i}^{2}}\right)
\end{aligned}
$$

The sum of different normal distributions is still normal!
This is not always true for other distributions (such as exponential)
Example:
$X \sim N(\mu, \sigma), Y=c X$, find that the distribution is still normal:
$Y=c(\sigma N(0,1)+\mu)=(c \sigma) N(0,1)+(\mu c)$
$Y \sim c N(\mu, \sigma)=N(c \mu, c \sigma)$
Example:
$Y \sim N(\mu, \sigma)$
$\mathbb{P}(a \leq Y \leq b)=\mathbb{P}(a \leq \sigma x+\mu \leq b)=\mathbb{P}\left(\frac{a-\mu}{\sigma} \leq X \leq \frac{b-\mu}{\sigma}\right)$
This indicates the new limits for the standard normal.

Example:
Suppose that the heights of women: $X \sim N(65,1)$ and men: $Y \sim N(68,2)$
\mathbb{P} (randomly chosen woman taller than randomly chosen man)
$\mathbb{P}(X>Y)=\mathbb{P}(X-Y>0)$
$Z=X-Y \sim N\left(65-68, \sqrt{1^{2}+2^{2}}\right)=N(-3, \sqrt{(5)})$
$\mathbb{P}(Z>0)=\mathbb{P}\left(\frac{Z-(-3)}{\sqrt{5}}>\frac{-(-3)}{\sqrt{5}}\right)=\mathbb{P}\left(\right.$ standard normal $\left.>\frac{3}{\sqrt{5}}=1.342\right)=0.09$
Probability values tabulated in the back of the textbook.

Central Limit Theorem

Flip 100 coins, expect 50 tails, somewhere 45-50 is considered typical.

Flip 10,000 coins, expect 5,000 tails, and the deviation can be larger, perhaps $4,950-5,050$ is typical.
$X_{i}=\{1($ tail $) ; 0($ head $)\}$

$$
\frac{\text { number of tails }}{n}=\frac{X_{1}+\ldots+X_{n}}{n} \rightarrow \mathbb{E}\left(X_{1}\right)=\frac{1}{2} \text { by LLN } \operatorname{Var}\left(X_{1}\right)=\frac{1}{2}\left(1-\frac{1}{2}\right)=\frac{1}{4}
$$

But, how do you describe the deviations?
$X_{1}, X_{2}, \ldots, X_{n}$ are independent with some distribution \mathbb{P}

$$
\mu=\mathbb{E} X_{1}, \sigma^{2}=\operatorname{Var}\left(X_{1}\right) ; \bar{x}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \rightarrow \mathbb{E} X_{1}=\mu
$$

$\bar{x}-\mu$ on the order of $\sqrt{n} \rightarrow \frac{\sqrt{n}(\bar{x}-\mu)}{\sigma}$ behaves like standard normal.

$$
\begin{gathered}
\frac{\sqrt{n}(\bar{x}-\mu)}{\sigma} \text { is approximately standard normal } N(0,1) \text { for large } \mathrm{n} \\
\mathbb{P}\left(\frac{\sqrt{n}(\bar{x}-\mu)}{\sigma} \leq x\right) \overrightarrow{n \rightarrow \infty} \mathbb{P}(\text { standard normal } \leq x)=N(0,1)(-\infty, x)
\end{gathered}
$$

This is useful in terms of statistics to describe outcomes as likely or unlikely in an experiment.

$$
\begin{aligned}
& \mathbb{P}(\text { number of tails } \leq 4900)=\mathbb{P}\left(X_{1}+\ldots+X_{10,000} \leq 4,900\right)=\mathbb{P}(\bar{x} \leq 0.49)= \\
& \frac{1}{2}\left(\frac{\sqrt{10,000}\left(\bar{x}-\frac{1}{2}\right)}{\frac{1}{2}} \leq \frac{\sqrt{10,000}(0.49-0.5)}{\frac{1}{2}}\right) \approx N(0,1)\left(-\infty,-\frac{100(0.01)}{\frac{1}{2}}=-2\right)=0.0267
\end{aligned}
$$

Tabulated values always give for positive X, area to the left.
In the table, look up -2 by finding the value for 2 and taking the complement.

[^0]
[^0]: ** End of Lecture 21

